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We consider the one-dimensional Vlasov equation with an attractive cosine potential,
and its non-homogeneous stable stationary states that are decreasing functions of
the energy. We show that in the Sobolev space W 1,p (p > 2) neighborhood of such
a state, all stationary states that are decreasing functions of the energy are stable.
This is in sharp contrast with the situation for homogeneous stationary states of a
Vlasov equation, where a control over strictly more than one derivative is needed
to ensure the absence of unstable stationary states in a neighborhood of a refer-
ence stationary state [Z. Lin and C. Zeng, Commun. Math. Phys. 306, 291-331
(2011)]. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927689]

I. INTRODUCTION

Vlasov equation is central in different areas of physics, notably plasma physics, where it is used
with the Coulomb potential, and astrophysics, where the Newton potential is used instead. In this
latter context, it is usually called “collisionless Boltzmann equation.” Understanding the asymptotic
behavior of a perturbation to a stationary state of the Vlasov equation is an old problem. A huge
literature is devoted to the linearized dynamics, starting with the pioneering work of Landau.1

The full non-linear problem, despite a large literature (for instance Refs. 2–6), is still not fully
understood.

The subject has witnessed spectacular mathematical progresses recently. Mouhot and Villani7,8

showed that if the initial condition is close, in some analytical norm, to a stable homogeneous
stationary state, then the dynamics is an exponential relaxation towards another nearby stable homo-
geneous stationary state. Lin and Zeng in Ref. 9 investigated weaker norms of the Sobolev space
W s,p with p > 1. They showed among other results that if the norm is weak enough (precisely,
s < 1 + 1/p), any neighborhood of a stable homogeneous stationary state also contains unstable
homogeneous stationary states, as well as small Bernstein-Greene-Kruskal waves.2 In particular,
complete damping for any initial condition, as in Mouhot-Villani’s setting, is excluded. Conversely,
if s > 1 + 1/p, there is a neighborhood of the reference stable state that contains no unstable sta-
tionary states. In a recent preprint, Faou and Rousset have extended stability results in the spirit of
Mouhot and Villani to strong enough Sobolev norms.10 All these impressive results hold for homo-
geneous stationary states: this is unfortunately a severe limitation, since it excludes all situations of
interest for self-gravitating systems.

A natural question is then what could it be possible to show in the context of non-homogeneous
stationary states? First, any asymptotically exponential relaxation as in Refs. 7 and 8 is impossible,
since one always expects an algebraic relaxation, already for the linearized problem.11,12 One may
then conjecture an algebraic relaxation at the non-linear level (in the context of the 2D Euler equa-
tion, see Ref. 13 for such a conjecture, and Ref. 14 for a proof), but it seems difficult to prove. Now,
is an analysis in the spirit of Ref. 9 possible? Again, the complexity of the linearized problem is
a serious obstacle (see, for instance, Ref. 15 for a textbook account of the study of the linearized
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Vlasov equation in astrophysics). However, a simple criterion for the stability of a large class of
non-homogeneous stationary states has been found recently,16 in the context of a simple toy model,
called the Hamiltonian Mean-Field (HMF) model. There are of course many Hamiltonian systems
with mean-field interaction, but conventionally the HMF model refers to a specific model with
cosine interaction,17 and we follow this conventional naming.

The purpose of this paper is to take advantage of this simple formulation to investigate the
neighborhood of inhomogeneous stable stationary solutions in the case of the HMF model. This is
a first partial advance, in the spirit of Lin and Zeng, for inhomogeneous stationary states. We will
show that the results differ significantly from the homogeneous case: it is actually easier to rule out
the presence of unstable states in a neighborhood of the reference stable state, since a W 1,p norm is
in some cases sufficient.

We state precisely our results in Section II, emphasizing the important difference with the
homogeneous case and postpone the proofs to Section III. Section IV presents some numerical
illustration of our findings.

II. STATEMENT OF THE RESULTS

The Vlasov equation associated to the HMF model is

∂ f
∂t
+ {h, f } = 0, with { f , g} = ∂ f

∂p
∂g

∂q
− ∂ f
∂q

∂g

∂p
(1)

and the one-body Hamiltonian of the HMF model is

h(q,p, t) = p2

2
− M[ f ](t) cos(q − ϕ(t)), M[ f ](t)eiϕ(t) =


µ

f (q,p, t)(cos q + i sin q)dqdp, (2)

where µ represents the phase space of the one-body system.

Remark. Note that 0 ≤ M[ f ] ≤ 1. Furthermore, thanks to the rotational symmetry of the HMF
model, we may set the magnetization’s phase ϕ to zero without loss of generality if f is stationary.
We will always do so in the following.

Notation: If f is stationary, the one-body Hamiltonian h is integrable, and we can introduce the
angle-action variables (Θ, J). An integrable Hamiltonian h(q,p) can be expressed as a function of J
only. We denote such a Hamiltonian as H(J). We also writeΩ(J) = ∂JH(J).

Remark. The phase space of Hamiltonian (2) presents a separatrix, at energy M . Strictly speak-
ing, one must then define the angle-action variables separately in the different regions delimited by
the separatrix. This is technical and a little bit cumbersome, so we postpone it to Section III B.

Clearly, any function f that depends on (q,p) through the Hamiltonian h only is a stationary
solution to (1). In this paper, we concentrate on the following special class of stationary solutions:

Definition. A function f is called a monotonous stationary solution if it can be written as

f (q,p) = F(h(q,p)),
with F a C1, real, strictly decreasing function, and if it is normalized:


µ f dqdp = 1.

Note that a monotonous stationary solution f is non-homogeneous in space if and only if
M[ f ] , 0. We further note that M[ f ] = 1 is excluded, since M[ f ] = 1 implies that f is concen-
trated on the p-axis and hence f is not C1. As will be clear in the following, these stationary
solutions may be stable or unstable. This is a difference with 3D self-gravitating systems, where
stationary solutions that are strictly decreasing functions of the energy are always stable (see Ref. 18
for the most recent results in this direction).

To measure the distance between two stationary solutions, we will use the fractional Sobolev
spaces W s,a. In addition, we require that to be close to each other and two stationary solutions must
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not differ too much in their magnetization, which is rather natural. In the whole paper, we will use
“stable” to mean “formally stable.” We can now state our main result.

Theorem 1. Let f be a non-homogeneous stable monotonous stationary state, such that f ∈
W 1,a with a > 2. Let f̃ be another monotonous stationary state such that f̃ ∈ W 1,a. Then, there
exists ε > 0 such that

��
f − f̃

��
W 1,a < ε and |M[ f ] − M[ f̃ ]| < ε imply that f̃ is stable.

In other words, there exists a neighborhood of f in the W 1,a(a > 2) norm that does not contain any
unstable monotonous stationary state, with magnetization close to M[ f ].

This is to be contrasted with the following statement concerning homogeneous stationary
states:

Theorem 2. Let f be a homogeneous stable monotonous stationary state, such that f ∈ W s,a,
with a > 1 and s < 1 + 1/a. Any neighborhood of f in the W s,a norm contains an unstable monoto-
nous homogeneous stationary state.

From Theorem 1, we see that using a norm that controls only one derivative of the distribution
function is enough to ensure that a neighborhood of f is “simple,” in the sense that it does not
contain any unstable monotonous stationary state. By contrast, in the homogeneous case, even
requiring more regularity (with s > 1) may not be enough.

We have stated Theorem 2 in this way to emphasize the contrast with the non-homogeneous
case. It is actually a much weaker and less general statement of the results in Ref. 9. We will give a
proof of it, because it is instructive and for self-consistency of the paper.

Idea of the proof of Theorem 1: The proof relies on the analysis of the simple formal stability
criterion obtained for non-homogeneous monotonous stationary states in Ref. 16. From the condi-
tion |M[ f ] − M[ f̃ ]| < ε, we may choose a small enough ε such that M[ f̃ ] is not zero, and hence we
will assume that f̃ is non-homogeneous in the proof.

Notation: We need to define the average over the angle Θ variable, at fixed action J; for a function
A(Θ, J), we denote it as (see Sec. III B for a more precise definition of the integrals over Θ and/or J)

⟨A⟩J = 1
2π

 π

−π
A(Θ, J)dΘ. (3)

Following Ref. 16, we now introduce the functional I[ f ],

I[ f ] = 1 +


cos2qdq


1
p
∂ f
∂p

dp − 2π


1
Ω(J)

d(F ◦ H)
dJ

⟨cos Q⟩2
J dJ, (4)

where Q(Θ, J) is the position variable q in angle-action coordinates. From Ref. 16, we have the
convenient formal stability criterion.

Proposition 3. Let f be a monotonous stationary solution. Then, I[ f ] > 0 if and only if f is
formally stable.

If M = 0, f is homogeneous, and action/angle variables coincides with the (q,p) variables.
Hence, the average over Θ coincides with the average over the spatial variable q, and I is simplified
to

I[ f ] = 1 + π


1
p
∂ f
∂p

dp. (5)

With criterion (4) in hand, we only have to show that if f is a non-homogeneous monotonous
stationary state such that I[ f ] > 0, and f̃ and f are close in W 1,a norm and their magnetization are
close, then |I[ f̃ ] − I[ f ]| is small.

To prove Theorem 2, it is enough to construct, for each f homogeneous monotonous stable
stationary state, a nearby (in W s,a norm) homogeneous monotonous stationary state f̃ , such that
I[ f̃ ] < 0.
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Discussion: Clearly, the proof of Theorem 1 heavily relies on the stability criterion obtained in
Ref. 16. Thus, it is not clear how to generalize this result to more general models than HMF. Indeed,
in general, the linear stability analysis of a non-homogeneous stationary state is complicated; see,
for instance, Ref. 15 for the three dimensional gravitational case, but note that the situation is not
much better for general one dimensional systems.

III. PROOFS

A. Proof of Theorem 2

We first give for consistency a proof of Theorem 2, although it is contained (in a much more
general form) in Ref. 9. The proof relies on stability functional (5): given a stable monotonous
stationary state f0 (hence I[ f0] > 0), we have to find a modification f1, small in W s,a norm,
such that I[ f0 + f1] < 0. Following the strategy of Ref. 9, we introduce g(p) = e−p

2/2/(2π)3/2 and
gε,α(p) = εg(p/εα). Note that


gε,αdqdp = ε1+α. It is easy to see that

g′ε,α(p)
p

dp = − 1
2π
ε1−α. (6)

Furthermore, for small ε and 1 − α + α/a > 0, we have the estimate9

∥gε,α∥W s,a = O(ε1−sα+α/a). (7)

We now choose a modified state as

f0(p) + f1(p) = 1
1 + ε1+α ( f0(p) + gε,α(p)) , (8)

which corresponds to a modification

f1(p) = 1
1 + ε1+α gε,α(p) −

ε1+α

1 + ε1+α f0(p). (9)

From (5) and (6), it is clear that gε,α induces a large negative variation of the stability functional as
soon as α > 1. Hence in this case, I[ f0 + f1] < 0, and f0 + f1 is unstable.

From the expression of f1 (9), we see that the only way ∥ f1∥W s,a could be large is if ∥gε,α∥W s,a

itself is large. Now, from (7), gε,α is small in W s,a norm if 1 − sα + α/a > 0. We see that it is
possible to choose α such that the two conditions α > 1 and 1 − sα + α/a > 0 are satisfied, as soon
as s < 1 + 1/a. Remembering that (7) is valid for 1 − α + α/a > 0, α > 1 implies a > 1.

This completes the proof of Theorem 2. ■

B. Angle-action variables

We need to define a bijection between position/momentum (q,p) and angle/action (Θ, J) coor-
dinates. We will repeatedly use this change of variable in both directions. To keep notations as
understandable as possible, we will use the following convention: functions of (q,p) will be denoted
with small letters (for instance, q,p,h(q,p), j(q,p) . . .), and functions of (Θ, J) with capital letters
(for instance Θ, J,H(J),Q(Θ, J) . . .).

As a further difficulty, the presence of a separatrix in phase space imposes us to divide the phase
space in three regions, in order to properly define the change of variables: above separatrix (U1),
inside the separatrix (U2) and below separatrix (U3), see Fig. 1. In equations

U1 = {(q,p) | h(q,p) > M, p > 0},
U2 = {(q,p) | −M < h(q,p) < M},
U3 = {(q,p) | h(q,p) > M, p < 0}.

Over each of these three regions, it is possible to define a bijective change of variables

Ui → Vi,

(q,p) → (θi(q,p), ji(q,p)),
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded
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FIG. 1. The one particle phase space µ divided in the three regions U1,U2, and U3.

with

V1 = {(Θ1, J1) | Θ1 ∈] − π,π], J1 > 4
√

M/π},
V2 = {(Θ2, J2) | Θ2 ∈] − π,π], 0 < J2 < 8

√
M/π},

V3 = {(Θ3, J3) | Θ3 ∈] − π,π], J3 > 4
√

M/π}. (10)

The inverse change of variables reads

Vi → Ui,

(Θi, Ji) → (Qi(Θi, Ji),Pi(Θi, Ji)).
To keep notations simple, we will however use a single notation for each of these functions,
θ(q,p), j(q,p),Q(Θ, J),P(θ, J). Similarly, any real function G of the angle-action variables is thus
actually made of three distinct functions

Gi : Vi → R i = 1,2,3.

We will however use for such a function a single notation G(Θ, J). The integrals over dΘ dJ are
thus to be understood as the sum of three integrals over V1,V2, and V3,

µ

G(Θ, J)dΘdJ =
3

i=1


Vi

Gi(Θi, Ji)dΘidJi.

The average over Θ defined in (3) also yields three functions of the action, which we do not write
explicitly.

C. General strategy

For later use, we rewrite stability functional (4) to make it easier to analyze.

Lemma 1. Let f be a monotonous stationary solution. Stability functional I[ f ] (4) can be
rewritten as

I[ f ] = 1 +


µ

F ′(h(q,p))w(q,p)dqdp, (11)

with

w(q,p) = 

cos2Q

�
j(q,p) − ⟨cos Q⟩2

j(q,p) . (12)

Note that the function w implicitly depends on f through the definitions of the functions Q and j.
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Proof. Remembering F ′(h(q,p)) = F ′(H(J)), the second term of (4) is
µ

F ′(h(q,p))cos2qdqdp =


dJ F ′(H(J))


cos2Q(Θ, J)dΘ

=


µ

F ′(H(J))
cos2Q
�
J
dΘdJ =


µ

F ′(h(q,p)) 
cos2Q
�
j(q,p)dqdp. (13)

Similarly, the third term is

− 2π


F ′(H (J )) ⟨cosQ⟩2
J dJ = −


µ

F ′(H (J )) ⟨cosQ⟩2
J dΘdJ = −


µ

F ′(h(q, p)) ⟨cosQ⟩2
j(q,p) dqdp . ■ (14)

Remark. Looking back at (13) and using the fact Q(θ(q,p), j(q,p)) = q, we may replace the
function w(q,p) defined in (12) with

w1(q,p) = cos2q − ⟨cos Q⟩2
j(q,p) . (15)

We consider f = F ◦ h a stable non-homogeneous monotonous stationary state and f̃ = F̃ ◦ h̃
another monotonous stationary state. h̃ is the Hamiltonian corresponding to f̃ ,

h̃(q,p) = p2

2
− M̃ cos q, M̃ =


µ

f̃ (q,p) cos qdqdp, (16)

and the angle-action variables associated to h̃ are written (Θ̃, J̃). The change of variable is
(θ̃(q,p), j̃(q,p)), and the inverse change is (Q̃(Θ̃, J̃), P̃(Θ̃, J̃)). The stability functional for f̃ is

I[ f̃ ] = 1 +


µ

F̃ ′(h̃(q,p)) 
cos2Q̃
�
j̃(q,p) −



cos Q̃

�2
j̃(q,p)


dqdp. (17)

We write

w̃(q,p) = 

cos2Q̃

�
j̃(q,p) −



cos Q̃

�2
j̃(q,p) .

Since f is stable, I[ f ] > 0. Thus, to prove Theorem 1, it is enough to show that if

H1. ∥ f̃ − f ∥W 1,a is small and

H2. |M̃ − M | is small, then
�
I[ f̃ ] − I[ f ]� is small. (18)

For convenience, we denote the discrepancies by

∆M = M̃ − M , ∆I = I[ f̃ ] − I[ f ]. (19)

∆I can be rewritten as

∆I =


µ

�(F̃ ′ ◦ h̃)w̃ − (F ′ ◦ h)w� dqdp = ∆I1 − ∆I2, (20)

where

∆I1 =


µ

�
F̃ ′ ◦ h̃ − F ′ ◦ h

�
w̃dqdp (21)

and

∆I2 =


µ

(F ′ ◦ h) 
cos Q̃
�2
j̃(q,p) − ⟨cos Q⟩2

j(q,p)


dqdp. (22)

We have used here the remark after Lemma 1. We have

|∆I | ≤ |∆I1| + |∆I2| (23)

and will show smallness of |∆I1| and |∆I2| in Secs. III D and III E, respectively.
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D. |∆I1| is small

In this section, the hypothesis H1 on ∥ f̃ − f ∥W 1,a will be crucial; we will also use H2. We
begin with some Lemmas.

Lemma 2. Let m be a positive constant and the function ua be defined by

ua(q,p; m) = (|p|a + |m sin q|a)1/a . (24)

Then, ||1/ua ||Lb is finite for any a > 0 and 1 < b < 2. Moreover, when m is small, the leading order
is O(m−1/b).

Proof. The considered norm is

�����

�����
1
ua

�����

�����

b

Lb

=


µ

dqdp
(|p|a + |m sin q|a)b/a . (25)

We have to check the convergence of the integral at the points where the integrand diverges, which
are (q,p) = (0,0), (±π,0), and when |p| → ∞.

• Around (0,0) and (π,0):
Let (q0,0) be the point we are considering. Using polar coordinates, q − q0 =

r
m

cos ρ, p =
r sin ρ, we have dqdp = r

m
drdρ and

dqdp
(|p|a + |m sin q|a)b/a =

1
m

dρ
(| sin ρ|a + | cos ρ|a)b/a r1−bdr. (26)

The integral over ρ is finite, and the integral over r converges for b < 2.
• |p| → ∞:

dqdp
(|p|a + |m sin q|a)b/a ≤

dqdp
|p|b . (27)

Thus, the integral converges for 1 < b.

Putting all together, we conclude that the integral converges for 1 < b < 2. Moreover, if m is small,
the leading order of ||1/ua ||Lb is O(1/m1/b) from the estimations around (0,0) and (π,0). ■

Remark. That m is non-zero is important to ensure convergence for 1 < b < 2. If m = 0, then
the integrand diverges on the line p = 0. As a result, around the line p = 0,

dqdp
(|p|a)b/a ≃


dp
|p|b , (28)

which converges for b < 1. Considering the estimation for |p| → ∞, which requires 1 < b, the
interval of b for convergence is empty.

Since | cos Q| ≤ 1, |w̃ | ≤ 1. Hence,

|∆I1| ≤


µ

�
F̃ ′ ◦ h̃ − F ′ ◦ h

�
dqdp =

��
F̃ ′ ◦ h̃ − F ′ ◦ h

��
L1. (29)

Since M > 0, we introduce ua(q,p; M), and the Hölder inequality leads to

|∆I1| ≤ ��(F̃ ′ ◦ h̃ − F ′ ◦ h)ua

��
La

�����

�����
1
ua

�����

�����Lb

, (30)

with a and b non-negative real numbers such that 1/a + 1/b = 1. The norm ||1/ua ||Lb is finite for
1 < b < 2 by Lemma 2, and our job is to show that

��(F̃ ′ ◦ h̃ − F ′ ◦ h)ua

��a
La =


µ

�
F̃ ′ ◦ h̃ − F ′ ◦ h

�a (|p|a + |M sin q|a) dqdp (31)
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is small. The first term is rewritten as
µ

�
F̃ ′ ◦ h̃ − F ′ ◦ h

�a |p|adqdp =


µ

�
∂p

�
f̃ − f

��adqdp ≤
��

f̃ − f
��a
W 1,a (32)

and is small by the hypothesis
��

f̃ − f
��
W 1,a small. Using the trick,

M sin q
�
F̃ ′ ◦ h̃ − F ′ ◦ h

�
= ∂q

�
f̃ − f

�
− ∆M sin qF̃ ′ ◦ h̃, (33)

we rewrite the second term as
µ

�
F̃ ′ ◦ h̃ − F ′ ◦ h

�a |M sin q|adqdp =


µ

�
∂q

�
f̃ − f

�
− ∆M sin qF̃ ′ ◦ h̃

�adqdp

≤ 2a max
 �

∂q
�

f̃ − f
��adqdp, |∆M |a

 �
sin qF̃ ′ ◦ h̃

�adqdp


≤ 2a max
��

f̃ − f
��a
W 1,a ,

|∆M |a
Ma

 �
∂q f̃

�adqdp

.

(34)

Thus, the second term is also small by the hypothesis
��

f̃ − f
��
W 1,a small, |∆M | small, and f̃ ∈ W 1,a.

We have therefore proven that |∆I1| is small using the main hypotheses H1 and H2. ■

E. |∆I2| is small

In this section, the crucial hypothesis is H2, i.e., |∆M | is small. If ∆M = 0, then

M̃ = M =⇒ h̃ = h =⇒ (θ̃, j̃) = (θ, j) and (Q̃, P̃) = (Q,P) =⇒ ∆I2 = 0, (35)

so that ∆I2 is trivially small. We therefore consider the case ∆M , 0. We may choose ∆M > 0
without loss of generality, since we can exchange the roles of f and f̃ in order to estimate |∆I2|
when ∆M < 0.

The quantity ∆I2, which reads

∆I2 =


µ

(F ′ ◦ h) 
cos Q̃
�2
j̃(q,p) − ⟨cos Q⟩2

j(q,p)


dqdp, (36)

depends on f̃ only through the Hamiltonian and magnetization, while ∆I1 directly depends on the
derivative of F̃. Thus, it is rather natural to expect that ∆I2 is small if M̃ is close to M . A technical
problem is that the separatrix changes as the magnetization changes, so that a direct comparison be-
tween



cos Q̃

�
j̃(q,p) and ⟨cos Q⟩ j(q,p) becomes difficult around the separatrix. To solve this problem,

we divide the µ space into three regions:

1. Inside the separatrix.
2. Close to the separatrix.
3. Outside the separatrix.

For this purpose, we introduce M1 and M2 as

M1 = M − 2∆M, M2 = M + 2∆M. (37)

From H2, we may consider a small ∆M which makes M1 positive. Thus, we also have M̃ > 0.
We now use the following strategy. ∆I2 is divided in three parts, according to the division of the

µ space detailed below. Secs. III E 2–III E 4 show the smallness of the contribution to ∆I2 of the
region close to, inside, and outside the separatrix, respectively.

1. Division of µ space

Using the Hamiltonian,

h(q,p) = p2

2
− M cos q, (38)
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FIG. 2. Division of µ space. This figure describes the upper half µ space and the lower half µ is similarly divided thanks to
the symmetry p→ −p. The shaded area is µ2. The solid curves represent h(q, p)= 2M2−M,M and 2M1−M from top to
bottom, and the dashed curves are separatrices for M + |∆M | and M − |∆M | from top to bottom. The vertical solid lines at
q =±Cos−1((M −2M1)/M ) are used to further divide µ2.

and M1,M2 defined in (37), we divide µ into three µ j as

µ = µ1 ∪ µ2 ∪ µ3, (39)

where

µ1 = {(q,p) ∈ µ | h(q,p) < 2M1 − M},
µ2 = {(q,p) ∈ µ | 2M1 − M ≤ h(q,p) ≤ 2M2 − M},
µ3 = {(q,p) ∈ µ | 2M2 − M < h(q,p)}.

(40)

See Fig. 2 for a schematic picture. Accordingly, the second term ∆I2 is divided as

∆I2 = ∆I21 + ∆I22 + ∆I23, (41)

where ∆I2 j corresponds to the integral over µ j,

∆I2 j =


µ j

(F ′ ◦ h) 
cos Q̃
�2
j̃(q,p) − ⟨cos Q⟩2

j(q,p)


dqdp. (42)

2. Near the separatrix: µ2

Proposition 4. Under the hypotheses of Theorem 1, |∆I22| is small.

We first show that the area of µ2 is small.

Lemma 3. Let A =


µ2
dqdp. Then, A is estimated as A ≤ 16π

√
∆M.

Proof. Introducing qmax = Cos−1((M − 2M1)/M), we further divide µ2 into two parts,

µ21 = {(q,p) ∈ µ2 | |q| ≤ qmax},
µ22 = {(q,p) ∈ µ2 | |q| > qmax}, (43)

and denote the areas of µ21 and µ22 as A1 and A2, respectively.
The upper and the lower bound of the upper half of µ21 is expressed as

pu =


2(2M2 − M + M cos q), pl =


2(2M1 − M + M cos q), (44)

for |q| < qmax. The height of µ21 for a fixed q is estimated as

pu − pl =
p2

u − p2
l

pu + pl
=

4(M2 − M1)
2(2M2 − M + M cos q) + 

2(2M1 − M + M cos q)
≤ 4(M2 − M1)

2(2M2 − M + M − 2M1) + 0
= 2


M2 − M1,

(45)
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and hence the area A1 is

A1 = |µ21| ≤ 2 · 2


M2 − M1 2qmax = 8


M2 − M1 qmax. (46)

In µ22, one peace of the region is smaller than the rectangle whose vertices are (qmax,0), (π,0),
(π,2√M2 − M1), and (qmax,2

√
M2 − M1). Thus, A2 is bounded as

A2 = |µ22| ≤ 4 · 2


M2 − M1(π − qmax) = 8


M2 − M1(π − qmax). (47)

The total area A is therefore

A ≤ 8π


M2 − M1 ≤ 16π
√
∆M . ■ (48)

Proof of Proposition 4. From the fact | cos q| ≤ 1, we have ���


cos Q̃

�2
j̃
− ⟨cos Q⟩2

j
��� ≤ 1. F ′ is

continuous, so that it is bounded by F ′max < +∞ in a neighborhood of the separatrix, containing µ2

for ∆M small. Thus, we have

|∆I22| ≤


µ2

|F ′(h(q,p))| ���


cos Q̃

�2
j̃(q,p) − ⟨cos Q⟩2

j(q,p)
��� dqdp ≤ F ′maxA. (49)

Using Lemma 3 and H2, we conclude that |∆I22| is small.

3. Inside the separatrix: µ1

Proposition 5. Under the hypotheses of Theorem 1, |∆I21| is small.

Proof. From ���


cos Q̃

�
j̃(q,p) + ⟨cos Q⟩ j(q,p)��� ≤ 2, we estimate ∆I21 as

|∆I21| ≤ 2
��(F ′ ◦ h) �φin(q,p; M̃) − φin(q,p; M)���

L1(µ1)
≤ 2||F ′ ◦ h||L1(µ1) sup

(q,p)∈µ1

�
φin(q,p; M̃) − φin(q,p; M)� . (50)

Here, we have introduced the following functions to simplify the notations:

⟨cos Q⟩ j(q,p) = φin(q,p; M), 

cos Q̃

�
j̃(q,p) = φin(q,p; M̃), (51)

where

φin(q,p; M) = ϕin(ψ(q,p; M)), (52)

ϕin(k) = 2E(k)
K(k) − 1, (53)

and

k = ψ(q,p; M) =


p2/2 + M(1 − cos q)
2M

. (54)

The functions K(k) and E(k) are the complete elliptic integrals of the 1st and the 2nd kinds,
respectively.

The proof is done by the following three steps:

1. We show that ||F ′ ◦ h||L1(µ1) is finite. [Lemma 4]
2. We extract the small ∆M from φin(q,p; M̃) − φin(q,p; M). [Lemma 5]
3. We show that the remaining supremum part is finite. [Lemma 6]

The three following Lemmas prove the Proposition 5.

Lemma 4. F ′ ◦ h ∈ L1 (this implies of course that F ′ ◦ h ∈ L1(µ1)).
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Proof. Using the function ua(q,p; M) and the Hölder inequality, we have

||F ′ ◦ h||L1 ≤ ||(F ′ ◦ h)ua ||La

�����

�����
1
ua

�����

�����Lb

, (55)

where 1 ≤ a,b ≤ ∞ and 1/a + 1/b = 1. By Lemma 2, the factor ||1/ua ||Lb converges for 1 < b < 2,
which corresponds to 2 < a < ∞. On the other hand, we have

||(F ′ ◦ h)ua||La =

(
|F ′ ◦ h|a(|p|a| + |M sin q|a)dqdp

)1/a

=
���
∂p f

��a
La +

��
∂q f

��a
La

�1/a ≤ || f ||W 1,a.

(56)

Thus, we have

||F ′ ◦ h||L1 ≤ || f ||W 1,a

�����

�����
1
ua

�����

�����Lb

< +∞. ■ (57)

Our next job is to extract the small ∆M from the supremum part.

Lemma 5. For each point (q,p), there exists M∗ ∈ [M, M̃] such that

|φin(q,p; M̃) − φin(q,p; M)| = ∆M
�����
∂φin

∂M
(q,p; M∗)

�����
. (58)

Proof. We first remember that M, M̃ ∈ (0,1). The function ψ(q,p; M) is C1 with respect to M
for M ∈ (0,1), and ϕin(k) is C1 in k ∈ [0,1). φin(q,p; M) is hence C1 for M ∈ (0,1). Thus, Taylor
theorem proves the lemma. ■

Lemma 5 gives

∆I21 ≤ 2∆M ||F ′ ◦ h||L1(µ1) sup
(q,p)∈µ1

�����
∂φin

∂M
(q,p; M∗(q,p))

�����
. (59)

The last job is to show that the supremum is finite.

Lemma 6. sup
(q,p)∈µ1

���
∂φin
∂M

(q,p; M∗(q,p))��� < ∞.

Proof. The concrete form of ∂Mφin is

∂φin

∂M
(q,p; M∗) = ∂ϕin

∂k
(ψ(q,p; M∗)) ∂ψ

∂M
(q,p; M∗). (60)

The derivatives of ϕin and ψ are

∂ϕin

∂k
(k) = 2

K(k)2 [E
′(k)K(k) − E(K)K ′(k)]

=
−2
k



(
E(k)
K(k) − 1

)2

+
k2

1 − k2

(
E(k)
K(k)

)2

(61)

and

∂ψ

∂M
(q,p; M∗) = −p2

4M∗
√

2M∗


p2/2 + M∗(1 − cos q) =
−p2

8M2
∗ k
, (62)

where k must be evaluated at ψ(q,p; M∗(q,p)). The derivative ∂Mφin is hence

∂φin

∂M
=

p2

4M2
∗

1
k2



(
E(k)
K(k) − 1

)2

+
k2

1 − k2

(
E(k)
K(k)

)2
. (63)

The functions E(k) and 1/K(k) are finite in the interval k ∈ [0,1]. Therefore, remembering M∗(q,p)
∈ [M, M̃] and is positive, it is enough to show
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• no divergence at k = 0,
• no appearance of k = 1.

No divergence at k = 0: Around k = 0, from the Taylor expansions of K(k), (B3), and E(k), (B4),
we have

E(k)
K(k) = 1 − k2

2
+O(k4). (64)

Thus, we have

∂φin

∂M
=

p2

4M2
∗

1
k2



(
E(k)
K(k) − 1

)2

+
k2

1 − k2

(
E(k)
K(k)

)2

=
p2

4M2
∗

1
k2


O(k4) + k2

1 − k2 (1 +O(k2))


→ p2

4M2
∗

(k → 0).

(65)

Actually, k → 0 implies (q,p) → (0,0) and hence ∂Mφin → 0.
No appearance of k = 1: k = ψ(q,p; M∗) is an increasing function of p for a fixed q, thus it is
enough to investigate the upper value of k on the upper boundary of µ1,

p =


2(2M1 − M + M cos q). (66)

Substituting this p into ψ(q,p; M∗), we have

k2 =
2M1 − M + M∗ + (M − M∗) cos q

2M∗
≤ 2M1 − M + M∗ + M∗ − M

2M∗
= 1 − 2

∆M

M∗
≤ 1 − 2

∆M

M̃
. (67)

Thus, k is bounded by a positive number which is smaller than 1,

k <


1 − 2

∆M
M̃

< 1. ■ (68)

4. Outside the separatrix: µ3

Proposition 6. Under the hypotheses of Theorem 1, |∆I23| is small.

Proof. The strategy of the proof is almost the same as for Proposition 5, but we replace ϕin(k),
introduced in (53), by

ϕout(k) = 2k2E(1/k)
K(1/k) − 2k2 + 1. (69)

We show the following Lemma which corresponds to Lemma 6:

Lemma 7. sup
(q,p)∈µ3

���
∂φout
∂M

(q,p; M∗(q,p))��� < ∞.

Proof. The derivative of ϕout is

∂ϕout

∂k
= 4k

(
E(1/k)
K(1/k) − 1

)
− 2

K(1/k)2 [E
′(1/k)K(1/k) − E(1/k)K ′(1/k)]

= 4k
(

E(1/k)
K(1/k) − 1

)
− 2k



(
E(1/k)
K(1/k) − 1

)2

+
1

1 − k2

(
E(1/k)
K(1/k)

)2
.

(70)

The value of k must be evaluated at k = ψ(q,p; M∗). The derivative ∂Mφout is hence

∂φout

∂M
=

p2

4M2
∗



(
E(1/k)
K(1/k) − 1

)2

+
1

1 − k2

(
E(1/k)
K(1/k)

)2

− 2
(

E(1/k)
K(1/k) − 1

) . (71)
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The functions E(1/k) and 1/K(1/k) are finite in the interval k ∈ [1,∞], and hence it is enough to
show

• no appearance of k = 1,
• no divergence at k = ∞.

No appearance of k = 1: As commented previously, ψ is an increasing function of p, and hence a
lower bound for k is given by considering the lower boundary of µ3,

p =


2(2M2 − M + M cos q). (72)
Substituting this p into ψ(q,p; M∗), we have

k2 =
2M2 − M + M∗ + (M − M∗) cos q

2M∗
≥ 2M2 − M + M∗ − |M − M∗|

2M∗
=

M + 2∆M
M∗

≥ 1 +
∆M

M̃
. (73)

Thus, we have proved

k >


1 +
∆M
M̃

> 1. (74)

No divergence at k = ∞: Estimation (64) gives, in the limit k → ∞,

E(1/k)
K(1/k) = 1 − 1

2k2 +O(1/k4), (75)

and p2 ≤ 4M̃k2. Thus, we have

�����
∂φout

∂M

�����
≤ M̃k2

M2
∗

�����
O(1/k4) + 1 +O(1/k2)

1 − k2 +
1
k2 +O(1/k4)

�����
→ 0, (k → ∞). ■ (76)

IV. NUMERICAL TESTS

In this section, we present some numerical simulations of the Vlasov equation for the HMF
model, using a semi-Lagrangian code.20 The purpose is twofold:
(i) Illustrate numerically Theorems 1 and 2. We will show that a modification of the distribution
function small in W s,a with 1 ≤ s < 1 + 1/a can destabilize a homogeneous stable stationary state.
By contrast, we never observe the destabilization of an inhomogeneous stationary state by such
perturbations.
(ii) Perform a few numerical tests in a case not covered by Theorem 1, where modifications are in
spaces rougher than W 1,a.

A. Set up

In this section, we concentrate on a = 2 and denote W s,2 by H s following the conventional
notation. Let us consider the following modification of the reference state f0:

gε,δ(q,p) = εδe−(h(q,p)−h(0,0))/Tε2
, (77)

where δ > 0 and

h(q,p) = p2

2
− M cos q (78)

is the one-body Hamiltonian. The modification we actually use is slightly different from (77) to
ensure the normalization of the modified reference stationary state. The function gε,δ(q,p) is almost
zero except for a neighborhood of the origin, thus we may approximate h(q,p) in the inhomoge-
neous case as h(q,p) ≃ (p2 + q2)/2. The exponent δ controls the H s norm of gε,δ,

��
gε,δ

��
H s ≃




ε1/2+δ−s, homogeneous case,
ε1+δ−s, inhomogeneous case.

(79)
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Since H s ⊂ H t for t ≤ s, we have

gε,δ ∈



H s(s < 1/2 + δ), homogeneous case,
H s(s < 1 + δ), inhomogeneous case.

(80)

Let us estimate the contribution of gε,δ to the stability functional, that is, I[gε,δ] − 1. The homo-
geneous case is straightforward. For the inhomogeneous case, we expand cos q in the Taylor series,
and using the angle-action variables, q =

√
2J sinΘ and p =

√
2J cosΘ, we obtain the following

approximation of the function w(q,p):
w(q,p) ≃ (p2 + q2)2 +O((q,p)6). (81)

From the above approximation, we have the estimates of I[gε,δ] − 1 both for the homogeneous and
the inhomogeneous cases,

I[gε,δ] − 1 =



εδ−1, homogeneous case,
εδ+4, inhomogeneous case.

(82)

These estimations imply the following: (i) In homogeneous case, the modification gε,δ may change
the sign of the stability functional even in the limit ε → 0 for δ ≤ 1, that is, when gε,δ is small in
H s(s < 1/2 + δ). (ii) In inhomogeneous case, no δ can change the sign of the stability functional in
the limit ε → 0 contrasting with the homogeneous case.

Based on the above considerations, we prepare a perturbed initial distribution

fε,δ, µ(q,p) = A

e−h(q,p)/T(1 + µ cos q) + εδe−(h(q,p)−h(0,0))/Tε2


, (83)

where A is the normalization factor, the first term corresponds to the distribution in thermal equilib-
rium, the third term corresponds to the modification gε,δ, and the second term proportional to µ is
a perturbation to check the stability of the stationary state fε,δ,0(q,p). The magnetization M in the
one-body Hamiltonian h(q,p) must satisfies the self-consistent equation

M =


fε,δ,0(q,p) cos qdqdp. (84)

The critical temperature in thermal equilibrium states is Tc = 0.5 in the HMF model, and therefore,
we will set T = 0.6 for homogeneous case and T = 0.4 for inhomogeneous case.

We perform numerical integration of the Vlasov equation by using the semi-Lagrangian code20

with the time step ∆t = 0.05. We introduce a mesh on the truncated phase space (q,p) ∈] − π,π] ×
[−3,3], and the mesh size is 512 × 512 unless otherwise specified.

B. Homogeneous case

We set the magnetization as zero in the one-body Hamiltonian h(q,p), (78). Typical temporal
evolution of magnetization is exhibited in Fig. 3(a). In a short time interval, M(t) decreases, and
then it increases if the considered stationary state is unstable. The instability gets weaker as δ
approaches the threshold value, which can be computed by the stability functional

I[ fε,δ,0] = 1 − 1 + εδ−1

2T(1 + εδ+1) . (85)

We remark that for the thermal equilibrium with T = 0.6, I[ f0,δ,0] = 1/6 > 0 and hence the unmod-
ified distribution f0,δ,0 is stable. The strange looking discontinuity around t = 512 is an artifact due
to the mesh size; indeed, it disappears when a finer 1024 × 1024 mesh is used. Nevertheless, in most
cases, a 512 × 512 mesh is sufficient to judge the stability of the modified state.

We use the perturbation level µ = 10−4. Varying ε and δ, we compute values of magnetiza-
tion at t = 1000 and judge the stability of the modified states fε,δ,0. From the typical temporal
evolutions of M(t), we use the criterion that the state fε,δ,0 is unstable if the final magnetization
Mf = M(1000) is larger than M th

f = µ/2 = 5.10−5, which is slightly larger than the initial value
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FIG. 3. (a) Typical temporal evolutions of magnetization M (t). ε = 0.05, which gives the stability threshold value as
δc≃ 1.536. The values of δ are δ = 1.40 (red plus), 1.45 (blue crosses), 1.50 (green stars), and 1.55 (purple boxes), with
which the solid lines are computed by using a finer mesh size 1024×1024 from top to bottom. The black straight line marks
the level M th

f = 5.10−5, which is used in the panel (b). (b) Phase diagram on the (ε,δ) plane. Solid red line represent the
boundary of stability defined by 1− (1+εδ−1)/2T (1+εδ+1)= 0. Green circles and blue crosses represent Mf < M th

f and
Mf > M th

f , respectively. Purple stars, overwritten on green circles, are for Mf > M th
f , but with a finer mesh size 1024×1024.

Mi = µ/[2(1 + εδ+1)]. The phase diagram on the (ε, δ) plane is reported in Fig. 3(b), together with
the theoretical threshold line defined by I[ fε,δ,0] = 0.

Numerical results are not in perfect agreement with the theoretical prediction. There are three
numerical reasons. (1) Mesh size: A smaller ε implies that the modification is strongly concentrated
around the line p = 0. As a result, we need a finer mesh to capture the modification for a smaller
ε. Indeed, using the mesh size 1024 × 1024, three points on the line ε = 0.005 are found unstable,
whereas the 512 × 512 mesh judged the same states stable. (2) Computational time: If δ goes up
to the theoretical line with a fixed ε, the strength of instability gets weaker. Thus, a longer time
computation is required to observe instability, since typical M(t) curves decrease in a short time
interval. (3) Weak instability: in relation with the point (2), if the instability is very weak, then the
magnetization saturates at a lower level than the threshold M th

f .
Summarizing, a large δ, corresponding to a “smooth” space H1/2+δ, keeps the modified state

stable, but a small δ, corresponding to a “rough” space changes the stability and the modified state
becomes unstable. We stress that, no matter how small ε is, there is a modification which makes the
state unstable.

C. Inhomogeneous case

The estimation of stability functional (82) suggests that a small modification by gε,δ cannot
change the stability of the inhomogeneous stationary state f0,δ,0. We numerically confirm this
suggestion.

FIG. 4. Temporal evolutions of magnetization M (t)−Mst, where Mst is the value satisfying the self-consistent equation.
(a) δ = 0.5, ε = 0.01–0.05. (b) ε = 0.05, δ = 0.5–0.1. In both panels, µ = 10−4 and five types of points corresponding to five
values of ε or δ almost collapse.
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Computations are performed along two lines: (i) δ = 0.5. (ii) ε = 0.05. We choose the value
δ = 0.5 since it gives the same threshold s = 3/2 as the homogeneous case with δ = 1. Then, we
examine stability by decreasing δ, which means that the modification gε,δ becomes “rough.”

Along the two lines, no instability is observed (Fig. 4). Thus, the stability of the inhomoge-
neous stationary state does not seem to change even when the modification is “rough” enough. We
have used a perturbation level µ = 10−4; changing it does not significantly affect the results.

V. CONCLUSION AND DISCUSSIONS

We have shown that, in the 1D Vlasov equation with a cosine potential (corresponding to
the HMF model), any non-homogeneous stable monotonous stationary has a neighborhood in the
W 1,a(a > 2) norm that does not contain any unstable monotonous stationary states with nearby
magnetization. This is in striking contrast with the homogeneous case, where all neighborhoods
of a reference stable state in norms controlling only one derivative do contain unstable stationary
states. These results are illustrated with direct simulations of the Vlasov equation, using a reference
stationary state and controlling the norm of a modification of this reference state in various Sobolev
spaces.

Theorem 1 points to an important difference in the mathematical structure of the neighborhoods
of homogeneous and inhomogeneous stationary states of Vlasov equation. Understanding the phys-
ical consequences of this fact, especially with respect to the non-linear evolution of a perturbation,
remains an open question.

Finally, we stress that the proof of Theorem 1 relies on the knowledge of a stability functional
which is rather simple in the HMF model. Extending the theorem to other models having long-range
interactions, where such a simple stability functional is not available, is another open problem.
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APPENDIX A: W 1,p SPACES

For X ⊂ Rn, the Sobolev space W 1,p(X) is defined by

W 1,p = { f : X → R | || f ||Lp + ||∇ f ||Lp < ∞ } . (A1)

The norm on W 1,p is

|| f ||W 1,p = || f ||Lp + ||∇ f ||Lp, (A2)

where we recall

|| f ||Lp =




(
X

| f (x)|pdx
)1/p

(1 ≤ p < ∞),
sup
x∈X

| f (x)| (p = ∞).
(A3)

We refer the reader to Ref. 19 for fractional Sobolev spaces, needed for Theorem 2.

APPENDIX B: SOME USEFUL PROPERTIES OF THE COMPLETE ELLIPTIC INTEGRALS

We list a few useful properties of the complete elliptic integrals.

1. K is monotonically increasing, and E is monotonically decreasing.
2. K(0) = E(0) = π/2.
3. K(k) → ∞ (k → 1).
4. E(1) = 1.
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5. The derivatives of K and E are

dK
dk

(k) = E(k) − (1 − k2)K(k)
k(1 − k2) (B1)

and

dE
dk

(k) = E(k) − K(k)
k

. (B2)

6. Taylor expansions of K and E around k = 0 are

K(k) = π

2

(
1 +

k2

4
+

9
64

k4 + · · ·
)

(B3)

and

E(K) = π

2

(
1 − k2

4
− 3

64
k4 − · · ·

)
. (B4)
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