<table>
<thead>
<tr>
<th>Title</th>
<th>Porphyrinylboranes Synthesized via Porphyrinyllithiums.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Fujimoto, Keisuke; Yorimitsu, Hideki; Osuka, Atsuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>Chemistry - A European Journal (2015), 21(32): 11311-11314</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-07-14</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/201995</td>
</tr>
<tr>
<td>Right</td>
<td>This is the peer reviewed version of the following article: Fujimoto, K., Yorimitsu, H. and Osuka, A. (2015), Porphyrinylboranes Synthesized via Porphyrinyllithiums. Chem. Eur. J., 21: 11311–11314, which has been published in final form at http://dx.doi.org/10.1002/chem.201502215. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Porphyryrinylboranes Synthesized via Porphyryrinilyllithiums

Keisuke Fujimoto,[a] Hideki Yorimitsu,[a,b] and Atsuhiko Osuka*[a]

Abstract: As the most nucleophilic porphyrins, meso- or β-lithiated porphyrins were generated by iodine-lithium exchange reactions of the corresponding iodoporphyrins with n-butyl lithium at -98 °C. Porphyryrinilyllithiums thus prepared were used for synthesis of dimesitylporphyrinylboranes via reactions with fluorodimesitylboration. The boryl groups proved to serve as an electron accepting unit to alter the photophysical and electrochemical properties. In addition, 5-diarylamino-15-dimesitylborystubstituted porphyrins showed increased intramolecular charge-transfer character in the S1 state. Furthermore, the reaction of β-lithiated porphyrin with dichloromesitylboration provided a boron-bridged porphyrin dimer, which exhibited a conjugative interaction between two porphyrin units through the vacant p-orbital on the boron center.

In recent years, triarylborylboranes have attracted considerable attention in light of their intriguing features such as high luminescence properties, large nonlinear optical responses, and anion-sensing properties.[1,2] Owing to the high electronegativity of three coordinate borons, bulky aryl substituents have been often employed to protect the boron center from nucleophilic attack. Considering the rich optical and electrochemical properties of porphyrins, porphyryrinylboranes can be regarded as a hybrid of porphyrin and triarylborylborane would be interesting functional molecules. The first peripheral borylation of porphyrins has been accomplished by Thieren and co-workers.[3] The resulted bononates were proved to be useful building blocks for Suzuki-Miyaura cross-coupling. However, installation of a diarylboryl group directly on the periphery of porphyrins has remained unexplored so far. Reactions of nucleophilic porphyryrinylboranes with haloboranes would be a feasible synthetic route to porphyryrinylboranes. However, generation of such porphyryrinylboranes has not been easy because porphyrin cores are reactive toward nucleophilic species to undergo various transformations.[4]

Recently, we succeeded in preparation of porphyryrinyl Grignard reagents as a rare example of nucleophilic porphyrin species through iodine-magnesium exchange under cryogenic conditions.[5,6] These Grignard reagents displayed high nucleophilicity toward aldehydes and ketones. Inspired by the success, we embarked on the synthesis of porphyryrinylboranes by using porphyryrinyl Grignard reagents. As an initial attempt, we examined the reaction of a porphyryrinyl Grignard reagent generated from β-iodoporphyrin 1b[7] (Ar1 = 3,5-di-tert-butylphenyl) throughout the manuscript) with fluorodimesitylboration (Mes2BF). A bulky dimesitylboryl group was employed to protect the boron center in the product from moisture and oxygen. However, the reaction was sluggish and gave the desired borylated product 4bNi only in 17% yield. meso-Magnesioporphyrin prepared from meso-iodoporphyrin 1a[8] was entirely unreactive toward Mes2BF and only decomposition of the Grignard reagent was observed. These disappointing results should stem from the insufficient nucleophilicity of these porphyryrinyl Grignard reagents.

We then envisioned the preparation of porphyryrinilyllithiums as more reactive porphyryrinyl nucleophiles via iodine-lithium exchange (Scheme 1). After iodine-lithium exchange between 1a and n-butyl lithium[9] at -80 °C, an addition of D2O afforded meso-deuterioporphyrin 3a[10] (57%) along with protodeiodinated product (12%) and meso-butylated product (7%). These results indicated not only the formation of meso-lithiated porphyrin 2a but also the occurrence of undesirable side reactions. Indeed, Sengen and co-workers reported that nucleophilic addition of organolithium reagents to porphyrin cores was extremely fast and occurred even at −100 °C in THF.[11] However, after extensive optimization, we found that the iodine-lithium exchange of 1a with n-butyl lithium proceeded preferentially over the nucleophilic addition to 1a in THF at -98 °C to give 3a in 81% yield. Generation of β-lithiated porphyrin 2b has been similarly confirmed by the formation of β-deuterated product 3b[10] from 1b in 82% yield under the same conditions.

To our delight, we have found that porphyryrinilyllithiums 2a and 2b are reactive enough toward fluorodimesitylboration to give 4aNi and 4bNi in 52% and 70% yields, respectively (Scheme 2). Importantly, these dimesitylporphyrinylboranes are tolerable under basic and acidic conditions owing to the sterically protected boron center. Thanks to their high stability, 4aNi and 4bNi underwent reductive dealkylation with 4-tolylmagnesium bromide[12] followed by zincation to yield 4aN2 and 4bN2, respectively. The solid-state structures of 4aNi and 4bNi have been revealed by X-ray crystallographic analysis (Figure 1). The boron center on meso-borylporphyrin 4aNi shows a propeller-like structure with C—B bonds of 1.57–1.58 Å, which are typical lengths for sterically crowded triarylboranes.[13] The boron atom is embedded in a completely planar geometry with the sum of ∠C—B—C angles to be 360°. The dihedral angle between the

[a] K. Fujimoto, Prof. Dr. H. Yorimitsu, Prof. Dr. A. Osuka
Department of Chemistry
Graduate School of Science, Kyoto University
Sakyo-ku Kyoto 606-8502 (Japan)
E-mail: osukad@kuchem.kyoto-u.ac.jp, yor@kuchem.kyoto-u.ac.jp

[b] ACT-C Japan Science and Technology Agency
Sakyo-ku Kyoto 606-8502 (Japan)

Supporting information for this article is given via a link at the end of the document.
Scheme 2. Synthesis of porphyrinylboranes 4aM, 4bM, 8M, and 9Ni and structures of reference compounds 10M and 11M. a) nBuLi (1.5 equiv), THF, –98 °C, then fluoro(dimesityl)boration (1.5 equiv), r.t.; b) 4-TolMgBr (10 equiv), toluene, 60 °C (for 4aNi and 8Ni) or 40 °C (for 4bNi), then Zn(OAc)2, CH2Cl2/MeOH, r.t.; c) NBS (1.0 equiv), pyridine, CHCl3, 0 °C; d) Ni(acac)2, toluene, reflux; e) di(4-tert-butylphenyl)amine (3 equiv), Pd-PEPPSI-IPr/NaOtBu conditions.\[12\] Di(4-tert-butylphenyl)amine was employed as a coupling partner to avoid competitive halogenation on the diarylamino segment in the next reaction. The free meso-position of 6Ni was iodinated with iodine/bis(trifluoroacetoxy)iodobenzene (PIFA)\[8\] via more electron-rich free-base porphyrin 6H2 to furnish 7Ni in 64% yield. 7Ni was subjected to the same iodine-lithium exchange conditions followed by treatment with Mes2BF to give 8Ni in 39% yield. NiII porphyrin 8Ni was further converted to the corresponding ZnII porphyrin 8Zn via denickelation with 4-tolylmagnesium bromide and subsequent zincation in 47% yield. The structure of 8Ni has been revealed by X-ray crystallographic analysis to show planar geometries both at the boron and nitrogen atoms, as indicated by the sums of \(\angle C-B-C\) and \(\angle B-Ni-B\)...

Figure 1. X-ray crystal structures of (a) 4aNi (b) 4bNi, and (c) 8Ni. The thermal ellipsoids are scaled to 50% probability. Solvent molecules and tert-butyl groups are omitted for clarity.
Absorption and fluorescence spectra were taken to investigate the electronic properties of porphyrinylboranes (Figure 2). The absorption spectrum of meso-borylated 4aZn showed a sharp and intense Soret band at 432 nm and weak Q bands at 558 and 601 nm. Both bands were red-shifted by ca. 20 nm compared to those of the corresponding triaryl Zn₈-porphyrin (10Zn). β-borylated 4bZn exhibited almost the same absorption spectrum as that of 4aZn. 4aZn and 4bZn exhibited slightly enhanced fluorescence representing mirror images of their Q bands. The absorption spectrum of 5-diarylamino-15-dimesitylboryl porphyrin 8Zn exhibited a characteristically broad Soret band similar to meso-diarylaminoporphyrin (11Zn) with a bathochromic shift in its Q band by 20 nm. Porphyrin 8Zn shows relatively large Stokes shifts that depend on solvent polarity; 623 cm⁻¹ in hexane, 828 cm⁻¹ in toluene, 883 cm⁻¹ in CHCl₃, 1079 cm⁻¹ in CH₂Cl₂, and 1164 cm⁻¹ in nitromethane (see Figures S31, S2 in SI). These data suggest increased charge transfer character in the S₁ state. The charge transfer character of 8Zn was also supported by theoretical calculation (see Figures S34 in SI). While the orbital coefficients are almost localized on the porphyrin unit in the frontier orbitals, 8Zn shows delocalised orbitals over the diarylamino and dimesitylboryl moieties in the HOMO and LUMO, respectively.

Upon addition of tetrabutylammonium fluoride (TBAF), the absorption of 4aNi and 4bNi were blue-shifted (see Figure S33 in SI) by disruption of the π→π* interaction by B-F coordination. In order to make this coordination effect clearer, we designed a boron-bridged porphyrin dimer 9Ni, which is supposed to show π-conjugation between two porphyrin units through the vacant π-orbital on the boron atom. Thanks to the high reactivity of β-lithiated porphyrin 2b, two-fold nucleophilic substitution of dichloromesitylborane successfully provided 9Ni in 25% yield. 9Ni were quickly purified by silica-gel column chromatography because 9Ni gradually decomposed under ambient conditions. The instability toward moisture or oxygen implies insufficient kinetic stabilization at the boron center. High-resolution atmospheric-pressure-chemical-ionization time-of-flight (HR-APCI-TOF) mass spectrum of 9Ni exhibited the ion peak at m/z = 2024.0659 of [M+Cl]⁺ (calcd. for C₁₃₃H₁₂₀N₃B₄Cl₈P₆Ni₂: 2024.0731). The ¹H NMR spectrum of 9Ni showed two singlets and six doublets in the range of 9.82–8.54 ppm due to the meso- and β-protons and three singlets at 7.11, 2.53, and 2.49 ppm due to the protons of the mesityl group. The dimer 9Ni exhibited a rather broad Soret band over 390–470 nm and red-shifted Q bands, owing to the conjugative electronic interaction between two porphyrins via the vacant π-orbital of the boron atom. Upon addition of TBAF, the Soret band became sharpened as a consequence of the disruption of the conjugative interaction between two porphyrins.

Electrochemical properties were revealed by cyclic voltammetry (Table 1). The parent unsubstituted Zn₈-triarylporphyrin 10Zn shows first oxidation potential of 0.36 V, and first reduction potential of –1.86 V. The reduction potentials of 4aZn and 4bZn were positively shifted by ca. 0.1 V. 8Zn also shows a positively shifted reduction wave compared to 11Zn. Thus, their electrochemical HOMO–LUMO gaps (ΔE(calcd)) decreased by ca. 0.1 eV owing to their enhanced electron-accepting characters.

![Figure 2](image-url) (a) UV/Vis absorption and (b) fluorescence spectra of 4aZn, 4bZn, 8Zn, 10Zn, and 11Zn in CHCl₃. (c) UV/Vis spectra of 9Ni in CH₂Cl₂ and in CHCl₃ with 1×10⁻⁴ M TBAF.

<table>
<thead>
<tr>
<th>Compound</th>
<th>E₁/₂ (V)</th>
<th>Eₐ/₁ (V)</th>
<th>E₁/₁ (V)</th>
<th>ΔE(calcd) (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4aZn</td>
<td>0.64</td>
<td>0.35</td>
<td>–1.78</td>
<td>2.13</td>
</tr>
<tr>
<td>4bZn</td>
<td>0.67</td>
<td>0.36</td>
<td>–1.77</td>
<td>2.13</td>
</tr>
<tr>
<td>10Zn</td>
<td>0.66</td>
<td>0.36</td>
<td>–1.86</td>
<td>2.22</td>
</tr>
<tr>
<td>8Zn</td>
<td>0.46</td>
<td>0.26</td>
<td>–1.77</td>
<td>2.00</td>
</tr>
<tr>
<td>11Zn</td>
<td>0.48</td>
<td>0.27</td>
<td>–1.83</td>
<td>2.10</td>
</tr>
</tbody>
</table>

[a] The redox potentials were measured by cyclic voltammetry in anhydrous CH₂Cl₂ with 0.1 M Bu₄NPF₆ as supporting electrolyte and Ag/AgClO₄ as reference electrode. Fc/Fc⁺ was used as external reference.
In summary, porphyrinylolithiums were successfully generated by iodine-lithium exchange reactions of the corresponding iodoporphyrins with n-butyllithium at –98 °C. The porphyrinylolithiums were useful for synthesis of a series of porphyrinylboranes via reactions with suitable haloboranes. The boryl groups proved to serve as an electron-accepting unit to alter photophysical and electrochemical properties. B,N-substituted donor-acceptor porphyrin showed increased intramolecular charge-transfer character in the S1 state and boron-bridged porphyrin dimer exhibited a conjugative interaction between the two porphyrin units through the vacant p-orbital at the boron atom. Further applications of porphyrinylolithiums and investigations on boron-containing porphyrinoids are currently underway.

Acknowledgements

This work was supported by Grants-in-Aid from MEXT (Nos.: 25107002 “Science of Atomic Layers”) and from JSPS (Nos.: 25220802 “Scientific Research (S)”), 24685007 (Young Scientists (A)”), 26620081 (Exploratory Research)). H.Y. acknowledges Kansai Research Foundation for Technology Promotion and The Asahi Glass Foundation for financial support. K.F. acknowledges a JSPS Fellowship for Young Scientists.

Keywords: porphyrin • halogen-lithium exchange • borylation • triarylboration • donor-acceptor porphyrin

[9] Use of BuLi (2.5 equiv) instead of nBuLi under the same conditions led to formation of a rather complicated reaction mixture including 3a (36%) protodeiodinated product (19%), and unidentified by-products.

[15] Probably because of its highly crowded nature, a meso-meso boron-bridged dimer was not formed under the same reaction conditions using meso-lithiated porphyrin 2a.

[16] Upon addition of TBAF, the full width at half maximum (fwhm) of the Soret band of 9Ni• was decreased from 3320 cm⁻¹ to 1860 cm⁻¹. The Soret band of 9Ni-F• is still larger than that (fwhm = 1190 cm⁻¹) of 10Ni due to the exciton coupling interaction.
Porphyrinyllithiums were generated by iodine-lithium exchange of the corresponding iodoporphyrins. The porphyrinyllithiums were useful for synthesis of a series of porphyrinylboranes via reactions with suitable haloboranes. The boryl groups proved to serve as an electron-accepting unit to alter photophysical and electrochemical properties. B,N-substituted donor-acceptor porphyrin showed increased intramolecular charge-transfer character in the S_1 state. Boron-bridged porphyrin dimer exhibited a conjugative interaction between two porphyrin units through the vacant p-orbital at the boron atom.