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Abstract

The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and

on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena

observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry

to SU(N > 2), which is closely related to systems with orbital degeneracy. Here we report a

successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of

ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility

and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal

an important difference between the cases of SU(6) and SU(2) in the achievable temperature as

the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk

cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N ) Hubbard

system at extremely low temperatures.
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In the last decade, a great deal of progress has been made for two-component atomic

Fermi gases. High controllability and simplicity for these systems allow systematic study

over extremely wide range of system parameters, including interatomic interactions. One of

the milestone experiments in strongly correlated regime are the recently reported realization

of a fermionic Mott insulator [1, 2] for atoms in optical lattices, which is of interest itself

and also the parent state of high-Tc superconductors [3].

On the other hand, many-body physics with multi-component Fermi gases is experimen-

tally unexplored despite of increasing theoretical interests [4–11]. Fermionic isotopes of

alkaline-earth-metal like atoms, such as ytterbium (173Yb) [12] and strontium(87Sr) [13, 14],

are suitable for this aim because of their simple SU(N = 2I + 1) symmetric interactions

for nuclear spin I [5, 9, 10]. N -component Fermi gas with SU(N ) symmetry in an optical

lattice is well described by the SU(N ) Hubbard model

H = −t
∑
⟨i,j⟩,σ

(c†i,σcj,σ +H.c.) +
U

2

∑
i,σ ̸=σ′

ni,σni,σ′ +
∑

k=x,y,z

Vk

∑
i,σ

(
ki
d

)2

ni,σ, (1)

where ci,σ is fermionic annihilation operator for site i and spin σ = −I, · · · ,+I, ni,σ =

c†i,σci,σ is the number operator, Vk = mω2
kd

2/2 is the strength of harmonic confinement along

k(= x, y, z)−axis with an atomic mass m and trap frequency ωk, and d denotes the lattice

constant. All parameters, hopping matrix element t, on-site interaction U and confinement

Vk are independent of spin states, which manifests the SU(N ) symmetry of the system.

Positive scattering lengths a = 10.55 nm for 173Yb [15] and a = 5.09 nm for 87Sr [16]

correspond to repulsive interactions (U > 0), the case of interest in the context of most

theoretical studies. Low temperature behavior of the SU(N > 2) model is predicted to be

qualitatively different from that of SU(2) model, mainly due to the enhancement of quantum

fluctuation for large N system [17]. For instance, the analysis on the square lattice, often

considered in the Heisenberg limit U/t → ∞, reveals the tendency toward disordered spin

states [8, 17–21], whereas the ground state of the half-filled SU(2) model is widely believed

to be Néel-ordered. Moreover, a striking difference is theoretically predicted for a one-

dimensional system. An infinitely small repulsive interaction results in a formation of a

Mott insulating state for SU(2) system, whereas a finite strength is required for SU(N > 2)

[22, 23]. Experimental study of SU(N > 2) system will lead to better understanding of

the underlying physics, and also will provide insights into the important role of the orbital

degeneracy [24, 25] in condensed matter physics.
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A milestone in the study of the SU(N > 2) Hubbard system is the realization and

characterization of the SU(N ) Mott insulating phase. There are several signatures for a

successful formation of a Mott insulating state. One important feature is the existence of

the charge excitation gap. As the interaction U increases, the density of states at the Fermi

level is decreased, which suppresses the mobility of atoms. Finally the system enters the

incompressible Mott phase when the gap opens. At the same time, multiple occupation

of lattice sites becomes energetically unfavorable and suppressed in the Mott regime. More

quantitatively, fraction of atoms in doubly occupied lattice sites (double occupancy) is closely

related to the compressibility ∂n/∂µ evaluated at the trap center [26]. Besides these common

features of a Mott insulator, it is especially important to clarify the difference between the

behaviors of Mott insulators with SU(2) and SU(N > 2) symmetries.

Here, we report a successful formation of the SU(N = 6) symmetric Mott insulator state

with an six-spin component atomic Fermi gas of 173Yb in a three-dimensional optical lattice.

From double occupancy measurements with photoassociation spectroscopy and lattice mod-

ulation spectroscopy, we confirm the above characteristics of the Mott state. Precise control

of the spin degrees of freedom provided by optical pumping enables us a straightforward

comparison between the cases of SU(6) and SU(2). We find an important difference that a

lower temperature is obtained for SU(6) Mott insulator as the consequence of larger entropy

carried by isolated spin [9, 27] (See also discussions in Section II). In particular, at the low-

est temperature achieved, the entropy density at the center of the trap reaches ln(6), which

originates from spin degrees of freedom. Our experimental results are in good agreement

with a theoretical calculation based on a high-temperature series expansion (HTSE) which

is reliable in the parameter regime of the current experiment [26–28] and a local density

approximation (LDA) accompanied with continuum approximation to take into account the

presence of the harmonic confinement (See Methods). This work is an important first step

and opens the door to the new frontier of the study of strongly correlated phases of the

SU(N > 2) system.

Experimental procedure is as follows (see also Methods for details). The sample is pre-

pared by loading evaporatively cooled Fermi gas of 173Yb into the optical lattices with simple

cubic geometry. The initial temperature before loading to the lattice is around 20% of the

Fermi temperature TF. In the following sections, we specify the initial condition in terms of

corresponding entropy per particle s, in the unit of the Boltzmann constant kB. Double oc-
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cupancy is measured using photoassociation (PA) technique [29, 30]. We focus on the Mott

phase with unit filling, namely one atom per lattice site, and average density at the trap

center is below 2 for all experiments presented here. In this case, we can neglect multiple

occupation ni ≥ 3 and double occupancy is simply related to the atom loss Nloss induced by

PA, as D = Nloss/N where N is the total atom number without PA.

I. LATTICE MODULATION SPECTROSCOPY OF SU(6) FERMIONS

First, we present the experimental evidence of the gap of the SU(6) Mott insulator.

The gap can be directly probed by periodically modulating the lattice depth, which induces

resonant tunneling to the occupied lattice sites at the modulation frequency close to the Mott

gap ∼ U [1]. This kind of tunneling is detected as the increase in double occupancy. Figure

1 shows the change in double occupancy after lattice modulation, measured at several lattice

depths. Here we apply lattice modulation V (τ) = V0+δV sin(2πfmτ) with a duration 0.4h/t.

Modulation amplitudes δV are chosen to set a perturbation strength F = δt/t− δU/U [31]

to be −0.30. The Hubbard parameters t and U are calculated using the formulae given by

Gerbier et al [32]. The Mott gaps are clearly observed especially at higher lattice depths.

For the lattices of V0 ≥ 9ER, we find that the observed spectrum is well fitted by Gaussian

and the peak positions agree with the calculated value of U/h within 3%.

Lattice modulation spectroscopy does not only give information about excitation spec-

trum but also correlation between nearest-neighbor lattice sites [33]. From the perturbative

treatment for the time evolution of the system under lattice modulation [33–36], we obtain

the sum rule about the doublon production rate (DPR) Γ (fm) = h/t∂D/∂τ∫
Γ (fm)dfm = 12π2F 2 t

h
P , (2)

where P = N−1
∑

⟨i,j⟩Pij is the system averaged correlator. In the case of low filling n <∼ 1

with strong repulsive interaction, the nearest neighbor correlator Pij is expressed as

Pij =
∑
σ ̸=σ̄

⟨
ni,σ

∏
σ′ ̸=σ

(1− ni,σ′)nj,σ̄

∏
σ̄′ ̸=σ̄

(1− nj,σ̄′)

⟩
, (3)

where spins (σ, σ′, σ̄, σ̄′) take N values. For small modulation amplitudes, observed DPR

shows quadratic dependence on F , which justifies the use of above linear response theory.
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FIG. 1. Lattice modulation spectroscopy. Lattice Modulation spectra obtained for samples

with N = 1.9(1) × 104 and sinit = 1.9(2), modulation time of 0.4h/t, and amplitudes of δV/V0 =

0.125, 0.115, 0.10, 0.090, 0.085 for lattice depths of 6, 7, 9, 11, 13 in unit of ER, respectively. The

vertical dashed lines indicate the calculated values of on-site interaction U/h for the corresponding

lattice depth. The error bars denote s.d. of the measurements.

In the high-temperature regime T ≫ t2/U , we can neglect the spin correlation between

adjacent sites and the above expression for Pij reduces to

Pij =
N − 1

N
Wi(1)Wj(1), (4)

where Wi(1) denotes the probability of single occupation at site i. The factor (N − 1)/N

is nothing more than the effect of Pauli exclusion on the hopping process. Compared with

the case of SU(2), larger DPR is expected for an SU(6) Mott insulator because of factor

5/3 enhancement due to the reduction of the Pauli exclusion effect. On the other hand,

the thermodynamic properties are reflected in the correlator through Wi(1), which increases

with lowering temperature and approaches unity when the system becomes a defect-free
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Mott insulator with unit filling.

FIG. 2. Doublon production rate for SU(N ) Mott insulators. (a) Measurement of the

doublon production rate. Linear increase is observed for short modulation times presented here.

Atom number is N = 1.9(1) × 104, the lattice depth is 11ER (t/h = 63.7 Hz and U/h = 4.0

kHz), and the modulation amplitude δV/V0 is 9.0%. Linear fits yield the values Γ = 0.47(2) and

0.18(1) for the case of SU(6) and SU(2), respectively. Error bars denote s.e. for 10-15 independent

measurements. (b) Temperatures of SU(6) (blue circles) and SU(2) (open red circles) Fermi gases

in the lattice inferred from the measured DPR. The dependence on the initial temperature in the

harmonic trap is shown. The solid and dashed lines are the corresponding theoretical curves which

assume adiabatic loading into the lattice. Error bars include the fitting error in determining DPR

and s.d. of initial temperatures. (c) Calculated density (top) and entropy distribution (bottom)

at the lowest measured temperatures for 6- and 2-component cases, indicated by square symbols

in the graph (a). Maximum spin entropy ln(N = 6, 2) are indicated by the arrows.
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II. COMPARISON BETWEEN SU(6) AND SU(2) FERMIONS

We measure the DPR at the peak of the modulation spectrum, both for SU(6) and SU(2)

Mott insulators, as shown in Fig. 2 (a) (see also supplementary information S1). Here

we produce SU(2) symmetric system of 173Yb by optical pumping [37] (See Methods), in

order to make a direct experimental comparison between the behaviors of SU(6) and SU(2)

systems. The modulation spectra are well fitted with a Gaussian shape of e−2 full width

of 25(2)t/h, determined from the spectrum for modulation time τ = 0.3h/t (see Fig. S1

(a)). The peak DPR is extracted from linear fitting to the data taken for several modulation

times. The measured DPR for an SU(6) Mott insulator exceeds 5/3 of that for SU(2), which

indicates the lower temperature is realized (Fig. 2 (a)). This is clarified in Fig. 2 (b), where

we plot the temperature in the lattice determined from the measured DPR. Temperature

estimation is based on the formalism presented in the previous section and the calculation

of the quantity Wi(1) from the high-temperature series expansion (HTSE), as described in

Methods. The temperatures for SU(6) Fermi gases are the factor of about 2-3 smaller than

that for the SU(2) cases. We also show in Fig. 2 (c) the density and entropy distributions

calculated for the case of the largest DPR, in other words, the lowest temperature achieved.

In the case of SU(6), a robust Mott plateau is clearly formed and entropy per site is very

close to ln(6). We note that, in a trapped system, entropy is pushed onto a metallic state

near the edge of the cloud and a Mott insulator at the trap center survives for higher total

entropy [2]. On the contrary, starting from the almost same initial T/TF in a harmonic trap

before loading into the lattice, the plateau has been largely melted for the SU(2) case.

The observed striking difference between the temperatures required for accessing the Mott

phase of SU(2) and SU(N > 2) cases can be understood by a following simple argument,

as shown in Fig. 3. In the atomic limit where tunneling between lattice sites is neglected,

the maximum spin entropy per atom is equal to lnN for an N -component Fermi gas in the

Mott state with unit filling. On the other hand, motional degrees of freedom must be frozen

in the Mott phase. Assuming adiabaticity of loading process into optical lattices, we can

expect that the defect-free Mott phase in an optical lattice forms at (T/TF)init ∼ lnN /π2

where (T/TF)init is measured in a harmonic trap before loading into lattices. This implies a

significant reduction of the required initial temperature in the unit of TF for large N system,

as predicted in Refs. [9, 27]. In other words, large spin can effectively cool down the system
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FIG. 3. Schematic of enhanced Pomeranchuk cooling in an SU(N ) Fermi gas. When the

system evolves from a weakly-interacting degenerate Fermi gas into a Mott insulator, spin degrees

of freedom arise. Lager entropy can be absorbed by isolated spins of an SU(N > 2) Mott insulator,

resulting in the reduction of density fluctuation which has dominant contribution in determining

the temperature. In real experiments, the behavior of absolute temperature strongly depends on

the harmonic confinement: the system can even be heated if strong compression occurs during

loading into the lattice. However, the general trend that larger N leads to lower temperature

remains unchanged.

by absorbing entropy from motional degrees of freedom, which is the same mechanism as

Pomeranchuk cooling observed in solid 3He [38].

Although this mechanism was responsible for achieving novel quantum phases in a mixed

gas of bosons and fermions in a recent report [30], no systematic study was done on the

detailed behaviors of enhanced Pomeranchuk cooling, especially the comparison between

the SU(2) and SU(6) which is clearly demonstrated in this work.

III. DOUBLE OCCUPANCY MEASUREMENT OF SU(6) FERMIONS

Double occupancy measurement has been extensively used as the probe for fermionic lat-

tice systems [1, 2, 39] to obtain the information on the compressibility. While the correlation

measurement presented above is a good probe for the low density case n ≤ 1, the double oc-

cupancy is suitable for characterizing states with high filling, especially 1 ≤ n ≤ 2. Figure 4
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FIG. 4. Double occupancy and compressibility. (a) Measured double occupancy. Two data

series with different atom number (i) N = 2.6(1)×104 (red circles) and (ii) 1.3(1)×104 (open blue

circles) are shown. The solid lines are the best fitted theoretical curves according to the second order

high-temperature expansion, corresponding s = 2.2 and 2.5 for (i) and (ii), respectively. The error

bars denote s.e. for typically 15 independent measurements. (b) Calculated central compressibility

κc (solid) as the function of characteristic filling ρ, together with the central density nc (dashed)

with the parameters for data (ii) in (a). Fixed entropy s = 2.5 obtained by the fit in (a) is used.

Experimentally relevant range of ρ is indicated by the shaded region.

(a) shows the measured double occupancy for various mean trap frequencies ω = (ωxωyωz)
1/3,

at the lattice depth of 9.0ER. Corresponding Hubbard parameters are given as t/h = 101 Hz

and U/h = 3.3 kHz. The data are taken for two initial preparations of (i) N = 2.6(1)× 104

and sinit = 1.7(1) and (ii) N = 1.3(1)× 104 and sinit = 1.9(3). For the data (i), the double

occupancy increases with tighter confinement and the trap center is metallic with n > 1.

On the other hand, the data (ii) shows that the double occupancy is essentially zero for low

compression regime, indicating the formation of an n = 1 Mott plateau. We fit the data

to a theoretical curve based on the HTSE by taking the entropy per particle in the lattice

s as only one fitting parameter. We then obtain s = 2.2 and 2.5 for the set (i) and (ii),

respectively, which are slightly higher than sinit. Since they still lie between sinit and the

entropies measured after reversed loading into the harmonic trap which range from 2.8 to

3.4, the deduced values of entropy s are reasonable and consistent with the existence of some

constant heating or non-adiabatic effects during the loading and reverse loading processes.

Incompressibility due to the repulsive interaction, which characterizes a Mott insulator,

can be deduced from the obtained entropy in the lattice. In Fig. 4 (b) we show the calculated
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density n0 and compressibility at the trap center κc = ∂n0/∂µ as a function of characteristic

filling defined as ρ = N(12t/mω2d2)−3/2. Introducing characteristic filling enables to unify

the data with different total atom number and the harmonic confinement, within the LDA

formalism [28, 40]. For the lowest measured ρ ∼ 25, n0 is almost unity and κc is as low as

0.03/6t, which means that the system is deep in the strongly incompressible Mott insulating

regime. We note that this value of κ0 is a factor of ∼ 3 smaller than that expected in the case

of the SU(2) Hubbard model with the same parameters (s, ρ, and U/t), as the consequence

of large-spin Pomeranchuk cooling mentioned above.

This work clearly shows the realization of an SU(6) Mott insulator with unit filling

and demonstrates the existence of enhanced Pomeranchuk cooling for large spin systems.

Pomeranchuk cooling is most effective for systems with low filling for which atoms possesses

full spin degrees of freedom. We note that it also works for higher fillings because (a) entropy

per atom n−1 ln(NCn) is larger than ln(2) for n ≤ N /2 and (b) a Mott plateau with high

filling is surrounded by shells with lower filling, where spin degree of freedom survives.

Note added.

After completion of our work, we noticed some theoretical works [41–43] which study

thermodynamics of SU(N ) Hubbard/Heisenberg model. They found that the advantage of

large-N systems in adiabatic cooling, which is demonstrated in our experiment, is still valid

in low temperature regime (kBT ∼ t2/U) where magnetic correlations take place.

IV. METHODS

A. Preparation of a degenerate fermi gas of 173Yb with 6 spin components

The method for preparing a degenerate Fermi gas of 173Yb is essentially the same as that

described before [12] except that the detailed parameters of the experimental apparatus have

been changed (For current setup, see also Ref. [44]). A balanced mixture of all nuclear spin

states is evaporatively cooled in a crossed far-off resonant optical trap (FORT). At the end

of evaporation, we have 1− 3× 104 atoms with a temperature around 0.2TF. Temperature

is obtained by performing standard Thomas-Fermi fitting to the observed momentum dis-

tributions and entropy per particle is calculated from measured T/TF using the formula for
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non-interacting Fermi gas. The spin distribution is measured by an optical Stern-Gerlach

effect and confirmed to be equal within 5% relative uncertainty [37]. Atoms are subsequently

loaded into an optical lattice within 150 ms. The lattice potential is formed by three mu-

tually orthogonal laser beams with the lattice constant d = 266 nm. During the first 100

ms of loading process, the lattice is ramped up to 5ER and at the same time we change

the power of the FORT laser to obtain desired confinement strength. The lattice depth is

calibrated by analyzing diffraction patterns of a Bose-Einstein condensate of 174Yb after the

application of the pulsed lattice potential [45]. Trap frequencies are determined from dipole

oscillations. For lattice modulation experiments (Fig. 1 and 2), the mean trap frequencies

ω/2π are 115.2(8), 119.6(9), 127.4(10), 134.5(11), 140.9(13) [Hz] for the lattice depths of

6, 7, 9, 11, 13 in unit of ER, respectively.

B. Preparation of a degenerate Fermi gas of 173Yb with 2 spin components

At the early stage of evaporative cooling, atoms are pumped into mF = +5/2 and −5/2

states by π−polarized laser light which is resonant with the 1S0 ↔ 3P1(F
′ = 3/2) tran-

sition. The fraction of residual spin components are estimated to be Nm ≤ 0.03N+5/2 for

m = −3/2, · · · + 3/2. We observe no detectable spin changing collision such as mF =

(+5/2,−5/2) → (+3/2,−3/2) during several second of evaporation, which is the character-

istic of SU(N ) symmetry [10].

C. Measurement of doubly occupied site by photoassociation

First, the lattices are ramped up to desired depth for which Mott insulating states can be

reached. We then increase the lattice depth to 25ER in 2 ms to suppress tunneling during

the measurement, followed by 10 ms irradiation of PA laser light. The PA laser is detuned

by -796 MHz from the 1S0 ↔ 3P1 atomic transition (λ = 556 nm) and has the intensity of

∼ 0.5W/cm2. The PA process enables to convert all atoms on doubly occupied sites into

electronically excited molecules which rapidly escape from the trap. The loss of atom is,

therefore, the measure of the double occupancy.
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D. Theoretical method

Theoretical calculations presented in this paper are based on high-temperature expansion

of the SU(6) Hubbard model [27, 46, 47]. Extending the calculation in Ref. [47] to the

SU(N ) case, we have the grand-canonical free energy per lattice site up to second order in

t/kBT = βt:

Ω(T, µ) = Ω0(T, µ) + ∆Ω, (5)

−β∆Ω =

(
βt

Z0

)2

zN

[
1

2

N∑
n1=1

(
N − 1

n1 − 1

)2

x2n1−1w(n1−1)2

− 1

βU

N∑
n1 ̸=n2

(
N − 1

n1 − 1

)(
N − 1

n2 − 1

)
xn1+n2−1w

1
2
n1(n1−1)+ 1

2
(n2−1)(n2−2)

n1 − n2

]
, (6)

where z is the number of nearest neighbors, x = eβµ, w = e−βU , and Ω0 is the free energy in

the atomic limit given by

Ω0(T, µ) = −kBT lnZ0(T, µ), (7)

Z0(T, µ) =
N∑
n=0

(
N
n

)
exp

[
−β

(
U

2
n(n− 1)− µn

)]
. (8)

For a trapped system, we apply local density approximation in which the system is regarded

as locally uniform. Thus we have ΩLDA =
∑

iΩi =
∑

iΩ(T, µi), where µi = µ − Vi is the

local chemical potential for the external potential Vi. Finally we approximate the sum over

lattice sites with spatial integration (continuum approximation).

As our experiments are carried out near unit filling n = 1 with strong repulsive interaction,

we can neglect multiple occupation with filling n ≥ 3. In this case, double occupancy is

given by the same formula as for the SU(2) model:

D =
2

N

∑
i

⟨ni,↑ni,↓⟩ =
2

N

∂ΩLDA

∂U
. (9)

To obtain the expression for the correlator Pij, we use the relation ⟨ni⟩ =
∑6

n nWi(n) ≃

Wi(1)+2Wi(2) = −∂Ωi/∂µ, where Wi(2) is local double occupancy and is given by ∂Ωi/∂U .

Then the correlator is given in terms of the derivatives of the free energy as

Pij =
N − 1

N

(
∂Ωi

∂µ
+ 2

∂Ωi

∂U

)(
∂Ωj

∂µ
+ 2

∂Ωj

∂U

)
. (10)
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Supplementary Information

S1. MEASUREMENT OF NEAREST NEIGHBOR CORRELATOR

Within the perturbative formalism used in this paper, we need the frequency-integrated

doublon production rate (DPR) to obtain the nearest neighbor correlator. Reference [1]

reported that Γ (h̄ω) has approximately Gaussian shape with e−2 full width of 24t for a

trapped SU(2) Mott insulator. In our case of an SU(6) Mott insulator, the spectrum has

the width of 25(2)t (Figure S1 (a)), which is in good agreement with their result. Given the

width of a modulation spectrum, the correlator can be calculated from the DPR measured

at the peak of the spectrum. Figure S1 (b) shows the peak DPR measured at several initial

temperatures, which is the basis of thermometry presented in Fig. 2 (b) in the main text.

Remarkable enhancement of the DPR for SU(6) fermions is observed, which is due to the

combined effect of the greater Pauli suppression of tunneling for the SU(2) case and the

enhancement of the Pomeranchuk effect for the SU(6) case.

FIG. S 1. (a) Lattice modulation spectrum for the lattice depth of 11ER, the modulation amplitude

of δV/V0 = 9.0%, and modulation time of 0.32h/t, which is shorter than that for Fig. 2. We extract

the width 4σ = 25(2)t from a Gaussian fit to the data. Error bars denotes s.d. of the measurements.

(b) Peak DPR obtained for both SU(6) (closed circles) and SU(2) (open circles) Mott insulators, as

a function of entropy per particle s measured in the harmonic trap. We measure s before loading

to the lattice (blue and green) and also after reversing the loading prededure (red and orange),

which set the lower and the upper limit, respectively. The corresponding two values are connected

by the gray lines.
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S2. EFFECT OF RESIDUAL SPIN COMPONENTS

Here we discuss the effect of residual population in the mF = ±3/2 and ±1/2 states

due to imperfect optical pumping to mF = ±5/2 states in the case of SU(2) experi-

ments. For a uniform Mott insulator with unit filling, the entropy per atom is given by

s = kBN
−1 ln(N !/

∏
σ Nσ!) where N is the total atom number and Nσ is the atom number

for the spin component σ. Below we consider the special case that each minority component

is equally populated. We define the imbalance parameter p as N−3/2 = · · · = N+3/2 =

pN+5/2(= pN−5/2). In the case of p = 0.03 which is upper limit in our experiment, we have

s/kB = 0.96, considerably larger than ln(2) = 0.69 for the pure SU(2) case. This large spin

entropy cools the sample and enhances DPR. In addition, impurity components reduce the

effect of Pauli principle in hopping processes, which also contributes to the increase of DPR.

We estimate this effect to be ∼ 10% for p = 0.03.

For more quantitative argument, we calculate the DPR for six-component gases with

imbalanced population within the atomic limit. Imbalanced population leads to two chemical

potentials µm and µr for two majority components of mF = ±5/2 and residual minority

ones of mF = ±3/2,±1/2, respectively. We consider the probability Wi(nm, nr) that site i

is occupied by nm majority spins and nr minority spins. In the atomic limit, it is given by

Wi(nm, nr) =
1

Z

(
2

nm

)(
4

nr

)
Bi(nm, nr), (11)

Bi(nm, nr) = e−β[U2 (nm+nr)(nm+nr−1)−µi,mnm−µi,rnr], (12)

where Z =
∑2

nm=0

∑4
nr=0

(
2
nm

)(
4
nr

)
Bi(nm, nr) is the partition function with local chemical

potentials µi,m/r = µm/r − Vi. Recalling that the correlator is the probability that the site i

and j are singly occupied except for the case of the same spin component, we have

Pij =
1

2
Wi(1, 0)Wj(1, 0) +

3

4
Wi(0, 1)Wj(0, 1) +Wi(1, 0)Wj(0, 1) +Wi(0, 1)Wj(1, 0), (13)

where the first term represents the case that both sites i and j are occupied by majority

components (N = 2 in Eq. (3)), the second term for the case of minority components

(N = 4), and the other two terms for the cases that a site is occupied by a majority atom

and the other site by a minority one. Figure S2 shows the calculated DPR for the imbalanced

gas, together with the experimental results and the HTSE calculation. Although the increase

in the calculated DPR due to the impurity components is clearly visible, it is still within

the range of uncertainty of the experimental data.
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FIG. S 2. Effect of the impurity spin components on the doublon production rate. The experimental

data (green and orange circles) and the HTSE calculation with p = 0 (solid line) are identical with

that shown as the SU(2) case in Figure S1 (b). The blue dashed line shows the atomic limit

calculation with p = 0.03 described in this section. Note that, the calculations on the HTSE

and the atomic limit for p = 0 (dash-dotted line) give almost the same result for the deep lattice

(V0 = 11ER) considered here.
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