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ABSTRACT 

Understanding of structure of a confined liquid is an important subject for 

developments of surface science, tribology, biophysics, etc. In this study, we propose 

its measurement theory and conduct a test of the theory. The measurement theory uses 

a force curve obtained by surface force apparatus, and transforms the force curve into 

the confined liquid structure. To check validity of the measurement theory, we perform 

a verification test in a computer. It is found that the theory can semi-quantitatively 

reproduce the confined liquid structure. The theory will lead to the first step towards 

measuring a liquid structure confined between optically impenetrable substrates. 
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1. Introduction 

 

    Recently, structural analyses of nano-materials and nano-systems are important 

subjects. Similarly, the analysis of a confined liquid structure is also important, 

because it is related to surface science, tribology, biophysics, and so on. The confined 

liquid structure has been experimentally studied by several researchers using, e.g., 

surface force apparatus (SFA) and atomic force microscopy (AFM). The studies by 

SFA [1-6] have revealed the peculiar phenomena of the confined liquid: Oscillatory 

force between the two surfaces, symptoms of evaporation and solidification, rapid 

increase of the liquid’s viscosity. AFM has also revealed the confined liquid’s property 

[7-9]. Although these instruments can detect the oscillatory force suggesting structural 

layering within the confined space between the probe and the sample surface, they 

have not directly measured the structure of the confined liquid itself. On the other hand, 

x-ray and neutron experiments are able to measure the confined liquid structure 

[10-12] as well as the structures of liquid/air [13,14], liquid/liquid [15], liquid/solid 

[16-18] interfaces by analyzing these experimental results. The x-ray and neutron 

experiments are useful for determination of the confined liquid structures, however, 

many of the structures have not been measured due to its difficulties of the 

experimental setup and condition. The confined liquid structure has been studied also 

by statistical mechanics of liquids [19-21], density functional theory [22,23], and 

simulations [24-28]. These theoretical studies have indicated the structural layering 

within the confined space and the local phase transitions.  In this way, the confined 

liquid structures have been experimentally and theoretically studied much, and these 

studies are significant for elucidation of the properties of the confined liquids. 

In this study, we present a measurement theory (a theory for the experiment) 

which calculates the confined liquid structure from the force curve obtained by SFA. 

Here, we call it the transform theory. The transform theory has two advantages. One is 

that one can obtain the liquid structure without x-ray and neutron. The other is that one 

can obtain the liquid structure even if the substrates are opaque, because recent SFA 

named twin-path SFA [6] can use opaque substrates in the measurement of the force 

curve. Of course, the both SFA and transform theory have weak points in accuracies at 

the present time. However, in our view, this measurement strategy is important to 

obtain the confined liquid structure between the opaque substrates. The transform 

theory plays an important role when the force curve is interpreted as or compared with 

the liquid structure. 

Transformation from the force curve into the solvation structure (local liquid 

structure) is comparatively a new subject. In 2010, Kimura et al. [29] have derived a 

simple relationship between the force curve measured by AFM and the liquid structure 

on a single surface (not confined). In the theory, the tip apex is approximated by a delta 
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function and there are no consideration about volume of the probe and solvent’s 

entropy. According to the theory, the AFM probe receives zero force when it overlaps 

with the solid surface. (When the probe overlaps with the solid surface, it should 

receive strong repulsive force.) Then, recently Watkins et al. [30] and Amano et al. 

[31] independently proposed a relational expression by approximating the probe as one 

solvent molecule (it is called the ideal probe). It has been found that the theory 

functions when the solvent molecule or a very similar one is located on the tip apex. 

Therefore, it has been concluded that a nearly-ideal probe is required in the real 

experiment in order to precisely measure the solvation structure [31]. Just recently, the 

transform theory for SFA has also been proposed by Amano and Takahashi [32]. In the 

theory, the solvent molecule is approximated by a sphere and two-body potential 

between solvent molecules is arbitrary. However, two-body potential between the 

solvent molecule and solid surface (SFA probe) is approximated to rigid. Using the 

theory, the liquid structure on the single surface was reproduced from the force curve. 

It has been found that the force is proportional to the liquid density on the contact 

surface and the theory works better when the number density of the solvent is lower 

and the two-body potential between solvent molecule and solid plate is close to the 

rigid potential. 

The outline of the paper is as follows. The theoretical and computational details 

of the transform theory are given in Chapters 2.1 and 2.2, respectively. To check 

validity of the transform theory, its verification test is performed in a computer, results 

of which are shown in Chapter 3. In the test, a force curve between two walls is 

numerically calculated by using a traditional liquid theory. Then, the force curve is 

substituted into the transform theory as an input. This computational test is important 

for practical realization of the theory. It will be shown that the transform theory can 

semi-quantitatively reproduce the confined liquid structure.  Finally, in Chapter 4, the 

conclusions are written. 

 

 

 

2. Theory and computation 

 

2.1. Theoretical details 

 

    To calculate the confined liquid structure from the force curve, two transform 

theories are used. One is an application of the theory written in [32]. In the theory, the 

two solid surfaces are rigid wall, and thus we call it RW theory. On the other transform 

theory, the two solid surfaces have soft potential with rigid wall with the solvent 

molecule, i.e., two-body potential between the solid surface and the solvent molecule 

is soft potential with rigid wall [33]. Therefore, we call it SPRW theory. Two key 
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concepts for calculation of the confined liquid structure are (I) there is information 

about the confined liquid structure in the force curve, i.e., the force curve is 

determined by the confined liquid structure; (II) the information about the confined 

liquid structures are preserved in the liquid structure on a single wall calculated by RW 

and SPRW theories, because Kirkwood superposition approximation [34-36], 

 

𝜌(𝑧; 𝑠) = 𝜌0𝑔tot(𝑧; 𝑠) ≈ 𝜌0𝑔1(𝑧)𝑔2(𝑧 − 𝑠),                                                                                    (1) 

 

used in RW and SPRW theories cannot offset the compression phenomenon of the 

interlayer spacing caused by the sandwiching, i.e., the liquid structures on a single wall 

calculated by RW and SPRW theories essentially include properties of the confined 

liquid structures. Here, ρ is the number density of the confined liquid, ρ0 is the bulk 

number density (which is constant), gtot is the normalized number density of the 

confined liquid, and gi (i = 1 or 2) is a pair correlation function between the solid i and 

solvent (gi is the so-called a normalized number density of the solvent or a solvation 

structure). We notify that gi is that for an isolated solid i. In other words, the solid i 

immersed in the bulk solvent has the solvation structure gi on its flat surface. z and s 

represent displacement from the center of circular surface of the solid 1 and separation 

between solid plates 1 and 2 (see Fig. 1). The key concepts above lead to that the 

confined liquid structure can be calculated by following procedure: (A) calculate the 

liquid structure on a single wall by using RW or SPRW theory; (B) calculate the 

confined liquid structure by reusing Kirkwood superposition approximation. (The 

confined liquid structure can be reproduced by mixing g1 and g2, because they, 

calculated by RW or SPRW theory, essentially contain information about confined 

liquid structure.) 

The derivation process of the SPRW theory [33] is explained here. In our earlier 

work [32], the transformation is performed by modeling the two-body potential 

between the solid surface and the solvent molecule as the rigid potential. However, the 

approximation was very rough. It should be improved to a more realistic model. Hence, 

the two-body potential for SPRW theory is modeled as attractive (or repulsive) soft 

potential with rigid wall. SPRW theory is derived based on the statistical mechanics of 

simple liquids. The theoretical conditions are as follows: The two same solids with flat 

surfaces are immersed in the solvent; Their flat surfaces are parallel; The thickness of 

the solid is sufficiently long; The diameter of the solvent molecule is dS (arbitrary 

value); Two-body potential between the solvent molecules is arbitrary shape, whereas 

two-body potential between the solid plate and the solvent molecule is attractive (or 

repulsive) soft potential with rigid wall. In SFA experiment, the force between two 

surfaces is measured, and the solvation force can be extracted from the crude force 

(total force) by subtracting two-body force between the solid plates. That is, fsol = fall  

f2, where fsol, fall, and f2 represent the solvation force, total force, and two-body force, 
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respectively. The two-body force can be measured in the air (vacuum) or theoretically 

calculated. The solvation force along the z-axis (which acts on the cylindrical solid 2) 

has a relationship with the number density distribution of the liquid. It can be 

expressed as [24,32] 

 

𝑓sol(𝑠) = 𝐴 ∫ 𝜌(𝑧; 𝑠)
𝜕𝑢2(𝑧; 𝑠)

𝜕𝑧

∞

−∞

𝑑𝑧,                                                                                                 (2) 

 

where A represents surface area of the flat surface i.e., circular surface area of the 

cylindrical solid 2 (see Fig. 1). ρ(z;s) is the number density of the solvent at z, where 

the separation between the cylindrical solids is s. u2 is the two-body potential between 

cylindrical solid 2 and the solvent molecule. Here, Kirkwood superposition 

approximation [24,32-36] is applied to ρ, and then Eq. (2) becomes 

 

𝑓sol(𝑠) = 𝐴𝜌0 ∫ 𝑔1

𝑠

0

(𝑧)𝑔2(𝑧 − 𝑠)𝑢2
′ (𝑧 − 𝑠)𝑑𝑧 − 𝑃𝐴,                                                                    (3) 

 

where u2’ represents the partial differentiation of u2 with respect to z, and P represents 

the solvent’s pressure on a wall. –PA represents the solvation force acting on the upside 

of the solid 2, the value of which is always constant because the solvation structure on 

it does not change. The partial differentiation of u2 with respect to z (u2’) can be 

expressed as 

 

𝑢2
′ (𝑧 − 𝑠) = −𝑘B𝑇exp[𝑢2(𝑧 − 𝑠)/(𝑘B𝑇)]

𝜕exp[−𝑢2(𝑧 − 𝑠)/(𝑘B𝑇)]

𝜕𝑧
,                                     (4) 

 

where kB and T are the Boltzmann constant and absolute temperature, respectively.  

Consequently, the partial differentiation at the contact point (downside) is 

expressed as 

 

𝑢2
′ (𝑧 − 𝑠)|DC = 𝑘B𝑇𝛿[𝑧 − (𝑠 − 𝑑S/2)],                                                                                            (5) 

 

where δ is the delta function and the subscript DC means the downside-contact point. 

By substituting Eq. (5) into Eq.(3), fsol(dS) is calculated to be 

 

𝑓sol(𝑑S) = 𝐴𝑘B𝑇𝜌0𝑔1(𝑑S/2)𝑔2(−𝑑S/2) − 𝑃𝐴,                                                                              (6) 

 

where the values of g1(dS/2) and g2(dS/2) both are the normalized number density at 

the contact points. They are represented as gC where the subscript C denotes the 

contact point. Therefore, gC is given by 
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𝑔C = √
𝑓sol(𝑑S) + 𝑃𝐴

𝐴𝑘B𝑇𝜌0
.                                                                                                                           (7) 

 

Secondly, we consider fsol(dS+Δs) to obtain g1(dS/2+Δs), where Δs is the sufficiently 

small separation. fsol(dS+Δs) is expressed as 

 

𝑓sol(𝑑S + ∆𝑠) = 𝐴𝜌0𝑔1(𝑑S/2)𝑔2(−𝑑S/2 − ∆𝑠)𝑢2
′ (−𝑑S/2 − ∆𝑠)∆𝑠

+ 𝐴𝑘B𝑇𝜌0𝑔1(𝑑S/2 + ∆𝑠)𝑔2(−𝑑S/2) − 𝑃𝐴.                                                       (8)  

 

In the theoretical condition, the solids 1 and 2 are the same things. Thus,  Eq. (8) is 

rewritten as 

 

𝑓sol(𝑑S + ∆𝑠) = 𝐴𝜌0𝑔C𝑔1(𝑑S/2 + ∆𝑠)𝑢2
′ (−𝑑S/2 − ∆𝑠)∆𝑠 

                             +𝐴𝑘B𝑇𝜌0𝑔1(𝑑S/2 + ∆𝑠)𝑔C − 𝑃𝐴.                                                                      (9)  

 

Hence, g1(dS/2+Δs) is given by 

 

𝑔1(𝑑S/2 + ∆𝑠) =
𝑓sol(𝑑S + ∆𝑠) + 𝑃𝐴

𝐴𝜌0𝑔C[𝑘B𝑇 + 𝑢2
′ (−𝑑S/2 − ∆𝑠)∆𝑠]

                                                              (10) 

 

Thirdly, we consider fsol(dS+nΔs) to obtain g1(dS/2+nΔs), where n represents arbitrary 

natural number. fsol(dS+nΔs) is expressed as 

 

𝑓sol(𝑑S + 𝑛∆𝑠) = 𝐴𝜌0𝑔C𝑔2(−𝑑S/2 − 𝑛∆𝑠)𝑢2
′ (−𝑑S/2 − 𝑛∆𝑠)∆𝑠 

                   +𝐴𝜌0 ∑ 𝑔1(𝑑S/2 + 𝑖∆𝑠)𝑔2(−𝑑S/2 − (𝑛 − 𝑖)∆𝑠)𝑢2
′ (−𝑑S/2 − (𝑛 − 𝑖)∆𝑠)∆𝑠

𝑛−1

𝑖=1
 

                   +𝐴𝑘B𝑇𝜌0𝑔1(𝑑S/2 + 𝑛∆𝑠)𝑔C − 𝑃𝐴.                                                                           (11)  

 

Therefore, g1(dS/2+nΔs) is given by 

 

𝑔1(𝑑S/2 + 𝑛∆𝑠) =
𝑓sol(𝑑S + 𝑛∆𝑠) + 𝑃𝐴 − 𝐴𝜌0 ∑ 𝑊(𝑖)𝑛−1

𝑖=1

𝐴𝜌0𝑔C[𝑘B𝑇 + 𝑢2
′ (−𝑑S/2 − 𝑛∆𝑠)∆𝑠]

,                                                  (12) 

 

where 

 

𝑊(𝑖) = 𝑔1(𝑑S/2 + 𝑖∆𝑠)𝑔2(−𝑑S/2 − (𝑛 − 𝑖)∆𝑠)𝑢2
′ (−𝑑S/2 − (𝑛 − 𝑖)∆𝑠)∆𝑠.                    (13) 

 

In the calculation of SPRW theory, separation between the flat surfaces s is stepwisely 
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increased, and the values of gC, fsol(dS+Δs), fsol(dS+2Δs), fsol(dS+3Δs), ···, fsol(dS+nΔs) 

are obtained in turn, i.e., the values are sequentially calculated.  Finally, the confined 

liquid structure (gtot(z;s)) is calculated by substituting the results of g1 and g2 into Eq. 

(1). Since the Kirkwood superposition approximation is recycled, the 

compressed-interlayer spacing preserved in gi is reflected in gtot(z;s). That is, the 

compressed liquid structure is restored. 

    When u2 is not soft potential with rigid wall, but purely rigid one, SPRW theory 

must be the same as RW theory. Substituting the rigid potential into u2 and PA = 

AkBTρ0gC [32], we have confirmed that the SPRW theory exactly coincides with RW 

theory, 

 

𝑔1(𝑠 − 𝑑S/2) =
𝑓sol(𝑠)

𝐴𝑘B𝑇𝜌0𝑔c
+ 1,                                                                                                       (14) 

 

where 

 

𝑔𝐶 =
1 + √1 + 4𝑓sol(𝑑S)/(𝐴𝑘B𝑇𝜌0)

2
.                                                                                            (15) 

 

    To check the transform accuracy of the confined liquid structure, we compare the 

structures calculated by (i) a basic integral equation theory (three-dimensional 

Ornstein-Zernike equation coupled with a hypernetted-chain closure: 3D-OZ-HNC) 

[19-21,37], (ii) RW theory [32], and (iii) SPRW theory [33]. The confined liquid 

structures calculated by RW and SPRW theories are obtained through the process: (a) 

calculate the solvation structure around a pair of the cylindrical solids with the 

separation s by using 3D-OZ-HNC; (b) calculate the solvation force acting on the 

cylindrical solid 2 by using Eq. (2) of 3D version; (c) transform the solvation force 

into the solvation structure (g1) on the flat surface of the isolated cylindrical solid 1 by 

using RW or SPRW theory; (d) since the cylindrical solids 1 and 2 are the same, g2 is 

readily obtained from g1; (e) the confined liquid structure is calculated by substituting 

g1 and g2 into Eq. (1). Here, the confined liquid structure calculated solely by 

3D-OZ-HNC is the benchmark structure. If the shape of the confined liquid structure 

calculated by the transform theory is very similar to the benchmark structure, it means 

that the transformation from the solvation force is well-functioning. 

 

 

 

2.2. Computational details  

 

Models of the solvent molecule and the cylindrical solid for check of the 
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transform accuracy are as follows. Two-body potential between the solvent molecules 

being uSS is following 

 

𝑢SS(𝑟) = ∞                          for    𝑟 < 𝑑S,                                                                                        (16a) 

𝑢SS(𝑟) = −𝜀(𝑑S/𝑟)6         for    𝑟 ≥ 𝑑S,                                                                                        (16b) 

 

where attractive parameter between the solvent molecules being ε is set at 1.0kBT 

[32,38], and r represents the distance between the centers of the solvent molecules.  

Two-body potential between the cylindrical solid and the solvent molecule being uDS 

(i.e., u2) is written as 

 

𝑢DS(ℎ) = ∞                                                                    for    ℎ < 𝑑S/2,                                        (17a) 

𝑢DS(ℎ) = −(𝜉/8)(𝑑S/ℎ)3exp[−(ℎ/10𝑑S)10]       for    ℎ ≥ 𝑑S/2,                                       (17b) 

 

where the attractive parameter between the cylindrical solid and solvent molecule 

being ξ is set at 1.0kBT [24-28,31,32,39], h represents the distance between the nearest 

surface of the cylindrical solid and the center of the solvent molecule, and exp[(h / 

10dS)
10

] is cut off. These potentials are substituted into (1D and) 3D-OZ-HNC 

[19-21,37], and then the confined solvation structure followed by the solvation force 

are calculated. The confined solvation structure corresponds to a benchmark structure 

for the verification test and the solvation force is the input for the transform theo ry. 

It is notified before the computational test that the width of Δs must be 

sufficiently small. Seeing Eq. (12), one can realize that its denominator must be an 

positive value, because g1(dS/2+nΔs) and its numerator are positive values. That is, the 

following relation must be realized: 

 

𝑘B𝑇 + 𝑢2
′ (−𝑑S/2 − 𝑛∆𝑠)∆𝑠 > 0.                                                                                                    (18) 

 

Hence, the value of Δs must be within 

 

0 < ∆𝑠 < −𝑘B𝑇/𝑢2
′ (−𝑑S/2 − 𝑛∆𝑠).                                                                                              (19) 

 

In the case of the computational test, slope of the attractive soft potential u2 becomes 

steeper as the position approaches the rigid wall. Therefore, the numerical range is 

rewritten as 

 

0 < ∆𝑠 < −𝑘B𝑇/𝑢2
′ (−𝑑S/2 − ∆𝑠).                                                                                                (20) 

 

In the computational test (theoretical verification) of the transform theory, fsol is 

obtained by using both 3D-OZ-HNC and Eq. (2) of 3D version. In other words, fsol is 
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obtained by substituting the original confined liquid structure gbm (which is calculated 

by 3D-OZ-HNC) into Eq. (2) of 3D version. The subscript “bm” represents 

“benchmark”. This fsol is substituted into RW or SPRW theory to obtain g1. Then, g2 is 

readily obtained from g1, because the cylindrical solids 1 and 2 are the same. Finally, 

gtot is calculated by using Eq. (1): gtot(z;s) ≈ g1(z)g2(z - s). Here, we express the gtot 

calculated through this process as gx. If the shape of gx is very similar to that of gbm, it 

can be said that the theory we proposed here is valid. 

 

 

 

3. Results and discussion 

 

    In what follows, the comparison among the results calculated by 3D-OZ-HNC 

(benchmark), RW theory, and SPRW theory is done with several separations (s = 1.5dS, 

2.0dS, 2.5dS, 3.0dS, 3.5dS, 4.0dS, 4.5dS, and 5.0dS). Figure 2 shows the confined liquid 

structures, where blue solid, green dashed, red dotted curves represent that calculated 

by 3D-OZ-HNC (benchmark), RW theory, and SPRW theory, respectively. The 

confined liquid structures take oscillatory shapes. The interlayer spacings are about dS 

and the contact value is relatively high. Generally, it seems that reproducibility of the 

liquid structure is higher when s is the integral multiple of dS. 

As shown in Fig. 2, one can find that the deviation from the benchmark structure 

is not so large for RW and SPRW theories. However, the deviation tends to be large 

when s = 1.5dS, 2.5dS, 3.5dS. Then, we calculated root mean square deviation (RMSD) 

of each curve by defining it as 

 

RMSD ≡ √
1

𝑠
∫ (𝑔x(𝑧) − 𝑔(𝑧)bm)2𝑑𝑧

𝑠

0

,                                                                                         (21) 

 

where gx and gbm are the confined liquid structures that calculated by the transform 

theory (RW or SPRW theory) and by 3D-OZ-HNC (benchmark), respectively. As 

shown in Fig. 3, in most of the cases, RMSD values of SPRW theory are lower than 

those of RW theory. However, when s = 1.5dS, RMSD value of SPRW theory is higher 

than that of RW theory. 

    The deviation from the benchmark structure is mainly caused by Kirkwood 

superposition approximation. Kirkwood superposition approximation can be written 

with potential of mean forces, 

 

𝑔tot ≈ exp [−(𝜑1 + 𝜑2)/(𝑘𝐵𝑇)],                                                                                                      (22) 

 



 10 

where φi (i = 1 or 2) is potential of mean force between the cylindrical solid i and the 

solvent molecule. From Eq. (22), one can realize that this approximation is exact when 

the cylindrical solids 1 and 2 are sufficiently separated. Moreover, it is exact in which 

only three bodies, a solvent molecule and cylindrical solids 1 and 2, exist in the system. 

In the present case, however, the separation between the cylindrical solids 1 and 2 is 

very short, and there are so many solvent molecules around/between them. Therefore, 

the deviation is produced. In our opinion, improvement of Kirkwood superposition 

approximation or proposition of another approximation is the key to development of 

the transform theory. (We have confirmed that a linear superposition approximation 

cannot be the candidate for the improvement [24,32]; not shown here.) 

 

 

 

4. Conclusions 

 

    In summary, we have proposed the transform theory for obtaining the confined 

liquid structure from the force curve. The detailed explanation of it has been presented 

in this paper. We have confirmed that the transform theory can reproduce the confined 

liquid structures when the system follows the theoretical condition to some extent. It 

has been found in the computed system that SPRW theory generally gives more precise 

results compared with RW theory. Using the theory, one can assess the confined liquid 

structure without x-ray and neutron, and hence optically impenetrable space can be 

observed by our theory. In the near future, we will apply the transform theory to a real 

SFA experiment. In addition, we will apply the theory to observation of the density 

distribution of colloids (micelles) [40,41]. Since the theory cannot be used for all of 

the experimental conditions due to the theoretical restriction, we should improve the 

theory to more practical level. For example, more universalistic two-body potential 

between the substrate and the small sphere should be introduced to the transform 

theory (elimination of the rigid wall). In the real SFA experiment, the substrate is not 

flat but cylindrical, the transform theory should take into account the shape of the 

cylinder. This new factor can be combined with the transform theory by utilizing 

Derjaguin approximation [42,43] or FPSE (force to pressure on a surface element) 

conversion [44,45]. The combined approach for cylindrical substrate will be explained 

in our future article. Measurements of the liquid structure on a single wall and the 

confined liquid structure are the important topics for structural analyses of nano-spaces. 

Development of the theories which transform the force curves measured by AFM and 

leaser tweezers into the liquid structures are also in our interests. We believe that the 

present theory becomes one of the basic theories for measurement of the liquid 

structure. 
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FIGURE CAPTIONS 

Fig. 1. Schematic view of the system. 

 

Fig. 2. Structures of the confined liquid. Blue solid, green dashed, red dotted curves 

are the results of 3D-OZ-HNC, RW theory, and SPRW theory, respectively. Values 

written in the tetragons represent s / dS. The value gtot = ρ / ρ0 = 1 is located at the 
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horizontal dashed line for each case. 

 

Fig. 3. Assessment of the deviation from the benchmark structure by means of RMSD. 

Green squares and red circles represent RMSD values of RW and SPRW theories, 

respectively. 
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