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Abstract 19 
Current trends of fish communities in the interior Arctic Ocean are largely unknown, whereas more fishes 20 
of boreal origin are reported from the Chukchi and Barents Seas recently. To assess variability in species 21 
composition and spatiotemporal occurrence in ichthyoplankton in the southeast Beaufort Sea, we sampled 22 
larval and juvenile fish using square-conical nets in the upper water column (< 100 m) from June to 23 
September between 2002 and 2011. Gadidae consisting of Boreogadus saida and Arctogadus glacialis 24 
numerically accounted for > 75% of total catches every month. Cottidae and Liparidae usually followed 25 
Gadidae, together representing 9–94% of non-gadid species in number. The majority of dominant and 26 
subdominant species occurred ubiquitously through the sampling area, whereas Gymnocanthus tricuspis 27 
(Cottidae), Liparis gibbus (Liparidae), and Leptoclinus maculatus (Stichaeidae) occurred abundantly on 28 
the Mackenzie Shelf. In contrast, Triglops nybelini (Cottidae) was frequently found in the Amundsen Gulf, 29 
which was characterized by higher salinities (> 25). Exceptional species composition was observed in 30 
September 2011, when Ammodytes hexapterus (Ammodytidae) numerically accounted for 67% of 31 
non-gadid species. In the southeast Beaufort Sea, summer ichthyoplankton are characterized by the 32 
overwhelming dominance of Arctic gadids as well as the frequent occurrence of Arctic cottids and liparids. 33 
However, the sudden and frequent occurrence of A. hexapterus may be a first sign of significant changes 34 
in fish communities in the interior Arctic Ocean. 35 
 36 
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Introduction 40 
Sea surface warming combined with increasing river discharge and changing ocean currents will strongly 41 
impact the Arctic marine ecosystem within the next half a century (ACIA 2005). Although fish constitute 42 
the main energy channel from invertebrates to seabirds, seals, and whales in the Arctic Ocean (Bradstreet 43 
and Cross 1982; Welch et al. 1992), fish communities have mostly been studied in the main gateways to 44 
the Arctic Ocean, such as the Chukchi Sea (Mecklenburg et al. 2007; Norcross et al. 2010; Lin et al. 45 
2012), Barents Sea (Byrkjedal and Høines 2007; Eriksen et al. 2011, 2012) and Baffin Bay (Munk et al. 46 
2003; Jørgensen et al. 2011). Recently, more fishes of boreal origin occur in these gateways, as many 47 
species are extending their distribution ranges northward (Perry et al. 2005; Fleischer et al. 2007; Mueter 48 
and Litzow 2008). Given that such biological invasions are threatening fishes of Arctic origin 49 
(Christiansen et al. 2014; Falardeau et al. 2014), current trends of fish communities should be investigated 50 
not only in the gateways but also in the interior Arctic Ocean, which is not directly influenced by Pacific 51 
or Atlantic waters (Carmack and Wassmann 2006). 52 
 The southeast Beaufort Sea is characterized by all topographic features that typically 53 
characterize the interior Arctic Ocean: large estuarine system, shallow continental shelf, and deep ocean 54 
basin (Carmack and Wassmann 2006). The Mackenzie River plume dominates the surface water layer 55 
over the Mackenzie Shelf, sometimes extending to the Canada Basin over the Beaufort Slope (Macdonald 56 
and Yu 2006). Following the first interdisciplinary study in the 1980s (Northern Environmental Protection 57 
Branch 1985), several large-scale research programs have been conducted in this area (Fortier et al. 2008; 58 
Barber et al. 2012). These research programs have accumulated baseline information about fish 59 
communities in coastal waters (Chiperzak et al. 1990, 2003a, b, c; Majewski et al. 2006, 2009, 2011, 60 
2013) as well as for the dominant fish species, polar cod Boreogadus saida (Benoit et al. 2008, 2010; 61 
Bouchard and Fortier 2011; Bouchard et al. 2013, in press; Geoffroy et al. 2011; Walkusz et al. 2011, 62 
2012; Falardeau et al. 2014). Recent studies reported that the Mackenzie River plume dictates the 63 
distribution of ichthyoplankton communities on the Mackenzie Shelf (Paulic and Papst 2012; Wong et al. 64 
2013). However, little or no information is available concerning subdominant fishes, especially in 65 
offshore waters. 66 
 As a first step for investigations into current trends of fish communities in the southeast 67 
Beaufort Sea, the present study focused on larval and juvenile fish in the upper water column (hereafter, 68 
ichthyoplankton). Physical and biological sampling was conducted in summer between 2002 and 2011. 69 
We examined (1) interannual changes in species composition and (2) variability in the spatiotemporal 70 
occurrence of dominant and subdominant species. 71 
 72 
Materials and Methods 73 
Study region 74 
The southeast Beaufort Sea is comprised of the Mackenzie Shelf, the Beaufort Slope, and the Amundsen 75 
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Gulf (Fig. 1). The Mackenzie Shelf is a shallow rectangular shelf (520 km × 120 km), bordered by the 76 
Mackenzie Trough to the west, the Amundsen Gulf to the east, and the Beaufort Slope to the north (shelf 77 
break depth, ca. 100 m). The Mackenzie River, the fourth largest river flowing into the Arctic Ocean, 78 
delivers a large amount of fresh water and sediments to the Mackenzie Shelf mainly from May to 79 
September (Macdonald and Yu 2006). Three water layers of distinctive origins co-occur in the sea: the 80 
Polar Mixed Layer (< 50 m), the Pacific Halocline (50–200 m), and the Atlantic Layer (> 200 m) 81 
(Carmack et al. 1989; Macdonald et al. 1989). The Polar Mixed Layer consists of sea ice melt and river 82 
discharge as well as Pacific or Atlantic waters that have been mixed sufficiently to have lost their original 83 
identity. In summer, changeable wind forcing primarily dictates water movement on the Mackenzie Shelf 84 
(Carmack and Macdonald 2002; Williams and Carmack 2008), whereas off the shelf relatively constant 85 
currents exist: the Beaufort shelf break jet flowing eastward along the Beaufort Slope and the Beaufort 86 
Gyre flowing westward in the southern Canada Basin (Pickart 2004; Steele et al. 2004). 87 
 88 
Field sampling 89 
Physical and biological sampling was conducted in the southeast Beaufort Sea from June to September 90 
between 2002 and 2011 onboard Canadian Coast Guard icebreakers. Vertical profiles of temperature and 91 
salinity were obtained at 1-m intervals with a rosette-type oceanographic profiler equipped with a Seabird 92 
CTD. Ichthyoplankton were sampled using a double square-net (DSN) sampler that consisted of a 93 
rectangular frame carrying two square-conical nets (1 m2 opening, 6 m long; Bouchard et al. in press). As 94 
ichthyoplankton increased in size during the sampling season, the mesh size was changed from 200 or 95 
500 μm to 750 or 1600 μm. The DSN sampler was towed obliquely in the surface layer (< 100 m) at a 96 
speed of ca. 1 m s-1. The maximum sampling depth was determined in accordance with bottom depth at 97 
each station. The volume of water filtered was calculated from ship speed and towing duration, due to the 98 
frequent failure of flow meters in frigid waters. Biological sampling stations were selected among 99 
physical sampling stations in each year. The selected stations were arranged throughout the southeast 100 
Beaufort Sea in 2004 and 2008, whereas in 2009 and 2010 they were concentrated around the shelf break 101 
(Fig. 1). In addition to oblique tows using the DSN sampler, several water layers were sampled separately 102 
using a EZNet multi-layer sampler (2–9 layers; Bouchard et al. in press) to assess the vertical distribution 103 
of ichthyoplankton in July 2004. Square-conical nets (1 m2 opening, 200 or 333 μm mesh) mounted on 104 
the EZNet sampler were opened sequentially and towed obliquely at a speed of ca. 1 m s-1. The number 105 
and depth of water layers sampled were set in accordance with bottom depth at each station. The volume 106 
of water filtered was calculated from a flow meter attached to the EZNet sampler. Ichthyoplankton 107 
specimens were enumerated and most were measured for fresh standard length (SL) onboard before 108 
individual preservation in 95% ethanol. 109 
 110 
Laboratory analysis 111 
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All ichthyoplankton specimens were enumerated, identified morphologically to the lowest taxonomic 112 
level possible, and measured for preserved standard length. Fresh standard length of individuals not 113 
measured at sea was estimated from their preserved standard length using family-specific relationships 114 
obtained from individuals measured at sea. The morphological identification was realized following 115 
relevant literature (e.g. Able et al. 1986; Matarese et al. 1989; Fahay 2007a, b; Blood and Matarese 2010), 116 
whereas scientific names followed Mecklenburg et al. (2011). Families were listed in accordance with 117 
Nelson (2006) and species were listed alphabetically within each family. The two gadid species B. saida 118 
and Arctogadus glacialis were pooled in Gadidae because of close similarities in morphology during their 119 
early life stages. As genetic (Nelson et al. 2013) and otolithometric (Bouchard et al. 2013) analysis have 120 
recently enabled identification of the two gadid species, their respective early life histories have been 121 
compared and published elsewhere (Bouchard and Fortier 2011; Bouchard et al. in press). Identification 122 
of Ammodytes hexapterus was confirmed by genetic analysis (Falardeau et al. 2014). 123 
 124 
Results 125 
Both Amundsen Gulf and Beaufort Slope were characterized by consistently higher salinities (> 25) in 126 
contrast with variable salinities off the mouth of the Mackenzie River (Fig. 2). The river plume was 127 
visible in 2004 with the distribution of higher temperatures and lower salinities in surface waters (> 4ºC 128 
and < 25, respectively). The river plume was also observed at least partially in 2008 and 2009, whereas in 129 
other years it was not detected within the area observed. Spatial differences in temperature and salinity 130 
were less marked in subsurface waters (not shown). 131 
 Gadidae numerically accounted for > 75% of monthly catches in each year (Fig. 3). Besides 132 
Gadidae, 5 families, 11 genera, and 13 species were identified (Table 1). Cottidae and Liparidae usually 133 
followed Gadidae, together representing 9–94% of non-gadid species in number. In Cottidae, 134 
Gymnocanthus tricuspis and Triglops nybelini were the dominant species. Liparis fabricii was more 135 
abundant than Liparis gibbus in Liparidae. Other subdominant species included Leptoclinus maculatus 136 
(Stichaeidae), Stichaeus punctatus (Stichaeidae), Aspidophoroides olrikii (Agonidae), and A. hexapterus 137 
(Ammodytidae). Although A. hexapterus larvae and juveniles were caught only in 2010 and 2011, they 138 
numerically accounted for 67% of non-gadid species in 2011. 139 
 Growth during a prolonged planktonic period was reflected by the increasing SL frequency 140 
distributions of T. nybelini, L. fabricii, L. gibbus, and A. olrikii, from June to September (Fig. 4). In these 141 
species, SL increased from 10 mm in June to > 30 mm in September at an average growth rate of > 0.2 142 
mm day-1. In contrast, early settlement after a shorter planktonic period was suggested in G. tricuspis and 143 
S. punctatus as their occurrence was restricted both in terms of size and season: G. tricuspis, < 20 mm SL 144 
in July; S. punctatus, < 25 mm SL in September. Leptoclinus maculatus of various sizes (12–50 mm SL) 145 
occurred from June to September, with no clear pattern in its SL frequency distribution. Ammodytes 146 
hexapterus occurred abundantly only in September 2011 (12–53 mm SL). 147 
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 The spatial occurrence of dominant and subdominant species was classified into three groups: 148 
ubiquitous through the sampling area, abundant on the shelf, and abundant off the shelf (Fig. 5). The 149 
ubiquitous distribution was evident in Gadidae and L. fabricii, whereas it was less evident in S. punctatus, 150 
A. olrikii, and A. hexapterus. Generally, G. tricuspis, L. gibbus, and L. maculatus occurred more 151 
abundantly on the Mackenzie Shelf. In contrast, T. nybelini occurred more abundantly off the shelf, 152 
specifically in the Amundsen Gulf. Whereas peak abundance of most species corresponded with the 153 
plankton bloom in June and July (Tremblay et al. 2012), higher densities of S. punctatus were observed in 154 
September. 155 
 In July 2004, the majority of ichthyoplankton were distributed in the Polar Mixed Layer (< 50 156 
m), independent of bottom depth (30–490 m, Online Resource 1). The number of larval and juvenile fish 157 
caught by the EZNet sampler was 293 (26 tows), 201 (84 tows), and 10 (54 tows) in depth layers < 10, 158 
10–50, and > 50 m, respectively. Gadidae numerically accounted for > 75% of catches in all depth layers. 159 
These results corroborated the validity of the regular sampling method employed in the present study (i.e. 160 
oblique tows in the upper water column). 161 
 162 
Discussion 163 
Ichthyoplankton in the interior Arctic Ocean 164 
Geographic isolation from Pacific and Atlantic waters, combined with large estuarine system, shallow 165 
continental shelf, and deep ocean basin, characterizes the interior Arctic Ocean (i.e. the Beaufort, East 166 
Siberian, Laptev, and Kara Seas; Carmack and Wassmann 2006). The fish species composition described 167 
here, with an overwhelming dominance of Gadidae, a subdominance of Cottidae and Liparidae of Arctic 168 
origin, and frequent occurrence of Agonidae and Stichaeidae, can be considered to be characteristic of 169 
summer ichthyoplankton in the interior Arctic Ocean. The two Arctic gadids B. saida and A. glacialis 170 
represented > 75% of the ichthyoplankton in the present study, irrespective of sampling depth or year. 171 
Between the two species, B. saida have been shown to outnumber A. glacialis by a factor of 12 in the 172 
southeast Beaufort Sea (Bouchard et al. in press). The two Arctic cottids G. tricuspis and T. nybelini, and 173 
the two Arctic liparids L. fabricii and L. gibbus frequently occurred in our samples and are likely 174 
widespread elsewhere in the interior Arctic Ocean. In contrast with coastal and estuarine waters 175 
(Chiperzak et al. 1990, 2003a, b, c; Majewski et al. 2006, 2009, 2011, 2013; Paulic and Papst 2012; Wong 176 
et al. 2013), no diadromous or estuarine species, such as Pacific herring Clupea palasii palasii and 177 
whitefishes Coregonus spp., were found in our study area. Fish species composition similar to ours was 178 
reported from the adjacent southwest Beaufort and Chukchi Seas, although in these seas fishes of Arctic 179 
origin are occasionally replaced by fishes of boreal origin, including capelin Mallotus villosus, yellowfin 180 
sole Limanda aspera, or Bering flounder Hippoglossoides robustus (Jarvela and Thorsteinson 1999; 181 
Norcross et al. 2010; Lin et al. 2012). On the other hand, an overwhelming dominance of fishes of boreal 182 
origin, such as sand lance Ammodytes spp., Atlantic herring Clupea herengus, and Atlantic cod Gadus 183 
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morhua, was reported for ichthyoplankton in the Barents Sea and Baffin Bay (Munk et al. 2003; Eriksen 184 
et al. 2011, 2012). 185 
 186 
Potential effects of climate change on Arctic ichthyoplankton 187 
Although the spatiotemporal resolution of our sampling was not sufficient to correlate ichthyoplankton 188 
densities to environmental parameters, some general patterns of spatial occurrence can nonetheless be 189 
drawn. For example, G. tricuspis, L. gibbus, and L. maculatus occurred abundantly on the Mackenzie 190 
Shelf, indicating early life histories associated with shallow waters, where the river plume frequently 191 
brings higher temperatures and lower salinities in summer. Whereas T. nybelini occurred abundantly in 192 
the Amundsen Gulf, many other species were found ubiquitously through the southeast Beaufort Sea. In 193 
temporal patterns, the majority of dominant and subdominant species exhibited gradual growth during a 194 
longer planktonic period, although early settlement after a shorter planktonic period was suggested in G. 195 
tricuspis and S. punctatus as their occurrence was restricted both in terms of size and season (Brown and 196 
Green 1976). 197 

In the interior Arctic Ocean, ichthyoplankton species would be impacted by ongoing climate 198 
change differently in response to their respective early life histories. Shelf-associated species are more 199 
vulnerable to changes in river discharge, whereas variability in water temperature and ocean currents is 200 
more likely to affect species with an extended planktonic period (cf. ACIA 2005). Besides such direct 201 
impacts, environmental changes could affect Arctic ichthyoplankton indirectly through trophic 202 
relationships. Sea ice retreat will likely increase light availability and wind-driven upwelling to enhance 203 
phytoplankton production over continental shelves, whereas in ocean basins sea surface freshening and 204 
warming probably strengthen stratification and prevent the replenishment of nutrients available for 205 
phytoplankton (Carmack and McLaughlin 2011; Tremblay et al. 2012). According to this scenario, 206 
consumers might benefit from bottom-up effects of increasing phytoplankton production only on 207 
continental shelves. Such spatial heterogeneity should be addressed in further investigations into Arctic 208 
ichthyoplankton relative to their changing environment. 209 

Ichthyoplankton diversity and abundance can serve as an indicator of changing ocean 210 
conditions (e.g. Brodeur et al. 2008). The high abundance of L. maculatus in June 2008 and of A. 211 
hexapterus in September 2011 represents significant invasions of fishes of boreal origin in our study area. 212 
The substantial presence of these species, rarely found in ichthyoplankton in the southeast Beaufort Sea 213 
(Chiperzak et al. 1990, 2003a, b, c; Paulic and Papst 2012; Wong et al. 2013), most likely results from 214 
recent environmental changes in this area (e.g. sea surface warming and sea ice loss; Wood et al. 2013). 215 
Although there is a possibility of aberrant drift from the northern Bering Sea (Berline et al. 2008), 216 
significant reproduction of A. hexapterus in the Beaufort Sea in 2011 is strongly suggested by its 217 
unimodal size/age frequency distributions including small/young individuals (< 20 mm SL or < 10 days 218 
old; Falardeau et al. 2014). A similar inference about L. maculatus can be drawn from its SL frequency 219 
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distribution (cf. Meyer Ottesen 2011). As such, ichthyoplankton may act as sentinels of climate change, 220 
detecting significant reproduction of new species and forecasting biological invasions in a given area. 221 
Moreover, ichthyoplankton species observed in the present study have a benthic (12 species) or 222 
bentho-pelagic (B. saida, A. glacialis, and A. hexapterus) adult stage, and therefore characterized by 223 
different vulnerability to standard fishing gear such as bottom or pelagic trawls during the adult stage. 224 
Intense bottom trawl surveys conducted on certain Arctic shelves also bring concerns about habitat 225 
destruction (Christiansen et al. 2014). Ichthyoplankton surveys thus constitute a powerful tool to assess 226 
the response of fish communities to environmental changes in the interior Arctic Ocean. 227 
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Table 1 Summary of ichthyoplankton caught by a double square-net sampler in the southeast Beaufort 376 
Sea in summer between 2002 and 2011. Gadidae spp. consist of Boreogadus saida and Arctogadus 377 
glacialis 378 

Year 2002  2004  2005  2008  2009  2010 2011 

Month Sep  Jun Jul Aug Sep  Sep  Jun Jul  Jul Aug  Aug Sep 

Day 23–30  9–28 2–31 1–10 6–13  2–13  2–30 1–31  18–27 4–21  15–25 8–30 

Number of tows 17  17 34 8 23  8  9 17  19 8  18 22 

Number of individuals caught 301  531 1497 170 134  22  625 545  1967 907  411 774 

Mean density (1000 m-3) 10  94 124 29 9  5  131 81  178 215  28 41 

Maximum density (1000 m-3)                  

Gadidae                  

Gadidae spp. 33  302 1100 104 53  17  471 645  1615 906  97 90 

Cottidae                  

Gymnocanthus tricuspis 0  0 171 2 0  0  0 136  6 3  2 0 

Icelus bicornis 0  0 3 0 0  0  21 0  0 0  0 0 

Myoxocephalus quadricornis 0  0 3 0 0  0  0 0  0 0  0 0 

Triglops nybelini 0  36 7 3 2  0  2 17  2 0  1 1 

Triglops pingeli 0  0 0 0 0  0  3 0  0 0  0 1 

Agonidae                  

Aspidophoroides olrikii 0  2 3 0 4  2  3 4  4 1  2 1 

Leptagonus decagonus 0  0 0 0 0  0  0 0  0 0  0 1 

Liparidae                  

Liparis fabricii 2  25 30 3 8  1  7 10  20 4  9 2 

Liparis gibbus 0  0 2 0 1  0  12 0  44 0  5 1 

Stichaeidae                  

Leptoclinus maculatus 0  2 8 0 14  0  82 2  0 0  0 1 

Lumpenus lampretaefornis 0  0 0 0 0  0  0 0  0 1  0 0 

Stichaeus punctatus 0  0 0 1 0  0  0 9  0 0  1 7 

Ammodytidae                  

Ammodytes hexapterus 0  0 0 0 0  0  0 0  0 0  3 29 

 379 
  380 
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Figure Captions 381 
Fig. 1 Sampling stations for the double square-net sampler in the southeast Beaufort Sea in summer 382 
between 2002 and 2011. Continental shelves (< 100 m) are shaded 383 
 384 
Fig. 2 Sea surface temperature (a) and salinity (b) observed in the southeast Beaufort Sea in the summers 385 
of 2004, 2008, 2009, and 2011. Small dots represent locations where CTD casts were conducted. The 386 
isobathic lines indicate 100 m in depth 387 
 388 
Fig. 3 Numerical composition of ichthyoplankton caught by the double square-net sampler in the 389 
southeast Beaufort Sea in summer between 2002 and 2011. Gadidae consisting of Boreogadus saida and 390 
Arctogadus glacialis are contrasted with other families in (a); all species except Gadidae are shown in (b) 391 
 392 
Fig. 4 Length frequency distributions of subdominant ichthyoplankton species caught by the double 393 
square-net sampler in the southeast Beaufort Sea in summer between 2002 and 2011 (pooled years). 394 
Sampling months are indicated with a gray scale 395 
 396 
Fig. 5 Spatial occurrence of dominant and subdominant ichthyoplankton species caught by the double 397 
square-net sampler in the southeast Beaufort Sea in summer between 2002 and 2011 (pooled years). 398 
Monthly occurrence is shown for Gadidae (a), Cottidae (b), Liparidae (c), Stichaeidae (d), and others (e). 399 
Gadidae consists of Boreogadus saida and Arctogadus glacialis. Note that the scale of density may differ 400 
among plots 401 
 402 
Online Resource 1 Sampling stations for the EZNet sampler in the southeast Beaufort Sea in July 2004 403 
(a), vertical distribution of ichthyoplankton relative to the bottom depth at each sampling station (b), and 404 
numerical composition of ichthyoplankton caught by the EZNet sampler at different depth layers (c). 405 
Gadidae consists of Boreogadus saida and Arctogadus glacialis 406 
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(d) Stichaeidae
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Online Resource 1 Sampling stations for the EZNet sampler in the southeast Beaufort Sea in July 
2004 (a), vertical distribution of ichthyoplankton relative to the bottom depth at each sampling station 
(b), and numerical composition of ichthyoplankton caught by the EZNet sampler at different depth 
layers (c). Gadidae consists of Boreogadus saida and Arctogadus glacialis
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