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This study analyzes wrinkle behavior in both flat and cylindrical membranes under-

going shear displacement. The goal is to establish a relationship between the wrinkle

behavior in the two types of membranes and understand how different geometric prop-

erties affect the behavior. The analysis is an equilibrium path tracking analysis using

the finite element method. By applying cyclic boundary conditions to a flat mem-

brane, a degree of similarity in the wrinkle behavior can be established between flat

and cylindrical membranes. In both membranes, the initial wrinkles cover the entire

membrane. These wrinkles are followed by smaller, localized wrinkles, referred to as

collapsed sections. These collapsed sections form on existing wrinkles. The generation

of new wrinkles, by splitting the existing wrinkles, is controlled by collapsed sections

and is the same in both types of membranes. For the cylindrical membrane, the curved

shape results in a more controlled wrinkle behavior. This is represented by fewer bi-

furcation points that require larger values of shear to occur. Secondly, the collapsed

section frequency and position is fixed with respect to the wrinkle frequency and po-

sition. The cause of simplified and controlled wrinkle behavior is analyzed, and the

control mechanism is explained.
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Nomenclature

a = length, m

b = width, m

D = Flexural rigidity, Nm2

d = shell thickness, m

E = Young’s Modulus, GPa

f = force, N

M = shell section moment, Nm/m

N = shell section force, N/m

q = displacement, m

R = radius, m

t = time, s

u = displacement, m

δf = imposed force, N

δu = imposed displacement, m

ϵ = membrane strain

κ = curvature

λ = eigenvalue

ν = Poisson’s ratio

ϕ = eigenvector

σ = membrane stress, N/m2

I. Introduction

Inflatable structures are often considered for the design of larger space vehicles because such

structures satisfy weight and storage requirements[1]. The inflatable structures considered in the

study are deployable membrane structures. Initially, the membrane is folded. By applying loads to

the membrane, it is unfolded or inflated, deployed into its desired shape, and rigidified.

The research goal of this study is the stable deployment of a structure into a prescribed shape
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along a planned trajectory. However, because the structure is a membrane, with many degrees of

freedom, the prediction of membrane behavior is difficult. The term membrane behavior, refer to

the displacement of membrane points under the effect of external loads. A deployment experiment

using an inflatable tube[2], investigated an origami-like pattern to facilitate predictable deployment.

In the experiment, the generation of wrinkles was observed due to local buckling. Buckling occurs

after a bifurcation[3–6] that may result in an unstable structure. The resulting undetermined states

make predicting stable deployment difficult. Therefore, understanding membrane wrinkling and its

bifurcations is essential.

In this study, a wrinkle is a finite deformation of the membrane that occurs in a direction different

from the direction of the load applied to the structure. Generally, this results in compression of the

membrane which leads to buckling.

An equilibrium state of the membrane, represented by an equilibrium point, is defined as a

state of a membrane for a static load or an imposed displacement. Here, the static load or the

imposed displacement can be considered as path parameters. By changing the value of the path

parameter, different equilibrium points are obtained. Connecting multiple, successive equilibrium

points results in a formation of an equilibrium path. When a bifurcation occurs, the membrane un-

dergoes a qualitative change of the equilibrium state. This qualitative change is usually represented

by the generation of wrinkles. Additionally, a bifurcation may result in path branching, i.e. multiple

paths exist after bifurcation. Therefore, in order to deploy a membrane structure along a planned

trajectory, an understanding of the bifurcation structure and the equilibrium paths is necessary.

Membrane wrinkling studies have focused mostly on certain effects on characteristics,

i.e. gravity[8], creases[9], stress concentrations[10], etc. In general, wrinkling is analyzed as a mem-

brane behavior event, and wrinkled geometry is computed for specific loads. The goal of this study is

to obtain a comprehensive understanding of membrane wrinkling. For that purpose, several wrinkle

generations, multiple wrinkle configurations, and wrinkle interactions are considered.

In previous studies[4, 11], a flat rectangular membrane with free boundary conditions was

sheared. In Wong and Pellegrino[5] and Cerda[7], the topic is approached from a more theoret-

ical standpoint used to predict wrinkle amplitude and wavelength. However, the mechanism behind
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wrinkling is not discussed in detail. Finally, in Wong and Pellegrino[6], a wide range of numerical

results were shown. In addition, Senda, et al. [12] showed wrinkle behavior for relatively small

values of imposed shear. The study focused on the the generation of wrinkles without bifurcations.

It was shown that at smaller values of shear, parts of the membrane remain flat while other parts of

the membrane have wrinkles. Those existing wrinkles then generate new wrinkles on the flat part

without bifurcations.

However, once the membrane becomes fully wrinkled, localized wrinkles start to form along

the fixed boundaries of the membrane. These localized wrinkles form on existing wrinkles, grow

with increasing shear, and split the original wrinkle. However, the use of free boundaries results

in an uneven distribution and shape of wrinkles. This made the observation of wrinkle generation

difficult.

In this study, to eliminate the uneven shape and distribution of wrinkles, a flat rectangular

membrane is modeled using cyclic boundary conditions. However, this type of membrane is not

practical. Therefore, a cylindrical membrane is modeled using the same geometry as the flat mem-

brane. By making the shear displacement sufficiently large, both membranes are fully wrinkled.

Further increase in shear displacement results in small localized wrinkles generated near the fixed

boundaries on existing wrinkles. These small wrinkles will be referred to as collapsed sections to

distinguish them from the larger wrinkles. By increasing the shear displacement further, the col-

lapsed sections expand along the length of the wrinkles. At a critical size, the sections undergo

an unstable expansion. They join in the middle of the existing wrinkle, split it, and result in two

new wrinkles. This behavior repeats with further increases in shear displacement and represents

the basic behavior for increase in wrinkle number when the membrane is fully wrinkled.

By analyzing both the flat membrane and the cylindrical membrane, it is possible to establish

similarities and differences in behavior. Using displacement and stress fields in the membrane,

the mechanism behind the formation of localized wrinkles is shown. The comparison of the two

membranes also shows that the cylindrical membrane has a natural mechanism for controlling local

wrinkle behavior. This mechanism is explained, and its potential application in flat membranes is

discussed.
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The rest of this paper is organized as follows. Section II sets up the FEM model of the rect-

angular membrane using ABAQUS, a FEM software package, the path analysis method and the

asymptotic theory to a load parameter. Section III shows the analysis method. Section IV discusses

membrane and solution symmetry. Section V presents some numerical simulations and discusses

the results. Section VI offers some concluding remarks.

II. Modeling and problem

A. Analyzed object and model

This study analyzes two types of membranes; a flat membrane with cyclic boundary conditions

and a cylindrical membrane. To maximize the degree of similarity between the two types of mem-

branes, similar geometry is used. The material is Kapton and its properties are listed in Table 1.

The choice of a Kapton membrane comes from the flat membrane wrinkling data, e.g. Wong and

Pellegrino[4] and Inoue[11].

The flat membrane analyzed in this study is illustrated in Fig. 1. The ratio of the horizontal

to the vertical lengths, a : b, is 3 : 1. Fixed boundaries are set for the top and bottom edges, and

cyclic boundaries for the left and right edges. The fixed top edge is then subjected to a prescribed

displacement. Gravity and imperfections are not considered.

The origin of the (x, y, z) coordinate system is fixed at the membrane center of mass in the

undeformed state, i.e. no external loads are applied. Coordinates (x, y, z) refer to a position on the

membrane prior to deformation, and they do not vary with deformation. Section AA’ is defined at

Fig. 1 Sheared flat membrane.
Fig. 2 Sheared cylindrical membrane.
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Table 1 Membrane material properties.

Membrane width a 0.30 [m]
Membrane height b 0.10 [m]

Membrane thickness d 12.5×10−6 [m]
Young’s Modulus E 3.0 [GPa]

Poisson’s ratio ν 0.3

y = 0[m] and BB’ at y = −0.045[m].

First, at the top fixed edge, a displacement of δuy = 30 × 10−6[m] is applied in the y-direction

and is constant throughout the analysis. This is to maintain consistency with experimental results

in Inoue[11]. Then, an imposed displacement δux in the x direction is applied. In this study, δux is

increased from 0[m] to 510 × 10−6[m].

Membrane deformation is described by displacements at all points on the membrane. Point

displacements are represented by (ux, uy, uz) in (x, y, z) coordinates. However, the z-displacement

of points on the mid-plane is of primary interest, and the displacement of a point in z-coordinate

uz(x, y, 0) is simply expressed by uz(x, y).

Stress and strain are given for the mid-plane. The tensile direction is positive for both stress and

strain. Considering plane stress, the ξξ′-axis corresponds to the first principal stress direction and

the ηη′-axis corresponds to the second principal stress direction. When wrinkles exist, the ξξ′-axis

in a the wrinkle longitudinal direction is perpendicular to the ηη′-axis. Both ξξ′ and ηη′ rotate with

the wrinkles and remain perpendicular to each other. A wrinkle is defined as a sinusoidal shaped

out-of-plane deformation that occurs between two points where curvature in the η-direction changes

signs.

The geometry of the cylindrical membrane is illustrated by Fig. 2. The length, a, of the flat

membrane is the circumference of the cylindrical membrane, while the height b applies to both

membranes. The ratio a : b is also 3 : 1.

A point in the cylindrical membrane is described by the cylindrical coordinate (r, ϕ, y). The

points (r, ϕ, y) of the cylindrical membrane can also be expressed in terms of (x, y, z) coordinates.

By defining x = Rϕ, z = r − R where R = a/2π, (r, ϕ, y) coordinates are transformed to (x, y, z)

coordinates. The (x, y, z) coordinates of the cylindrical membrane directly correspond to (x, y, z)
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coordinates of the flat membrane. Point displacements in the cylindrical membrane are also the same

as the flat membrane in (x, y, z) coordinates. Therefore, the definitions of sections and boundary

conditions for the flat membrane also apply to the cylindrical membrane. To avoid confusion, this

study uses the (x, y, z) coordinate representation for both membrane models.

The problems dealt with in this study are defined below. Membrane behavior is analyzed by

increasing the imposed shear displacement δux. The behavior includes wrinkle geometry indicated

by displacement uz(x, y), bifurcation structure with respect to increasing shear, and stress. Stress

values as well as forces and moments at certain points are used to explain the behavior in more

detail. The wrinkle generation mechanism is described by the following analysis.

B. Differential equations

The first step in the analysis of membrane wrinkling is establishing the governing equations for

plates[3]. These equations provide the key properties of the system. For membranes, the Kirchhoff-

Love assumptions for thin plates are adopted. By using the standard plate definitions[3] the plate
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equations are written as:

Eh

1 − ν2

[
∂2ux

∂x2 + ∂uz

∂x

(
∂2uz

∂x2

)
+ ν

{
∂2uy

∂x∂y
+ ∂uz

∂y

∂2uz

∂x∂y

}]
+ Eh
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∂y2 + ∂2uy

∂x∂y
+ ∂2uz

∂x∂y

∂uz

∂y
+ ∂uz

∂x

∂2uz

∂y2

}
= fx(ux, uy, uz) = 0 (1)

Eh
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∂x2
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+ ∂2uz
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∂y
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∂x
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∂y2

)
∂uz

∂x

= fz(ux, uy, uz) = 0 (3)

where D = Eh3/12(1 − ν2) is membrane flexural rigidity. The above equations are grouped as:

f(u(x)) =


fx(ux(x, y, z), uy(x, y, z), uz(x, y, z))

fy(ux(x, y, z), uy(x, y, z), uz(x, y, z))

fz(ux(x, y, z), uy(x, y, z), uz(x, y, z))

 = 0 (4)
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The boundary conditions for the top and bottom edges of the membrane are:

ux(x, − b

2
, 0) = 0 uy(x, − b

2
, 0) = 0

uz(x, ± b

2
, 0) = 0 (−a

2
≤ x ≤ a

2
) (5)

∂uz

∂x
(x, ± b

2
, 0) = 0 ∂uz

∂y
(x, ± b

2
, 0) = 0

∂uz

∂z
(x, ± b

2
, 0) = 0 (−a

2
≤ x ≤ a

2
) (6)

The cyclic boundary condition for the left and right edges of the membrane is:

ux(−a

2
, y, 0) = ux(a

2
, y, 0) uy(−a

2
, y, 0) = uy(a

2
, y, 0)

uz(−a

2
, y, 0) = uz(−a

2
, y, 0) (−1

2
b ≤ y ≤ 1

2
b) (7)

∂u

∂x
(−a

2
, y, 0) = ∂u

∂x
(a

2
, y, 0) ∂u

∂y
(−a

2
, y, 0) = ∂u

∂y
(a

2
, y, 0)

∂u

∂z
(−a

2
, y, 0) = ∂u

∂z
(a

2
, y, 0) (−1

2
b ≤ y ≤ 1

2
b) (8)

While it is not possible to analytically solve these equations, they can be used to determine system

symmetry and to explain membrane behavior. This topic is discussed in a later section.

C. Finite element method (FEM) model

The above geometry, properties and boundary conditions are modeled using ABAQUS, a finite

element software package. We use the S4R shell elements provided by ABAQUS. For the mesh,

equivalent divisions in x and y directions are constructed, resulting in 360 × 120 elements. The

validity of this mesh density is discussed in Section V. It should be noted that only geometric

nonlinearity is considered. Other factors such as material nonlinearity are not considered in the

present study.

The static equilibrium of forces, i.e. nonlinear FEM equations based on the displacement

method, are formally written as:

F (u, f) = 0 (9)
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where f is the applied force for displacement u. The static problem solves the equilibrium equation

with δux for the equilibrium point (u, f). The imposed displacement δux is included in u and the

constraint forces for displacement u are included in f . Eq. (9) is a nonlinear equation in u and f ,

which is difficult to solve. A solution method, e.g. an incremental calculation, is needed.

III. Equilibrium path tracking method

A. Outline

According to Senda, et al.[16], bifurcation points are bifurcation branching points and limit

points[14]. When the solution passes through a limit point, snap-through bifurcation occurs and

the equilibrium path jumps in a discontinuous manner. Branching bifurcation points are classified as

the symmetric and the asymmetric bifurcation points. Symmetric and asymmetric bifurcation points

generate symmetric and asymmetric bifurcation buckling, respectively. It is possible to predict the

type of bifurcation structure using asymptotic theory. In the case of snap-through buckling and

symmetric bifurcation buckling, the direction of the incremental displacement from the buckling

point is equal to the eigenvector corresponding to a zero eigenvalue. For asymmetric bifurcation

buckling, displacement and load should be changed to satisfy the relations of asymptotic theory

discussed in Senda, et al.[16].

At bifurcation point (uc, f c), the tangent stiffness matrix K has a zero eigenvalue λc = 0

(detK = 0) and a corresponding eigenvector ϕc. In order to determine the position of the bifurcation

point, a pinpointing procedure is similar to the method to solve the extended system described in

Wriggers, et al.[15] is used. The eigenvalue analysis of the tangent stiffness matrix is performed

and (uc + ϵϕc, f c) is computed. The perturbed state is in the eigenvector direction from the

bifurcation point, where ϵ is an infinitesimal parameter. By assuming the perturbed state is near

a post-bifurcation path, a convergence calculation, the Newton-Raphson iteration, is performed as

described in Senda, et al.[16]. This static analysis searches for a new equilibrium point after the

bifurcation. If a post-bifurcation equilibrium point cannot be found, the initial condition is changed

by varying ϵ and the search for a new equilibrium point is repeated.
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B. Analysis algorithm

If there are multiple bifurcation points with multiple zero eigenvalues, an effective way to search

for buckling modes is by linearly combining eigenvectors. An algorithm to search for a bifurcation

solution, where the bifurcation point is a double singular point (i.e. K has two zero eigenvalues), is

shown.

1. By increasing δux, an eigenvalue analysis of the tangent stiffness matrix K is performed.

2. Existence of the primary path is checked. For this purpose, path tracking without perturbation

ũ is performed by increasing δux from the initial point (uc, f c).

3. The point (uc + ϵT Φ, f c) is calculated where eigenvectors ϕ1 and ϕ2 correspond to the zero

eigenvalues, Φ = [ϕ1 ϕ2], ϵ = [ϵ cos θ ϵ sin θ]T and 0 < ϵ ≪ 1, 0 ≤ θ < 2π. Vector ϵT Φ is

called the disturbance vector. A convergence calculation for the static analysis is performed

from this state to obtain a new equilibrium point. Various values of θ are tested and then ϵ

is increased gradually to seek the post-bifurcation path. If the solution is obtained, the path

tracking is performed by increasing δux from this state. If the solution is not found, ϵ or θ are

changed and the search is repeated.

4. Point (u+ϵT Φ, f) is calculated from the pre-buckling point(u, f), where ϵ and Φ are defined

in step 3. If a solution is obtained, the path tracking is performed by decreasing δux from this

point.

An algorithm for a simple singular point follows the same progression but with a slight modifi-

cation. In steps 3 and 4, uc ± ϵϕ is used instead of uc + ϵT Φ where ϕ is the eigenvector of the zero

eigenvalue and ϵ is an infinitesimal parameter.

IV. Analysis methods of solution

A. Symmetric solutions

Based on group theory[17], the equivalence of a system that possesses symmetry is discussed.

The observed membrane has symmetry that is invariant with respect to e, s, r and sr, where e is the

identity transformation, s is the reflection transformation with respect to xy-plane, r is the rotation
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transformation by 180◦ about the z-axis and sr is the combination of s and r. This symmetry group

is known as the dihedral group D2 = {e, r, s, sr}.

Deformation u0(x, y, z) satisfies the governing equations (4) and the boundary conditions in

Eqs. (5) to (6). Three deformations us(x, y, z), ur(x, y, z), and usr(x, y, z) are obtained from

u0(x, y, z) by means of the reflection transformation, the rotation transformation, and the rotation

and reflection transformation, respectively. The three deformations us, ur, and usr are the solutions

satisfying the governing equations (4) and the boundary conditions in Eqs. (5) to (6).

Symmetry between two solutions is defined through an example. If deformation u1(x, y, z) is

equivalent to usr(x, y, z), there exists a symmetry where u0 agrees with u1 using the rotation and

reflection transformation. Also, u1 is equivalent to u0 transformed by the rotation and reflection

transformation. In other words, u0 and u1 have rotation and reflection symmetry. The deformation

u1 is a different representation of u0.

Symmetry in a solution can also be defined through an example. If u0(x, y, z) is equivalent

to ur(x, y, z), then u0 has symmetry that is invariant under the rotation transformation. Also,

u0 has rotation symmetry. In this case, ur is obtained, which is equivalent to u0 by the rotation

transformation.

B. Translation symmetry

It is assumed that the solution u0(x, y, z) satisfies the governing equation (4) and the boundary

conditions in Eqs. (5) to (6). By translating u0 in the x-direction by ∆x, a displacement ut is

obtained.

ut(x, y, z) =


u0(x − ∆x, y, z) (− a

2 ≤ x − ∆x ≤ a
2 )

u0(x − ∆x + a, y, z) (x − ∆x < − a
2 )

(10)

Here, ∆x satisfies 0 ≤ ∆x < a. The translation ∆x ± na where (n = 1, 2, . . .) can be considered as

the translation ∆x.

Because u0(x, y, z) satisfies the governing equations, f(u0(x, y, z)) = 0, the following holds
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true:

f(ut(x, y, z)) = 0 (11)

Therefore, the displacement ut(x, y, z) is also a solution to the governing equations. Displacement

ut(x, y, z) for x ≤ a/2 corresponds to u0(x, y, z) for x ≤ a/2 − ∆x because ut is obtained by

translating u0 in the x-direction by ∆x. In turn, ut(x, y, z) for x ≥ −a/2 corresponds to u0(x, y, z)

of x ≥ a/2 − ∆x. Therefore, the cyclic boundary conditions of ut(x, y, z) at x = ±a/2 are

satisfied naturally. From the above, it is clear that ut(x, y, z), which is obtained by a translation of

u0(x, y, z) in the x-direction by ∆x, also satisfies the governing equations and boundary conditions.

In addition, it can be said that the solution ut(x, y, z) is a symmetric with respect to u0(x, y, z)

by translation ∆x. In the following discussions, the two solutions are not considered as essentially

different. In addition, ∆x can be any arbitrary value, resulting in an infinite number of solutions

ut(x, y, z) obtained by translation of u0(x, y, z). These infinite number of solutions are identified

by translational symmetry and are represented by only u0.

C. Translation transformation calculation

Since there is an infinite number of translations of a specific solution, the problem is to identify

the value of the translation between the two solutions obtained by the analysis. The concept of

phase correlation used in image processing[18] is useful for this purpose. The solution from an FE

analysis is represented by node values resulting in a finite set of values whose size is Nx × Ny. To

determine the translation value between two finite sets, the phase correlation between the two sets

is calculated as:

R(m, n) = f̂1(m, n)f̂∗
2 (m, n)

|f̂1(m, n)f̂∗
2 (m, n)|

(12)

= ei 2π
Nx

m(∆nx−1)e
i 2π

Ny
n(∆ny−1) (13)

where f̂i is the Fourier transformation of a finite set fi representing a solution ui(x, y, z), f̂∗
2

indicates the complex conjugate of f̂2, and ∆nx and ∆ny are discrete translations in their re-
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spective directions. The phase correlation product R(m, n) represents the inner product between

individual frequencies that represent the two solutions. By calculating the inverse transformation

r(∆nx, ∆ny) = F −1{R(m, n)}, a function represented in the (∆nx, ∆ny) domain is formed. The

value of this function indicates the inner products of two solutions for that specific translation.

The cyclic boundary conditions allow movement in only the x-direction, therefore ∆ny ≡ 0.

This results in a one-dimensional problem to find the highest value of r for ∆nx corresponding to

the largest degree of similarity.

Considering the original discrete solution, the resolution, the minimum value of the above

described translational displacement is a/Nx. However, the solutions representing deformation are

continuous. For the continuous solutions, the transversal displacement that results in best matches is

not discrete. In order to obtain a higher resolution, the following calculation is performed. Using the

FEM nodal displacements, a continuous function representing the deformation is constructed as a

Fourier series. From the continuous function, a new set of discrete values is constructed by sampling

of sub-node positions. By increasing the number of points considered as Mx, where Mx > Nx, the

resolution of the translation increases. In the y direction the resolution is unchanged because the

translation is always 0.

D. Similarity value

In order to identify similarity between the two solutions, the similarity value is constructed as

the inner product of the solutions:

< f1(nx, ny), f2(nx, ny) >=
Nx∑
p=1

Ny∑
q=1

f̂1(m, n)f̂∗
2 (m, n) (14)

where fj(nx, ny) is a vector whose components are the displacement values sampled at all finite

element nodes and f̂j(m, n) is the discrete Fourier transformation of fj(nx, ny).

The similarity value is evaluated using the first bifurcation point of the membrane. Because

of membrane symmetry, the first bifurcation point is also symmetric, as is theoretically predicted.

Therefore, the theoretical similarity value between two deformations should be 1. However, the

above defined similarity value is based on a discrete set. When the similarity value of f1 and f2 are
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obtained numerically after the first bifurcation point, a value of 0.999995... is obtained. Therefore,

the values after the fifth digit are considered as numerical error. During comparison of different

deformations, the number of digits to which similarity is obtained is referred to as, e.g. 0.99999345

achieving similarity to within 5 digits.

The similarity value analysis uses the following procedure. The translation value between two

solutions is obtained by phase correlation. One solution is translation transformed with the deter-

mined translation value. The similarity value is evaluated between the translated solution and the

other solution.

E. Bifurcation diagram

A method of expressing the equilibrium path as it passes through the bifurcation point is needed.

Here, the inner product of the eigenvector and the incremental displacement vector is used to make

a bifurcation diagram.

At the bifurcation point (uc, F c), the tangent stiffness matrix Kc becomes det Kc = 0. At

this point there exist Nc zero eigenvalues λci = 0 (i = 1, . . . , Nc) and corresponding eigenvectors

ϕci.

Kciϕci = λciϕci (i = 1, 2, . . . , Nc)

where ϕci is normalized as ||ϕci|| = 1. Using λci = 0, where ci is an arbitrary constant results in:

Kc

(
Nc∑
i=1

ciϕci

)
= 0 (15)

As explained in the earlier section the incremental displacement ũc occurs whereas the incremental

load f̃ ≃ 0:

Kcũc ≃ 0 (16)
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Combining Eq. (15) and Eq. (16), the following holds:

ũc ≃
Nc∑
i=1

ciϕci (17)

The displacement increment after the bifurcation point, ũ is expressed as a linear combination

of eigenvectors ϕci corresponding to the zero eigenvalues of the tangent stiffness matrix. The

calculation of ci is:

ci = ũc · ϕci (i = 1, . . . , Nc) (18)

For construction of the bifurcation diagram, ci will be used.

V. Numerical results

A. Validity of the FEM modeling

Experimental confirmation of behavior of flat membranes with cyclic boundaries is not possible.

However, experimental data are available for a flat membrane model where cyclic boundaries are

replaced with free boundaries[4]. Therefore, the geometry, membrane properties, and boundary

conditions mentioned in Section II are compared and FEM model accuracy is tested. The numerical

accuracy of the free boundary model is discussed in detail in Senda, et al[16].

The free boundary membrane was modeled using a 4 node shell element with reduced Gauss

integration. By increasing the shear displacement, the wavelength and amplitude of wrinkles were

observed as indicators of wrinkle shape. By analyzing models with different numbers of elements,

it was concluded that 360 × 120 = 4.23 × 104 elements achieve sufficient convergence.

To obtain the same level of convergence in the cyclic boundary and cylindrical membrane models,

convergence of wrinkle wavelength and amplitude for a single wrinkle was observed. In the case

of the free boundary membrane, the free boundaries distort the shape of the wrinkles. Therefore,

six wrinkles from each free boundary were omitted. The remaining wrinkles in the middle of the

membrane mostly have uniform shapes, similar to those of the cyclic boundary membrane. For the

remaining wrinkles, converged values are established if a wrinkle has 8 or more elements along the
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Fig. 3 Flat membrane schematic bifurcation diagram

x-direction. This criterion was adopted for the cyclic boundary and cylindrical membrane models.

Therefore, the base number of elements for the flat membrane with cyclic boundaries and for the

cylindrical membrane is selected as 390×130. Additionally, more elements, e.g. 408×136, 432×144,

and 600×200 were also used for analysis. The results from these numbers of elements were compared

to the result from 390 × 130 elements to confirm that the results converged and were insensitive

above 5.07 × 104 elements.

The convergence of the numerical results is controlled by two additional parameters in the

ABAQUS calculation. First, Rα
n is the convergence criterion for the ratio of the largest residual to

the corresponding average flux norm. The default value is Rα
n = 5 × 10−3. Second is Cα

n , which is

the convergence criterion for the ratio of the largest solution correction to the largest corresponding

incremental solution value. Its default value is Cα
n = 1 × 10−2. For general analysis, the default

values are sufficient; however, to obtain more precise results, values that are 10−4 times of the

default values are used combined with the δux increment of 10−7[m].

B. Flat membrane behavior

In this section, the behavior of the cyclic boundary membranes will be shown. The schematic

bifurcation diagram is shown in Fig. 3. The diagram shows the positioning of bifurcation points and

paths that lead to and from the bifurcation points. For notation, bifurcation points are indicated

by ‘Bif. Xn’, where X indicates the value of the δux at the point of bifurcation. The subscript

n is an identifier used if there are multiple bifurcation points at the same value of δux. Paths

are indicated by ‘Path Y -m’, where Y is the value of the δux where the path starts, and m is an
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identifier indicating the value of θ for which the path was obtained, as discussed in section III B.

Because of membrane symmetry, only a small part of the total bifurcation structure is shown.

The translation symmetry is achieved for any arbitrary value of translation, resulting in an infinite

number of paths representing a single unique wrinkle pattern. Therefore, only the original path is

drawn. The analysis of the membrane shows the behavior for 0 ≤ δux ≤ 510.00 × 10−6[m].

1. Bif. 48

The initial condition is a flat membrane. First, tension δuy = 30 × 10−6[m] is applied in the

y-direction and maintained constant throughout the analysis. Then, increasing δux results in a

tensile first principal stress and a compressive second principal stress. Once the second principal

stress reaches a critical value, the first bifurcation occurs.

The first bifurcation occurs at δux = 48.29 × 10−6[m] as Bif. 48. This bifurcation generates 32

wrinkles, i.e. 16 upward convex and 16 downward convex wrinkles. Out-of-plane deformation for

the membrane is shown in Fig. 6 a). Figure 7 a) shows the out-of-plane deformation in section BB’.

As indicated by the figures, all wrinkles have the same shape. As a result, the deformation that is

translated by an integer number of wrinkle wavelengths is equivalent to the original deformation.

Hence, this deformation has symmetry that is invariant under the translation transformation by

na/16 (n = ±1, ±2, . . .) in the x-direction.

The bifurcation structure of Bif. 48 is shown in Fig. 8 a). The structure is a symmetric bifurca-

tion. As a result, wrinkles rapidly increase in amplitude from a flat membrane after the bifurcation.

The paths are calculated by considering θ at increments of 30◦. However, a path can be obtained

for any θ. The disturbance vector is constructed from two orthogonal eigenvectors. Therefore, the

disturbance vector of θ = 0◦ is translated in x-direction in accordance with θ. Hence, a path ob-

tained for a certain θ represents a path that is obtained from the path of θ = 0◦ by translating in

x-direction.

There are Path 48-0 and Path 48-180 after Bif. 48 in Fig. 3. Because this is a symmetric

bifurcation point, the deformation patterns of Path 48-0 and Path 48-180 have reflection symmetry.

There is only one wrinkle pattern after Bif. 48. A single path, Path 48-0, defined by θ = 0◦ is

18



tracked by increasing δux.

2. Bif. 67

On Path 48-0, the membrane has 32 wrinkles with the same shape. Increasing δux results

in wrinkle amplitude augmentation. The second bifurcation occurs at δux = 67.60 × 10−6[m] as

Bif. 670. The out-of-plane deformation of the membrane is shown in Fig. 6 b). Figure 7 b) shows

the out-of-plane deformation in section BB’. For Path 48-0, the deformation has a sinusoidal shape

with a period of a/16 in the x-direction and a mean of zero. After the bifurcation, a variation of

the mean in the form of a sinusoidal deformation with a period of a/2 in the x-direction is observed

in section BB’. While the variation is observed near the fixed boundaries, it is not observed in the

middle of the membrane in section AA’.

The bifurcation structure for Bif. 67 is shown in Fig. 8 b). Paths are obtained for values of θ

from 0◦ to 360◦ for every 22.5◦. Figure 8 c) shows paths for θ from 0◦ to 22.5◦.

A single group is defined for 0◦ ≤ θ ≤ 22.5◦. This is due to the sinusoidal deformation of period

a/2 being imposed onto the base sinusoidal deformation of period a/16. The value of θ defines the

x-direction position of the a/2 period sinusoidal shape. Considering that the full range of imposition

of θ is 360◦, the period of a/16 in x defines the range of a group as 360◦/16 = 22.5◦.

For a given θ, an equilibrium path will be produced where the peaks of the a/2 period sinusoidal

deformation produce two wrinkles with larger amplitude values. As indicated by Fig. 3, there are

many paths leading from Bif. 670. However, the paths do not exist only for discrete values of θ as

the figure suggests, but for any arbitrary value. The result is an infinite number of paths generated

at Bif. 670. Any two paths in a group have different deformation shapes when their θ values are not

the same.

By considering a path in group 1 defined as θ = θ′, any group n path defined as θ = θ′+n×22.5◦

will have a 5 digit similarity with the group 1 path after a translation transformation by n a/16.

This means that groups represent sets of deformations that are equivalent by translation symmetry.

Therefore, only paths of one group will be tracked until the next bifurcation.
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3. Bif. 69

On any Path 67, the membrane has 32 wrinkles where two wrinkles have slightly larger am-

plitudes. By increasing δux, the wrinkle amplitude increases. The third bifurcation occurs at

δux = 69.19 × 10−6[m] as Bif. 69. This is a symmetric snap through bifurcation. The out-of-plane

deformation after this bifurcation is shown in Fig. 6 c). Figure 7 c) shows the deformation in section

BB’. The number of wrinkles increases by 2 resulting in a 34 wrinkle pattern. All wrinkles in this

pattern have the same shape. As a result, this deformation has symmetry that is invariant under

the translation transformation of na/16 (n = ±1, ±2, . . .) in the x-direction.

The bifurcation structure of Bif. 69 is shown in Fig. 8 d). There are two paths leading from

the bifurcation point. Wrinkles are generated from an unstable split of one of the existing wrinkles.

Two wrinkles are candidates for splitting. They correspond to the two wrinkles with slightly larger

amplitudes. Therefore, each of the paths after bifurcation represent one of the wrinkles that splits.

Comparison of all paths generated at Bif. 69, based upon all paths of a single group from Bif. 67,

results in 5 digit similarity. Also, the comparison of individual wrinkles of a wrinkle pattern shows

that all wrinkles are the same. Therefore, the conclusion is that after Bif. 69 there exists a single

unique wrinkle pattern and an infinite number of equilibrium paths. All these paths correspond to

translation transformations in the x-direction of the unique wrinkle pattern. Because of this, only

one path is selected for tracking.

4. Path 69-0

Path 69-0 is the selected path after Bif. 69 and it contains 34 wrinkles that have the same shape.

The following observed behavior occurs at regular equilibrium points. The tangent stiffness matrix

remains positive definite until the next bifurcation.

Path 69-0 is observed for 69.19 × 10−6 ≤ δux ≤ 500.80 × 10−6[m]. By increasing δux, collapsed

sections are generated near the fixed boundaries on existing wrinkles. Figure 6 d) shows the out-of-

plane deformation at δux = 85.00×10−6[m]. Figure 7 d) shows the deformation in section BB’. The

collapsed sections appear as local decreases in the wrinkle amplitude near the fixed boundaries.

By increasing δux, these sections grow in size and number. Figures 6 e) and 7 e) show the
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collapsed section at δux = 500.00 × 10−6[m]. The existence of these collapsed sections resulted in

all wrinkles having different shapes, where previously all wrinkles were uniform.

5. Bif. 500

The later part of Path 69-0 is a membrane that contains collapsed sections on existing wrinkles.

The fourth bifurcation occurs at δux = 500.80 × 10−6[m] as Bif. 500. This bifurcation is a snap

through bifurcation where three wrinkles split and generate six new wrinkles. The out-of-plane

deformation is shown in Fig. 6 f). Figure 7 f) shows the deformation in section BB’. The result of

the bifurcation is a 40 wrinkle pattern.

The process of wrinkle generation can be observed in Fig. 9. The membrane starts as in Fig. 9

a). The largest collapsed sections are destabilized. A collapsed section will rapidly expand along the

length of the wrinkle until it meets with the opposite collapsed section in the middle. The affected

wrinkles start to split as in Fig. 9 c). The split is then finalized as in Fig. 9 d). The collapsed

sections on the other wrinkles remain.

It can be concluded that after δux ≈ 80×10−6[m], the behavior of the cyclic boundary membrane

is summarized as follows. Collapsed sections are generated near the fixed boundaries, and as shear

deformation is increased, they increase in size. At a specific value of shear deformation, they

destabilize the large wrinkle and split it in half.

C. Cylindrical membrane behavior

In this section, the behavior of the cylindrical membrane is presented. The schematic bifurcation

diagram is shown in Fig. 4. The diagram shows the positioning of bifurcation points and paths that

lead to and from those bifurcation points. The analysis was performed for 0 ≤ δux ≤ 2180.00 ×

10−6[m]. The analysis process is the same as for the flat membrane. By comparing Fig. 4 with

Fig. 3, it can be concluded that the bifurcation points are more spread out and there are fewer

equilibrium paths.
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Fig. 4 Cylindrical membrane schematic bifurcation diagram

1. Bif. 11

The initial condition is a cylindrically shaped membrane where every point on the mid-plane is

located on the (x, y) plane at z = 0. In this state, the displacement normal to the membrane surface

is uz(x, y) = 0. An initial tension δuy = 30 × 10−6[m] is applied in the y-direction and maintained

constant throughout the analysis. This results in tension in both x and y-directions. The tension

in y-direction results in a small reduction in radius halfway between the top and bottom of the

membrane. The fixed boundaries, maintain the original radius of the cylinder.

By applying the shear displacement δux, the radius continues to decrease due to an increase

in stress. The first bifurcation point occurs at δux = 11.25 × 10−6[m] as Bif. 11. This bifurcation

generates the initial 46 wrinkles, i.e. 23 upward convex and 23 downward convex wrinkles. The

out-of-plane deformation uz is shown in Fig. 10 a). Figure 11 a) shows the out-of-plane deformation

in section BB’. As a result, the deformation that is translated by an integer number of the wrinkle

wavelength is equivalent to the original deformation. Hence, the symmetry of this deformation

pattern is invariant under the x translation transformation of na/23 (n = ±1, ±2, . . .).

The bifurcation point is a double singular point. A post-bifurcation path can be obtained for any

θ, where different values of θ correspond to the same wrinkle pattern translated in the x-direction.

Because of this symmetry, only a single path is tracked.

2. Path 11-0

The initial state is a cylindrical membrane with 46 wrinkles. The following behavior occurs

at regular equilibrium points. The tangent stiffness matrix remains positive definite until the next

bifurcation.
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Path 11-0 occurs for 11.25 × 10−6 ≤ δux ≤ 1068.60 × 10−6[m]. Initially, the increased shear

displacement results in increased out-of-plane displacement. At δux = 432.00 × 10−6[m], collapsed

sections are generated on only upward convex wrinkles near the fixed boundaries. The out-of-plane

deformation is shown in Fig. 10 b).

Figure 11 b) shows the out-of-plane deformation in section BB’ at δux = 432.00 × 10−6[m].

After Bif. 11, both upward convex and downward convex wrinkles have similar shapes. The increas-

ing shear results in negative z-direction displacement for all points on the membrane because of

its cylindrical shape. The increasing compression results in positive z-direction displacements for

upward convex wrinkles and negative z-direction displacement for downward convex wrinkles. In

total, all points on the membrane, aside from those at fixed boundaries, are displaced in the negative

z-direction at varying rates. Because of this, the curvature of upward convex wrinkles decreases,

while the curvature of downward convex wrinkles increases.

Initially, collapsed sections are very small and slowly increase in size as the shear displacement

increases. At δux = 1068.00 × 10−6[m] they are clearly visible as shown in Figs. 10 c) and 11 c).

For the length of the equilibrium path, these collapsed sections maintain a fixed position on

upward convex wrinkles. As a result, the number of collapsed sections is also fixed. Because

of this, all upward convex wrinkles maintain the same shape, and translational symmetry of the

shape is maintained also. This deformation has symmetry that is invariant under the x-translation

transformation of na/23 (n = ±1, ±2, . . .) in x-direction.

3. Bif. 1068

The membrane state before the bifurcation is a 46 wrinkle pattern where every upward convex

wrinkle has collapsed sections. The bifurcation point occurs at δux = 1068.60×10−6[m] as Bif. 1068.

The point is a snap through bifurcation that is a result of collapsed sections reaching a critical size.

This bifurcation point is a double singular point. From 23 wrinkles with collapsed sections, 4

wrinkles are selected and split in half. The selected wrinkles depend on the value of θ. The out-

of-plane deformation after the split is shown in Fig. 10 d). Figure 11 d) shows the out-of-plane

deformation in section BB’. The results are 8 new wrinkles and a 54 wrinkle pattern.
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The process of wrinkle splitting can be observed in Fig. 12. The collapsed sections expand in

the longitudinal direction of a upward convex wrinkle. The out-of-plane displacement of the wrinkle

increases in the negative z-direction and the two collapsed sections join. The increase in the out-of-

plane displacement continues until the downward convex wrinkle in the middle has the same shape

as the remaining downward convex wrinkles. During the process, the wavelength of the original

wrinkles is reduced to fit the new wrinkles.

The resulting pattern has 54 wrinkles where all upward convex wrinkles have the same shape,

and all downward convex wrinkles have the same shape. While different values of θ select different

wrinkles for splitting, the final wrinkle pattern is always the same. This deformation has symmetry

that is invariant under the translation transformation by na/27 (n = ±1, ±2, . . .) in the x-direction.

Only Path 1068-0 is tracked because there is only one unique wrinkle pattern.

4. Bif. 2178

Path tracking of Path 1068-0 shows no new behavior. The increasing shear displacement results

in increased out-of-plane displacement. As a result, the wrinkle pattern just before Bif. 2178 is

a 54 wrinkle pattern, where 27 upward convex wrinkles have collapsed sections. The out-of-plane

deformation is shown in Fig. 11 e). Figure 11 e) shows the out-of-plane deformation in section BB’.

The bifurcation point occurs at δux = 2178.60 × 10−6[m] as Bif. 2178. Similar to Bif. 1067, this

point is a snap through bifurcation as a result of collapsed sections reaching critical size. However,

at this point 7 wrinkles have split and result in a 68 wrinkle pattern. The new wrinkle pattern is

shown in Fig. 11 f).

The process of wrinkle generation is the same as at Bif. 1068. Depending on the value of θ,

the 7 collapsed sections are selected and expanded in the longitudinal direction of a upward convex

wrinkle. After the collapsed sections join, new wrinkles grow until they become the same size as

the remaining wrinkles.

Because the behavior from the previous bifurcation point is repeated, the increase in shear is

stopped at this point. It can be concluded that the same behavior, where collapsed sections split

existing wrinkles, is repeated.
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D. Generation of collapsed sections

As shown in the results, there exist stable equilibrium paths without bifurcation points, where

small wrinkles or collapsed sections are generated. To understand this behavior, the wrinkle ge-

ometry and membrane equilibrium are observed near the fixed boundaries. The geometry of a

Fig. 5 Wrinkle geometry.

single wrinkle in the flat membrane is shown in Fig. 5. The same figure applies to the cylindrical

membrane. Because in the cylindrical membrane collapsed sections occur only on upward convex

wrinkles, the following discussion applies to an upward convex wrinkle for the flat membrane as well

as the cylindrical one. The wrinkle discussed is indicated by the ξξ′ section in Figs. 6 d) and 10 b).

1. Flat membrane

After Bif. 69, the wrinkle pattern consists of 34 sinusoidal wrinkles, as shown in Fig. 6 c). The

first principal stress, σξ, is shown in Fig. 13 a). The second principal stress, ση, is shown in Fig. 13

b). The stress state for the entire membrane is uniaxial compression. The largest first principal

stress, σξ, is in the middle of the membrane but falls off slightly toward the fixed boundaries. The

second principal stress, ση, is smallest near the fixed boundaries but increases toward the middle of

the membrane.

The interval 74.0 × 10−6 ≤ δux ≤ 82.0 × 10−6 [m] is observed for sections ξξ′ and ηη′. The

position on the section is defined by node values based on the finite element nodes. Section ξξ′
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starts at the bottom boundary and finishes at the top. The sections cross each other at node 15 of

section ξξ′, and node 9 of section ηη′. Section ηη′ observes 8 nodes on both side of section ξξ′, for

a total length of 16 nodes.

Figures 15 a) and b) show the principal stress values on section ξξ′. Figure 15 c) shows the

out-of-plane displacement, uz, on section ξξ′. Figure 15 d) shows the curvature, κη = ∂2uz/∂ξ2,

on section ξξ′. Figure 15 e) shows the out-of-plane displacement, uz, on section ηη′. Figure 15 f)

shows the curvature, κξ = ∂2uz/∂η2, on section ηη′. As δux increases, out-of-plane displacement up

to node 30 decreases. As a result, the region of positive curvature κη expands from the fixed edge

toward the middle of the membrane. At δux = 76.0 × 10−6 [m], the decrease in wrinkle amplitude

reached the point where the wrinkle becomes flat in the η-direction, as seen in Figs. 15 e) and f). At

the flat top of the wrinkle, both κη and κξ are observed as almost 0. The amplitude drops further

and a upward convex wrinkle gains a downward convex peak. At this point both curvature κη and

κξ change their signs. The result is a collapsed section.

2. Cylindrical membrane

The first principal stress, σξ is shown in Fig. 14 a). The second principal stress, ση is shown in

Fig. 14 b). The stress state for the most of the membrane is uniaxial compression. Near the fixed

boundaries, there are regions of biaxial tension. These regions correspond to the upward convex

wrinkles. The first principal stress, σξ,is largest in the middle of the membrane and falls off slightly

toward the fixed boundaries. The second principal stress, ση, is largest at the fixed boundary. Its

value changes rapidly from tension to compression by moving away from the fixed boundary. It

finally converges to 0 in the middle of the membrane.

The interval 372.0 × 10−6 ≤ δux ≤ 452.0 × 10−6 [m] is observed in sections ξξ′. The position

on the section is defined by node values based on the finite element nodes. Section ξξ′ starts at the

bottom boundary and finishes at the top boundary.

Figures 16 a) and b) show the principal stress values on section ξξ′. Figures 16 c) and d)

show the out-of-plane displacement, uz, on section ξξ′. Figure 16 e) shows the curvature, κη, on

section ξξ′. Figure 16 f) shows the curvature, κξ, on section ξξ′. As δux increases, the out-of-plane
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displacement along section ξξ′ decreases, but at different rates along the section. The result is a

change in curvature along the ξξ′ section. For δux = 412.0 × 10−6 [m], the curvature κξ becomes 0

at node 4. At the same point and shear value, the curvature κη is also 0, indicating that the wrinkle

has become flat. Further increase in shear displacement results in the curvature value changing

signs, and a upward convex wrinkle gains a downward convex region. Therefore, a collapsed section

is generated.

3. Generation mechanism of collapsed sections

Following the discussion about thin plate bending in Timoshenko[3], the equilibrium of a plate

element in the z-direction can be written as

∂Qξ

∂ξ
+ ∂Qη

∂η
= Nξκη + Nηκξ (19)

The left side of Eq. (19) represents the bending of the plate due to the transverse force Q, while

the right side represents the membrane behavior due to mid-plane force N . The mid-plane forces

Nξ and Nη are obtained by integration of principal stress values over the membrane thickness. The

values can be approximated as Nξ = hσξ and Nη = hση, where σξ and ση are the first and second

principal stress on the mid-plane, and h is the membrane thickness. The transverse forces are

shown in Fig. 15 g) as Qξ and in Fig. 15 h) as Qη for the flat membrane. At the fixed boundary, the

transverse forces correspond to the reaction forces from the boundary. By moving away from the

fixed boundary, both Qξ and Qη increase rapidly toward 0. By observing the equilibrium equation,

it can be concluded that very near the fixed boundaries, the membrane behavior is determined by

both transversal and mid-plane forces. In other words, the membrane behaves like a thin plate. By

moving away from the fixed boundaries, the effects of transverse forces fall off and the behavior is

dominated by mid-plane forces. Therefore, the left side of Eq. (19) is approximately zero, and the

equation becomes a statement of membrane equilibrium.

For the flat membrane, near fixed boundaries, positive σξ over positive κη results in an upward

force. The negative ση over negative κξ also results in an upward force. Equilibrium is maintained

by downward transverse forces near the fixed boundaries, due to the bending stiffness of the mem-
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brane. Because of the bending stiffness and the boundary conditions, κη is positive and out-of-plane

displacement is inhibited

Collapsed sections occur in a region of positive σξ and negative ση. As shown in Fig. 15 a),

there is only a small percentage difference in σξ between the values in the middle of the membrane

and at collapsed sections, relative to the total value. By increasing δux, the length of the membrane

along the ξ-direction increases, resulting in higher values of σξ.

As shown in Fig. 15 b), there is an order of one difference in ση magnitude between the values

in the middle of the membrane and near the fixed boundaries. Towards the middle of the mem-

brane, the reduction in length along the η-direction does not occur because the wrinkle out-of-plane

displacement increases which releases stress. Approaching the fixed boundaries, the increase in

δux results in the increase in compression, meaning there exists a reduction in length along the

η-direction. This is because the fixed boundaries limit the increase in out-of-plane deformation and

prevent the release of stress. This behavior is seen in Fig. 15 c). Because the stress cannot be

released by increasing the out-of-plane deformation, the wrinkle number is increased instead. This

increase in wrinkle number is represented by collapsed sections.

For the cylindrical membrane, the transverse forces are given in Fig. 16 g) as Qξ and in Fig. 16

h) as Qη. Near the fixed boundaries, positive σξ over negative κη results in a downward force. The

positive ση over negative κξ also results in a downward force. Due to the bending stiffness of the

membrane, equilibrium is maintained by the upward transverse forces near the fixed boundaries.

Again, collapsed sections occur in a region of positive σξ and negative ση. As shown in Fig. 16

a), relative to the total value, there is only a small percentage of difference in σξ between the values

in the middle of the membrane and the values at collapsed sections. By increasing δux, the length

of the membrane along the ξ-direction increases, resulting in higher values of σξ.

For ση shown in Fig. 16 b), there is an order of one difference in magnitude between the values

in the middle of the membrane and those near the fixed boundaries. However, the region of uniaxial

compression is at the edge of the biaxial tension region that exists near the fixed boundaries. Because

of the proximity of the biaxial tension region, the amplitude of compression is smaller compared

to the flat membrane. Towards the middle of the membrane, the reduction in length along the η-
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direction does not occur because the wrinkle out-of-plane displacement is increased, which releases

stress. At fixed boundaries, the constrained out-of-plane deformation prevents the release of stress.

This behavior is seen in Fig. 16 c). Similar to the flat membrane, the stress cannot be released by

increasing the out-of-plane deformation. Therefore, the wrinkle number is increased instead. This

increase in wrinkle number is represented by collapsed sections.

From the above behavior, it can be concluded that the generation of collapsed sections is caused

by fixed boundaries. These boundaries generate a stress state of uniaxial compression and constrain

the wrinkle amplitude. For a typical wrinkle, the increasing shear results in an amplitude and

frequency increase. Because the fixed boundaries limit the amplitude, the frequency increase is used

to relieve membrane stress. The outcome is the generation of collapsed sections.

4. Effects of the cylindrical shape

While the mechanism for generating the collapsed sections is similar for both types of mem-

branes, there are several important differences. As was shown in Section V B 4 for the flat membrane,

collapsed sections change position and increase in number. However, the discussion about the cylin-

drical membrane in Section V C 2 showed the collapsed section position and number is fixed to the

existing upward convex wrinkles. The result is a uniform wrinkle pattern in which all upward convex

wrinkles are the same and all downward convex wrinkles are also the same.

By observing the principal stress value in both membranes, the first principal stress σξ has a

similar distribution along the surface of the membrane. The second principal stress ση also has a

similar distribution in the middle section of the membrane. However near the fixed boundaries, ση

in the cylindrical membrane varies between tension and compression, while in the flat membrane

it is constant compression along the boundary. These stress distributions are shown in Figs. 13 b)

and 14 b).

Initially, the membrane is stretched in the y-direction, before applying any shear. Therefore, the

y-direction corresponds to the ξ-direction and the x-direction corresponds to the η-direction. The

stretch results in biaxial tension for the entire membrane. This tension in the η-direction reduces

the radius of the membrane. Starting from the fixed boundaries in the ξ-direction, the radius of the
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membrane decreases rapidly and becomes almost constant in the middle. The rapid reduction in

radius means that the tensile ση is much larger near the fixed boundaries than in the middle of the

membrane, where it is almost zero. Therefore, a single region of tensile ση spans the length of the

membrane as shown in Fig. 17 b). By adding shear, ση becomes compressive in the middle of the

membrane, while maintaining tension near the fixed boundaries. As a result, the effect of the initial

stretch will become less dominant, and the magnitude of tensile ση near the fixed boundaries falls

off. With increasing compression in the middle, the first wrinkles are generated and the tensile ση

region near the fixed boundaries is broken down into multiple regions. The upward convex wrinkles

will maintain the tensile region while the downward convex wrinkles will expand the compressive

region to the fixed boundary.

The collapsed sections are generated only on upward convex wrinkles near the fixed boundaries.

The generation starts in the compressive ση region that is just above/below the tensile ση region.

Because of the proximity of the tensile region, compared to the downward convex wrinkles, the

magnitude of compression is reduced. Additionally, the magnitude of curvature κξ is smaller on

upward convex than on the downward convex wrinkles.

A collapsed section on a upward convex wrinkle is a downward convex deformation. The opposite

applies for collapsed sections on downward convex wrinkles. By considering the magnitudes of ση

and κξ, it is more difficult to form collapsed sections on downward convex wrinkles than on upward

convex wrinkles.

The effects of the cylindrical shape can be summarized as follows. The curved shape of the

membrane breaks the membrane symmetry with respect to the xy-plane. The first effect is that

upward convex wrinkles have a different shape than the downward convex wrinkles. The second

effect is variation in the second principal stress along the length of the fixed boundaries. The result

is a state of minimum energy that is represented by collapsed sections generated at specific points on

only upward convex wrinkles. The points are defined as points of minimum value of compressive ση

on upward convex wrinkles. Generating collapsed sections at these points in the membrane requires

the least energy.
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VI. Conclusion

In this study, the equilibrium path tracking method is used with the finite element method

to obtain the wrinkling behavior of flat and cylindrical membranes undergoing shear displacement.

The flat membrane is modeled using cyclic boundary conditions to generate behavior similar to

the cylindrical membrane. Both membrane models undergo increasing shear displacement, and

wrinkling is observed. Initially, wrinkles are formed that span the entire height of the membrane.

After these wrinkles are formed, the results for the flat membrane show a specific behavior.

Wrinkle number is increased local near the fixed boundaries. This behavior is caused by a specific

stress state near the fixed boundaries because the membrane out-of-plane deformation is limited.

However, this stress state is constant along the fixed boundary. This allows the localized wrinkles

to form freely and move in the direction of constant stress.

Similar behavior is observed near the fixed boundaries of the cylindrical membrane. Again,

because the out-of-plane deformation is limited, a stress state exists that causes a local increase

in wrinkle number. However, due to the cylindrical shape of the membrane, the stress state is no

longer constant along the fixed boundaries. Instead, there is a variation between regions of tension

and compression. This variation is fixed to the initial wrinkles. As a result, localized wrinkles

cannot form freely or move along the fixed boundary. This mechanism of local wrinkle control

occurs naturally on the cylindrical membrane.
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Fig. 6 Out-of-plane deformation; a) Bif. 48, b) Bif. 67, c) Bif. 69, d) Path 69-0 at δux =
85.00 × 10−6[m], e) Path 69-0 at δux = 500.00 × 10−6[m], f) Bif. 500.
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Fig. 7 Out-of-plane deformation in section B-B’; a) Bif. 48, b) Bif. 67, c) Bif. 69, d) Path 69-0
at δux = 85.00 × 10−6[m], e) Path 69-0 at δux = 500.00 × 10−6[m], f) Bif. 500.
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a) b)

c) d)

Fig. 8 Bifurcation diagrams for the flat membrane; a) Bif. 48, b) Bif. 67, c) close up after
Bif. 67, d) Bif. 69.
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c)

d)

e)

Fig. 9 Wrinkle split, Bif. 500, flat membrane: a) initial condition, b) start of collapsed section
expansion, c) wrinkle splitting, d) new wrinkle growth, e) final pattern
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Fig. 10 Out-of-plane deformation; a) Bif. 11, b) Path 11-0 at δux = 432.00 × 10−6[m], c) Path
11-0 at δux = 1068.00 × 10−6[m], d) Bif. 1068, e) Path 1068-0 at δux = 2178.00 × 10−6[m], f)
Bif. 2178.
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Fig. 11 Out-of-plane deformation in section BB’; a) Bif. 11, b) Path 11-0 at δux = 432.00 ×
10−6[m], c) Path 11-0 at δux = 1068.00 × 10−6[m], d) Bif. 1068, e) Path 1068-0 at δux = 2178.00 ×
10−6[m].
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a)

b)

c)

d)

e)

Fig. 12 Wrinkle split, Bif. 1068; a) initial wrinkle pattern, b) start of collapsed section ex-
pansion, c) formation of a new downward convex wrinkle, d) growth of a downward convex
wrinkle, e) final wrinkle pattern.

40



Fig. 13 Flat membrane principal stress; a) σξ, b) ση.

Fig. 14 Cylindrical membrane principal stress; a) σξ, b) ση.
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Fig. 15 Flat membrane collapsed section; a) σξ at section ξξ′, b) ση at section ξξ′, c) uz at
section ξξ′, d) κη at section ξξ′, e) uz at section ηη′, f) κξ at section ηη′, g) Qξ at section ξξ′, h)
at section ηη′.

42



0 5 10 15 20 25 30

0

0.02

0.04

0.06

ξ

Q
ξ

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

0 5 10 15 20 25 30

0

0.04

0.08

0.12

η

Q
η

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

2 4 6 8 10
10

8

6

4

2

0

2

4

ξ

κ
η

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

2 4 6 8 10
12

10

8

6

4

2

0

2

ξ

κ
ξ

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

0 10 20 30 40 50
4

3.5

3

2.5

2

1.5

1

0.5

0
x 10

4

ξ

u
z

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

0 2 4 6 8 10
2.5

2

1.5

1

0.5

0
x 10

5

ξ

u
z

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

0 10 20 30 40 50 60
2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
x 10

6

ξ

σ
ξ

δu
φ

= 372.0[ m]

δu
φ

= 392.0[ m]

δu
φ

= 412.0[ m]

δu
φ

= 432.0[ m]

δu
φ

= 452.0[ m]

a)
0 10 20 30 40 50 60

4

2

0

2

4

6
x 10

5

ξ

σ
η

δu
φ

= 372.0[µm]

δu
φ

= 392.0[µm]

δu
φ

= 412.0[µm]

δu
φ

= 432.0[µm]

δu
φ

= 452.0[µm]

b)

c) d)

e) f)

g) h)

Fig. 16 Cylindrical membrane collapsed section; a) σξ at section ξξ′, b) ση at section ξξ′, c) uz

at section ξξ′, d) uz at section ξξ′, e) κη at section ξξ′, f) κξ at section ξξ′, g) Qξ at section ξξ′,
h) Qη at section ηη′.
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Fig. 17 Cylindrical membrane principal stress before shear; a) σξ, b) ση.
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