
ON THE RATIONAL K2 OF A CURVE OF GL2 TYPE OVER A GLOBAL FIELD OF

POSITIVE CHARACTERISTIC

MASATAKA CHIDA, SATOSHI KONDO AND TAKUYA YAMAUCHI

Abstract. If X is an integral model of a smooth curve X over a global field k, there is a localization

sequence comparing the K-theory of X and X. We show that K1(X ) injects into K1(X) rationally, by
showing that the previous boundary map in the localization sequence is rationally a surjection, for X of

“GL2 type” and k of positive characteristic not 2. Examples are given to show that the relative G1 term

can have large rank. Examples of such curves include non-isotrivial elliptic curves, Drinfeld modular curves,
and the moduli of D-elliptic sheaves of rank 2.

1. Introduction

In this secton, we state our main result (Theorem 1.1 and Corollary 1.3) and give an outline of the proof.

1.1. Let Fq be a finite field of q elements of characteristic p. Let C be a projective smooth (geometrically
connected) curve over Fq and k be the function field of C. Consider the following cartesian diagram

X

g

��

�
�

//

�

X

f

��

Spec k �
� η

// C

where η is the generic point, f is proper flat, g is proper smooth, and X is regular. We remark here that
for a given proper smooth curve X over k, there exists an X as above by [27, p.456, Section 10, Proposition
1.8].

Let C0 denote the set of closed points of C. We regard an element in C0 as a place of the global field k
and vice versa. We write (−)Q = (−) ⊗Z Q. Let Kn(−) and Gn(−) denote the higher algebraic K-theory
and G-theory of Quillen [30]. (We write G for K ′ in [30].) The localization sequence of G-theory tensored
by Q gives the exact sequence

(1.1) · · · → K2(X )Q → K2(X)Q
⊕∂℘→

⊕
℘∈C0

G1(Xκ(℘))Q → K1(X )Q → · · · ,

where κ(℘) is the residue field at ℘ and Xκ(℘) = X ×C Specκ(℘). In this article, we consider the following
condition (GL2) on a proper smooth k-scheme Z. Let us write GL = Gal(Lsep/L) for the absolute Galois
group of a field L, and ZM = Z ×Spec k SpecM for the base change, where M is a k-algebra. Let ` be a
prime different from p. The condition is the following.

The Gk-representation H1
ét(Zksep ,Q`) is a direct sum of(GL2)

2-dimensional irreducible representations.

Our main theorem is as follows.

Theorem 1.1. Assume that the characteristic of k is greater than 2. Let X be a proper smooth curve over
k. Suppose that X satisfies the condition (GL2) (with Z = X). Let X be as above. Then the boundary map

K2(X)Q
⊕∂℘→

⊕
℘∈C0

G1(Xκ(℘))Q

is surjective.

This result is motivated by Parshin’s conjecture. Recall that Parshin’s conjecture says that Ki(Z)⊗Q = 0
for all i ≥ 1 when Z is a projective smooth scheme over Fq. (We were not able to find a written account by
Parshin on this conjecture, but see [10].) With our assumptions on X , the validity of the conjecture then
implies that the boundary map ⊕℘∂℘ in Theorem 1.1 is an isomorphism in view of the exact sequence (1.1).
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Remark 1.2. The assumption that p > 2 is necessary for the use of the Tate conjecture proved by Zarhin
[43]. For the case of p = 2, there is an unpublished work by Mori (see [29, pp.9–10 and pp.154–161]).
Therefore if we use Mori’s result, one can show that our main theorem holds also for p = 2.

We have the following corollary (see Corollary 6.1 for the precise statement).

Corollary 1.3. Assume that the characteristic of k is greater than 2. The surjectivity statement of Theo-
rem 1.1 holds when X is

(1) an elliptic curve, which is not isotrivial,
(2) a Drinfeld modular curve,
(3) the moduli of D-elliptic sheaves of rank 2, or
(4) one of the genus two curves constructed in Section 7.

In the four cases above, the curve X satisfies the condition (GL2). Hence this corollary follows from
Theorem 1.1. In the paper [22], the theorem for Case (1) has been proved.

1.2. Let us give a detailed outline of the proof of Theorem 1.1 below. From now on, we always assume that
the characteristic of k is greater than 2. First, we translate the theorem into a statement about étale Chern
class maps.

Proposition 1.4. Let the notation be as in Theorem 1.1. Suppose that the condition (GL2) holds. Then
the composite map

H2
M(X,Q(2))⊗Q Q` →

∏
℘∈C0

H2
M(Xk℘ ,Q(2))⊗Q Q`

→
∏
℘∈C0

H2
ét(Xk℘ ,Q`(2)),

where the first arrow is the product of pullback maps and the second arrow is the product of étale Chern class
maps, is surjective.

To prove that Proposition 1.4 implies Theorem 1.1, we will use lemmas in the paper [22] (see Section 5.3
for details).

We remark that we can compute the dimension of target group explicitly (see Section 6) and see that the
factor H2

ét(Xk℘ ,Q`(2)) is zero for almost all ℘. It follows that the product of the étale cohomology groups
is actually a (finite) direct sum.

1.3. To prove Proposition 1.4, we will show the following proposition.

Proposition 1.5. Suppose X = B is a simple abelian variety over k satisfying the condition (GL2). Then
the map

H2,2
M (h1(X))⊗Q Q` →

∏
℘∈C0

H2,2
M (h1(Xk℘))⊗Q Q`

→
∏
℘∈C0

H2,2
ét (h1(Xk℘))

is surjective. Here we refer to Section 4 for the notation concerning Chow motives such as H2,2
∗ and h1. The

first arrow is the pullback map and the second arrow is the étale Chern class map.

To see that Proposition 1.5 implies Proposition 1.4, we use the formalism of Chow motives. In the category
of Chow motives (with rational equivalence and rational coefficients), we have an isomorphism

h(X) ∼=
2⊕
i=0

hi(X) ∼= h0(X)⊕ h1(JacX)⊕ h2(X) ∼= h0(X)⊕
m⊕
i=1

h1(Bi)⊕ h2(X),

where each Bi is a k-simple abelian variety satisfying the condition (GL2) such that JacX is isogenous
(over k) to

∏m
i=1Bi (see Section 5.2). Then as étale Chern classes respect the decomposition, and since the

statement for the h0 and h2 is not an essential difficulty, Proposition 1.4 can be reduced to Proposition 1.5.
To prove Proposition 1.5, we proceed as follows. By the condition (GL2), we have H1

ét(Bksep ,Q`) ∼= ⊕nj=1ρj
where each ρj is an irreducible 2-dimensional representation of Gk with coefficients in Q`. For a nonar-
chimedean local field L whose characteristic is prime to `, define Sp to be the 2-dimensional representation
of GL with coefficients in Q` which is the unique nontrivial extension of Q` by Q`(−1). By abuse of notation
we also write Sp for the base change Sp⊗Q` Q`. We consider two cases separately.

(1) There exists a pair (j, ℘) of an integer 1 ≤ j ≤ n and a place ℘ of k such that ρj |Gk℘ is isomorphic
to Sp.

(2) The condition in (1) does not hold.

In Case (2), using the computation of Galois cohomology in Section 3, we show that the target of the Chern
class map is zero (see Lemma 5.1). Hence the surjectivity becomes a trivial statement. In Case (1), we show
that B is isogenous to a simple factor of the Jacobian of some Drinfeld modular curve such that ℘ is the
fixed place at infinity. (We refer to Section 2.1 for the relevant definitions and properties of Drinfeld modular
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curves.) This is of course the function field analogue of Shimura’s theory [35]. We note that the condition
that there exists a place where the representation at the place ℘ is isomorphic to Sp is the function field
analogue of (or rather the Drinfeld modular analogue of) modular forms of weight 2 (which is a condition
at the place at infinity). As we did not find the construction in the literature, we give a detailed proof of
this fact in Section 2. We note that we do not follow the proof for the case of the moduli of elliptic curves,
but we use freely the Tate conjecture (a theorem of Zarhin) to make the exposition simple. With the Tate
conjecture at our disposal, the only other necessary ingredient is some Atkin-Lehner theory over general
global fields, but we use a theorem of Jacquet and Shalika for simplicity (see the proof of Lemma 2.3).

Thus we are reduced to proving Proposition 1.5 when B is a factor of the Jacobian of a Drinfeld modular
curve. The idea, which does not apply to the case of a number field, and which already appeared in the
paper [22], is used at this point. Note that B may appear as a factor of a Drinfeld modular curve for EVERY
℘ satisfying the condition in (1), so that we have as many “parametrizations” as such ℘. When B is an
elliptic curve, this is really the modular parametrization as discussed in detail by Gekeler and Reversat [11].
We then invoke the result of [22]. The setup is that of Proposition 1.4, and X is a Drinfeld modular curve.
The result in [22] says that there exists a certain subspace of H2

M(X,Q(2)) which maps surjectively by the
Chern classes at infinity (or ℘ in this case) and maps to zero at all the other places. By varying ℘, we obtain
Proposition 1.5. This finishes the outline of the proof of Proposition 1.5 and hence of Theorem 1.1.

1.4. To see that the surjectivity statement is a nontrivial one, we will compute (Lemma 6.2) the dimen-
sion of the target group explicitly in terms of the Gk-representation that appears in the condition (GL2).
More precisely, if the representation is the direct sum ⊕nj=1ρj of 2-dimensional representations ρj , then the
dimension of the target equals the number of the pairs (j, ℘) which appeared in the condition of (1).

In Corollary 1.3, we have four kinds of curves. For an elliptic curve, the condition on ℘ above is equivalent
to that the elliptic curve has split multiplicative reduction at ℘. For a Drinfeld modular curve, the number
of such pairs is bounded below by the genus since (j,∞) always satisfy the condition of (1). Note that the
genus grows as K becomes small. The genus 2 curve in (4) is constructed from Brumer-Hashimoto’s family
of genus 2 curves. We construct explicit examples within this family for which the number of pairs (j, ℘)
satisfying the condition of (1) is large.

1.5. We give a remark concerning our title and the condition (GL2). Suppose a proper smooth curve X
satisfies the condition (GL2). Then the Jacobian of X is isogenous to a product of simple abelian varieties
of GL2-type if there exists a place ℘j such that (j, ℘j) satisfies the condition of (1) for each j. This can be
seen using the procedure given in Section 5.1. When there does not exist such ℘j ’s, we do not know if this
holds true.

1.6. The paper is organized as follows. In Section 2, given an automorphic representation π of GL2(Ak) such
that π∞ ∼= St at some place ∞ of k (see Section 2 for the notation), we construct a k-simple abelian variety
Aπ whose Tate module is related to π. Section 3 is devoted to the computation of Galois cohomology. We
use the classification of representations of GL2(F ) (see Lemma 3.4) for a nonarchimedean local field F . The
aim is to compute the local Galois cohomology of some 2-dimensional representations corresponding to the
tempered ones via the local Langlands correspondence. In Section 4, we collect some facts concerning Chow
motives, their cohomology theories, and the morphism between the cohomology theories. We are interested
in the rational motivic cohomology and the absolute `-adic cohomology. We refer to Jannsen’s book [21] for
cohomology theories and to Scholl’s article [37] for generalities on Chow motives. In Section 5, we give a
proof of Theorem 1.1 following the outline given in this introduction. Sections 5.1, 5.2, 5.3 are devoted to the
proof of Propositions 1.5, 1.4 and Theorem 1.1 respectively. Section 7 is independent of the earlier sections
aside from some general notations. The aim is to construct an explicit family of genus 2 curves satisfying
the condition (GL2) such that the dimension of the rational G1 group is arbitrarily large.

Acknowledgement. The problem, or the statement of Theorem 1.1 for Drinfeld modular curves, and the
idea of proof to use some of the logic in the paper by Ramakrishnan [31] were suggested by Seidai Yasuda.
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Hakubi project of Kyoto University. The second author was partially supported by JSPS Grant-in-Aid for
Scientific Research 21654002 and by World Premier International Research Center Initiative (WPI Initia-
tive), MEXT, Japan. The third author is partially supported by JSPS Grant-in-Aid for Scientific Research
No.23740027.
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2. The construction of abelian varieties associated to automorphic representations of
GL2 in the function field case

The aim of this section is to prove Proposition 2.1. The abelian variety Aπ will be used throughout this
article. This proposition is the function field analogue of a theorem of Shimura [35, p.183, Thms 7.14, 7.15].
The proof is different in that we use the Tate conjecture (a theorem of Zarhin) in this paper. In doing so,
we need not use the theory of modular forms (which does not seem to be available in the literature for the
function field case) as much as Shimura did. Our construction has a shortcoming that the resulting abelian
variety Aπ is neither a sub nor a quotient of the Jacobian of a Drinfeld modular curve in a canonical way.
Another output of this section is Corollary 2.5. This will be used in the proof of Lemma 5.2.

We fix an isomorphism ι : Q` ∼= C. We use the results from the theory of automorphic forms with values
in C as those with values in Q` via this fixed isomorphism.

2.1. We regard a place of k as a closed point of C and vice versa. Let us choose a closed point ∞ ∈ C0 and
set A = H0(C \ {∞},OC). For a place ℘ of k, we let k℘ denote the completion of k at ℘. If ℘ 6= ∞, we
denote by the same symbol ℘ the prime ideal of A corresponding to ℘. Then the ℘-adic completion A℘ of
A is equal to the ring of integers of k℘.

Let I ⊂ A be a non-zero ideal. We let M∞I denote the functor which classifies Drinfeld modules of rank 2
with a Drinfeld full level I structure on a k-scheme. When Spec (A/I) contains two or more closed points, it
is representable by an affine curve over Spec k (see [8, p.576, Proposition 5.3] for construction of the moduli
scheme over A; we consider its base change to k). We will denote the representing scheme by the same

symbol. Let M
∞
I denote the smooth compactification of M∞I . We set M

∞
= lim←−M

∞
I where the limit is

taken over ideals of A such that Spec (A/I) contains two or more closed points.

Let A = Ak denote the ring of adeles of k. We set Â = lim←−A/I. Let A∞ = Â ⊗A k denote the ring
of finite adeles. We refrain from using the more common notation Af to denote the ring of finite adeles
because we will vary the place at infinity thus obtaining various rings of finite adeles. (For example, see

the proof of Lemma 5.2.) The group GL2(A∞) acts on M
∞

(see [8, p.577]). Let K ⊂ GL2(Â) ⊂ GL2(A∞)

be a compact open subgroup. We let M
∞
K = K\M∞ denote the quotient. For example ([8, p.578]), if

K = KI = Ker[GL2(Â)→ GL2(Â/IÂ)], then we recover M
∞
I = KI\M

∞
for I as in the previous paragraph.

If L is a k-algebra, we write M
∞
K,L = M

∞
K ×Spec k SpecL.

2.2. Let Π denote the set of (isomorphism classes of) cuspidal automorphic representations of GL2(A). Let
St denote the Steinberg representation of GL2 of a nonarchimedean local field. We have an isomorphism

(2.1) lim−→
K⊆GL2(A∞):open compact subgroup

H1
ét(M

∞
K,ksep ,Q`) ∼=

⊕
π∈Π,π∞∼=St

(⊗v 6=∞πv)⊗ ρ(π)

of GL2(A∞)×Gal(ksep/k)-modules, where ρ(π) is the 2-dimensional representation of Gal(ksep/k) over Q`
which is determined by π via the global Langlands correspondence and whose restriction to Gal(ksep

∞ /k∞) is

isomorphic to Sp. (See [6, Corollary 2.3].) Given a compact open subgroup K ⊂ GL2(Â), we may take the
K-invariant part of both sides above and obtain (see [11, Section 8] for the description even when K is large)

(2.2) H1
ét(M

∞
K,ksep ,Q`) ∼=

⊕
π∈Π,π∞∼=St

(⊗v 6=∞πv)K ⊗ ρ(π).

For any place ℘ of k, the Galois representation ρ(π)|Gk℘ (or the associated Weil-Deligne representation)

corresponds to π℘ ⊗ |det|− 1
2 via the local Langlands correspondence. (See [8, Theorem A]. See also [24,

Corollaire VII.5].)

2.3. Let n be a non-zero ideal of A. Set

K1,℘(n) =

{(
a b
c d

)
∈ GL2(A℘)

∣∣∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
mod n

}
for a place ℘ 6=∞ and

K1(n) =
∏
℘6=∞

K1,℘(n) =

{(
a b
c d

)
∈ GL2(Â)

∣∣∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
mod n

}
.

Let π be a cuspidal automorphic representation of GL2(A) such that π∞ ∼= St. By [4, p.302, Theorem

1.4], there exists a non-zero ideal nπ ⊂ A such that dimQ` ⊗℘6=∞π
K1,℘(nπ)
℘ = 1. (This is the prime-to-∞ part

of the conductor of π. The conductor is then nπ∞ since π∞ ∼= St.) We consider the action of the Hecke

operator T℘ on a nonzero element in ⊗℘6=∞π
K1,℘(nπ)
℘ for ℘ prime to nπ∞. We denote the eigenvalue by

a℘(π). Let Kπ denote the field generated by a℘(π) over Q where ℘ runs over all primes prime to nπ∞.
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For an abelian variety B, we write T`B for the Tate module, set V`B = T`B⊗Z`Q` and V`B = V`B⊗Q`Q`.
For a Q`-vector space V , we let V ∨ = HomQ`(V,Q`) denote the dual.

Proposition 2.1. (1) The field Kπ is a number field. Let I(π) denote the set of embeddings Kπ ↪→ Q`.
(2) For any τ ∈ I(π), there exists a cuspidal automorphic representation πτ such that

(a) πτ∞
∼= St,

(b) nπ = nπτ ,
(c) av(π

τ ) = τ(av(π)) for all v prime to nπ∞.
(3) There exists a k-simple abelian variety Aπ such that (V`Aπ)∨ ∼=

⊕
τ∈I(π) ρ(πτ ) and Endk(Aπ)⊗ZQ ∼=

Kπ.

Note that by (c) and the strong multiplicity one theorem, πτ is uniquely determined. Note also that by
the Tate conjecture, the abelian variety Aπ is uniquely determined up to isogeny.

2.4. We prove Proposition 2.1 inductively. Fix a nonzero ideal n ⊂ A. The inductive assumption is that

There exists an abelian variety Aπ′ satisfying the conditions in(*n)

Proposition 2.1 for those π′ such that nπ′ divides n and nπ′ 6= n.

Note that (*n) for n = (1) holds trivially. Assuming (*n), we prove the assertions for π such that nπ = n.

Set dπ,n = dimQ` ⊗℘ 6=∞π
K1,℘(n)
℘ . Let Πnew

1 (n) denote the (finite) set of cuspidal automorphic representa-

tions π such that π∞ ∼= St and dπ,n = 1.

Lemma 2.2. Assume that (*n) holds. There exist abelian varieties over k, denoted J∞,new
K1(n) and J∞,old

K1(n) ,

such that

(V`J
∞,new
K1(n) )∨ ∼=

⊕
π∈Πnew

1 (n)

ρ(π),

(V`J
∞,old
K1(n) )∨ ∼=

⊕
dπ,n>1

ρ(π)dπ,n .

Moreover J∞,old
K1(n) is isogenous to an abelian variety of the form

∏
π Aπ (possibly with multiplicity) where nπ|n

and nπ 6= n hold for each π appearing in the product.

Proof. The construction is done inductively. Suppose we are given an abelian variety B over k such that

(V`B)∨ ∼=

 ⊕
dπ,n=1

ρ(π)

⊕
 ⊕
dπ,n>1

ρ(π)bπ


with bπ ≥ 0 for each π such that dπ,n > 1. Note that for π such that dπ,n > 1, we have nπ 6= n (using [4,
p.306, Corollary]) so that the inductive hypothesis applies, that is, there exists an abelian variety Aπ for this
π. We have

Homk(B,Aπ)⊗Z Q` ∼= HomQ`[Gk](V`B, V`Aπ)⊗Q` Q`
∼= HomQ`[Gk](V`B,V`Aπ)

where the first isomorphism is the Tate conjecture (a theorem of Zarhin [43]), and the second is [5, Lemma
29.2, (29.5)]. If bπ ≥ 1, then we can construct a nontrivial map V`B → V`Aπ (namely, the projection to ρ(π)
followed by the canonical inclusion). Hence there exists a nontrivial morphism B → Aπ, which is surjective
since Aπ is simple. Let B0 denote the connected component of the kernel of this morphism. Then B′ = B0

red

is an abelian variety. (This fact is well known when the base field is perfect; we refer to [28, p.1, Theorem
1] for the case when the base field is not necessarily perfect.) Note that HomQ`[Gk](ρ(π), ρ(π′)) = 0 for π

such that dπ,n = 1 and π′ such that dπ,n > 1 since ρ(π) and ρ(π′) then have different conductors and are
not isomorphic. It follows that

(V`B
′)∨ ∼=

 ⊕
dπ,n=1

ρ(π)

⊕
 ⊕
dπ,n>1

ρ(π)b
′
π


with

∑
π bπ >

∑
π b
′
π, and B is isogenous to B′ ×Aπ.

Now we apply this procedure repeatedly. To prove the lemma, we start from the Jacobian J∞K1(n) of

M
∞
K1(n) and proceed until

∑
π b
′
π = 0. Then we have J∞,new

K1(n) as B′ in the last step of the process. Also one

has J∞,old
K1(n) as the product of all the Aπ’s that appeared in the process. It is clear that J∞,new

K1(n) and J∞,old
K1(n)

satisfy the desired properties. �
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2.5. We now describe the decomposition of J∞,new
K1(n) into the k-simple factors (that is, we find an abelian

variety over k isogenous to J∞,new
K1(n) , which is a product of k-simple abelian varieties). Each simple factor will

be the desired Aπ for some π. We define a Hecke algebra T ⊂ Endk(J∞K1(n)) as the subalgebra generated

by the Hecke operators T℘ and S℘ for ℘ prime to n. We define Tnew ⊂ Endk(J∞,new
K1(n) ) ⊗Z Q as follows.

By Lemma 2.2 and the Tate conjecture, we obtain and fix an isogeny ψ : J∞,new
K1(n) × J

∞,old
K1(n) → J∞K1(n). If

T ∈ Endk(J∞K1(n)), we obtain an element T ′ in Endk(J∞,new
K1(n) ) as the composite

J∞,new
K1(n) → J∞,new

K1(n) × J
∞,old
K1(n)

ψ−→ J∞K1(n)
T−→ J∞K1(n)

ψ∨

−−→ J∞,new
K1(n) × J

∞,old
K1(n) → J∞,new

K1(n) ,

where the first arrow is the canonical inclusion, ψ∨ is the dual isogeny, and the last arrow is the projection. We
define Tnew ⊂ Endk(J∞,new

K1(n) )⊗Z Q to be the subalgebra generated by the elements of the form (degψ)−1T ′.

Note that T → Tnew is an algebra homomorphism and that Tnew is a commutative algebra since T is
commutative. By abuse of notation, we let T℘ ∈ Tnew (resp. S℘ ∈ Tnew) denote the element corresponding
to T℘ ∈ T (resp. S℘ ∈ T).

From here, we proceed in a manner very similar to the proof of Proposition 4.2 in [39, p.228]. We have

(2.3) Endk(J∞,new
K1(n) )⊗Z Q` ∼= EndQ`[Gk](V`J

∞,new
K1(n) ) ∼= EndQ`[Gk](

⊕
π∈Πnew

1 (n)

ρ(π)∨) ∼=
∏

π∈Πnew
1 (n)

Q`

where the first isomorphism is due to the Tate conjecture and the last isomorphism follows from the irre-
ducibility of ρ(πi) and the fact that if i 6= j then ρ(πi) and ρ(πj) are not isomorphic.

2.6. Let f∞π denote a nonzero element in ⊗℘ 6=∞π
K1,℘(n)
℘ . We define a map

φ :
⊕

π∈Πnew
1 (n)

⊗℘ 6=∞πK1,℘(n)
℘ → HomQ(Tnew,Q`)

by φ(f∞π )(T℘) = a℘(π) for ℘ prime to n (this map is independent of the choice of the f∞π ).

Lemma 2.3. The map φ is an isomorphism.

Proof. We see from (2.3) that dimQ Tnew is smaller than or equal to the dimension of the left hand side. It
suffices to prove the injectivity of φ.

Let f =
∑
π∈Πnew

1 (n) cπf
∞
π with cπ ∈ Q` be an element such that φ(f)(T ) = 0 for all T ∈ Tnew. It is

enough to show f = 0. For each π and each place ℘ such that ℘ - n, denote the Satake parameters at ℘ for
π by α℘(π) and β℘(π). For each ℘ with ℘ - n and r ≥ 1, it is easy to find an element T℘,r ∈ Tnew such that

φ(f∞π )(T℘,r) = α℘(π)r + β℘(π)r

for all π ∈ Πnew
1 (n). Then we have ∑

π∈Πnew
1 (n)

cπ(α℘(π)r + β℘(π)r) = 0

for any r ≥ 1. This implies that cπ = 0 for all π ∈ Πnew
1 (n) by [20, p.806, THEOREM]. �

2.7. Using Lemma 2.3, we obtain Tnew = Endk(Jnew
K1(n))⊗ZQ. Since Tnew is commutative and Endk(Jnew

K1(n))⊗Z
Q is a semisimple Q-algebra, we have Tnew ∼= F1×· · ·×Fs where each Fi is a number field by Wedderburn’s
theorem, for some s ∈ Z. We set

Ji = Jnew
K1(n)/Ker[Endk(Jnew

K1(n))→ Fi]J
new
K1(n)

for each i. Then Jnew
K1(n)(n) is isogenous to J1 × · · · × Js.

We have
V`Ji ∼=

⊕
π∈Πi

(⊗℘ 6=∞πK1,℘(n)
℘ )⊗ ρ(π)

for some subset Πi ⊂ Πnew
1 (n). Take a π ∈ Πi. We claim that Ji satisfies the conditions (1), (2) and (3) of

Proposition 2.1 so that we may call this Aπ.

We see from (2.3) that an element of Tnew acts as a scalar on each (⊗℘6=∞πK1(n)
℘ ) ⊗ ρ(π). Giving this

action is equivalent to giving an algebra homomorphism

Tnew pri−−→ Fi
ϕπ−−→ Q`

where pri is the projection to the i-th factor and ϕπ is some embedding.

From Lemma 2.3, we have dimQ` ⊕π∈Πi ⊗℘6=∞ π
K1,℘(n)
℘ = dimQ Fi, hence if we fix an element π ∈ Πi, then

any other π′ ∈ Πi corresponds to the algebra homomorphism

Tnew pri−−→ Fi
ϕπ′−−→ Q`
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for some embedding ϕπ′ .
Note that Kπ ⊆ Fi. If Kπ 6= Fi, then there exists some ϕπ′ such that ϕπ|Kπ = ϕπ′ |Kπ . This contradicts

that π and π′ are not isomorphic using the strong multiplicity one theorem, hence Kπ = Fi. This completes
the proof of Proposition 2.1. �

2.8. We will restate the result obtained in this section in the form to be used elsewhere. We will use
Corollary 2.5 in the proof of Lemma 5.2.

We define an equivalence relation on the set Π∞ of cuspidal automorphic representations such that
π∞ ∼= St by π ∼ π′ if and only if Aπ is isogenous to Aπ′ .

Corollary 2.4. The Jacobian J∞K1(n) of M
∞
K1(n) is isogenous to

∏
π∈Π∞/∼A

dπ,n
π .

Proof. We see from Lemma 2.2 that J∞K1(n) is isogenous to some product of the form
∏
π Aπ (possibly with

multiplicity). Then the description of V`Aπ in Proposition 2.1(3) and (2.2) leads to the claim. �

In the following corollary, we are taking ∞ to be ℘.

Corollary 2.5. Let π be a cuspidal automorphic representation. Let Stπ denote the set of places v such that
π℘ ∼= St. Then, for each ℘ ∈ Stπ, there exists a Drinfeld modular curve M℘

K such that Aπ is a simple factor

of JacM
℘

K.

Proof. Fix a prime ℘ ∈ Stπ. As we had done in Section 2.3, we can find an ideal n of the coordinate

ring H0(C \ {v},OC) such that dimQ` ⊗℘′ 6=℘π
K1,℘′ (n)

℘′ ≥ 1. Then by Corollary 2.4, Aπ is a simple factor of

JacM
℘

K. �

3. Galois cohomology of 2-dimensional representations

The aim of this section is to prove Proposition 3.1. The vanishing result will be used in the proof of
Lemma 5.1. The nonzero result will be used in the proof of Lemma 6.2. For the application, σ below will
be a local component of some 2-dimensional direct factor of the Jacobian of a curve over k.

3.1. Let F be a nonarchimedean local field of characteristic p > 0. We will not use them but the results
of this section holds also for the case char(F ) = 0. Fix a uniformizer $ ∈ F and denote the residue field
of F by kF . Let GF = Gal(F sep/F ) denote the absolute Galois group. Let ` be a prime number prime to
p. Let σ be a 2-dimensional `-adic representation, that is, a continuous homomorphism σ : GF → GL(Vσ)
where Vσ is a 2-dimensional E-vector space ([E : Q`] < ∞). Let Vσ,Q` := Vσ ⊗E Q`. Let WF denote the

Weil group and i : WF ↪→ GF be the canonical inclusion. We also denote σ the representation of WF on
Vσ,Q` obtained by the restriction. We write WD(σ) for the Weil-Deligne representation attached to σ (see

Bushnell-Henniart [3, p.206, Theorem]) We let π = π(σ) denote the irreducible admissible representation of
GL2(F ) which corresponds to σ via the local Langlands correspondence (see Bushnell-Henniart [3, p.212,
Langlands correspondence]). We fixed an isomorphism ι : Q` ' C. Let St denote the Steinberg representation
of GL2(F ).

Proposition 3.1. Let the notations be as above. Suppose that π(σ)⊗ |det| 12 is tempered. Then

dimE H
1(GF , Vσ(n)) =

{
1 if π(σ)⊗ |det| 12 ∼= St and n = 0 or π(σ)⊗ |det| 12 ∼= St and n = 2,

0 otherwise.

We define the L-factor for a GF -module V by

L(s, V ) = det
(
1− Frob$ · q−s |V I

)−1
,

where q = #kF , Frob$ is the geometric Frobenius element and I is the inertia subgroup of GF .

Lemma 3.2. We have

dimE H
1(GF , Vσ(n)) = −ords=0L(s, Vσ(n))− ords=0L(s, Vσ(n)∗),

where ords=0 means the order of zero at s = 0.

Proof. We have

dimE H
1(GF , Vσ(n)) = dimE H

0(GF , Vσ(n)) + dimE H
2(GF , Vσ(n))

= dimE H
0(GF , Vσ(n)) + dimE H

0(GF , (Vσ(n))∗)
= −ords=0L(s, Vσ(n))− ords=0L(s, Vσ(n)∗).

The first equality uses that the Euler-Poincare characteristic is zero ([36, p.101, II.5.7. exercise 4]), the
second equality uses the local Tate duality (see [34, Theorem 1.4.1]), and the third equality follows from the
definition of the L-factor. �
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Lemma 3.3. Let χ : F× → C× be a unitary character. Let n ∈ Z. Then we have

ords=0L(s+
n

2
, χ) =

{
−1 χ = 1 and n = 0,
0 otherwise.

Proof. The L-factor has a pole at s = 0 if and only if χ($−1)|$−1|n2 = 1 where $ is a uniformizer. If this
holds then χ must be unramified. Since χ is unitary, n = 0 and χ($−1) = 1. �

For an irreducible admissible representation π of GL2(F ), we denote the L-factor for π by L(s, π). For
the definition of the L-factor, see Godement-Jacquet [13, Chapter I, Section 3] or Jacquet [18, Section 1].
We compute the L-factor in terms of π(σ) as follows. We have

L(s, Vσ(n)) = L(s, π(Vσ(n)))

= L(s, π(σ)⊗ | det | 12 ⊗ | det |n− 1
2 )

= L(s+ n− 1
2 , π(σ)⊗ | det | 12 )

and
L(s, Vσ(n)∗) = L(s, π(Vσ(n)∗))

= L(s, π(Vσ(n))∨(1))

= L(s, (π(σ)⊗ | det | 12 )∨ ⊗ | det |−n+ 3
2 )

= L(s− n+ 3
2 , (π(σ)⊗ | det | 12 )∨).

We use the following classification.

Lemma 3.4. The tempered representations of GL2(F ) are (i) supercuspidals, (ii) unitary twists of the Stein-

berg representation, and (iii) unitary principal series representation IndGL2

B (χ1, χ2) with unitary characters
χ1, χ2.

Proof. See Jacquet [17]. See also Kudla [23, p.375, Example 2.5]. �

3.2. Proof of Proposition 3.1. It suffices to consider the three cases.
Case (i)[π(σ)⊗ |det| 12 is supercuspidal]: Since the L-factor of a supercuspidal representation is 1, we have

L(s, Vσ(n)) = L(s, Vσ(n)∗) = 1 in this case. Hence the proposition follows using Lemma 3.2.

Case (ii)[π(σ)⊗ |det| 12 is a unitary twist St⊗ χ of the Steinberg representation]: We have

L(s, Vσ(n)) = L(s+ n− 1
2 ,St⊗ χ)

= L(s+ n− 1
2 , χ),

L(s, Vσ(n)∗) = L(s− n+ 3
2 ,St∨ ⊗ χ−1)

= L(s− n+ 3
2 ,St⊗ χ−1)

= L(s− n+ 3
2 , χ
−1),

where we used that St ∼= St∨ (See Bushnell-Henniart [3, p.68, (9.10.5)]) and formulas in [23, p.377, 3.1]. The
claim follows then from Lemmas 3.2 and 3.3.
Case (iii)[π(σ) ⊗ |det| 12 is a unitary principal series representation IndGL2

B (χ1, χ2) with unitary characters

χ1, χ2.]: The L-factors are

L(s, Vσ(n)) = L(s+ n− 1
2 , IndGL2

B (χ1, χ2))
= L(s+ n− 1

2 , χ1)L(s+ n− 1
2 , χ2),

L(s, Vσ(n)∗) = L(s− n+ 3
2 , IndGL2

B (χ−1
1 , χ−1

2 ))
= L(s− n+ 3

2 , χ
−1
1 )L(s− n+ 3

2 , χ
−1
2 ).

The claim follows then from Lemmas 3.2 and 3.3.

4. Motivic cohomology and `-adic cohomology for Chow motives

We collect some definitions and properties concerning Chow motives and cohomology theories from
Jannsen [21] and Scholl [37]. For the application, we take the base field L below to be either k or k℘.
The Chern class or the map r below will be used only with the base field k℘.

4.1. We first recall some definitions and properties of twisted Poincaré duality theories ([1], see [21, Section
6]). For a quasi-projective scheme X over a field L and a closed subscheme Z ⊂ X, the (rational) motivic
cohomology of X with support on Z and the (rational) motivic homology of X are defined to be

Hi
M,Z(X,Q(j)) = K2j−i(X)(j),

HMa (X,Q(b)) = K ′a−2b(X)(−b).

We refer to [21, p.104, 6.12] for the precise definitions.
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Let ` be a prime different from the characteristic of L. We will use the (absolute) `-adic cohomology with
support and the (absolute) `-adic homology:

Hi
ét,Z(X,π∗XQ`(j)),

H ét
i (X,Q`(j)) = H−i(X,π!

XQ`(−j))
where πX : X → SpecL is the structure morphism. (The reader may find convenient the torsion coefficient
case given in [1, p.193, 2.1], and the geometric case with rational coefficient given in [21, p.87, 6.8].)

In [21], Jannsen considered the motivic theory and the geometric (as opposed to the absolute) `-adic
theory, and the morphism between the two twisted Poincaré duality theories. In a similar manner, one can
define a morphism from the motivic theory to the absolute `-adic theory above. We write

r : Hi
M,Z(X,Q(j))→ Hi

ét,Z(X,Q`(j)),
r′ : HMa (X,Q(b))→ H ét

a (X,Q`(b))
for the induced maps. We refer to [21, p.126, (8.4.1)] and the remarks preceding [21, p.125, 8.3 a)] for the
details (on the geometric case).

4.2. We will use the setting for Chow motives given by Scholl [37, Section 1]. We recall some of the notations.
Let L be a field. We let VL denote the category of projective smooth L-schemes. We let ML denote the

category of L-motives for rational equivalence ([37, p.165, 1.4]). Take X,Y ∈ VL. Suppose X is connected
and of pure dimension d. We let

Corrr(X,Y ) = CHr+d(X × Y )⊗Z Q
denote the correspondences of degree r. For the definition of correspondences for general X and the composi-
tion ◦ of correspondences, we refer to [37, 1.3]. Recall that an object (X, p,m) ∈ML is a triple with X ∈ VL,
an idempotent p = p2 ∈ Corr0(X,X), and an integer m. The hom group HomMk

((X, p,m), (Y, q, n)) is by

definition q ◦ CorrdimX(X,Y ) ◦ p.
We extend the definition of the cohomology groups to objects in ML. Let (X, p,m) ∈ ML. Note that

p ∈ Corr0(X,X) defines a map p : Ha
M(X,Q(n)) → Ha

M(X,Q(n))) and a map pét : Ha
ét(X,Q`(n)) →

Ha
ét(X,Q`(n)). We refer to [38, Section 1] for the construction when the cohomology theory is the K-

cohomology theory. The procedure works for the two cohomology theories considered here. For integers a, b,
we set

Ha,b
M ((X, p,m)) := Im[p : Ha

M(X,Q(m+ b))→ Ha
M(X,Q(m+ b))],

Ha,b
ét ((X, p,m)) := Im[pét : Ha

ét(X,Q`(m+ b))→ Ha
ét(X,Q`(m+ b))].

Then the r and r′ defined in the previous section induce a map

r : Ha,b
M ((X, p,m))→ Ha,b

ét ((X, p,m)).

5. Proof of Theorem 1.1

We give a proof of Theorem 1.1. We refer to Section 1 for the outline of proof.

5.1. We begin with the proof of Proposition 1.5.
By Assumption (GL2), we have H1

ét(Bksep ,Q`) ∼= ⊕nj=1ρj where each ρj is an irreducible 2-dimensional

representation of Gk with coefficients in Q`.
We consider the case when there does not exist a pair (j, ℘) such that ρj |Gk℘ ∼= Sp.

Lemma 5.1. In this case, we have H2,2
ét (h1(Bk℘)) = 0 for any ℘.

Proof. We use the definition of h1 in [37, p.176, Theorem 4.4]. It says in particular that there exists a curve
Z ↪→ B such that the projector to h1 factors as

H2,2
ét (Bk℘)→ H2,2

ét (Zk℘)→ H2,2
ét (h1(Bk℘))

where the first map is the pullback. Using the Leray spectral sequences for Bk℘ and Zk℘ , we see that it
suffices to prove that

Im[Hp(Gk℘ , H
q
ét(Bksep℘ ,Q`(2)))→ Hp(Gk℘ , H

q
ét(Zksep℘ ,Q`(2)))],

where the map is that induced by the pullback map, is zero for each pair (p, q) with p + q = 2. It is easy
to see that the target is zero when (p, q) = (2, 0). When (p, q) = (0, 2), using the fact that Z is a curve, it
follows from the weight argument that the target is zero. Suppose (p, q) = (1, 1). Let πj denote the cuspidal
automorphic representation corresponding to ρj by the global Langlands correspondence [9, p.566, Theorem

A]. By the Petersson-Ramanujan conjecture (see [9, p.566, Theorem B]), we have that each πj,℘ ⊗ |det | 12
is tempered. Since we know that Sp corresponds to St via the local Langlands correspondence, we obtain
H1(Gk℘ , H

1
ét(Bksep℘ ,Q`(2))) = 0 from Proposition 3.1. �
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Now suppose that there exists a pair (j, ℘) for which ρj |Gk℘ ∼= Sp. Let π be the unitary cuspidal
automorphic representation associated to ρj via the global Langlands correspondence. Since we have π℘ ∼= St,
we can apply Proposition 2.1 and find an abelian variety Aπ. We use the argument in the proof of Lemma 2.2.
We have

Homk(B,Aπ)⊗Z Q` ∼= HomQ`[Gk](V`B,V`Aπ) 6= 0.

Therefore there is a nontrivial homomorphism B → Aπ which is an isogeny since both B and Aπ are simple.
We may and will assume that B = Aπ.

Lemma 5.2. For any place ℘ of k there exists a finite dimensional Q-vector space Vπ,℘ ⊂ H2,2
M (h1(Aπ))

such that

r℘′(Vπ,℘)⊗Q Q` =

{
H2,2

ét (h1(Aπ,k℘)) if ℘′ = ℘,

0 if ℘′ 6= ℘.

Proof. Define Stπ to be the set of places ℘ of k such that π℘ ∼= St.

(1) Case ℘ /∈ Stπ. We set Vπ,℘ = 0. Then it suffices to show that H2,2
ét (h1(Aπ,k℘)) = 0 for ℘ /∈ Stπ. This

can be proved in the same manner as in the proof of Lemma 5.1, hence is omitted.

(2) Case ℘ ∈ Stπ. By Corollary 2.5, Aπ is a k-simple factor of JacM
℘

K for some compact open subgroup
K ⊂ GL2(A℘). Here A℘ is the finite adeles as defined in Section 2.1 with ℘ in place of ∞ there.

By [22, p.1090, Proposition 9.1], there exists a finite dimensional Q-vector space

V ℘K ⊂ H
2,2
M (h1(M

℘

K))

such that

(5.1) r℘′(V ℘K )⊗Q Q` =

{
H2,2

ét (h1(M
℘

K,k℘)) if ℘′ = ℘,

0 if ℘′ 6= ℘.

Since r℘′ are compatible with the decomposition of a Chow motive, if we set Vπ,℘ to be image of V ℘K by the

projection to H2,2
M (h1(Aπ)), the desired conditions are satisfied. �

Remark 5.3. In [22], they use the étale Chern class map c2,2 (introduced in [12]) instead of r℘. However,
it is known that r℘ is two times c2,2 (See [12, p.233, Proof of Proposition 2.35]). Therefore, we can apply
the result of [22] to our situation.

This completes the proof of Proposition 1.5. �

5.2. We prove Proposition 1.4. To prove this, we decompose the Chow motive h(X) into smaller pieces as
follows. Let us use the formalism of Chow motives as explained in [37].

By Poincaré reducibility theorem (see [28, p.1, Theorem 1] for the case where the base field is imperfect),
the Jacobian JacX of X is canonically (up to isogeny) isogenous to a product of k-simple abelian varieties:
JacX → B1 × · · · ×Bs. Then we have

h(X) ∼= h0(X)⊕ h1(X)⊕ h2(X)
∼= h0(X)⊕ h1(JacX)⊕ h2(X)
∼= h0(X)⊕ h1(

∏s
i=1Bi)⊕ h2(X)

∼= h0(X)⊕
⊕s

i=1 h
1(Bi)⊕ h2(X),

The first isomorphism is that in [37, p.172, 3.2]. The second isomorphism follows from [37, p.178, Proposition
4.5]. The third isomorphism follows from [37, p.182, Corollary 5.10]. For the fourth isomorphism, recall (see
[7, p.216, Theorem 3.1]) that the projector corresponding to the hi part of an abelian variety is characterized
by the fact that the multiplication-by-n map acts as ni on it. Now observe that h(

∏s
i=1Bi)

∼= ⊗si=1h(Bi) ∼=
⊕i1,...,ishi1(B1)⊗ · · · ⊗ his(Bs). Since h0(Bi) ∼= h(Spec k) for all i, the fourth isomorphism holds true.

Let us write YL = Y ×Spec k SpecL for a k-scheme Y and a k-algebra L. To prove Proposition 1.4, it
suffices to show the following three statements:

(1) The map ⊕℘r℘ : H2,2
M (h0(X))→ ⊕℘H2,2

ét (h0(Xk℘)) induces a surjection when the source is tensored
with Q`.

(2) The map ⊕℘r℘ : H2,2
M (h1(Bi))→ ⊕℘H2,2

ét (h1(Bi,k℘)) induces a surjection when the source is tensored
with Q` for each 1 ≤ i ≤ s.

(3) The map ⊕℘r℘ : H2,2
M (h2(X))→ ⊕℘H2,2

ét (h2(Xk℘)) induces a surjection when the source is tensored
with Q`.
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Note that h0(Xk℘) ∼= h(Spec k℘) and h2(Xk℘) ∼= (Spec k℘, id,−1) = L (the Lefschetz motive). Hence the
target group of the map in (1) and in (3) are zero, so the surjectivity follows trivially. The statement (2)
follows from Proposition 1.5.

This finishes the proof of Proposition 1.4. �

5.3. Proof of Theorem 1.1. Let

∂℘,Q` : K2(Xk℘)Q` → G1(Xκ(℘))Q`

be the boundary map at ℘ tensored with Q` and

c2,2,℘ : K2(Xk℘)Q` → H2
ét(Xk℘ ,Q`(2))

the étale Chern class map (defined in [12]) at ℘ tensored with Q`. As we remarked in Remark 5.3, the
difference between r℘ and c2,2,℘ is a non-zero constant multiple.

Suppose

(1) ∂℘,Q`(x) = 0 if and only if c2,2,Q`(x) = 0 for x ∈ K2(Xk℘)Q` ,
(2) ∂℘,Q` is surjective if and only if c2,2,Q` is surjective.

Then it is easy to see that Theorem 1.1 follows from Proposition 1.4. Therefore it is enough to check (1)
and (2). By [22, p.1059, Proposition 3.1], (1) holds true. Let V ⊂ K2(Xk℘)Q be a finite dimensional vector
space. Then, using (1), we have dimQ` ∂℘,Q`(V ⊗Q Q`) = dimQ` c2,2,℘(V ⊗Q Q`). Since dimQG1(Xκ(℘))Q =

dimQ` H
2
ét(Xksep℘ ,Q`(2)) by [22, p.1056, Proposition 2.1], (2) holds true. This completes the proof.

6. Proof of Corollary 1.3 and the target group

We give a precise form of Corollary 1.3 and its proof in this section. We also compute the dimension of
the target group of the boundary map in Theorem 1.1.

6.1.

Corollary 6.1. Theorem 1.1 holds in all of the following cases.

(1) X is an elliptic curve, which is not isotrivial.

(2) X is a (compactified) Drinfeld modular curve. That is, when X = M
∞
K for some ∞ and K as in

Section 2.1.
(3) X = M∞B,K is the moduli scheme of D-elliptic sheaves of rank 2 with level K-structure as defined in

[26]. Here, B is an indefinite quaternion algebra over k, D is a maximal order of B and K is an
open compact subgroup of (B ⊗k Ak)×.

(4) X is the curve Xs of Section 7 for s ∈ k such that D(s) 6= 0.

Proof. We check that the condition (GL2) holds in each case. It holds trivially in Case (1). It follows from
(2.2) in Case (2). For Case (3), let ΠB denote the set of cuspidal automorphic representations of (B⊗kAk)×.
Then we have

H1
ét(M

∞
B,K,ksep ,Q`) ∼=

⊕
π∈ΠB ,π∞∼=St

(⊗v 6=∞πv)K ⊗ ρ(π)

where ρ(π) is an irreducible 2-dimensional representation of Gk. To see this, one proceeds as in the proof
of [8, p.590, Proposition 10.3]. (See also [11, Theorem 4.13.1].) The key ingredient is the uniformization
of the moduli space, which, in the D-elliptic sheaf case, is provided by [2, p.171, Theorem 4.4.11]. The
irreducibility of ρ(π) follows from the L-factor computation given in [26, Theorem 14.9(ii)]. For Case (4), it
follows from Corollary 7.2. �

6.2. Let X be as in Theorem 1.1. Write H1
ét(Xksep ,Q`) ∼= ⊕nj=1ρj where each ρj is a 2-dimensional irreducible

representation of Gk. Let SpX denote the number of pairs (j, ℘) such that ρj |Gk℘ ∼= Sp.

Lemma 6.2. We have dimQ` ⊕℘∈C0
H2,2

ét (h1(Xk℘)) = SpX .

Proof. It suffices to prove this for X = B a simple abelian variety. If SpB = 0, this holds by Lemma 5.1.
When SpB 6= 0, as we have seen in the discussion after Lemma 5.1 that B = Aπ for some π. In this case,
the claim follows from Proposition 3.1. �

Corollary 6.3. Let X be as in Theorem 1.1. Then

• dimQK2(X)Q ≥ SpX ,
• dimQH

2
M(X,Q(2)) ≥ SpX .

Proof. This follows from Lemma 6.2, using Theorem 1.1 and Proposition 1.4 respectively. �

Consider Case (4) in Corollary 6.1. We show (Proposition 7.1) that, given an integer n, there exists an
element s ∈ k such that D(s) 6= 0 and SpXs ≥ 2n. Hence we have
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Corollary 6.4. Suppose the characteristic of k is greater than 5. For any n ∈ Z, there exists a genus two
curve X such that K2(X)Q ≥ n.

Proof. This follows from Corollary 6.3 and Proposition 7.1 immediately. �

Note that in [22, p.1054, Corollary 1.3], a similar statement where genus two is replaced by genus one is
proved.

7. abelian varieties of GL2-type

We keep the notations in Section 2. In this section we will be concerned with some classes of abelian
varieties over k which admit many endomorphisms. Such abelian varieties are originally considered by Ribet
[33] in which the ground fields are Q and they are called abelian varieties of GL2-type. We will define
an analogue of such objects in the function fields setting and construct examples of 2-dimensional abelian
varieties over k of GL2-type which has multiplicative reduction at given finite places.

Let B be an abelian variety over k of dimension g. We say that B is of GL2-type if there exist a number
field F of degree g over Q and an embedding ι : F ↪→ Endk(B) ⊗Z Q as Q-algebras. The abelian varieties
Aπi of Proposition 2.1 (3) are examples of abelian varieties over k of GL2-type.

Let B be an abelian variety over k of GL2-type endowed with an embedding ι : F ↪→ Endk(B) ⊗Z Q.
Let ` be a prime number which is different from the characteristic of k. Via ι and the natural embedding
Endk(B)⊗ZQ ↪→ EndQ`[Gk](V`B), the field F acts on V`B and its action is non-trivial and faithful because F
is a field and it contains 1. Since [F : Q] = g and rankQ`V`B = 2g, we can view V`B as a free F⊗QQ`-module
of rank 2 by [39, Lemma 2.1-(i)]. Then we have the 2-dimensional Galois representation attached to B:

ρ : Gk −→ AutF⊗QQ`(V`B) ' GL2(F ⊗Q Q`) =
∏
v|`

GL2(Fv)

where Fv is the completion of F at a finite place v of F dividing `. We denote by ρv the composition of ρ

and the projection
∏
v|`

GL2(Fv)
prv−→ GL2(Fv). It is easy to see that L(s, V`B) =

∏
v|`

L(s, ρv).

We next construct examples of 2-dimensional abelian varieties over k of GL2-type by using Brumer-
Hashimoto’s family.

Let p > 5 be a prime number and q be a power of p. Let k and A be as in Section 1.2. Let H(X; a, b, c)
be the polynomial defined by [16, p.479, (10)]. For any s ∈ k, we define the following polynomial by using
H(X; a, b, c):

(7.1) H(x;−7

4
, s+ 1,−1) := x6− (2s+ 3)x5 + (s2 + 4s+

13

4
)x4 + (2s2− 2s− 3

2
)x3 + (s2 + 2s+

1

4
)x2− 2sx

with the discriminant

D(s) := s6(−9 + 1160s+ 1512s2 + 992s3 + 48s4)2 6= 0

with respect to x. For s ∈ k so that D(s) 6= 0, gluing the two finite surjective morphism f1 : Speck[x, y]/(y2−
H(x;− 7

4 , s + 1,−1)) −→ A1
k,x, (x, y) 7→ x and f2 : Speck[x1, y1]/(y2

1 − x6
1H( 1

x1
;− 7

4 , s + 1,−1)) −→ A1
k,x1

,

(x1, y1) 7→ x1 by the isomorphism (x, y) ←→ (x1, y1) = ( 1
x ,

y
x3 ), we have a finite surjective morphism

Xs −→ P1. The resulting variety Xs is a projective smooth curve of genus 2 over k. Put Js = JacXs. Then
by [16] we have an embedding ι : F = Q(

√
5) ↪→ Endk(Js) ⊗Z Q. Actually the results of [16] stated for

which ground fields is the rational function fields over Q, but it is easy to check that the algebraic operations
performed there work over any Z[ 1

2·3·5 ]-algebra. Hence we can apply the results in [16].
Let ℘1, . . . , ℘n be the non-zero prime ideals of A. Take a non-zero element s ∈ ∩ni=1℘i. Then it is easy

to see D(s) 6= 0. For such s and each finite place v|` of F = Q(
√

5) we attach the 2-dimensional Galois
representation ρs,v : Gk −→ GL2(Fv) from Js as above. Then the local behaviour of ρs,v at each ℘i is as
follows.

Proposition 7.1. For each i ∈ {1, . . . , n}, ρs,v|Gk℘i ' Sp.

Proof. For simplicity put ℘ = ℘i. Let A℘ (resp. k℘) be the completion of A (resp. k) at ℘. Fix a uniformizer
$ of A℘, put κ := A℘/$ and q$ = ]κ. Let Wk℘ be the Weil group of k℘ (see [41] for basic properties). Fix
a lift Frob$ ∈ Wk℘ of the geometric Frobenius element of Gκ. Then each element σ ∈ Wk℘ can be written
uniquely as σ = τ · Frobn$, τ ∈ Ik℘ , n ∈ Z. Put n(σ) = n for such σ ∈Wk℘ . Since Wk℘ is dense in Gk℘ , the
restriction map from the category of continuous Gk℘-representations to the category of Wk℘-representations
is injective. So it suffices to prove WD(ρs,v|Gk℘i ) 'WD(Sp).

Gluing the two finite surjective morphism

f̃1 : Xs,1 := SpecA℘[x, y]/(y2 −H(x;−7

4
, s+ 1,−1)) −→ A1

A℘,x, (x, y) 7→ x
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and

f̃2 : Xs,2 := SpecA℘[x1, y1]/(y2
1 − x6

1H(
1

x1
;−7

4
, s+ 1,−1)) −→ A1

A℘,x1
, (x1, y1) 7→ x1

by the isomorphism (x, y) ←→ (x1, y1) = ( 1
x ,

y
x3 ) , we have a finite surjective morphism Xs −→ P1

A℘
. The

resulting variety Xs is a projective flat scheme over A℘ with relative dimension one. The projectivity follows
from the ampleness of the invertible sheaf O(1) on P1

A℘
and [15, III, Exercise 5.8-(d)]. Since the special fiber

of Xs is obtained by gluing the following affine models:

Xs,1⊗A℘ κ = Specκ[x, y]/(y2− x2(x− 1)2(x− 1

2
)2), Xs,2⊗A℘ κ = Specκ[x1, y1]/(y2

1 − (1− x1)2(1− 1

2
x1)2),

the possible singularities are at the points Pi ∈ Xs,1 corresponding to the ideals (x− i, y,$) for i ∈ {0, 1, 1
2}.

It is easy to see that Xs is regular at P 1
2
. We denote by X̃s the blowing up of Xs along to the ideals (x, y,$)

and (x−1, y,$). Then X̃s is a proper strictly semistable model of Xs over A℘ and its special fiber is obtained
by gluing two copies of P1

κ corresponding to two irreducible components of Xs ⊗ κ at three points P0, P1,
and P 1

2
and then replacing Pi by a chain of i + 1 projective lines for i = 0, 1. Hence Xs ⊗ κ is the union

of five divisors D1, . . . , D5 which are isomorphic to P1
κ over κ. Here D1 and D2 correspond to irreducible

components of Xs⊗κ and D3 (resp. Di, i = 4, 5) is one chain (resp. two chains) between D1 and D2. These
components intersect at κ-rational points. Then by [14, Section 12], we have the claim by Picard-Lefschetz
formula which is well-known for experts. However we give a proof here in details for the reader’s convenience
and further use the weight spectral sequence of Rapoport and Zink instead of Picard-Lefschetz formula.

Henceforth H∗ means the étale cohomology. To compute the action of Weil group Wk℘ of k℘ on V`Js
we use the isomorphism VlJs ' H1(Xs,ksep ,Q`) and the weight spectral sequence of Rapoport and Zink for

the semistable curve Xs. Put D(0) =
∐5
i=1Di and D(1) =

∐
i<j Di ∩ Dj . Note that D(1) consists of six

κ-rational points. Then by [32] we have the following spectral sequence:

E−r,w+r
1 =

⊕
i≥max{0,−r}

Hw−r−2i(D
(−r+2i)
κ ,Q`(−i)) =⇒ Hw(Xs,ksep℘ ,Q`).

This gives the weight filtration FilWi on Hw(Xs,ksep℘ ,Q`). The essential E1-terms are as follows:

E−1,2
1 E0,2

1

E0,1
1

E0,0
1 E0,1

1 .

We can compute the E1-terms as follows:

E−1,2
1 = H0(D

(1)
κ ,Q`(−1)) ' Q`(−1)⊕6, E0,2

1 = H2(D
(0)
κ ,Q`) ' Q`(−1)⊕5,

E0,1
1 = H1(D

(0)
κ ,Q`) = 0, E0,0

1 = H0(D
(0)
κ ,Q`) ' Q⊕5

` , E1,0
1 = H0(D

(1)
κ ,Q`) ' Q⊕6

` .

For each σ ∈Wk℘ , since∑
w

(−1)wtr(σ|Hw(Xs,ksep℘ ,Q`)) =
∑
r,w

(−1)wtr(σ|E−r,w+r
1 ) = 5− 6 + 5qn(σ)

$ − 6qn(σ)
$ = −1− qn(σ)

$ ,

tr(σ|H0(Xs,ksep℘ ,Q`)) = 1, and tr(σ|H2(Xs,ksep℘ ,Q`)) = q
n(σ)
$ , we have that

tr(σ|H1(Xs,ksep℘ ,Q`)) = 2 + 2qn(σ)
$ .

Since H1(Xs,ksep℘ ,Q`) is a free F` := F ⊗Q Q`-module of rank 2 and det(σ|H1(Xs,ksep℘ ,Q`)) = q
2n(σ)
$ , the

eigenvalues of σ on F`-module H1(Xs,ksep℘ ,Q`) are 1, q
n(σ)
$ . Therefore as F`[Wk℘ ]-modules we have that

H1(Xs,ksep℘ ,Q`)ss ' F` ⊕ F`(−1).

We next compute the monodromy operator N on H1(Xs,ksep℘ ,Q`) which is defined by Grothendieck’s mon-
odromy theorem. By weight monodromy theorem for curves, we have that

(1) N(FilWi H
1(Xs,ksep℘ ,Q`)) ⊂ FilWi−2H

1(Xs,ksep℘ ,Q`),

(2) N : grW2 H1(Xs,ksep℘ ,Q`) ' Q`(−1)⊕2 ∼−→ grW0 H1(Xs,ksep℘ ,Q`) ' Q⊕2
` .

Recall that F acts on H1(Xs,ksep℘ ,Q`)) via the embeddings F
ι
↪→ Endk(Js) ⊗Z Q ↪→ EndQ`[Gk](V`Js)

and V`Js ' H1(Xs,ksep℘ ,Q`)) as Q`[Gk]-modules. Therefore the action of F = Q(
√

5) on H1(Xs,ksep℘ ,Q`))
commutes with the Galois action, hence F acts also on grW0 H1(Xs,ksep℘ ,Q`) = FilW0 H1(Xs,ksep℘ ,Q`) = Ker(N)
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and grW2 H1(Xs,ksep℘ ,Q`). Note that grWi H
1(Xs,ksep℘ ,Q`) is a free F`-module of rank one for i = 0, 2. So take

a basis e2 of grW0 H1(Xs,ksep℘ ,Q`) = FilW0 H1(Xs,ksep℘ ,Q`) over F`. Then by (1) as above, N(e2) = 0 since

FilW−2H
1(Xs,ksep℘ ,Q`) = 0. Take a lift e1 ∈ H1(Xs,ksep℘ ,Q`) of the element corresponding to e2 via the

isomorphism of (2). Then we have N(e1) = e2. Clearly {e1, e2} forms a basis of H1(Xs,ksep℘ ,Q`) over

F`. Therefore the matrix representation of N with respect to this basis is

(
0 1
0 0

)
. Hence we have

WD(ρv|Gk℘ ) 'WD(Sp). �

Corollary 7.2. The notations are same as above. The curve Xs satisfies the condition (GL2).

Proof. Recall that we have assumed that p > 5 for the construction of Xs. Then by Tate conjecture [43],

V`Js ⊗Q` Q` =
⊕
v|`

ρv ⊗Fv Q` is a semi-simple Q`[Gk]-module. If ρv ⊗Fv Q` is reducible for some v|`, then

the rank of the monodromy operator N on V`Js is 0 or 1. However by Proposition 7.1 the rank of N has to
be 2 which gives a contradiction. Hence ρv ⊗Fv Q` is irreducible for any v|`. �

Remark 7.3. It seems to be meaningful to discuss about k-simpleness of Js because if Js is not k-simple,
then Js is isogenous to the product of two elliptic curves over k which have split multiplicative reduction at
each ℘i. In this case, Corollary 6.4 comes down to [22, Corollary 1.3] and therefore does not create essentially
a new example.

In general, it seems to be difficult to check the k-simpleness of Js for any k. However for a given k we can
check the k-simpleness of Js as follows. Assume that Xs has good reduction at some non-zero ℘ ∈ SpecA.
We have the maps

Endk(Js)⊗Z Q α−→ Endk℘(Js,k℘)⊗Z Q sp−→ Endκ(Js,κ)⊗Z Q.
The homomorphism α is a natural embedding and the second map sp is the specialization map which is known
to be injective (cf. [25, p.45, Theorem 3.2]). Hence the composition of α and sp is injective. If L(s, V`Js,κ)−1

is an irreducible polynomial in Q[q−s], then Js,κ is κ-simple by [40], hence Endκ(Js,κ) ⊗Z Q is a division
field. Hence Js is also k-simple because of the injectivity of sp ◦ α as above. From this we can easily check
the k-simpleness of Js when k = Fp(s) and 5 < p < 1000. Here the calculation is done by using Mathematica
version 8.0.
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