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Abstract

The paper proposes two types of convex relations into algebras of probabilistic distributions as a relational
algebraic foundation of semantic domains of probabilistic systems [4, 7, 8]. Following previous results by
Tsumagari [16], we particularly focus on the associative law for the convex compositions defined via bounded
combinations of probabilistic distributions, and prove that the convex compositions are associative for convex
relations.
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1. Introduction

The concept of rings is basic in mathematics as a framework of numbers. Recently from a view point
on algebraic study [1] of semantic domains for distributed algorithms, the importance of variants of rings,
such as Kleene algebras [5] and idempotent semirings, has been increased. It is well-known that the set of
all binary relations on a set forms a typical example of complete idempotent semirings.

When constructing a concrete model of semirings with preferable properties, we have to first focus our
attention on the associativity of possible composition. For relations α : X ⇁ Y and β : Y ⇁ Z the ordinary
composite αβ : X ⇁ Y is defined as

(x, z) ∈ αβ ↔ ∃y ∈ Y. (x, y) ∈ α ∧ (y, z) ∈ β.

Of course the ordinary composition of relations is associative. A multirelation is a relation of a form
α : X ⇁ ℘(Y ), where ℘(X) denotes the power set of X. Depending on applications, two definitions
of composition of multirelations are known. One of them is called the reachability composition studied by
Peleg [13] and Goldblatt [3] for concurrent dynamic logic. The reachability composition α·β of multirelations
α : X ⇁ ℘(Y ) and β : Y ⇁ ℘(Z) is defined by

(x, T ) ∈ α · β ↔ ∃U ∈ ℘(Y ). [ (x,U) ∈ α ∧ ∃{Ty}y∈U ⊆ ℘(Z).
∀y ∈ U. (y, Ty) ∈ β ∧ T = ∪y∈UTy ].

Another composition of multirelations is given by Parikh and Rewitzky. Their composition α;β : X ⇁ ℘(Z)
of multirelations α : X ⇁ ℘(Y ) and β : Y ⇁ ℘(Z) is defined by

(x, T ) ∈ α;β ↔ ∃U ∈ ℘(Y ). [(x,U) ∈ α ∧ ∀y ∈ U. (y, T ) ∈ β].

It is readily seen that the definition of α;β is making use of the membership relation and residual composition.
For the associativity of this composition we need a condition called up-closed. Up-closed multirelations

Email addresses: ntsuma@kurims.kyoto-u.ac.jp (Norihiro Tsumagari), furusawa@sci.kagoshima-u.ac.jp (Hitoshi
Furusawa), kawahara@i.kyushu-u.ac.jp (Yasuo Kawahara)

Preprint submitted to Elsevier January 14, 2014



provide a model of Parikh’s game logic [11, 12]. Rewitzky [6, 14] studied them as a semantic domain of
predicate transformer semantics of nondeterministic programming language. Further Nishizawa, Tsumagari
and Furusawa [10] demonstrated that the set of all up-closed multirelations forms a complete idempotent
left semiring (complete IL-semiring) introduced by Möller [9].

On the other hand, McIver et al. [4, 7, 8] introduced a semantic domain of probabilistic programs
and probabilistic Kleene algebra, and indicated that probabilistic Kleene algebras are useful to simplify a
model of probabilistic distributed systems. Based on their works, Tsumagari [16] initially introduced two
probabilistic (non-numerical) models of complete IL-semirings with the set of maps from a set into the unit
interval [0, 1], and studied probabilistic multirelations and the point-wise convexity of them. The point-wise
convexity plays an important rôle for both models to satisfy the associativity of composition.

The aim of the paper is to expand Tsumagari’s work [16] and to give a relational foundation for relations
into algebras of probabilistic distributions. Following his work we will reformulate probabilistic multirelations
as certain convex relations, together with stepwise refinement. Then we will clarify how the convexity works
in the associativity of composition of convex relations.

In section 2 we review the basic properties of algebras consist of maps from a set into the unit interval [0, 1]
together with scalar products, multiplications and bounded sums. Section 3 studies convex combinations
of probabilistic distributions. In section 4 we introduce convex composition of relations into algebras of
probabilistic distributions by using convex combinations. In section 5 we show the associative law of convex
composition. Section 6 introduces two types of convex relations, and study the distributive laws of convex
composition over joins. Section 7 summarizes this work.

Notation. In the paper we will denote by I, a singleton set. A (binary) relation α from a set X to a set
Y , written α : X ⇁ Y , is a subset α ⊆ X × Y . The empty relation ∅XY : X ⇁ Y and the universal relation
∇XY : X ⇁ Y are defined by ∅XY = ∅ and∇XY = X×Y respectively. The converse of a relation α : X ⇁ Y
is denoted by α♯. The identity relation {(x, x) | x ∈ X} over X is denoted by idX . The ordinary composition
of relations (which include functions) will be denoted by juxtaposition. For example, the composite of a
relation α : X ⇁ Y followed by β : Y ⇁ Z is denoted by αβ, and of course the composition of functions
f : X → Y and g : Y → Z by fg. Also the traditional notation f(x) will be written by xf as a composite
of functions x : I → X and f : X → Y . However, the evaluation of a map p : X → [0, 1] at x ∈ X will be
expressed by p[x] ∈ [0, 1]. Note that the symbols of multiplication for reals and the ordinary composition of
relations are omitted. Some proofs refer the point axiom (PA) and the Dedekind formula (DF∗), i.e.

(PA) ⊔x∈Xx = ∇IX ,
(DF∗) αβ ⊓ γ ⊑ (α ⊓ γβ♯)(β ⊓ α♯γ),

where x ∈ X is identified as a function x : I → X. Note that (PA) is equivalent to idX = ⊔x∈X x♯x and
that so is (DF∗) to αβ ⊓ γ ⊑ α(β ⊓ α♯γ). See [15] for more details on basic properties of relations.

2. Maps to the unit interval

We consider maps from a set X to the unit interval [0, 1]. Such a map p : X → [0, 1] is often called a
fuzzy set. The support ⌊p⌋ of a map p is the subset of X defined by ⌊p⌋ = {x ∈ X | p[x] > 0}. The set of all
maps from X to [0, 1] will be denoted by Q(X). As we will discuss later, maps in Q(X) will be restricted
as to be probabilistic (sub-)distributions. The point-wise order ≤ on Q(X) is a binary relation such that

p ≤ q ↔ ∀x ∈ X. p[x] ≤ q[x]

for p, q ∈ Q(X). For a real k ∈ [0, 1] a map kX : X → [0, 1] such that kX [x] = k for all x ∈ X is called the
constant map over X with value k. For a ∈ X define a map ȧ : X → [0, 1] by

ȧ[x] =

{
1 if x = a,
0 otherwise.
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The constant maps 0X and 1X over X are the least and the greatest elements of Q(X), respectively.

We introduce the following operators to discuss algebras of probabilistic distributions. For a real k ∈ [0, 1]
and maps p, q ∈ Q(X) we define maps k · p, p ∗ q, p⊕ q ∈ Q(X) by

(k · p)[x] = kp[x], (p ∗ q)[x] = p[x]q[x]

and
(p⊕ q)[x] = min{p[x] + q[x], 1}

for all x ∈ X, respectively. The set Q(X) forms an algebra called a prering.

Proposition 1. Let p, q ∈ Q(X) and k, k′ ∈ [0, 1]. Then the following hold:

(a) (p ∗ q) ∗ r = p ∗ (q ∗ r), p ∗ q = q ∗ p,
(b) (p⊕ q)⊕ r = p⊕ (q ⊕ r), p⊕ q = q ⊕ p,

(c) k · p = kX ∗ p, 0 · p = 0X , 1 · p = p, (kk′) · p = k · (k′ · p),
(d) p⊕ 0X = p, p⊕ 1X = 1X ,

(e) If q[x] + r[x] ≤ 1 for all x ∈ X, then p ∗ (q ⊕ r) = (p ∗ q)⊕ (p ∗ r).
(f) If k + k′ ≤ 1, then (k + k′) · p = (k · p)⊕ (k′ · p).
(g) p ≤ p′ ∧ q ≤ q′ → p⊕ q ≤ p′ ⊕ q′ ∧ p ∗ q ≤ p′ ∗ q′.

Proof is omitted. □

In general the distributive laws p ∗ (q⊕ r) = (p ∗ q)⊕ (p ∗ r) and k · (q⊕ r) = (k · q)⊕ (k · r) do not always
hold.

The following proposition shows the basic properties about the support of maps in Q(X).

Proposition 2. Let p, q, r ∈ Q(X) and k ∈ [0, 1]. Then the following hold:

(a) ⌊0X⌋ = ∅, and ⌊kX⌋ = X if k > 0,

(b) ⌊ȧ⌋ = {a},
(c) ⌊p ∗ q⌋ = ⌊p⌋ ∩ ⌊q⌋,
(d) ⌊p⊕ q⌋ = ⌊p⌋ ∪ ⌊q⌋.

Proof is omitted. □

Proposition 3. Let p, q ∈ Q(X). Then

q ≤ p ↔ ∃t ∈ Q(X). q = p ∗ t.

Proof. (←) q[x] = p[x]t[x] ≤ p[x] since t[x], p[x] ∈ [0, 1].
(→) Assume q ≤ p. Define a map t : X → [0, 1] by

∀x ∈ X. t[x] =


q[x]

p[x]
if p[x] > 0,

0 otherwise.

Then it is trivial that q = p ∗ t. □

The sum of a map p ∈ Q(X) is the least upper bound of the set {
∑

x∈F p[x] | F : finite subset of X},
which is denoted by ||p||. It is well-known that the sum ||p|| of p exists iff the above set is bounded.
Also ⌊p⌋ is a countable subset of X if ||p|| exists. (For each positive integer n define a subset ⌊p⌋n of X by
⌊p⌋n = {x ∈ X | 1/n < p[x]}. Then each ⌊p⌋n has finite (at most (n−1)·|n|) members and so ⌊p⌋ = ∪n>0⌊p⌋n
is countable.)

We define three types of maps in Q(X) which are used in this paper.

3



Definition 1. Three subsets of Q(X) are defined as follows:

(a) p ∈ Q0(X) ↔ p ∈ Q(X) ∧ ||p|| ≤ 1,

(b) p ∈ Q1(X) ↔ p ∈ Q(X) ∧ ||p|| = 1,

(c) p ∈ Q∗(X) ↔ p ∈ Q0(X) ∧ ⌊p⌋ : finite subset of X. □

Note that 0X ∈ Q∗(X), ẋ ∈ Q∗(X) ∩ Q1(X) and p ∗ q ∈ Q∗(X) for all x ∈ X, p, q ∈ Q∗(X). Elements
of Q∗(X) are probabilistic sub-distributions, and those of Q∗(X) ∩ Q1(X) are probabilistic distributions.
Essentially, McIver et al. [4, 7, 8] have studied either the case of Q∗(X) or the case of finite set X in order
to develop models of probabilistic systems.

The restriction of the point-wise order ≤ : Q(X) ⇁ Q(X) onto Qτ (X) is denoted by ξτX : Qτ (X) ⇁
Qτ (X), that is,

∀p, q ∈ Qτ (X). (p, q) ∈ ξτX ↔ p ≤ q,

where the subscript/superscript τ is one of 0, 1, and ∗. Remark that the restricted order ξτX on Q1(X) is
discrete, that is, for ξτX = idQ1(X). Thus the order on Q1(X) will not be used in the rest of the paper.

For τ ∈ {0, ∗} every map t ∈ Q(X) yields a map t∗ : Qτ (X)→ Qτ (X) by

∀p ∈ Qτ (X). p t∗ = p ∗ t.

Corollary 1. (ξτX)♯ = ⊔t∈Q(X)t∗ for τ ∈ {0, ∗}.

Proof.
(p, q) ∈ (ξτX)♯ ↔ q ≤ p

↔ ∃t ∈ Q(X). q = p ∗ t = p t∗ { Prop.3 }
↔ ∃t ∈ Q(X). (p, q) ∈ t∗
↔ (p, q) ∈ ⊔t∈Q(X)t∗. □

A map eX : X → Qτ (X) is defined by xeX = ẋ for each x ∈ X, where τ ∈ {0, 1, ∗}. Also, for τ ∈ {0, ∗}
we define a relation ετX : X ⇁ Qτ (X) by ετX = eX(ξτX)♯. As discussed in detail later, eX and ετX are the
units of convex composition over certain convex relations, respectively.

3. Convex combinations

Extending finite bounded sums
n⊕

j=1

qj = q1 ⊕ q2 ⊕ · · · ⊕ qn

of maps q1, q2, . . . , qn ∈ Q(X), we will define the bounded sum of an arbitrary set of maps in Q(X). For a
set {qj | j ∈ J} of maps in Q(Y ) define a map

⊕
j∈J qj in Q(Y ) by

∀y ∈ Y. (
⊕
j∈J

qj)[y] =

{ ∑
j∈J(qj)[y] if

∑
j∈J(qj)[y] ≤ 1,

1 otherwise.

Of course, we mean (
⊕

j∈J qj)[y] = 1 even if the sum
∑

j∈J(qj)[y] diverges.
The support of bounded sums of a set of maps in Q(X) is given by the union of supports of their maps

contained in the set.

Proposition 4. For all subsets {qj | j ∈ J} ⊆ Q(X) the following holds:

⌊
⊕
j∈J

qj⌋ = ∪j∈J⌊qj⌋.
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Proof.
y /∈ ⌊

⊕
j∈J qj⌋ ↔ (

⊕
j∈J qj)[y] = 0

↔
∑

j∈J (qj)[y] = 0

↔ ∀j ∈ J. (qj)[y] = 0
↔ ∀j ∈ J. y /∈ ⌊qj⌋
↔ ¬[∃j ∈ J. y ∈ ⌊qj⌋]
↔ y /∈ ∪j∈J⌊qj⌋. □

Let f : X → Q(Y ) be a map. Define a map f⋄ : Q(X)→ Q(Y ) by

pf⋄ =
⊕
x∈X

p[x]·(xf)

where p ∈ Q(X). The map pf⋄ is called a convex combination of p and f . We need this notion to raise the
composition of convex relations.

Example 1. Set X = {x, y} and define maps f , f ′, g, h : X → Q(X) by xf = yf = ẋ, xf ′ = yf ′ = ẏ,
xg = ẋ, yg = 0X , xh = ẏ and yh = 0X . We have f⋄, f

′
⋄, g⋄ and h⋄ such that

pf⋄ = p[x]·ẋ⊕ p[y]·ẋ, pf ′
⋄ = p[x]·ẏ ⊕ p[y]·ẏ, pg⋄ = p[x]·ẋ, ph⋄ = p[x]·ẏ,

for all p ∈ Q(X). Especially for p′ ∈ Q1(X), p′f⋄ = ẋ and p′f ′
⋄ = ẏ hold. □

The basic properties of convex combinations are listed below.

Proposition 5. Let k ∈ [0, 1], p ∈ Q0(X) and f : X → Q(Y ). Then the followings hold:

(a) (pf⋄)[y] =
∑

x∈X p[x](xf)[y],

(b) ||pf⋄|| =
∑

x∈X p[x]||xf ||,
(c) ⌊pf⋄⌋ = ∪x∈⌊p⌋⌊xf⌋,
(d) 0Xf⋄ = 0Y ,

(e) ẋf⋄ = xf ,

(f) p(eX)⋄ = p,

(g) p(∇XIkY )⋄ = (k||p||)Y ,
(h) k·(pf⋄) = (k·p)f⋄.

Proof. (a) (pf⋄)[y] =
∑

x∈X p[x](xf)[y] :∑
x∈X p[x](xf)[y] ≤

∑
x∈X p[x] { xf ∈ Q(Y ) }

≤ 1. { p ∈ Q0(X) }

(pf⋄)[y] = min{
∑

x∈X p[x](xf)[y], 1}
=

∑
x∈X p[x](xf)[y].

(b) ||pf⋄|| =
∑

x∈X p[x]||xf || :

||pf⋄|| =
∑

y∈Y (pf⋄)[y]
=

∑
y∈Y

∑
x∈X p[x](xf)[y] { (a) }

=
∑

x∈X p[x]
∑

y∈Y (xf)[y]
=

∑
x∈X p[x]||xf ||.

(c) ⌊pf⋄⌋ = ∪x∈⌊p⌋⌊xf⌋ :
⌊pf⋄⌋ = ∪x∈X⌊p[x]·(xf)⌋

= ∪x∈⌊p⌋⌊xf⌋.
5



(d) 0Xf⋄ = 0Y :
0Xf⋄ =

⊕
x∈X(0X)[x]·(xf)

=
⊕

x∈X 0·(xf)
= 0Y . { 0·q = 0Y if q ∈ Q(Y ) }

(e) ẋf⋄ = xf :
ẋf⋄ =

⊕
x′∈X ẋ[x′]·(x′f)

= xf.

(f) p(eX)⋄ = p :
(p(eX)⋄)[x] =

∑
x′∈X p[x′](x

′eX)[x] { (a) }
=

∑
x′∈X p[x′]ẋ

′
[x]

= p[x].

(g) p(∇XIkY )⋄ = (k||p||)Y :

p(∇XIkY )⋄ =
⊕

x∈X p[x]·(x∇XIkY )
=

⊕
x∈X p[x]·kY { x∇XI = idI }

= (
∑

x∈X p[x])·kY { p ∈ Q0(X), (a) }
= ||p||·kY
= (||p||k)Y . { k′·kY = (k′k)Y }

(h) k·(pf⋄) = (k·p)f⋄ :
(k·(pf⋄))[y] = k(pf⋄)[y]

= k
∑

x∈X p[x](xf)[y] { (a) }
=

∑
x∈X(k·p)[x](xf)[y]

= (k·p)f⋄. □

The convex combination also satisfies the following properties.

Proposition 6. For τ ∈ {0, 1, ∗} the following hold:

(a) If p ∈ Qτ (X) and f : X → Qτ (Y ), then pf⋄ ∈ Qτ (Y ).

(b) If p ∈ Qτ (X) and f : X → Qτ (Y ), then there exist p′ ∈ Qτ (N) and f ′ : N → Qτ (Y ) such that
pf⋄ = p′f ′

⋄.

Proof. (a0) [p ∈ Q0(X) ∧ f : X → Q0(X)] → pf⋄ ∈ Q0(Y ) :

||pf⋄|| =
∑

x∈X p[x]||xf || { Prop.5 (b) }
≤

∑
x∈X p[x] { xf ∈ Q0(Y ) }

= ||p||
≤ 1. { p ∈ Q0(X) }

(a1) [p ∈ Q1(X) ∧ f : X → Q1(X)]→ pf⋄ ∈ Q1(Y ) :

||pf⋄|| =
∑

x∈⌊p⌋ p[x]||xf || { Prop.5 (b) }
=

∑
x∈⌊p⌋ p[x] { xf ∈ Q1(Y ) }

= 1. { p ∈ Q1(Y ) }

(a∗) [p ∈ Q∗(X) ∧ f : X → Q∗(X)]→ pf⋄ ∈ Q∗(Y ) is immediate from (a0) and Prop.5 (c).

(b0) ∀p ∈ Q0(X)∀f : X → Q0(Y )∃p′ ∈ Q0(N)∃f ′ : N→ Q0(Y ). pf⋄ = p′f ′
⋄ :

As already stated the support ⌊p⌋ is countable if ||p|| exists and so there is an injection i : ⌊p⌋ → N. Define
a map p′ ∈ Q(N) and a map f ′ : N→ Q(Y ) by

p′[n] =

{
p[x] if ∃x ∈ ⌊p⌋. n = xi
0 otherwise
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and

nf ′ =

{
xf if ∃x ∈ ⌊p⌋. n = xi
0Y otherwise,

respectively. Remark that n ∈ ⌊p′⌋ if and only if there exists x ∈ ⌊p⌋ such that n = xi. Hence

pf⋄ =
⊕

x∈X p[x]·(xf)
=

⊕
n∈N p′[n]·(nf

′)

= p′f ′
⋄.

(b∗) In the case of τ = ∗ :
Let p ∈ Q∗(X) and f : X → Q∗(Y ), and take the same p′ and f ′ defined in (b0). Then it is clear that
p′ ∈ Q∗(N) and f ′ : N→ Q∗(Y ).

(b1) In the case of τ = 1 :
Let p ∈ Q1(X) and f : X → Q1(Y ), and take the same p′ defined in (b0) and define f ′ : X → Q1(Y ) by

nf ′ =

{
xf if ∃x ∈ ⌊p⌋. n = xi
ẏ0 otherwise,

where y0 is an arbitrary point of Y . Then it is clear that p′ ∈ Q1(N) and f ′ : N→ Q1(Y ). □

4. Convex composition

In the rest of the paper the subscript τ is one of 0, 1 and ∗, unless otherwise stated. For a map
f : X → Qτ (Y ) the convex combination induces a map f⋄ : Qτ (X)→ Qτ (Y ) by Proposition 6 (a). We now
list some basic properties of the induced maps.

Proposition 7. Let f : X → Qτ (Y ), g : Y → Qτ (Z) and h : X → Qτ (X) be maps. Then the following
hold:

(a) f⋄g⋄ = (fg⋄)⋄,

(b) eXf⋄ = f ,

(c) (eX)⋄ = idQτ (X),

(d) h ⊑ f(ξτX)♯ → h⋄ ⊑ f⋄(ξ
τ
X)♯ for τ ̸= 1,

(e) (ξτX)♯f⋄ ⊑ f⋄ (ξ
τ
Y )

♯ for τ ̸= 1,

(f) (∇XI0Y )⋄ = ∇Qτ (X)I0Y for τ ̸= 1.

(g) (ξτX)♯h⋄(ξ
τ
X)♯ = h⋄(ξ

τ
X)♯ for τ ̸= 1.

Proof. (a) f⋄g⋄ = (fg⋄)⋄ :

p(fg⋄)⋄ =
⊕

x p[x]·(xfg⋄)
=

⊕
x(p[x]·(xf))g⋄ { Prop.5 (h) }

=
⊕

x

⊕
y(p[x](xf)[y])·(yg)

=
⊕

y

⊕
x(p[x](xf)[y])·(yg)

=
⊕

y(
∑

x p[x](xf)[y])·(yg) { Prop.5 (a) }
=

⊕
y(pf⋄)[y]·(yg)

= (pf⋄)g⋄
= p(f⋄g⋄).

(b) eXf⋄ = f :
xeXf⋄ = ẋf⋄ { xeX = ẋ }

= xf. { Prop.5 (e) }
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(c) (eX)⋄ = idQτ (X) is direct from Proposition 5 (f).

(d) h ⊑ f(ξτX)♯ → h⋄ ⊑ f⋄(ξ
τ
X)♯ :

For p ∈ Qτ (X) and x ∈ X we have

(ph⋄)[x] =
∑

x′ p[x′](x
′h)[x]

≤
∑

x′ p[x′](x
′f)[x] { x′h ≤ x′f ← h ⊑ f(ξτX)♯ }

= (pf⋄)[x]

which proves ph⋄ ≤ pf⋄ and hence ph⋄ ⊑ pf⋄(ξ
τ
X)♯.

(e) (ξτX)♯f⋄ ⊑ f⋄ (ξ
τ
Y )

♯ :
→ p ≤ p′ → pf⋄ ≤ p′f⋄
↔ ξτX ⊑ f⋄ ξ

τ
Y f

♯
⋄

↔ (ξτX)♯ ⊑ f⋄ (ξ
τ
Y )

♯f ♯
⋄

↔ (ξτX)♯f⋄ ⊑ f⋄ (ξ
τ
Y )

♯. { f⋄ : tfn }

(f) (∇XI0Y )⋄ = ∇Qτ (X) I0Y :

(∇XI0Y )⋄ = ⊔p∈Qτ (X)p
♯p(∇XI0Y )⋄ { (PA) }

= ⊔p∈Qτ (X)p
♯(||p|| 0)Y { Prop.5 (g) }

= ⊔p∈Qτ (X)p
♯ 0Y { ||p|| 0 = 0 }

= ∇Qτ (X) I0Y . { (PA) }

(g) (ξτX)♯h⋄(ξ
τ
X)♯ = h⋄(ξ

τ
X)♯ :

(ξτX)♯h⋄(ξ
τ
X)♯ ⊑ h⋄(ξ

τ
X)♯(ξτX)♯ { (e) }

= h⋄(ξ
τ
X)♯. { (ξτX)♯(ξτX)♯ = (ξτX)♯ }

h⋄(ξ
τ
X)♯ = idQτ (X)h⋄(ξ

τ
X)♯

⊑ (ξτX)♯h⋄(ξ
τ
X)♯.

□

For a relation α : X ⇁ Qτ (Y ) define a relation α⋄ : Qτ (X) ⇁ Qτ (Y ) by

α⋄ = ⊔f⊑αf⋄,

where f ⊑ α means that f is a map f : X → Qτ (Y ) such that f ⊑ α. This notion allows convex composition
to be treated in ordinary relational calculus.

Remark. By the relational axiom of choice (AC) there exists a map f ⊑ α iff α is total. Such a map f is
often called a choice function of α. Also α⋄ is total if α is total, and α⋄ = ∅Qτ (X)Qτ (Y ) otherwise.

Example 2. Consider relations γ = g ⊔ h and γ′ = h ⊔ eX where g, h : X → Q∗(X) appeared in Example
1. Since there is no maps included in γ = g ⊔ h other than g and h, the identity γ⋄ = g⋄ ⊔ h⋄ holds.
For a relation γ′, the identity γ′

⋄ = h⋄ ⊔ eX⋄ does not hold. Because γ′ consists of four maps, that is
h⊔ eX = f ′ ⊔ g⊔h⊔ eX where f ′, g : X → Q∗(X) are maps defined by xf ′ = yf ′ = ẏ, xg = ẋ, and yg = 0X .
Therefore γ′

⋄ = f ′
⋄ ⊔ g⋄ ⊔ h⋄ ⊔ eX⋄ holds. □

Proposition 8. If α : X ⇁ Y is a total relation, then α = ⊔f⊑αf .

Proof. Assume α is total. By the axiom of choice (AC) there is a function f0 : X → Y such that f0 ⊑ α.
For each (x0, y0) ∈ α define a map f : X → Y by

∀x ∈ X. xf =

{
y0 if x = x0,
xf0 otherwise.
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Then it is clear that (x, q) ∈ f and so

f = ⊔x∈Xx♯xf { (PA) }
= x♯

0y0 ⊔ (⊔x ̸=x0
x♯xf0)

⊑ α ⊔ f0 { x♯x ⊑ idX }
= α. { f0 ⊑ α }

Hence
(x0, y0) ∈ α → ∃f. (x0, y0) ∈ f ∧ (f ⊑ α)

→ (x0, y0) ∈ ⊔f⊑αf,

which shows α = ⊔f⊑αf . □

A relation α : X ⇁ Qτ (Y ) is called down-closed if it satisfies α(ξτY )
♯ = α. The next proposition indicates

that a relation α is total and down-closed iff it is 0-included [16], namely, 0Y ∈ xα for each x ∈ X.

Proposition 9. Let τ ̸= 1. If α : X ⇁ Qτ (Y ) is a total relation such that α(ξτY )
♯ = α, then ∇XI0Y ⊑ α

(0-included).

Proof. Assume α is total and α(ξτY )
♯ = α. By the axiom of choice (AC) there is a function f0 : X →

Q∗(Y ) such that f0 ⊑ α.

∇XI0Y = ⊔x∈Xx♯0Y { (PA) }
⊑ ⊔x∈Xx♯xf0(ξ

τ
Y )

♯ { ∀q ∈ Qτ (Y ). 0Y ⊑ q(ξτY )
♯ }

= f0(ξ
τ
Y )

♯ { (PA) }
⊑ α(ξτY )

♯ { f0 ⊑ α }
= α. { α(ξτY )♯ = α }

□

The diamond operator defined via convex combinations satisfies the following additional rules.

Proposition 10. Let τ ̸= 1. For a map f : X → Qτ (Y ), a relation α : X ⇁ Qτ (Y ) and t ∈ Q(Y ) the
following hold:

(a) f⋄t∗ = (ft∗)⋄,

(b) α⋄t∗ ⊑ (αt∗)⋄,

(c) α⋄(ξ
τ
Y )

♯ ⊑ (α(ξτY )
♯)⋄,

(d) (f(ξτX)♯)⋄ = f⋄(ξ
τ
X)♯.

Proof. (a) f⋄t∗ = (ft∗)⋄ :
For p ∈ Qτ (X) we have

p(f⋄t∗) = (pf⋄)t∗
= (pf⋄) · t
= (

⊕
x∈X p[x]·(xf)) · t

=
⊕

x∈X(p[x]·(xf)) · t
=

⊕
x∈X p[x]·((xf) · t)

=
⊕

x∈X p[x]·(xft∗)
= p(ft∗)⋄.

(b) α⋄t∗ ⊑ (αt∗)⋄ :
α⋄t∗ = (⊔f⊑αf⋄)t∗

= ⊔f⊑αf⋄t∗
= ⊔f⊑α(ft∗)⋄ { (a) }
⊑ ⊔f ′⊑αt∗f

′
⋄ { ft∗ ⊑ αt∗ }

= (αt∗)⋄.
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(c) α⋄(ξ
τ
Y )

♯ ⊑ (α(ξτY )
♯)⋄ :

α⋄(ξ
τ
Y )

♯ = α⋄(⊔t∈Q(Y )t∗) { (ξτY )♯ = ⊔t∈Q(Y )t∗ }
= ⊔t∈Q(Y )α⋄t∗
⊑ ⊔t∈Q(Y )(αt∗)⋄ { (b) }
⊑ (α(ξτY )

♯)⋄. { t∗ ⊑ (ξτY )
♯ }

(d) (f(ξτX)♯)⋄ = f⋄(ξ
τ
X)♯ :

(f(ξτX)♯)⋄ = ⊔h⊑f(ξτX)♯h⋄
⊑ f⋄(ξ

τ
X)♯. { Prop.7 (d) }

The opposite direction f⋄(ξ
τ
X)♯ ⊑ (f(ξτX)♯)⋄ follows from (c). □

Now we will define a composition [4, 7] for relations into algebras of probabilistic distributions.

Definition 2. Let α : X ⇁ Qτ (Y ) and β : Y ⇁ Qτ (Z) be relations. The convex composite α ◦ β : X ⇁
Qτ (Z) of α followed by β is defined by

α ◦ β = αβ⋄. □

Remark. In some aspects, convex composition seems to be concrete examples of Kleisli composition of the
powerset monads studied by Eklund and Gäehler [2]. However, in our case the composition chooses a map
from latter argument in nondeterministic way, whereas Kleisli composition chooses in deterministic way.

We show the basic properties on convex composition of relations.

Proposition 11. Let α, α′ : X ⇁ Qτ (Y ), β, β′ : Y ⇁ Qτ (Z) and γ : Z ⇁ Qτ (W ) be relations. Then

(a) β ⊑ β′ → β⋄ ⊑ β′
⋄,

(b) α ⊑ α′ ∧ β ⊑ β′ → α ◦ β ⊑ α′ ◦ β′,

(c) α⋄β⋄ ⊑ (α ◦ β)⋄,
(d) (α ◦ β) ◦ γ ⊑ α ◦ (β ◦ γ),
(e) α : total → eXα⋄ = α,

(f) α : total → α ◦ ∇Y I0Z = ∇XI0Z for τ ̸= 1,

(g) α : total → 0X ◦ α = 0Y for τ ̸= 1,

(h) (α ◦ β)(ξτZ)♯ ⊑ α ◦ β(ξτZ)♯ for τ ̸= 1.

Proof. (a) β ⊑ β′ → β⋄ ⊑ β′
⋄ :

Assume β ⊑ β′. Then
β⋄ = ⊔g⊑βg⋄

⊑ ⊔g⊑β′g⋄ { β ⊑ β′ }
= β′

⋄.

(b) α ⊑ α′ ∧ β ⊑ β′ → α ◦ β ⊑ α′ ◦ β′ :
Assume α ⊑ α′ and β ⊑ β′. Then

α ◦ β = αβ⋄
⊑ α′β′

⋄ { α ⊑ α′, β ⊑ β′, (a) }
= α′ ◦ β′.

(c) α⋄β⋄ ⊑ (α ◦ β)⋄ :
Note that for maps f : X → Qτ (Y ) and g : Y → Qτ (Z) such that f ⊑ α and g ⊑ β, we have

f⋄g⋄ = (fg⋄)⋄ { Prop.7 (a) }
⊑ (αβ⋄)⋄ { (a), (b) }
= (α ◦ β)⋄.
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Hence
α⋄β⋄ = (⊔f⊑αf⋄)(⊔g⊑βg⋄)

= ⊔f⊑α ⊔g⊑β f⋄g⋄
⊑ (α ◦ β)⋄. { f⋄g⋄ ⊑ (α ◦ β)⋄ }

(d) (α ◦ β) ◦ γ ⊑ α ◦ (β ◦ γ) :
(α ◦ β) ◦ γ = (αβ⋄)γ⋄

= α(β⋄γ⋄)
⊑ α(β ◦ γ)⋄ { (c) }
= α ◦ (β ◦ γ).

(e) α : total → eXα⋄ = α :
eXα⋄ = eX(⊔f⊑αf⋄)

= ⊔f⊑αeXf⋄
= ⊔f⊑αf { Prop.7 (b) }
= α. { α : total }

(f) α : total → α ◦ ∇Y I0Z = ∇XI0Z :

α ◦ ∇Y I0Z = α(∇Y I0Z)⋄
= α∇Qτ (Y )I0Z { Prop.7 (f) }
= ∇XI0Z . { α : total }

(g) α : total → 0X ◦ α = 0Y :

0X ◦ α = 0X(⊔f⊑αf⋄)
= ⊔f⊑α0Xf⋄
= 0Y . { Prop.5 (d) }

(h) (α ◦ β)(ξτZ)♯ ⊑ α ◦ β(ξτZ)♯ :

(α ◦ β)(ξτZ)♯ = (αβ⋄)(ξ
τ
Z)

♯

= α(β⋄(ξ
τ
Z)

♯)
⊑ α(β(ξτZ)

♯)⋄ { Prop.10 (c) }
= α ◦ β(ξτZ)♯. □

By Proposition 7(c) and Proposition 11(e), if α is total then eX is neutral for convex composition, that
is, α ◦ eX = eX ◦ α = α.

The following proposition shows that ετX is identity element for convex composition in the case of τ ̸= 1
and α(ξτY )

♯ ⊑ α (down-closed).

Proposition 12. Let α : X ⇁ Qτ (Y ) be a total relation for τ ̸= 1. Then the following holds:

(a) α ⊑ ετX ◦ α ⊑ α(ξτY )
♯,

(b) α ⊑ α ◦ ετY ⊑ α(ξτY )
♯.

Proof. (a) α ⊑ ετX ◦ α ⊑ α(ξτY )
♯ :

α = eXα⋄ { α : total, Prop.11 (e) }
⊑ eX(ξτX)♯α⋄ { eX ⊑ eX(ξτX)♯ = ετX }
= eX(ξτX)♯(⊔f⊑αf⋄)
⊑ eX(⊔f⊑αf⋄)(ξ

τ
X)♯ { Prop.7 (e) }

= eXα⋄(ξ
τ
X)♯

= α(ξτY )
♯.

(b) α ⊑ α ◦ ετY ⊑ α(ξτY )
♯ :

α = α(eY )⋄ { Prop.7 (c) }
⊑ α(ετY )⋄ { eY ⊑ ετY }
⊑ α(ξτY )

♯. { (ετY )⋄ ⊑ (ξτY )
♯ } □
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5. Associative law

In this section we will introduce the convex relations and study the associative law of convex composition
on their relations. For a relation γ : Z ⇁ Qτ (W ) define a relation γ• : Z ⇁ Qτ (W ) by

∀z ∈ Z. zγ• = ∇IQτ (N) ◦ ∇NIzγ.

Note that ρ• = ∇IQτ (N) ◦ ∇NIρ for a relation ρ : I ⇁ Qτ (W ).

Remark. The definition of γ• explicitly contains an element (or a variable) beyond preferable relational
expressions.

The notion of γ• derives a property called convex for relations to satisfy the associativity of convex
composition. A relation γ : Z ⇁ Qτ (W ) is called convex if it satisfies γ• = γ.

Example 3. Consider on the same X as in previous examples. Define a relation α : X ⇁ Q1(X) by
xα = yα = ( 12 )X . Then α• : X ⇁ Q1(X) satisfies α• = α. However when we regard α as α : X ⇁ Q∗(X),
α• : X ⇁ Q∗(X) satisfies xα• = yα• = ( 12 )X(ξ∗X)♯, that is α• ̸= α. For a relation γ : X ⇁ Q∗(X) which
appeared in Example 2, we obtain that γ• ̸= γ since xγ• = Q∗(X) though xγ = ẋ ⊔ ẏ. □

Proposition 13. Let γ : Z ⇁ Qτ (W ) be a relation.

(a) If γ is total, then γ ⊑ γ•,

(b) ∇IQτ (Y ) ◦ ∇Y Izγ ⊑ zγ• for all sets Y .

(c) γ• • ⊑ γ•.

(d) γ•(ξτW )♯ ⊑ (γ(ξτW )♯)• (τ ̸= 1).

Proof. Set ρ = zγ. Then ρ• = zγ•, ρ• • = zγ• • and (ρ(ξτW )♯)• = z(γ(ξτW )♯)•. Thus it suffices to show
the following statements for ρ.
(a) γ : total → ρ ⊑ ρ• :

ρ = ∇I N∇N Iρ { N ̸= ∅ }
= ∇I NeN(∇N Iρ)⋄ { Prop.11 (e), ρ : total }
⊑ ∇IQτ (N)(∇NIρ)⋄.

(b) ∇IQτ (Y ) ◦ ∇Y Iρ ⊑ ∇IQτ (N) ◦ ∇NIρ :

∇IQτ (Y )(∇Y Iρ)⋄ = (⊔p∈Qτ (Y )p)(⊔f⊑∇Y Iρf⋄)
= ⊔p∈Qτ (Y ) ⊔f⊑∇Y Iρ pf⋄
⊑ ⊔p′∈Qτ (N) ⊔f ′⊑∇NIρ (p

′f ′
⋄) { Prop.6 (b) }

= ∇IQτ (N)(∇NIρ)⋄.

(c) Recall that
q′ ⊑ ρ• • → ∃p′ ∈ Qτ (N)∃f ′ : N→ Qτ (X)

q′ = p′f ′
⋄ ∧ ∀n ∈ N. nf ′ ⊑ ρ•

nf ′ ⊑ ρ• → ∃pn ∈ Qτ (N)∃fn : N→ Qτ (X)
nf ′ = pn(fn)⋄ ∧ ∀m ∈ N. mfn ⊑ ρ,

and so
q′ = p′f ′

⋄
=

⊕
n∈N p′[n](nf

′)

=
⊕

n∈N p′[n](pn(fn)⋄)

=
⊕

n∈N p′(n)(
⊕

m∈N pn[m](mfn))

=
⊕

n∈N
⊕

m∈N p′[n]pn[m](mfn).
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Define p̂ ∈ Qτ (N × N) and f̂ : N × N → Qτ (X) by (n,m)p̂ = p′[n]pn[m] and (n,m)f̂ = mfn, respectively.
Then

q′ = p̂f̂⋄
⊑ ∇IQτ (N×N) ◦ (∇N×NIρ)
⊑ ∇IQτ (N) ◦ (∇NIρ) { (b) }
= ρ•.

This proves ρ• • ⊑ ρ•.
(d) γ•(ξτW )♯ ⊑ (γ(ξτW )♯)• : (τ ̸= 1)

ρ•(ξτW )♯ = ∇IQ∗(N)(∇NIρ)⋄(ξ
τ
W )♯

⊑ ∇IQ∗(N)(∇NIρ(ξ
τ
W )♯)⋄ { Prop. 10 (c) }

= (ρ(ξτW )♯)•.
□

Now we define two kinds of convex relations, named Q∗-convex relation and Q1-convex relation.

Definition 3. A relation α : X ⇁ Q∗(Y ) is called Q∗-convex if idX ⊑ αα♯ (total), α(ξ∗Y )
♯ = α (down-

closed) and α• = α (convex). A relation α : X ⇁ Q1(Y ) is called Q1-convex if idX ⊑ αα♯ (total) and
α• = α (convex). □

By Proposition 9, a Q∗-convex relation α is 0-included, that is α satisfies ∇XI0Y ⊑ α.
We need the following lemma to derive the associative law of convex composition.

Lemma 1. Let f : Y → Qτ (W ) be a map, and β : Y ⇁ Qτ (Z) and γ : Z ⇁ Qτ (W ) relations. If f ⊑ βγ⋄,
then f⋄ ⊑ β⋄(γ

•)⋄.

Proof. Let f ⊑ βγ⋄ and p ∈ Qτ (Y ). Then
(1) ∃g ⊑ β. f ⊑ gγ⋄ :
As f ⊑ βγ⋄ it holds that

idY = ff ♯ ⊓ idY { f : tfn }
⊑ βγ⋄f

♯ ⊓ idY { f ⊑ βγ⋄ }
⊑ (β ⊓ f(γ⋄)

♯)(β♯ ⊓ γ⋄f
♯). { (DF∗) }

Hence β ⊓ f(γ⋄)
♯ is total and by the axiom of choice (AC) there exists a tfn g : Y → Qτ (Z) such that

g ⊑ β ⊓ f(γ⋄)
♯, which is equivalent to g ⊑ β and f ⊑ gγ⋄.

(2) ∀y ∈ Y ∃hy ⊑ γ. yf = yg(hy)⋄ :
Note that

yf ⊑ ygγ⋄ { f ⊑ gγ⋄ }
= ⊔h⊑γygh⋄. { γ⋄ = ⊔h⊑γh⋄ }

Thus there exists hy ⊑ γ such that yf = yg(hy)⋄.
(3) Define a map rz ∈ Q(Y ) by

rz [y] =


p[y](yg)[z]

(pg⋄)[z]
if (pg⋄)[z] > 0,

p[y] otherwise.

(4) (pg⋄)[z]rz [y] = p[y](yg)[z] and rz ∈ Qτ (Y ), i.e., rz ⊑ ∇IQτ (Y ) :
If τ = 1 then (pg⋄)[z] = 0 implies (yg)[z] = 0 for each y ∈ Y . Even if τ ̸= 1, (pg⋄)[z] = 0 implies p = 0Y or
(yg)[z] = 0 for each y ∈ Y . In each case it is clear that (pg⋄)[z]rz [y] = p[y](yg)[z].
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If (pg⋄)[z] = 0 then rz = p ∈ Qτ (Y ). If (pg⋄)[z] ̸= 0 then

||rz|| =
∑

y

p[y](yg)[z]

(pg⋄)[z]

=

∑
y p[y](yg)[z]

(pg⋄)[z]

=
(pg⋄)[z]

(pg⋄)[z]
= 1,

and ⌊rz⌋ ⊆ ⌊p⌋, since p[y] = 0 implies rz [y] = 0. Hence rz ∈ Qτ (Y ).

(5) For all z ∈ Z define a map ĥz : Y → Qτ (W ) by ∀y ∈ Y. yĥz = zhy.

(6) (ĥz)⋄ ⊑ (∇Y Izγ)⋄ :

ĥz = ⊔y∈Y y
♯zhy

⊑ ⊔y∈Y y
♯zγ { hy ⊑ γ }

= ∇Y Izγ, { ⊔y∈Y y♯ = ∇Y I }

which implies (ĥz)⋄ ⊑ (∇Y Izγ)⋄.
(7) Define a map h : Z → Qτ (W ) by

∀z ∈ Z. zh = rz(ĥz)⋄.

(8) h ⊑ γ• :

zh = rz(ĥz)⋄ { (7) }
⊑ ∇IQτ (Y )(∇Y Izγ)⋄ { (4), (6) }
⊑ zγ•. { Prop.13 (b) }

(9) pf⋄ = pg⋄h⋄ :

pf⋄ =
⊕

y p[y]·(yf)
=

⊕
y p[y]·(yg(hy)⋄) { (2) yf = yg(hy)⋄ }

=
⊕

y(p[y]·(yg))(hy)⋄ { Prop.5 (h) }
=

⊕
y

⊕
z(p[y](yg)[z])·(zhy)

=
⊕

z

⊕
y((pg⋄)[z]rz [y])·(zhy) { (4) p[y](yg)[z] = (pg⋄)[z]rz [y] }

=
⊕

z

⊕
y((pg⋄)[z]·rz)[y]·(yĥz) { (5) zhy = yĥz }

=
⊕

z((pg⋄)[z]·rz)(ĥz)⋄
=

⊕
z(pg⋄)[z]·(rz(ĥz)⋄) { Prop.5 (h) }

=
⊕

z(pg⋄)[z]·(zh) { (7) zh = rz(ĥz)⋄ }
= (pg⋄)h⋄.

Note that h depends on p and so f⋄ = g⋄h⋄ may not hold.
(10) f⋄ ⊑ β⋄(γ

•)⋄ :
For each p ∈ Q∗(Y ) we have

pf⋄ = pg⋄h⋄ { (9) }
⊑ pβ⋄(γ

•)⋄, { (1) g ⊑ β, (8) h ⊑ γ• }

and hence f⋄ ⊑ β⋄(γ
•)⋄. This completes the proof. □

Corollary 2. Let α : X ⇁ Qτ (Y ), β : Y ⇁ Qτ (Z) and γ : Z ⇁ Qτ (W ) be relations. Then

(a) α ◦ (β ◦ γ) ⊑ (α ◦ β) ◦ γ•,

(b) If γ• = γ, then α ◦ (β ◦ γ) = (α ◦ β) ◦ γ.
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Proof. (a)
α ◦ (β ◦ γ) = α(β ◦ γ)⋄

= α(⊔f⊑β◦γf⋄)
⊑ α(β⋄(γ

•)⋄) { Lem.1, f⋄ ⊑ β⋄(γ
•)⋄ }

= (αβ⋄)(γ
•)⋄

= (α ◦ β) ◦ γ•.

(b)
α ◦ (β ◦ γ) ⊑ (α ◦ β) ◦ γ• { (a) }

= (α ◦ β) ◦ γ { γ• = γ }
⊑ α ◦ (β ◦ γ). { Prop.11 (d) }

□

We proved the associative law of convex composition for convex relations. However, the following example
shows that the convex composition ◦ need not be associative in general.

Example 4. Consider maps f , g, h : X → Q∗(X) which appeared in Example 1. For all p ∈ Q1(X) we
have

pf⋄ = ẋ, pg⋄ = p[x] · ẋ, and ph⋄ = p[x] · ẏ.

Thus fg⋄ = f , xfh⋄ = yfh⋄ = ẏ, and p(fh⋄)⋄ = ẏ for p ∈ Q1(X). Shown in Example 2, the identity
γ⋄ = g⋄ ⊔ h⋄ holds, and so pf⋄γ⋄ = ẋ ⊔ ẏ for all p ∈ Q1(X). Note that γ• ̸= γ. On the other hand, except
for two maps fg⋄ and fh⋄ there are just two maps k and k′ included in fγ⋄, where xk = ẋ, yk = ẏ, xk′ = ẏ
and yk′ = ẋ. Let p0 = ( 12 )X , the middle point of ẋ and ẏ. Then we have

p0(fγ⋄)⋄ = p0(fg⋄)⋄ ⊔ p0(fh⋄)⋄ ⊔ p0k⋄ ⊔ p0k
′
⋄

= ẋ ⊔ ẏ ⊔ p0k⋄ ⊔ p0k
′
⋄

= ẋ ⊔ ẏ ⊔ p0
̸= ẋ ⊔ ẏ
= p0f⋄γ⋄,

which proves that αf⋄γ⋄ ̸= α(fγ⋄)⋄ for a map α : X → Q1(X) such that xα = yα = p0. Therefore
(α ◦ f) ◦ γ = αf⋄γ⋄ ̸= α(fγ⋄)⋄ = α ◦ (f ◦ γ). □

6. Convex relations and distributivities

Now we discuss the convex relations and the distributive laws of convex composition over the joins.

Proposition 14. Let α : X ⇁ Q∗(Y ) and β : Y ⇁ Q∗(Z) be Q∗-convex relations. Then the following
holds:

(a) α ◦ β is total,

(b) (α ◦ β)(ξ∗Z)♯ ⊑ α ◦ β,
(c) (α ◦ β)• = α ◦ β.

Proof. (a) α ◦ β is total :
Since α and β are total, β⋄ is total by the definition and so α ◦ β = αβ⋄ is total.
(b) (α ◦ β)(ξτZ)♯ ⊑ α ◦ β :

(α ◦ β) (ξτZ)♯ = αβ⋄ (ξ
τ
Z)

♯ { Def. 2 }
⊑ α(β(ξτZ)

♯)⋄ { Prop. 10 (c) }
⊑ αβ⋄. { β(ξτZ)♯ = β }
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(c) (α ◦ β)• = α ◦ β :

x(α ◦ β)• = ∇IQ∗(N) ◦ ∇NIx(α ◦ β)
= ∇IQ∗(N) ◦ (∇NIxα ◦ β) { α ◦ β = αβ⋄ }
= (∇IQ∗(N) ◦ ∇NIxα) ◦ β { β• = β, Associative law }
= xα• ◦ β
= xα ◦ β { α• = α }
= x(α ◦ β).

□

Proposition 15. If α : X ⇁ Q1(Y ) and β : Y ⇁ Q1(Z) are Q1-convex relations, then so is the convex
composite α ◦ β.

Proof. The proof is the same as the proof (a) and (c) of Proposition 14. □

In the rest of paper, the subscript τ is one of 1 and ∗. For a set χ of Qτ -convex relations α : X ⇁ Qτ (Y )
define ∨

χ = (⊔χ)•.

It is trivial that
∨
χ gives the join (the least upper bound) of χ.

The following proposition shows the right distributivity over all joins.

Proposition 16. Let α : X ⇁ Qτ (X) and β : X ⇁ Qτ (X) be relations.

(a) α• ◦ β ⊑ (α ◦ β)•,
(b) (

∨
χ) ◦ β =

∨
(χ ◦ β).

Proof. (a) α• ◦ β ⊑ (α ◦ β)• :

∀x ∈ X. x(α• ◦ β) = xα•β⋄
= ∇IQτ (N)(∇N Ixα)⋄β⋄
⊑ ∇IQτ (N)(∇N Ixαβ⋄)⋄ { Prop.11 (c) }
= x(αβ⋄)

•.

(b) (
∨
χ) ◦ β =

∨
(χ ◦ β) :

(
∨
χ) ◦ β = (⊔χ)• ◦ β

⊑ ((⊔χ) ◦ β)• { (a) }
= (⊔(χ ◦ β))•
=

∨
(χ ◦ β).

α ∈ χ → α ◦ β ⊑ (
∨

χ) ◦ β { α ⊑
∨
χ }

→
∨
(α ◦ β) ⊑ (

∨
χ) ◦ β. □

The following example shows that the left distributivity α ◦
∨
χ =

∨
(α ◦ χ) needs not hold in general.

Example 5. Let α′, β : X ⇁ Q∗(X) be Q∗-convex relations such that α′ = α(ξ∗X)♯, β = h(ξ∗X)♯ where X,
α and h are appeared in Example 4. Then αh⋄ ⊑ α(ξ∗X)♯ = α′ holds since xαh⋄ = yαh⋄ = p0h⋄ = 1

2 ·ẏ ≤
p0 = xα = yα. Shown in Example 2, a relation h⊔ eX consists of four maps, that is h⊔ eX = f ′⊔g⊔h⊔ eX .
Then we have

p0f
′
⋄ ⊑ xα′(h ⊔ eX)⋄ { p0 = xα ⊑ xα′, f ′

⋄ ⊑ (h ⊔ eX)⋄ }
⊑ xα′(h(ξ∗X)♯ ⊔ eX(ξ∗X)♯)⋄
= xα′(β ⊔ ε∗X)⋄
= x(α′ ◦ (β ⊔ ε∗X))
⊑ x(α′ ◦ (β ∨ ε∗X)).

16



On the other hand, we have p0f
′
⋄ = ẏ ̸⊑ xα′ = x(α′ ◦ β ∨ α′ ◦ ε∗X) since

α′ ◦ β ⊔ α′ ◦ ε∗X = α′β⋄ ⊔ α′(ε∗X)⋄
= α′(h(ξ∗X)♯)⋄ ⊔ α′(eX(ξ∗X)♯)⋄
= α′h⋄(ξ

∗
X)♯ ⊔ α′idQ∗(X)(ξ

∗
X)♯ { Prop. 10 (d), 7 (c) }

= α(ξ∗X)♯h⋄(ξ
∗
X)♯ ⊔ α′(ξ∗X)♯

= αh⋄(ξ
∗
X)♯ ⊔ α′ { Prop. 7 (g), α′: convex }

= α′. { αh⋄ ⊑ α′, α′: convex }

Therefore α′ ◦ (β′ ∨ ε∗X) ̸= α′ ◦ β′ ∨ α′ ◦ ε∗X . □

Finally, we state several results about directed sets of Q∗-convex relations and their joins.

Lemma 2. If χ is a directed set of Q∗-convex relations α : X ⇁ Q∗(Y ), then

(⊔χ)⋄ = ⊔α∈χα⋄.

Proof. The inclusion ⊔α∈χα⋄ ⊑ (⊔χ)⋄ is trivial. We will show that p(⊔χ)⋄ ⊑ ⊔α∈χpα⋄ for all p ∈ Q∗(X).
For a map f : X → Q∗(Y ) we have

f ⊑ ⊔χ → ∀x ∈ X. xf ⊑ x(⊔χ)
→ xf ⊑ ⊔α∈χxα
→ ∃αx ∈ χ. xf ⊑ xαx
∗→ ∃αf ∈ χ ∀x ∈ ⌊p⌋. xf ⊑ xαf

Note
∗→ follows from the assumption that ⌊p⌋ is finite and χ is directed. Define a map f ′ : X → Q∗(Y ) by

∀x ∈ X. xf ′ =

{
xf if x ∈ ⌊p⌋,
0Y otherwise.

It is clear that pf⋄ = pf ′
⋄. Also f ′ ⊑ αf holds, because ∇XI0Y ⊑ α (α is total and α(ξτY )

♯ = α). Hence
pf⋄ = pf ′

⋄ ⊑ pα⋄ and so
p(⊔χ)⋄ = p(⊔f⊑⊔χf⋄)

= ⊔f⊑⊔χpf⋄
⊑ ⊔α∈χpα⋄ { pf⋄ ⊑ pα⋄ }
= p(⊔α∈χα⋄). □

The following proposition gives the directed join of Q∗-convex relations.

Proposition 17. Let χ be a directed set of Q∗-convex relations α : X ⇁ Q∗(X). Then∨
χ =

⊔
χ.

Proof.
x(
∨

χ) = x(⊔χ)•
= ∇IQ∗(N)(∇NIx(⊔χ))⋄
= ∇IQ∗(N)(⊔α∈χ∇NIxα)⋄
= ∇IQ∗(N) ⊔α∈χ (∇NIxα)⋄ { Lemma 2 }
= ⊔α∈χ∇IQ∗(N)(∇NIxα)⋄
= ⊔α∈χxα

•

= ⊔α∈χxα
= x(⊔χ). □

The composition of Q∗-convex relations distributes all directed joins from the left-hand side.
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Proposition 18. Let α : X ⇁ Q∗(Y ) be a Q∗-convex relation and χ a directed set of Q∗-convex relations
β : Y ⇁ Q∗(Z). Then

α ◦
∨

χ =
∨

(α ◦ χ).

Proof.
α ◦

∨
χ = α(⊔χ)⋄ { Prop.17 }

= α(⊔β∈χβ⋄) { Lemma. 2 }
= ⊔β∈χαβ⋄
= ⊔β∈χα ◦ β
= ⊔(α ◦ χ)
=

∨
(α ◦ χ).

□

7. Conclusion

In this paper we have studied the relations into algebras of probabilistic distributions using relational
calculi, although McIver et al. [7] and Tsumagari [16] studied in set-theoretical way. We have shown the
following.

• The set of Qτ -convex relations forms a category with the convex composition, and the identity mor-
phisms depending on τ ∈ {∗, 1}.

• For τ ∈ {∗, 1} the convex composition of Qτ -convex relations distributes over all non-empty joins from
the right hand side.

• The convex composition of Q∗-convex relations distributes over all non-empty directed joins even from
the left hand side.

We have proved the associative law of convex composition for Q∗-convex relations and Q1-convex relations
in the same framework, though Tsumagari [16] had studied as their two convex-relations are different.
Additionally we have given a counter example for the associative law of the convex composition in the
absence of convexity.

The convex composition studied in this paper seems to be a generalization of reachability composition of
multirelations. So we might be interested in the another composition of Qτ -convex relations, corresponding
to the composition of up-closed multirelations studied by Parikh [11, 12] and Rewitzky [6, 14].
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