Polymerization of Vinyl Ethers Initiated by Dendritic Cations Using Flow Microreactors

Aiichiro Nagaki, Masahiro Takumi, Yosuke Tani, and Jun-ichi Yoshida*
Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

Graphical Abstract
To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.
Polymerization of Vinyl Ethers Initiated by Dendritic Cations Using Flow Microreactors

Aiichiro Nagaki, Masahiro Takumi, Yosuke Tani, and Jun-ichi Yoshida*

* Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan.

1. Introduction

Linear-dendritic polymers have emerged as a new important type of macromolecules in materials science, and the ambivalent characteristics of their architecture offer unique/new possibilities for numerous potential applications. Linear-dendritic polymers can be prepared based on three strategies: (1) coupling strategy: coupling of a dendrimer and a functional linear polymer chain, (2) chain-first strategy: the synthesis of a terminally functional polymer chain and the subsequent construction of a dendrimer, and (3) dendron-first strategy: the synthesis of a dendrimer followed by polymerization initiated at the dendrimer. Especially the dendron-first approach is very useful because the dendrimers can be constructed by a convergent synthetic route such as coupling of prefabricated branched units.

We have developed the cation pool method in which organic cations are electrochemically generated and accumulated in solution in the absence of nucleophiles and are used for the reactions with subsequently added nucleophiles. The method has been successfully applied to various organic cations including N-acyliminium ions, alkoxycarbenium ions, and diarylcarbenium ions. We have also developed an iterative process for making dendritic structures based on the cation pool method; a sequence consisting of the electrochemical generation of a diarylcarbenium ion (activation) followed by the reaction with (diphenylmethyl)trimethylsilane as a building block (coupling) is repeated to effect convergent synthesis of dendritic molecules (Figure 1). Notably, dendritic diarylcarbenium ions react with unfunctionalized polystyrenes to give dendronized polymers.

Cationic polymerization of vinyl ethers initiated by an electrogenerated dendritic diarylcarbenium ion in the presence of 2,6-di-tert-butylpyridine was developed using a flow microreactor. The carbocationic polymer end generated by polymerization of isobutyl vinyl ether was effectively trapped by various nucleophiles such as trimethyl(1-phenylnitroxy)silane and allyltrimethylsilane to give polymers with very narrow molecular weight distribution. The block copolymerization of two vinyl ethers followed by trapping with nucleophiles was successfully accomplished to give structurally well-defined macromolecules.

1. ARTICLE INFO

Article history:
Received
Received in revised form
Accepted
Available online

Keywords:
microreactors
dendritic cation
polymerization
block copolymerization

2015 Elsevier Ltd. All rights reserved.

Figure 1. An iterative process for making dendritic structures based on the cation pool method.
Chemical synthesis in flow microreactors1,12,13 has attracted a great deal of attention and the applications to polymerization of vinyl monomers have been extensively studied.14 For example, controlled cationic polymerization5,16 of vinyl ethers and controlled anionic polymerization17,18 of styrenes, alkyl methacrylates, and tert-butyl acrylate using flow microreactors have been reported in the literature. The molecular weight and the molecular weight distribution can be strictly controlled by virtue of the characteristic features of flow microreactors such as fast mixing, fast heat transfer, and precise residence time control.

Based on these achievements, the following working hypothesis came to our mind. Use of dendritic diarylcarnenium ions as initiators of controlled cationic polymerization in flow microreactors leads to the formation of linear-dendritic polymers bearing living polymer ends which can be trapped with nucleophiles (dendron-first strategy). The method would serve as an approach that has not yet been reported so far, which has a silyl group as an electroauxiliary20 for the selective functionalization (Figure 2).

2. Results and Discussion

Cationic Polymerization of Isobutyl Vinyl Ether Initiated by a Dendritic Diarylcarnenium Ion Pool

We chose to study diarylcarnenium ion 219 as a model of a dendritic initiator of the cationic polymerization. Cation 2 was generated by low temperature electrochemical oxidation of 1, which has a silyl group as an electroauxiliary20 for the selective functionalization and peripheral bromo functionalities for future functionalization (Figure 2).

![Figure 2. Generation of diarylcarnenium ion 2.](image)

First, we examined the polymerization of isobutyl vinyl ether using diarylcarnenium ion 2 in a flow microreactor system composed of two T-shaped micromixers (M1 and M2) and two microtube reactors (R1 and R2) (Figure 3). The flow microreactor system was dipped in a cooling bath (-78 °C). A solution of isobutyl vinyl ether (0.50 M in CH$_2$Cl$_2$, 10 mL/min) and a solution of 2 (0.050 M in CH$_2$Cl$_2$, 5 mL/min) were mixed using M1 ($\phi = 250 \mu$m). The mixed solution was introduced to R1 ($\phi = 1000 \mu$m, $L = 25$ cm), where the polymerization took place. The polymerization was terminated by adding a solution of trimethyl(1-phenylvinyl oxy) silane (1.0 M in CH$_2$Cl$_2$, 5 mL/min) at M2 ($\phi = 500 \mu$m) and R2 ($\phi = 1000 \mu$m, $L = 50$ cm) to obtain the end-functionalized polymer 3. When the polymerization was carried out in the presence of a proton trapping agent, the agent was added to a solution of 2 prior to the polymerization.

Table 1. Cationic polymerization of isobutyl vinyl ether initiated by diarylcarnenium ion 2 in the absence or presence of a proton trapping agent using a flow microreactor system.

<table>
<thead>
<tr>
<th>Proton trapping agent</th>
<th>M_n (kg/mol)</th>
<th>M_w/M_n</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>tert-butylpyridine</td>
<td>13400</td>
<td>1.08</td>
<td>61</td>
</tr>
<tr>
<td>tert-butylpyridine</td>
<td>12100</td>
<td>1.19</td>
<td>22</td>
</tr>
<tr>
<td>tert-butylpyridine</td>
<td>16100</td>
<td>1.11</td>
<td>6</td>
</tr>
<tr>
<td>tert-butylpyridine</td>
<td>6600</td>
<td>1.06</td>
<td>87</td>
</tr>
<tr>
<td>tert-butylpyridine</td>
<td>8100</td>
<td>1.05</td>
<td>83</td>
</tr>
<tr>
<td>tert-butylpyridine</td>
<td>9000</td>
<td>1.05</td>
<td>90</td>
</tr>
</tbody>
</table>

*Polymer were analyzed by size exclusion chromatography (SEC) and MALDI-TOF mass spectrometry.

Notably, the use of 2,6-di-tert-butylpyridine as a proton trapping agent resulted in a dramatic decrease in the amount of the polymer formed by the proton initiation, although the yield of the polymer was not decreased significantly (Figure 4 (b)). The result indicates that protons, which were presumably generated by the electrolysis, were effectively trapped with 2,6-di-tert-butylpyridine. Therefore, the desired polymer 3 with narrow molecular weight distribution ($M_w/M_n = 1.05$) was obtained, indicating that diarylcarnenium ion 2 worked well as an initiator. In contrast, the polymerization in the presence of 2,6-di-tert-butylpyridine (0.5 eq) using a batch macro reactor was examined. The addition of 2 (0.050 M in CH$_2$Cl$_2$) and 2,6-di-tert-butylpyridine (0.025 M in CH$_2$Cl$_2$) (5 mL, 5.0 mL/min) to a solution of isobutyl vinyl ether (10 mL, 0.50 M in CH$_2$Cl$_2$) in a glass flask (25 mL) gave the polymer in 84% yield after quenching with trimethyl(1-phenylvinyl oxy)silane (1.0 mL, 1.0 M in CH$_2$Cl$_2$), but the molecular weight distribution was not

![Figure 3. Flow microreactor for cationic polymerization of isobutyl vinyl ether initiated by diarylcarnenium ion 2 in the absence or presence of a proton trapping agent at -78 °C. T-shaped micromixers: M1 and M2. Microtube reactors: R1 and R2.](image)
narrow (Mn = 26600, Mw/Mn = 1.45). The reverse addition gave rise to only a slight improvement of the similar molecular weight distribution control (97% yield, Mn = 7560, Mw/Mn = 1.29). The simultaneous addition did not work (96% yield, Mn = 11200, Mw/Mn = 1.59). Thus, it is reasonable to consider that the characteristic features of a flow microreactor system such as fast mixing enables the diarylcarbenium ion initiated polymerization in a highly controlled manner.

Figure 4. MALDI-TOF mass spectra of the polymers obtained by (a) the polymerization in the absence of a proton trapping agent and (b) the polymerization in the presence of 2,6-di-tert-butylpyridine (0.5 eq).

Next, the effect of mixing was examined. Generally, the mixing speed depends on the flow rate and the inner diameter of a micromixer. As shown in Table 2, the molecular weight distribution strongly depends on the flow rate and the inner diameter of micromixer M1. The polydispersity index (Mw/Mn) decreased with the increase in the total flow rate in M1. The Mw/Mn also decreased with a decrease in the inner diameter of M1. The results indicate that extremely fast mixing is responsible for narrow molecular weight distribution (Mw/Mn < 1.10).

Table 2. Effect of mixing for cationic polymerization of isobutyl vinyl ether in the presence of 2,6-di-tert-butylpyridine (0.5 eq) initiated by diarylcarbenium ion 2 using a flow microreactor.

<table>
<thead>
<tr>
<th>Inner diameter of M1 (µm)</th>
<th>Total flow rate in M1 (mL/min)</th>
<th>Mn(a)</th>
<th>Mw/Mn(a)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>3’0</td>
<td>8600</td>
<td>2’03</td>
<td>55</td>
</tr>
<tr>
<td>250</td>
<td>9’0</td>
<td>7000</td>
<td>1’11</td>
<td>99</td>
</tr>
<tr>
<td>250</td>
<td>15’0</td>
<td>8100</td>
<td>1’05</td>
<td>83</td>
</tr>
<tr>
<td>500</td>
<td>15’0</td>
<td>6100</td>
<td>1’16</td>
<td>95</td>
</tr>
</tbody>
</table>

*Polymers were analyzed with size exclusion chromatography calibrated with polyethylene.

Figure 5. 1H NMR spectra of end-functionalized linear-dendritic polymers; (a) 3 (b) 4.

Cationic Block Copolymerization of Vinyl Ethers Initiated by a Diarylcarbenium Ion Pool Using an Integrated Flow Microreactor System

Next, the block copolymerization of isobutyl vinyl ether and tert-butyl vinyl ether was carried out using an integrated flow microreactor systems consisting of three micromixers (M1, M2, and M3) and three microtube reactors (R1, R2, and R3) shown in Figure 6. A solution of 2 (0.050 M) and 2,6-di-tert-butylpyridine (0.025 M) in CH2Cl2 (5 mL/min) and a solution of isobutyl vinyl ether (0.50 M in CH2Cl2, 10 mL/min) were mixed using M1 (φ = 250 µm). The mixed solution was introduced to R1, where the polymerization was carried out. Then, the solution of tert-butyl vinyl ether (1.0 M in CH2Cl2, 5 mL/min) was introduced to M2 (φ = 500 µm), which was connected to R2 (φ = 1000 µm, L = 50
cm (-50 °C) or \(\phi = 1000 \, \mu m \), \(L = 100 \, cm \) (-78 °C)) where the second polymerization took place. The polymerization was terminated by introducing a solution of trimethyl(1-phenylvinylxylosilane (1.0 M in CH₂Cl₂, 5 mL/min) to M3 (\(\phi = 500 \, \mu m \)) and R3 (\(\phi = 1000 \, \mu m \), \(L = 50 \, cm \)). GPC traces of the polymers 5 obtained under various conditions are shown in Figure 7.

Figure 6. Integrated flow microreactor system for cationic block copolymerization of isobutyl vinyl ether and n-butyl vinyl ether initiated by a diarylcation pool 2 in the presence of 2,6-di-t-tert-butylpyridine. T-shaped micromixers: M1, M2, and M3. Microtube reactors: R1, R2, and R3.

The Mn increased when the second monomer solution was added at -50 °C as shown in Figure 7 (a), indicating that the polymerization of the second monomer took place. However, the bimodal molecular weight distribution even with short residence times in R1 indicates decomposition of the reactive polymer chain end generated by the first polymerization. However, the block copolymerization was successfully carried out without significant decomposition of the living polymer end at -78 °C with a short residence time in R1 (0.79 s) to obtain 5 in 95% yield with narrow molecular weight distribution (Mw/Mn = 1.08) as shown in Figure 7 (b).

Figure 7. Size exclusion chromatography traces of the cationic block copolymerization of isobutyl vinyl ether and n-butyl vinyl ether in the integrated flow microreactor system (a) at -50 °C with varying the residence time in R1 and (b) with the residence time of 0.79 s in R1 with varying the temperature.

The \(^1\text{H}\) NMR (Figure 8) and MALDI-TOF-MS analyses of the resulting polymer 5 revealed that end functional groups were introduced almost quantitatively (See the Supporting Information for details). Notably, the block copolymer 5 bears the bromo groups at the peripheral of the dendritic part, which can be used for further transformations such as Hartwig-Buchwald amination.

3. Conclusion

In conclusion, controlled cationic polymerization of vinyl ethers initiated by a cation pool of a dendritic diarylcation ion was successfully achieved using the flow microreactor system. Extremely fast mixing is responsible for narrow molecular weight distribution and the polymer end can be used as living reactive species for the subsequent reactions with a nucleophiles and block copolymerization. The observations illustrated here open a new possibility in the synthesis of linear-dendritic polymers. Further applications of the present method are under investigation in our laboratory.

4. Experimental section

General

\(^1\text{H}\) and \(^1\text{C}\) NMR spectra were recorded in CDCl₃ on JEOL ECA-600P (\(^1\text{H} 600 \, MHz\) and \(^1\text{C} 150 \, MHz\)). Chemical shifts are recorded using a methine signal of CHCl₃ for \(^1\text{H}\) NMR (7.26 ppm) and \(^1\text{C}\) NMR (77.0 ppm) unless otherwise noted. MALDI-TOF mass spectra were recorded on Bruker ultraflex. Preparative gel permeation chromatography (GPC) was performed on Japan Analytical Industry LC-918. Dichloromethane was washed with water, distilled from P₂O₅, redistilled from dried K₂CO₃ to remove a trace amount of acid, and stored over molecular sieves 4A. Isobutyl vinyl ether and n-butyl vinyl ether were distilled under reduced pressure from CaH₂ twice. Bu₄NBF₄ was dried at 25 °C/1 mmHg for 12 hours.

Stainless steel (SUS304) T-shaped micromixers with inner diameter of 250 and 500 μm were manufactured by Sanko Seiki Co., Inc. Stainless steel (SUS316) microtube reactors with inner diameter of 1000 μm were purchased from GL Sciences. The micromixers and microtube reactors were connected with stainless steel fittings (GL Sciences, 1/16 OUM). The flow microreactor system was dipped in a cooling bath to control the temperature. The solutions were introduced to the flow microreactor system using Harvard Model 11 syringe pumps equipped with gastight syringes purchased from SGE.
Molecular Weight and Molecular Weight Distribution

The molecular weight (Mn) and molecular weight distribution (Mw/Mn) were determined in THF at 40 °C with a Shodex GPC-101 equipped with two LF-804L columns (Shodex) and an RI detector using a Polystyrene (PolySt) standard sample for calibration.

Electrochemical Generation of the Cation Pool of 2 from 1

The anodic oxidation was carried out in an H-type divided cell (4G glass filter) equipped with a carbon felt anode (Nippon Carbon JF-20-P7, ca. 320 mg, dried at 250 °C /l mm Hg for 2.5 h before use) and a platinum plate cathode (20 mm x 10 mm). A 0.3 M solution of 1 (1.55 g, 1.75 mmol) in Bu4NBF4/CH2Cl2 (35 mL) was placed in the anodic chamber, and a 0.3 M solution of Bu4NBF4/CH2Cl2 (35 mL) and trifluoromethanesulfonic acid (230 µL, 2.60 mmol) was placed in the cathodic chamber. The constant current electrolysis (40 mA) was carried out at -78 °C. A flow microreactor system consisting of two T-shaped cooling units (φ = 1000 µm, L = 50 cm), three microtube reactors (R1, R2, and R3), and four pre-cooling units (P1 (inner diameter φ = 1000 µm, length L = 25 cm), P2 (φ = 1000 µm, L = 50 cm), P3 (φ = 1000 µm, L = 50 cm), and P4 (φ = 1000 µm, L = 50 cm) was used for polymerization. A solution of isobutyl vinyl ether (0.50 M in CH2Cl2, 10 mL/min) and a solution of 2 containing 2,6-di-tert-butylypyridine (5 mL/min) were introduced to M1 (250 µmol). The mixed solution was passed through R1 and was introduced to M2 (φ = 500 µmol). A solution of n-butyl vinyl ether (1.0 M in CH2Cl2, 5 mL/min) was introduced to M2 (φ = 500 µmol). The mixed solution was passed through R2 and was introduced to M3 (φ = 500 µmol). A solution of trimethyl(1-phenylvinyloxy)silane (1.0 M in CH2Cl2, 5 mL/min) was introduced to M3 (φ = 500 µmol), and the resulting solution was passed through R3 (φ = 1000 µm, L = 50 cm). After a steady state was reached, the product solution was collected (10 s) and treated with Pr2NH. The filtrate was filtered through a silica gel column (2 x 3 cm) using Et2O as an eluent to remove Bu4NBF4. The filtrate was concentrated to obtain a polymer product, which was analyzed with size exclusion chromatography. Purified with preparative GPC to obtain 5.

Supplementary data

Supplementary data related to this article can be found, in the online version, at http://dx.doi.org/

Acknowledgments

This work was partially supported by the Grant-in-Aid for Scientific Research (S) (no. 26220804) and Scientific Research (B) (no. 26288049). The authors thank Prof. Mitsu Sawamoto and Dr. Takaya Terashima of for fruitful discussions.

References and notes
