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Abstract

We developed the energy and its analytic gradient for the self-consistent-
charge density-functional tight-binding method with the third-order expan-
sion (DFTB3) combined with the fragment molecular orbital (FMO) method,
FMO-DFTB3. FMO-DFTB3 reproduced full DFTB3 relative stabilities and
the optimized structures of three polyalanine isomers. FMO-DFTB3 was
applied to optimize a nano flake of cellulose Iβ, consisting of 10,944 atoms,
and a good agreement with the experimental structure was obtained. For a
cellulose sheet containing 1,368 atoms, FMO-DFTB3 was 43.5 times faster
than full DFTB3. The binding between sheets and chains in cellulose was
elucidated, and two dispersion models were compared.

Keywords: fragment molecular orbital, density-functional tight-binding,
third-order correction

1. Introduction

Recent methodological and algorithmic developments in computational
sciences have produced a variety of efficient quantum-mechanical (QM) and
molecular-mechanical (MM) approaches. QM calculations, for example, with
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quantum Monte-Carlo [1, 2] or post Hartree-Fock [3, 4] methods can accu-
rately predict molecular and electronic properties; however, the computa-
tional cost is high. For instance, for coupled cluster with singles, doubles
and perturbative triples (CCSD(T)) [4], also known as the “golden stan-
dard” method, the cost scales as N7 for the system size N . On the other
hand, using MM, large scale molecular dynamics simulations for 100 ns have
been reported for a 10 million atomic system [5]. To reduce the cost of QM
methods, a number of linear-scaling [6] as well as fragmentation methods
[7, 8, 9, 10, 11, 12, 13, 14] have been developed.

The density-functional tight-binding (DFTB) method [15, 16, 17, 18] is
based on an expansion of the electron density in a Taylor expansion around a
reference density (usually, atomic), truncated at the linear (DFTB1), quadratic
(DFTB2) or cubic (DFTB3) terms. DFTB1 is the oldest approach, which in
general works well for nonpolar systems; DFTB2 adds charge transfer and
polarization effects, and DFTB3 improves on the accuracy of the charge dis-
tribution, which is, in particular, important for hydrogen bonding and polar
systems [19, 20, 21]. It has been shown DFTB3 is systematically better than
DFTB2 [21, 22, 18, 23, 24].

The fragment molecular orbital (FMO) method [25, 26, 27, 28] is a
fragment-based approach, in which a molecular system is divided into frag-
ments, and the total properties such as the energy and its gradient are
obtained from the calculations of fragments (monomers) and their pairs
(dimers). Previously, we developed FMO-based DFTB2, FMO-DFTB2 [29],
and showed its accuracy and efficiency.

In this work, we formulate the energy and its analytic gradient for FMO-
DFTB3 and discuss the role of the damping [19, 21, 30] of the Coulomb
interaction used in DFTB2 and DFTB3, in particular to improve the accu-
racy in hydrogen-bonded systems. The developed method is tested on three
isomers of polyalanine. An analysis of the interactions in a different cellulose,
Iα, has been previously conducted [31] using FMO, and here we focus on the
structure optimization of the Iβ form.
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2. Methodology

2.1. Overview of DFTB3

The total energy of DFTB3, EDFTB3, is given by (more details can be
found elsewhere [18, 19, 20, 21, 30])

EDFTB3 =
∑
i

ni

∑
µν

cµicνiH
0
µν +

∑
A>B

Erep
AB

+
1

2

∑
A,B

γAB∆qA∆qB +
1

6

∑
A,B

(ΓAB∆qA + ΓBA∆qB)∆qA∆qB . (1)

where µ and ν are atomic orbitals (AOs), A and B are atoms, and ni is
the occupation number of molecular orbital (MO) i, which is defined by the
expansion coefficients cµi. The repulsive energy Erep

AB and the non-perturbed
Hamiltonian H0

µν are precomputed and tabulated for model systems. γAB

and ΓAB are distance dependent functions used to compute the Coulombic
interaction, and both of them also depend on the chemical hardness [32]
of atoms. ΓAB found only in DFTB3 depends also on the derivative of the
Hubbard parameter with respect to the atomic Mulliken charges [30]. DFTB1
and DFTB2 energies may be obtained from Eq. (1) by neglecting the last 2
and 1 sums, respectively.

The atomic Mulliken charges ∆qA are obtained as the difference between
the Mulliken population on atom A and a reference value q0A, ∆qA = qA−q0A,
where

qA =
1

2

∑
i

ni

∑
µ∈A

∑
ν

(cµicνiSµν + cνicµiSνµ) , (2)

MOs are obtained by solving HC = εSC in self-consistent charge (SCC)
calculations. Sµν are AO overlaps and

Hµν = H0
µν + Sµν

∑
C

{
1

2
(γAC + γBC)

+
1

3
(ΓAC∆qA + ΓBC∆qB) +

1

6
(ΓCA + ΓCB)∆qC

}
∆qC , (3)

where µ ∈ A and ν ∈ B.
The nuclear gradient of the DFTB3 energy (Eq. (1)) with respect to the

x coordinate of atom α, Rαx (thoughout, x in the derivatives can be replaced
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by y or z), is

∂EDFTB3

∂Rαx

=
∑
A̸=α

∑
i

ni

∑
µ∈A

∑
ν∈α

cµicνi

[
2
∂H0

µν

∂Rαx

− 2εi
∂Sµν

∂Rαx

+
∂Sµν

∂Rαx

∑
C

{
(γAC + γαC)

+
1

3
(2ΓAC∆qA + ΓCA∆qC + 2ΓαC∆qα + ΓCα∆qC)

}
∆qC

]
+ ∆qα

∑
A̸=α

∆qA
∂γAα

∂Rαx

+
1

3
∆qα

∑
A̸=α

∆qA

(
∆qA

∂ΓAα

∂Rαx

+ ∆qα
∂ΓαA

∂Rαx

)
+
∑
A̸=α

∂Erep
Aα

∂Rαx

.

(4)

2.2. Formulation of FMO-DFTB3

The total energy E in the two-body FMO expansion (FMO2) [29, 33] is
given by

E =
N∑
I

E ′
I +

N∑
I>J

(E ′
IJ − E ′

I − E ′
J) +

N∑
I>J

∆EV
IJ (5)

where N is the number of fragments, and the E ′
X is the internal energy of

fragments (X = I) or their pairs (X = IJ), called monomers and dimers,
respectively. The internal energy in DFTB3 is defined as

E ′
X =

∑
i∈X

nX
i

∑
µν∈X

cXµic
X
νiH

0,X
µν +

∑
A>B

Erep
AB

+
1

2

∑
A,B∈X

γAB∆qXA ∆qXB +
1

6

∑
A,B∈X

(ΓAB∆qXA + ΓBA∆qXB )∆qXA ∆qXB . (6)

The first three terms are exactly the same as in FMO-DFTB2 [29].
The coupling of the charge transfer to the embedding potential for dimer
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IJ , ∆EV
IJ , is defined as

∆EV
IJ =

∑
A∈IJ

N∑
K ̸=I,J

∑
C∈K

{
γAC∆∆qIJA ∆qKC

+
1

3
ΓAC∆∆QIJ

A ∆qKC +
1

3
ΓCA∆∆qIJA (∆qKC )2

}
. (7)

The charge transfer between fragments I and J for atom A is

∆∆qIJA = ∆qIJA − ∆qIAδA∈I − ∆qJAδA∈J , (8)

where δA∈I = 1 if atom A belongs to fragment I, otherwise it is zero. The
difference between squared charges of atoms in dimers and monomers is

∆∆QIJ
A = (∆qIJA )2 − (∆qIA)2δA∈I − (∆qJA)2δA∈J . (9)

The latter two terms in Eq. (7) are the new terms in FMO-DFTB3, arising
from the more complex form of the Coulomb interaction.

The Hamiltonian matrix of fragment X in FMO-DFTB3 is defined as

HX
µν = H ′X

µν + PX
µν + V X

µν , (10)

where H ′X
µν is the internal Hamiltonian matrix element of fragment X (using

Eq. (3) for atoms in X). PX
µν is the hybrid projection operator (HOP)

[33], used to define fragment boundaries across covalent bonds. V X
µν is the

electrostatic potential (ESP), describing the embedding Coulomb interaction
acting on fragment X,

V X
µν = SX

µν

N∑
K ̸=X

∑
C∈K

{
1

2
(γAC + γBC) +

1

3
(ΓAC∆qXA + ΓBC∆qXB )

+
1

6
(ΓCA + ΓCB)∆qKC

}
∆qKC . (11)

In DFTB2, all Γ terms are absent; thus ESP depends only on the external
charges of atoms outside X. For DFTB3, however, ESP also depends on the
charges in X (the second term of Eq. (11)), and has to be updated during
SCC of X. This can be efficiently accomplished by defining

TX
A =

2

3

N∑
K ̸=X

∑
C∈K

ΓAC∆qKC , (12)
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and then the DFTB3 specific ESP contribution for fragment X, which also
depends on the charges in X (the second term in Eq. (11)), is calculated as
1

2
SX
µν(∆qXA TX

A + ∆qXB TX
B ) for µ ∈ A and ν ∈ B.

In the electrostatic dimer (ES-DIM) approximation [34], the internal en-
ergy in Eq. (6) for a separated dimer IJ is evaluated as

E ′
IJ ≈ E ′

I+E ′
J +
∑
A∈I

∑
B∈J

{
γAB∆qIA∆qJB +

1

3
(ΓAB∆qIA + ΓBA∆qJB)∆qIA∆qJB

}
.

(13)
The repulsive energy Erep

AB is short-ranged and for typical values of the ES-
DIM thresholds (about 10 bohr) it is essentially zero, so we neglect its con-
tribution for far separated dimers.

2.3. Analytic gradient for FMO-DFTB3

The gradients of the internal and embedding energies are needed to obtain
the gradient of the total FMO-DFTB energy in Eq. (5). For the gradient
derivations below, we assume a closed shell singlet state (ni = 2 for all occu-
pied MOs). The derivations below are for FMO-DFTB3, and more details on
the derivations can be understood by following the derivation of the FMO-
DFTB2 gradient [29]. The gradient of the internal energy in Eq. (6) is

∂E ′
X

∂Rαx

=
∑

(A̸=α)∈X

∑
µ∈A

∑
ν∈α

[
2DX

µν

∂H0,X
µν

∂Rαx

− 2W ′X
µν

∂SX
µν

∂Rαx

+ DX
µν

∂SX
µν

∂Rαx

∑
C∈X

{
γAC + γαC

+
1

3
(2ΓAC∆qXA + ΓCA∆qXC + 2ΓαC∆qXα + ΓCα∆qXC )

}
∆qXC

+ 2DX
µν

∂PX
µν

∂Rαx

]
+ ∆qXα

∑
A̸=α

∆qXA
∂γAα

∂Rαx

+
1

3
∆qXα

∑
A̸=α

∆qXA

(
∆qXA

∂ΓAα

∂Rαx

+ ∆qXα
∂ΓαA

∂Rαx

)
+
∑
A ̸=α

∂Erep
Aα

∂Rαx

,

(14)
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where DX
µν is the density matrix of fragment X and some other quantities

such as ΓαC are defined analogously to γαC (see [21] for details). W̃ ′X
µν is the

internal Lagrangian, defined by subtracting the ESP contribution from the
usual Lagrangian term WX

µν , that is

W̃ ′X
µν = WX

µν −
1

2

∑
ρσ

DX
µρV

X
ρσD

X
σν , (15)

and

WX
µν =

1

2

∑
ρσ

DX
µρH

X
ρσD

X
σν . (16)

The HOP derivative ∂PX
µν/∂Rαx is described elsewhere [35]. In this work,

we did not include the residual response term contributions which require
solving the complicated self-consistent Z-vector equation [36].

The derivative of the embedding energy in Eq. (7) for atom α in dimer
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IJ (α ∈ IJ),

∂∆EV
IJ

∂Rαx

= ∆∆qIJα

N∑
K ̸=I,J

∑
C∈K

∆qKC
∂γαC
∂Rαx

+
∑
A∈IJ

∑
µ∈A

∑
ν∈IJ

(
∆W̃ IJ,α

µν SIJ
µν + ∆DIJ

µν

∂SIJ
µν

∂Rαx

)
N∑

K ̸=I,J

∑
C∈K

∆qKC γαC

+
1

3
∆∆QIJ

α

N∑
K ̸=I,J

∑
C∈K

∆qKC
∂ΓαC

∂Rαx

+
2

3

∑
A∈IJ

∑
µ∈A

∑
ν∈IJ

{(
W̃ IJ,α

µν SIJ
µν + DIJ

µν

∂SIJ
µν

∂Rαx

)
∆qIJA

−

(
W̃ I,α

µν SI
µν + DI

µν

∂SI
µν

∂Rαx

)
∆qIA

−

(
W̃ J,α

µν SJ
µν + DJ

µν

∂SJ
µν

∂Rαx

)
∆qJA

}
N∑

K ̸=I,J

∑
C∈K

∆qKC ΓαC

+
1

3
∆∆qIJα

N∑
K ̸=I,J

∑
C∈K

(∆qKC )2
∂ΓCα

∂Rαx

+
1

3

∑
A∈IJ

∑
µ∈A

∑
ν∈IJ

(
∆W̃ IJ,α

µν SIJ
µν + ∆DIJ

µν

∂SIJ
µν

∂Rαx

)
N∑

K ̸=I,J

∑
C∈K

(∆qKC )2ΓCα,

(17)
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and for α ∈ (K ̸= I, J),

∂∆EV
IJ

∂Rαx

= ∆qKα
∑
A∈I,J

∆∆qIJA
∂γAα

∂Rαx

+
∑
C∈K

∑
µ∈C

∑
ν∈K

(
W̃K,α

µν SK
µν + DK

µν

∂SK
µν

∂Rαx

) ∑
A∈I,J

∆∆qIJA γαC

+
1

3
∆qKα

∑
A∈I,J

∆∆QIJ
A

∂ΓAα

∂Rαx

+
1

3

∑
C∈K

∑
µ∈C

∑
ν∈K

(
W̃K,α

µν SK
µν + DK

µν

∂SK
µν

∂Rαx

) ∑
A∈I,J

∆∆QIJ
A ΓAα

+
1

3
(∆qKα )2

∑
A∈I,J

∆∆qIJA
∂ΓαA

∂Rαx

+
2

3

∑
C∈K

∑
µ∈C

∑
ν∈K

(
W̃K,α

µν SK
µν + DK

µν

∂SK
µν

∂Rαx

)
∆qKC

∑
A∈I,J

∆∆qIJA ΓαA .

(18)

The definitions of W̃X,α
µν , ∆W̃ IJ,α

µν , and ∆DIJ
µν can be found elsewhere [29].

The derivative of the ES-DIM dimer energy in Eq. (13) can be obtained
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as follows, For α ∈ I,

∂E ′
IJ

∂Rαx

= ∆qIα
∑
B∈J

∆qJB
∂γαB
∂Rαx

+
∑
A∈I

∑
µ∈A

∑
ν∈I

(
W̃ I,α

µν SI
µν + DI

µν

∂SI
µν

∂Rαx

)∑
B∈J

∆qJBγαB

+
1

3
(∆qIα)2

∑
B∈J

∆qJB
∂ΓαB

∂Rαx

+
2

3

∑
A∈I

∑
µ∈A

∑
ν∈I

(
W̃ I,α

µν SI
µν + DI

µν

∂SI
µν

∂Rαx

)
∆qIA

∑
B∈J

∆qJBΓαB

+
1

3
∆qIα

∑
B∈J

(∆qJB)2
∂ΓBα

∂Rαx

+
1

3

∑
A∈I

∑
µ∈A

∑
ν∈I

(
W̃ I,α

µν SI
µν + DI

µν

∂SI
µν

∂Rαx

)∑
B∈J

(∆qJB)2ΓBα ,

(19)

and for α ∈ J ,

∂E ′
IJ

∂Rαx

= ∆qJα
∑
A∈I

∆qIA
∂γAα

∂Rαx

+
∑
B∈J

∑
µ∈B

∑
ν∈J

(
W̃ J,α

µν SJ
µν + DJ

µν

∂SJ
µν

∂Rαx

)∑
A∈I

∆qIAγAα

+
1

3
∆qJα

∑
A∈I

(∆qIA)2
∂ΓAα

∂Rαx

+
1

3

∑
B∈J

∑
µ∈B

∑
ν∈J

(
W̃ J,α

µν SJ
µν + DJ

µν

∂SJ
µν

∂Rαx

)∑
A∈I

(∆qIA)2ΓAα

+
1

3
(∆qJα)2

∑
A∈I

∆qIA
∂ΓαA

∂Rαx

+
2

3

∑
B∈J

∑
µ∈B

∑
ν∈J

(
W̃ J,α

µν SJ
µν + DJ

µν

∂SJ
µν

∂Rαx

)
∆qJB

∑
A∈I

∆qIAΓαA .

(20)

2.4. Damping of the γ function
The γ function appearing in DFTB2 and DFTB3 describes the distance

dependence of the Coulomb interaction of two point charges [37]. It can be

10



written as

γAB =
1

rAB

− S(rAB, UA, UB) , (21)

where UA is the Hubbard parameter, depending on the chemical hardness
of atom A [30]. S is a short-range function [21, 37] enforcing the correct
behavior of γAB at rAB = 0. Ideally, the γ function should approach UA at
a short distance, but it is not the case for H atom due to an inconsistency
between the atomic size and the chemical hardness [19, 30]. The consequence
is the underestimation of the binding energy of hydrogen-bonded complexes
by about 1-2 kcal/mol per bond [30]. This problem can be removed by
damping the γ function at short distances,

γh
AB =

1

rAB

− S(rAB, UA, UB)h(rAB, UA, UB) , (22)

where h(rAB, UA, UB) = 1 if neither A nor B is a H atom, and otherwise

h(rAB, UA, UB) = exp

{
−
(
UA + UB

2

)ζ

r2AB

}
, (23)

where ζ is a parameter. In this work, the damped function γh is used instead
of γ in all DFTB3 calculations.

3. Computational details

The DFTB3 and FMO-DFTB3 methods were implemented in GAMESS-
US [38] and the latter was parallelized with the generalized distributed data
interface (GDDI) [39]. In the earlier FMO-DFTB2 code [29], we used numeric
gradients of the non-perturbed Hamiltonian H0

µν and overlap Sµν matrix
elements; in this work we implemented their analytic derivatives.

The 3ob set of DFTB parameters with the optimized Hubbard deriva-
tives and exponent of γh [22] were used in all DFTB calculations [40]. The
unitless threshold for the ES-DIM approximation was set to 2.0. Geometry
optimizations were performed until the root mean square (RMS) and maxi-
mum gradient values became smaller than 1/3 ×10−4 and 10−4 hartree/bohr,
respectively (OPTTOL=10−4 in GAMESS). Hybrid orbitals for HOP opera-
tors were generated using Pipek-Mezey orbital localization [41] and the mio
parameter set [37] for sp3 carbon by calculating methane.
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The accuracy of FMO-DFTB3 is evaluated for the α-helix, β-turn, and
extended form of the polyalanine COMe-(Ala)20-NHMe, whose initial struc-
tures were optimized with TINKER 6.0 [42] using the AMBER99 force field
parameters [43]. The fragmentation of the polyalanines was performed at
the Cα atoms as usual.

To demonstrate the potential of FMO-DFTB, we optimized a nano flake
of cellulose Iβ using FMO-DFTB3 with the Slater-Kirkwood [44] (SK) and
UFF [45, 46] type dispersion corrections (denoted with the suffix “-D(SK)”
and “-D(UFF)” respectively). The initial structure of the cellulose was ex-
tracted from the X-ray experimental data [47], by taking 64 chains arranged
in 8 sheets, with the total of 512 glucose residues (10,944 atoms in total).
The fragmentation of the cellulose was performed between a 6-membered ring
and the adjacent oxygen bridge [48] with one glucose residue per fragment,
using the default fragmentation of saccharides in Facio [49].

4. Results and discussion

To check the accuracy of FMO-DFTB3 compared to full (i.e., without
fragmentation) DFTB3, we performed geometry optimizations of COMe-
(Ala)20-NHMe, which in FMO was divided by assigning 1, 2, 4, and 5 residues
per fragment, so that there were 20, 10, 5 and 4 fragments, respectively. Ta-
ble 1 shows the relative energies and RMS deviation (RMSD) for the opti-
mized structures of the α-helix, β-turn, and extended form. Hydrogen atoms
are included and mass-weighting is not used in calculating RMSD.
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Full DFTB3 predicts that the optimized β-turn and extended structures
are less stable than the α-helix by 16.2 and 51.7 kcal/mol, respectively (full
DFTB2 values [29] are 18.6 and 47.8 kcal/mol, respectively). The error in
the energy for FMO-DFTB3 optimized structures compared to full DFTB3
is at most 2.0 kcal/mol for 1 residue per fragment, while for larger fragment
sizes the error becomes 1 kcal/mol or less. FMO-DFTB3 errors reported here
are similar to those of FMO-DFTB2 [29].

Polyalanines are flexible with a flat energy surface featuring many local
minima. The geometry optimized with MM is relatively far from the DFTB3
minima, and the minima obtained with FMO-DFTB3 and full DFTB3 start-
ing from the MM minima show RMSD values of 0.4 Å for 1 residue per
fragment; for larger fragment sizes RMSD does not exceed 0.064 Å for the
more rigid α-helix and β-turn, while for the more flexible extended form the
values are about 0.2 Å or less. However, the deviations become much smaller
if the FMO-DFTB3 optimized geometry was used as the initial structure in
the full DFTB3 optimization, in which case the largest deviation of FMO-
DFTB3 from full DFTB3 is 0.067 Å for 1 residue per fragment, and smaller
for larger fragment sizes.

The numeric contribution of neglected residual response terms was es-
timated for the α-helix of polyalanine with 1 and 5 residues per fragment,
by calculating the difference between the analytic and numeric gradients.
The RMS deviations were 0.000 153 and 0.000 033 hartree/bohr for 1 and
5 residues per fragment, respectively. The RMS deviation between ana-
lytic FMO-DFTB3 and full DFTB3 gradients was 0.000 230 and 0.000 039
hartree/bohr for 1 and 5 residues per fragment, respectively.

For an application of FMO-DFTB3, we optimized a cluster of cellulose
Iβ consisting of 10,944 atoms (Figure 1), starting from the experimental X-
ray structure. Because this is a finite-size cluster (a flake), there are some
interesting edge effects as shown in Figure 2. In order to compare the geom-
etry of the bulk of the optimized cluster with the experimental structure of a
macro-sized cellulose, we focus on the central part of the optimized cluster,
defined in two ways: (a) the central cluster of about 4,500 atoms and (b)
the middle sheet in (a), consisting of 762 atoms, called central sheet below.
When computing RMSD, H atoms were excluded because of comparing to
X-ray experiment.

Table 2 shows that the RMSD values do not exceed 0.47 Å for the central
cluster. The central cluster containing several sheets includes the effect of
sheet interactions, and in order to quantify this effect and separate it from
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Figure 1: Cellulose Iβ model (initial structure). For the central cluster, hydrogen, carbon,
and oxygen atoms are shown in white, cyan, and red, respectively; other atoms (not
included in computing RMSD to experiment) are shown in yellow.

Figure 2: Optimized structure of cellulose Iβ with FMO-DFTB3-D(SK). Hydrogen, car-
bon, and oxygen atoms are shown in white, cyan, and red, respectively.

Table 2: RMSD (Å) between optimized (FMO-DFTB3-D) and experimental [47] structures
of cellulose Iβ and the FMO-DFTB3-D binding energies (kcal/mol) per glucose residue
between two sheets (∆Esheet) and two chains (∆Echain).

central clustera central sheeta

dispersion RMSD ∆Esheet RMSD ∆Echain

SK 0.467 9.34 0.232 8.30
UFF 0.465 12.45 0.351 7.63

a See Figure 1 for the definition of the central cluster in the 10,944 atomic
system optimized with FMO-DFTB3, and the central sheet is the middle
sheet in it.
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the role of chain interactions within a sheet, we calculated RMSD for the
third (middle) sheet of the central cluster from the top (the fourth sheet in
the optimized structure).

The RMSD for the sheet is smaller than for the cluster because of the
packing effects affecting the interaction between sheets, which are more
strongly affected by the truncation of the macro-sized cellulose into a nano
flake than the interactions within a sheet. Comparing the two dispersion
models, the RMSDs for the central cluster are very small, but for the cen-
tral sheet the RMSD with the Slater-Kirkwood has a much smaller deviation
from experiment (0.232 Å compared to 0.351 Å with the UFF model).

The intra-sheet interaction is dominated by conventional hydrogen bond-
ing interaction. On the other hand, the inter-sheet interaction can be de-
scribed as “non-conventional” hydrogen bonding [31] dominated by disper-
sion. The inter-sheet distances for X-ray, FMO-DFTB3-D(SK) and FMO-
DFTB3-D(UFF) optimized structures are 7.78, 7.38, and 7.51 Å, respectively,
which means that in the direction perpendicular to the sheet plane, DFTB3
predicts a small shrinking of the nano flake compared to bulk cellulose. The
inter-chain distances (i.e., intra-sheet distances along hydrogen bonds) for
X-ray, FMO-DFTB3-D(SK) and FMO-DFTB3-D(UFF) are 8.20, 8.15, and
8.30 Å, respectively, so FMO-DFTB3-D(UFF) shows small expansion by 0.10
Å, while FMO-DFTB3-D(SK) results in a shrinking by 0.05 Å.

The inter-sheet distances imply that the Slater-Kirkwood dispersion shows
a stronger inter-sheet interaction than the UFF-type model. Although the
intra-sheet interaction which comes from conventional hydrogen bonds is
well described with the Slater-Kirkwood dispersion (the smaller RMSD for
the central sheet), it overestimated the inter-sheet interaction. UFF does the
opposite; it underestimates conventional hydrogen bonding, while inter-sheet
interaction is better than the Slater-Kirkwood dispersion correction. The net
result is that the two dispersion models show very similar RMSDs for the
central cluster.

The interactions can be quantitatively analyzed by comparing the binding
energies per glucose residue between sheets (∆Esheet) and chains (∆Echain),

∆Esheet =
1

64
(Esheet − 1

8
Eflake) , (24)

and

∆Echain =
1

8
(Echain − 1

8
Esheet) , (25)
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where Eflake, Esheet, and Echain are the total energies of the structures opti-
mized with FMO-DFTB3 for the total flake (10,944 atoms), a single sheet
(1,368 atoms), and a chain (171 atoms), respectively. The fractions in Eqs.
(24) and (25) represent the number of glucose residues and other subunits.
The binding energies shown in Table 2 are consistent with the above discus-
sion based on the structural aspects only; ∆Echain for FMO-DFTB3-D(SK)
is bigger than that for FMO-DFTB3-D(UFF), and the opposite is observed
for ∆Esheet.

In order to estimate how much the results are affected by the fragment
size, we did the optimization of the cellulose flake using the fragmentation
of 2 glucose residues per fragment, starting from the same initial structure.
The RMSD of 0.467 Å in case of FMO-DFTB3-D(SK) for the central cluster
(1 glucose per fragment) is improved to 0.453 Å with two glucose residues
per fragment. The inter-sheet binding energy per sheet is essentially not
affected: it changes by 0.01 kcal/mol to 9.35 kcal/mol (cf. Table 2) with
larger fragments. Therefore, it can be concluded that FMO-DFTB3 accu-
rately predicts the full DFTB3 structure of cellulose and the difference of the
optimized structure to experiment comes from DFTB3 deficiencies and from
the difference between a flake and bulk cellulose.

The intra-sheet binding energies between two chains obtained with DFTB
method are compared with spin-component scaled second-order Møller-Plesset
perturbation theory with the resolution of the identity (RI-SCS-MP2, per-
formed using TURBOMOLE[50]). Table 3 shows the binding energies at
different levels of theory for a small cluster optimized at full DFTB3-D(SK)
level of theory (Figure 3). Comparing DFTB3 with RI-SCS-MP2/aug-cc-
pVTZ, the difference in the binding energy is 1.44 and 2.49 kcal/mol for the
D(SK) and D(UFF) models, respectively, so the former is better for cellulose.

The error introduced by the FMO method for the system in Table 3 was
about 0.15 kcal/mol. Note that the dispersion correction in FMO-DFTB
exactly reproduces that in full DFTB, because the dispersion energy is inde-
pendent from the electronic structure (it is a parameterized ad hoc correc-
tion).

The wall-clock timings for one gradient calculation of a cellulose sheet
in the flake (1,368 atoms) and the whole flake (10,944 atoms) with FMO-
DFTB3-D(SK) using 16 CPU cores (1 node) of dual E5-2650 Xeon CPUs were
2.3 and 72.4 seconds. For comparison, the same cellulose sheet calculated on
1 CPU core of E5-2650 Xeon took for full DFTB3 and FMO-DFTB3 1148.9
and 26.4 seconds, respectively, i.e., FMO makes the calculation 43.5 times
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Table 3: Binding energies (kcal/mol) per glucose residue calculated for the structure shown
in Figure 3 optimized with DFTB3-D(SK).

method binding energy
DFTB3-D(SK) 9.47
DFTB3-D(UFF) 8.42
RI-MP2/aug-cc-pVTZ 12.36
RI-SCS-MP2/aug-cc-pVTZ 10.91

Figure 3: Structure of the small cellulose Iβ fragment optimized with full DFTB3-D(SK).
Hydrogen bonds are shown as dashed red lines.
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faster. Full DFTB3-D(SK) single point calculation for the optimized sheet
structure with FMO-DFTB3-D(SK) gives the difference of 10.60 kcal/mol in
total energy. The error is reduced to 4.63 kcal/mol by doubling the fragment
size of FMO-DFTB3-D(SK) single point calculation with the same structure.

5. Conclusions

We have extended the FMO-DFTB method to include the third-order
correction (FMO-DFTB3) and implemented the damping of the γ function.
FMO-DFTB3 has been developed in GAMESS-US and parallelized using
GDDI. FMO-DFTB3 has been shown to be consistently accurate for three
isomers of polyalanine, α-helix, β-turn, and the extended form, both for the
energy and the optimized structures. Using FMO, we accelerated DFTB3
calculations for a cellulose sheet containing 1,368 atoms by the factor of 43.5.

By optimizing a nano flake of cellulose Iβ (10,944 atoms), we have demon-
strated the usefulness of FMO-DFTB3 and its accuracy in comparison to the
experimental results. Two dispersion models have been compared and their
advantages and drawbacks for cellulose have been highlighted. We hope that
FMO-DFTB3 will be useful in future applications to large molecular systems.
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