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Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium
statistical mechanics and Bernstein-Greene-Kruskal waves
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Traveling clusters are ubiquitously observed in the Hamiltonian mean-field model for a wide class of initial
states, which are not predicted to become spatially inhomogeneous states by nonequilibrium statistical mechanics
and by nonlinear Landau damping. To predict such a cluster state from a given initial state, we combine
nonequilibrium statistical mechanics and a construction method of Bernstein-Greene-Kruskal (BGK) waves
with the aid of phenomenological assumptions. The phenomenological theory is partially successful, and the
theoretically constructed cluster states are in good agreement with N -body simulations. Robustness of the theory
is also discussed for unsuccessful initial states.
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I. INTRODUCTION

A Hamiltonian system with long-range interactions is
frequently trapped in a quasistationary state or a quasiperiodic
state before reaching thermal equilibrium. The lifetime of
a trapped state diverges algebraically [1–3] as the number
of particles increases, and hence observable states are such
nonequilibrium states in the limit of large system size. A
remarkable difference between the trapped state and thermal
equilibrium is that the former depends on the initial values of
nonconserved quantities; for instance, the order parameter. It
is hence important to develop a theory which predicts a trapped
state from a given initial state.

One such theory involves nonequilibrium statistical me-
chanics and was proposed by Lynden-Bell [4], and we refer to
this theory as Lynden-Bell statistics. The theory is based on the
description of N -body dynamics by the Vlasov equation [5].
Incompressibility of the Vlasov equation derives exclusivity
of area elements of μ space and, accordingly, distribution
functions of Fermi-Dirac type. The theory was originally
introduced for self-gravitating systems, but was not fully
successful in predicting the quasistationary states except for
initial states which are close to the virial equilibrium [6,7].
See [8] for non-neutral plasmas.

Apart from the original objects, Lynden-Bell statistics are
successfully applied to the so-called Hamiltonian mean-field
(HMF) model with waterbag initial states [9]. The Lynden-
Bell statistics draw a phase diagram of nonequilibrium phase
transitions on the two-dimensional parameter plane spanned
by the energy and initial order parameter axes, and the validity
of the phase diagram is confirmed by N -body simulations [10].
A tricritical point is also discovered by Lynden-Bell statistics,
while only the second-order phase transition occurs in thermal
equilibrium.

Lynden-Bell statistics are useful to describe quasistationary
states in the HMF model, but is not perfect. One failure
is the existence of traveling clusters which are observed by
N -body simulations over a wide part of the high-energy region
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where Lynden-Bell statistics predict spatially homogeneous
quasistationary states [11,12]. The failure of statistical pre-
diction implies that the clusters are dynamically formed, and
we need to combine statistical mechanics and dynamics to
understand the mechanism of such traveling clusters. This
combination can possibly develop a nonequilibrium statistical
theory beyond Lynden-Bell statistics and is the main purpose
of the present paper.

The state having traveling clusters is interpreted as a
periodic solution to the Vlasov equation due to the periodic
boundary condition of the HMF model. There are two
dynamical mechanisms for constructing such a periodic state
starting from a homogeneous background.

One of the mechanisms is nonlinear Landau damping
[13], in which resonance between particles and waves is
essential. Clusters result when the time scale of the linear
Landau damping [14] is sufficiently long compared with
the time scale in which resonant particles are trapped by
waves. Such clusters are favorable to repulsive interactions;
for instance, in plasmas, and can be observed in a wide class
of initial states. Indeed, oscillations suggesting the existence
of traveling clusters are observed experimentally [15,16] and
numerically [17]. Attractive interactions of the HMF model
make it drastically more difficult to form such clusters. The
parameter region is theoretically estimated where the nonlinear
Landau damping produces the traveling clusters [18], and the
region is very small compared with the region where the
traveling clusters are observed by N -body simulations [12].
The nonlinear Landau damping is hence not suitable to explain
the ubiquitous traveling clusters in the HMF model. Nonlinear
Landau damping is based on perturbation techniques, and
hence we need a nonperturbative method to understand the
mechanism of the traveling clusters.

The other nonperturbative mechanism is an exact nonlinear
traveling wave solution. The exact solution was discussed by
Bohm and Gross [19], and formalized by Bernstein, Greene,
and Kruskal [20]. The nonlinear traveling solution is hence
known as a BGK wave. The basic idea of the BGK wave is to
use the fact that any smooth functions of energy are stationary.
Using this idea, a method is proposed to construct a nonlinear
traveling solution from a homogeneous distribution [21,22].
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Following, but modifying, this method, we theoretically
construct a traveling cluster on a homogeneous background
from a given initial waterbag state.

The construction method requires us to determine the
velocities of the traveling clusters, and we determine them
from the Landau dispersion relation. We choose the velocity
as a frequency of the slowest decay mode, where frequency is
equivalent to velocity in the HMF model due to the periodic
boundary condition. We remark that, in the high-energy region,
the homogeneous background is stable and no growing modes
exist, and we have two of the slowest decay modes from
symmetry of the homogeneous background. Consequently,
we have to construct not one but two traveling clusters on
a homogeneous background.

The strategy of constructing two traveling clusters is as
follows: As a homogeneous background, we use a homoge-
neous quasistationary state which is predicted by Lynden-Bell
statistics, since the statistics are successful except for the
existence of the unpredicted clusters. Such a homogeneous
state is the seed of a cluster state. One traveling cluster can
be added onto the background by the method of Holloway
and Dorning [21]. A two-cluster state can be constructed by
nonlinear superposition of a pair of one-cluster states [23,24].
The constructed two-cluster state has unknown parameters,
and we determine them by constraints of energy conservation,
normalization conditions, and the self-consistency condition
to ensure stationarity.

Construction of the present paper is as follows: The HMF
model and Lynden-Bell statistics are introduced in Sec. II. The
Landau dispersion relation is given in Sec. III. The one-cluster
state and two-cluster state are constructed in Secs. IV and
in V, respectively. These states have unknown parameters,
and they are determined in Sec. VI from constraints. The
constructed two-cluster state is examined numerically in
Sec. VII. The robustness of the theory is discussed in
Sec. VIII. The conclusion appears in Sec. IX.

II. MODEL AND LYNDEN-BELL DISTRIBUTION

The HMF model [25,26] consists of N particles confined
on the unit circle and is expressed by the Hamiltonian

H (θ,p) =
N∑

j=1

p2
j

2
+ 1

2N

N∑
j=1

N∑
k=1

[1 − cos(θj − θk)], (1)

where θj is the angle of the j th particle on the unit circle, and pj

is the conjugate angular momentum. Interaction in the HMF
model has the first Fourier component only, and hence the
Landau dispersion relation is useful for wave number k = ±1
only. From the symmetry, we may set k = 1 without loss of
generality.

Despite the simplicity of interactions, the HMF model
retains many qualitative properties of long-range interacting
systems. The simplicity helps to compute the exact partition
function [26], and to perform N -body simulations within a
cost of O(N ) instead of O(N2), and hence it has been widely
studied in the last decade.

The associated Vlasov equation to the HMF model is, for
the one-particle distribution function f , written as

∂f

∂t
+ ∂H1

∂p

∂f

∂θ
− ∂H1

∂θ

∂f

∂p
= 0, (2)

where the one-particle Hamiltonian H1 is

H1(θ,p,t) = p2

2
− Mx[f ](t) cos θ − My[f ](t) sin θ. (3)

The vector (Mx[f ](t),My[f ](t)) defined by

Mx[f ](t) =
∫ π

−π

dθ

∫ ∞

−∞
dp cos θf (θ,p,t),

(4)

My[f ](t) =
∫ π

−π

dθ

∫ ∞

−∞
dp sin θf (θ,p,t),

is the order parameter, or the magnetization, of this system.
Introducing the phase of the magnetization, denoted by φ(t),
the one-particle Hamiltonian H1 is rewritten as

H1(θ,p,t) = p2

2
− M[f ](t) cos[θ − φ(t)],

where

M[f ] =
√

(Mx[f ])2 + (My[f ])2.

A homogeneous stationary state f implies M[f ] = 0, and M

takes the maximum value 1 when all the particles are at the
same position.

We consider the waterbag initial distribution, fWB(θ,p),
which is

fWB(θ,p) =
{

n0 (θ,p) ∈ R

0, otherwise,
(5)

where R is a domain with finite area on μ space, and μ =
(−π,π ] × R. We set R as a rectangular region:

R = {(θ,p) ∈ μ||θ | < θ0,|p| < p0}. (6)

From the normalization condition, n0 = 1/|R| where |R| is
the area of R. The initial distribution (5) gives the initial
magnetization pointing at the x axis as

(Mx[fWB],My[fWB]) = (M0,0),

where M0 = (sin θ0)/θ0. The family of initial waterbag distri-
butions is parametrized by the pair (θ0,p0), or equivalently the
pair of initial magnetization M0 and energy

U =
∫ π

−π

dθ

∫ ∞

−∞
dp

(
p2

2
+ 1 − M[f ] cos θ

2

)
f (θ,p,t).

(7)

We remark that U is conserved under the Vlasov equation (2),
and the waterbag initial distribution (5) gives

U = (p0)2

6
+ 1 − M2

0

2
. (8)
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FIG. 1. (Color online) Waterbag initial distribution on μ space with (M0,U ) = (0.5,0.8) (a) and corresponding homogeneous distribution
predicted by Lynden-Bell statistics (b).

If the energy U is high enough, Lynden-Bell statistics
predict that a waterbag initial distribution goes to a spatially
homogeneous distribution of

fLB(p) = n0

eα+βp2/2 + 1
, (9)

where the Lagrange multipliers α and β are determined
by substituting the Lynden-Bell distribution (9) into the
normalization condition∫ π

−π

dθ

∫ ∞

−∞
dpfLB(p) = 1,

and the energy constraint

∫ π

−π

dθ

∫ ∞

−∞
dp

(
p2

2
+ 1

2

)
fLB(p) = U.

On the parameter plane (M0,U ), the high-energy region
is reported in [10] where the homogeneous Lynden-Bell
distribution is stable. Roughly speaking, the lower boundary
of the high-energy region is 0.75 for M0 = 1, and it decreases
as M0 decreases. For instance, the point (M0,U ) = (0.5,0.8)
is in the high-energy region, and Lynden-Bell statistics gives a
homogeneous distribution as shown in Fig. 1. Bachelard et al.
reported that the traveling clusters appear in the high-energy
region except for a neighborhood of the lower boundary [12].
Indeed, three clusters A, B, and C are observed in Fig. 2 by
an N -body simulation for the point (M0,U ) = (0.5,0.8). We
neglect the cluster B since it has zero velocity and is not a
traveling cluster, and construct the two traveling clusters A
and C on the homogeneous background shown in Fig. 1(b).

III. DISPERSION RELATION

We decide the velocities of the two traveling clusters A and
C from the Landau dispersion relation for the homogeneous
distribution (9). Expanding the distribution around fLB as

f (θ,p,t) = fLB(p) + f1(θ,p,t),

where f1 is a perturbation, we obtain the linearized Vlasov
equation. The linearized equation is analyzed by performing
the Fourier-Laplace transform of f1 defined by

f̂1(k,p,ω) =
∫ π

−π

dθe−ikθ

∫ ∞

0
dteiωtf1(θ,p,t). (10)

The dispersion relation is written by D(ω) = 0, where D(ω)
is sometimes called the dispersion function and is expressed
for wave number k = 1 by

D(ω) = 1 + π

∫
L

f ′
LB(p)

p − ω
dp. (11)

The integral path L runs from −∞ to ∞. The dispersion
function is well-defined in the upper half ω plane to ensure
convergence of the Laplace transform, and we need an analytic
continuation to obtain D(ω) on the whole ω plane. The analytic
continuation is introduced by Landau [14] and is performed
by deforming the integral path L on the complex p plane to
avoid the singular point p = ω when it crosses the real axis
from the upper half plane to the lower. After the continuation,
the Landau dispersion function is expressed as

D(ω) = 1 + πP
∫ ∞

−∞

f ′
LB(p)

p − ω
dp + i2π2η(ω)f ′

LB(ω), (12)

FIG. 2. (Color online) Temporal evolution of density plots in μ space. The density plots are taken at t = 500 (a), 502 (b), and 504 (c).
(M0,U ) = (0.5,0.8) and N = 106. Three clusters A, B, and C are observed. Clusters A and C propagate to the right and left, respectively, and
cluster B does not propagate.
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where P denotes the principal value, and

η(ω) =
⎧⎨
⎩

0, Im ω > 0
1/2, Im ω = 0
1, Im ω < 0.

The third term on the right-hand-side of (12) comes from the
analytic continuation.

Temporal evolution of the perturbation f1 is roughly
proportional to exp(−iωt) by the inverse Laplace transform,
where ω is a complex root of the Landau dispersion relation.
The real and imaginary parts of ω hence express the frequency
of oscillation and the growth rate, respectively. We assume that
the homogeneous state (9) is stable, and hence the imaginary
part is negative. We focus on the long-lasting slowest decay
mode and denote the corresponding root by ω1 + iω2, whose
imaginary part is largest. We call it the main root. We have
a pair of main roots, since the distribution (9) is even and
D(−ω) = D(ω) holds accordingly, where ω is the complex
conjugate of ω. In other words, if ω1 + iω2 is a root of D(ω),
then so is −ω1 + iω2. We assume ω1 > 0 without loss of
generality. See [18,27] for the linear analysis in the HMF
model.

IV. ONE-CLUSTER STATE

We first construct a one-cluster state by following, but
modifying, the procedure of Buchanan and Dorning [22].
The one-cluster state is constructed from the homogeneous
Lynden-Bell distribution (9) and one of the main roots,
ω1 + iω2, of the Landau dispersion function (12). We expect
a cluster around the resonant point p = ω1.

As a preparation of the construction of a one-cluster state,
we shift the cluster to the origin by the Galilei transform,
p̃ = p − ω1 and θ̃ = θ − ω1t . The Vlasov equation (2) is
transformed to

∂f̃

∂t
+ ∂h1

∂p̃

∂f̃

∂θ̃
− ∂h1

∂θ̃

∂f̃

∂p̃
= 0, (13)

where

f̃ (θ̃ ,p̃,t) = f (θ̃ + ω1t,p̃ + ω1,t) (14)

and

h1(θ̃ ,p̃; M1) = p̃2

2
− M1 cos θ̃ . (15)

The subscript 1 of h1 and M1 corresponds to the one-cluster
state. The magnetization M1 is defined by

M1 =
∫ π

−π

dθ̃

∫ ∞

−∞
dp̃ cos θ̃ f̃ (θ̃ ,p̃,t). (16)

We start from the homogeneous Lynden-Bell distribution

f̃ (p̃) = fLB (p̃ + ω1) ,

which is obtained for a given pair of parameters (M0,U ). What
we have to do is to construct a one-cluster stationary state, since
it becomes a periodic state by the inverse Galilei transform.
The idea to construct a one-cluster stationary state from f̃ is
to use the fact that any smooth distributions depending on θ̃

and p̃ through h1(θ̃ ,p̃; M1) are stationary if the magnetization
(16) is determined self-consistently. One simple example

is f̃ (h1(θ̃ ,p̃; M1)), but this type of distributions has three
problems to be solved.

The first problem appears in the limit M1 → 0. We require
that the one-cluster state goes to the homogeneous state f̃ (p̃) in
this limit but f̃ (h1(θ̃ ,p̃; M1)) does not, and hence we consider

f̃ (
√

2h1(θ̃ ,p̃; M1)) (17)

instead of the simple example. For this purpose, we omitted
the integral constant in the one-particle Hamiltonian h1 (15).
The distribution (17) still has a problem in that it goes to f̃ (|p̃|)
instead of f̃ (p̃). We hence divide f̃ into even and odd parts,
which are defined as

f̃ e(p̃) = f̃ (p̃) + f̃ (−p̃)

2
, f̃ o(p̃) = f̃ (p̃) − f̃ (−p̃)

2
,

respectively. Using this division, we introduce

Ge(θ̃ ,p̃; M1) = f̃ e(
√

2h1(θ̃ ,p̃; M1)),

Go(θ̃ ,p̃; M1)

{
f̃ o(

√
2h1(θ̃ ,p̃; M1)) p̃ � 0

−f̃ o(
√

2h1(θ̃ ,p̃; M1)) p̃ < 0,

and then the distribution

Ge(θ̃ ,p̃; M1) + Go(θ̃ ,p̃; M1)

depends on (θ̃ ,p̃) only through h1(θ̃ ,p̃; M1), and goes to f̃ (p̃)
in the limit M1 → 0.

The second problem is that the argument
√

2h1 is not
defined in the region h1 < 0, which is the center part of
the cluster, as shown in Fig. 3. To discuss clearly, we define
positive- and negative-energy regions as

C+ = {(θ̃ ,p̃)|h1(θ̃ ,p̃) � 0}
and

C− = {(θ̃ ,p̃)|h1(θ̃ ,p̃) < 0},
respectively. In previous works [21,22], the odd part Go is
set to 0 in C−, and we adopt this setting to make the one-
cluster state stationary. On the other hand, we introduce a
different assumption from the previous works for the even
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1

-3 -2 -1 0 1 2 3

p̃

θ̃

√
2M1

h1 = 2M1

h1 = M1
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FIG. 3. Schematic of μ space around the Galilei-transformed
cluster.
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part. Previously Ge is expanded in the Taylor series of even
terms in C+. The expanded form has no square roots, and hence
we may extend it to C−. However, we observe that the height
of the distribution function is almost constant in the clusters
and is close to the initial height n0 [see Figs. 1(a) and 2],
and hence we phenomenologically assume that Ge is constant
in C−. To this end, we redefine Ge and Go on the whole μ

space as

Ge(θ̃ ,p̃) :=
{

f̃ e(
√

2h1(θ̃ ,p̃)), (θ̃ ,p̃) ∈ C+
n1, (θ̃ ,p̃) ∈ C−

Go(θ̃ ,p̃) :=

⎧⎪⎨
⎪⎩

f̃ o(
√

2h1(θ̃ ,p̃)), (θ̃ ,p̃) ∈ C+,p̃ � 0

0, (θ̃ ,p̃) ∈ C−
−f̃ o(

√
2h1(θ̃ ,p̃)), (θ̃ ,p̃) ∈ C+,p̃ < 0,

where n1 is a positive constant. We remark that this phe-
nomenological assumption might be reasonable if the domain
R (6) covers C−. That is, θ0 � π/2 and p0 > ω1 + √

2M1, or
equivalently

M0 � 2

π
and U � (ω1 + √

2M1)2

6
+ 1 − M2

0

2
. (18)

The third problem is that the summation Ge + Go is
not stationary, since there is an odd part in the region 0 <

h1(θ̃ ,p̃) < M1. In addition, Ge + Go is discontinuous on the
line h1(θ̃ ,p̃; M1) = 0 unless f̃ e(0) = n1 and f̃ o(0) = 0. We
therefore introduce a smoothing function

S(η)=

⎧⎪⎨
⎪⎩

0, η � 1
1
2

[
1+ tanh 3−2η

2(η−1)(η−2)

]
, 1 < η < 2

1, η � 2

(19)

and cut such unsuitable parts of the distribution. We remark
that the choice of a smoothing function is arbitrary and is the
unique ambiguity of the present theory. Using the smoothing
function we modify the even part as

Ge(θ̃ ,p̃) + [n1 − Ge(θ̃ ,p̃)]S(2 − h1(θ̃ ,p̃)/M1),

and the odd part as

Go(θ̃ ,p̃)S(h1(θ̃ ,p̃)/M1).

The first modification smoothly connects the cluster part
to the high-energy region in the intermediate region 0 <

h1(θ̃ ,p̃; M1) < M1. The second modification makes the odd
part vanish inside the separatrix, h1(θ̃ ,p̃; M1) � M1 and
smoothly connects the low-energy region to the high-energy
region in M1 < h1(θ̃ ,p̃; M1) < 2M1.

The constructed one-cluster stationary state is expressed as

f̃1+(θ̃ ,p̃) = N1(Ge(θ̃ ,p̃){1 − S(2 − h1(θ̃ ,p̃; M1)/M1)}
+Go(θ̃ ,p̃)S(h1(θ̃ ,p̃)/M1))

+ γ1n0S(2 − h1(θ̃ ,p̃)/M1), (20)

where the new variable γ1 = N1n1/n0 represents the remained
ratio of distribution in the center of cluster C− from the initial
value n0, and N1 is the normalization factor depending on M1

and γ1. The unknown parameters will be determined from a
given U and M0 in Sec. VI. The subscript 1+ of f̃ represents

the existence of one cluster on the positive p side. By the
inverse Galilei transform of f̃1+, we obtain a periodic solution
f1+ with one cluster around p = ω1 as

f1+(θ,p,t) = f̃1+(θ − ω1t,p − ω1). (21)

The state f̃1−(θ̃ ,p̃), which has one cluster around p = −ω1,
is also constructed in the same manner by replacing the
definitions of θ̃ and p̃ by θ̃ = θ + ω1t and p̃ = p + ω1,
respectively. The Galilei-transformed distribution

f1−(θ,p,t) = f̃1−(θ + ω1t,p + ω1) (22)

is straightforwardly obtained by using the same values of
M1,N1, and γ1 with ones for f1+ from symmetry.

V. TWO-CLUSTER STATE

A pair of one-cluster states can be nonlinearly superposed
by following the procedure of Buchanan-Dorning [23] if the
clusters are small enough. Let us define p̃± = p ∓ ω1 and
θ̃± = θ ∓ ω1t , and redefine the one-particle Hamiltonian as

h2±(θ̃±,p̃±) = p̃2
±

2
− M1 cos θ̃± − M1

p̃±
p̃± ± 2ω1

cos θ̃∓.

(23)

The Hamiltonians h2± are integrals up to O(M1); in other
words, by neglecting O(M2

1 ) in the time-dependent Hamilto-
nian system

H2 = p2

2
− M1 cos(θ − ω1t) − M1 cos(θ + ω1t),

which has two clusters of magnetization M1 around p = ω1

and p = −ω1.
Replacing h1 by h2±, we can reconstruct the one-cluster

state, and the reconstructed one-cluster states are denoted
f2±. The Galilei-transformed one-cluster states f̃2± are
represented by

f̃2±(θ̃ ,p̃) = N2±(Ge(θ̃ ,p̃){1 − S(2 − h2±(θ̃ ,p̃)/M1)}
+Go(θ̃ ,p̃)S(h2±(θ̃ ,p̃)/M1)})
+ γ2n0S(2 − h2±(θ̃ ,p̃)/M1). (24)

Thanks to the symmetry of the Hamiltonian,

h2−(−θ, − p) = h2+(θ,p),

the distribution has similar symmetry:

f̃2−(−θ, − p) = f̃2+(θ,p).

Consequently, the normalization factorsN2± are identical (i.e.,
N2+ = N2− = N2). The nonlinear superposition between f2+
and f2−, which is a two-cluster state, is expressed by

f2(θ,p,t) =
{

f2+(θ,p,t), p � 0

f2−(θ,p,t), p < 0.

VI. DETERMINATION OF PARAMETERS

Looking at one-cluster and two-cluster states, (20) and
(24), respectively, we find that there are five undetermined
parameters: M1, N1, N2, γ1, and γ2. To reduce the number
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FIG. 4. Temporal evolutions of Mx(t) in N -body simulations for (M0,U ) = (0.5,0.8) with N = 107. Initial states are (a) f1+ and (b) f2.

of unknown parameters, we assume that γ1 = γ2 = γ . This
assumption says that the distribution takes the same value in
the cluster center both for one- and two-cluster states.

The four unknown parameters are determined by solving
the following four conditions: The self-consistent equation
for M1, ∫ π

−π

dθ

∫ ∞

−∞
dp cos θf1±(θ,p,t) = M1, (25)

the normalization condition for f1±,∫ π

−π

dθ

∫ ∞

−∞
dpf1±(θ,p,t) = 1, (26)

the normalization condition for f2,∫ π

−π

dθ

∫ ∞

−∞
dpf2(θ,p,t) = 1, (27)

and energy condition for f2,∫ π

−π

dθ

∫ ∞

−∞
dp

p2

2
f2(θ,p,t) + 1

2

− 1

2

(∫ π

−π

dθ

∫ ∞

−∞
dp cos θf2(θ,p,t)

)2

= U, (28)

where U is computed from a given waterbag initial state by
(8). In each of (25) and (26) we may choose one of f1+
and f1− since the two states give equivalent conditions. We
remark that M1 must be determined self-consistently with f1±

instead of f2± to ensure stationarity of f̃1±. Using stationarity
of f̃1± (in other words, the periodicity of f1±), the nonlinear
superposition performed in Sec. V makes f2 approximately
periodic. The energy of f1± can be also considered, but the
value must be different from that appearing in (28) and is hence
not useful to determine the unknown parameters. Details of a
computational method for the four unknown parameters are
described in Appendix.

VII. NUMERICAL TEST

In this section we fix the parameters characterizing a
waterbag initial distribution as U = 0.8 and M0 = 0.5. We
remark that this waterbag initial condition does not yield
clusters by nonlinear Landau damping [18]. Another remark is
that this pair of parameters satisfies condition (18) since ω1 �
0.67 and M1 � 0.045. We examined whether the constructed
one- and two-cluster states are suitable as initial states of
periodic solutions, and compared the theoretically constructed
distribution with that computed by an N -body simulation.

To confirm the periodicity, we randomly draw N pairs of
(θi,pi) from the one-cluster state f1+, and set them as initial
conditions of an N -body simulation. The numerical integra-
tions of the canonical equations of motion are performed by
the fourth-order symplectic integrator with time slice 0.1.
Another simulation is also performed for the two-cluster state
f2. Evolutions of Mx(t) are reported in Fig. 4. Both one- and
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FIG. 5. (Color online) Density plots of distributions in μ space. (M0,U ) = (0.5,0.8). (a) Theory f2. (b) N -body simulation from waterbag
initial state with N = 107 at t = 507.1.
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FIG. 6. (Color online) Momentum distributions computed from
Fig. 5. (M0,U ) = (0.5,0.8). N -body simulation with N = 107 at
t = 507.1 (solid red line), and the theoretically obtained f2 (dashed
green line). The arrows mark positions ±ω1 of the main roots.

two-cluster states are almost periodic, although the former is
better than the latter. Slight breaking of periodicity for the
latter may be caused by the approximation introduced in the
nonlinear superposition.

Comparison between theory and an N -body simulation
is demonstrated by observing density plots on μ space and
momentum distributions. The density plots are exhibited in
Fig. 5, which are the theoretically constructed f2 and the one
computed by an N -body simulation with the waterbag initial
state. The latter is taken as a snap shot at the time t = 507.1 to
set the phases of two clusters’ zeros for comparison. The two
density plots are in good agreement with each other, except
for the existence of the small cluster around p = 0 in the
N -body simulation, which corresponds to the neglected cluster
B in Fig. 2. We demonstrate further comparison by observing
momentum distributions, defined by

g(p) =
∫ π

−π

f (θ,p)dθ.

The momentum distributions are computed from the density
plots representing f (θ,p) shown in Fig. 5, and agreement
between them is shown in Fig. 6.

VIII. ROBUSTNESS OF THEORY

The theoretical distribution is in good agreement with the
N -body simulation for (M0,U ) = (0.5,0.8), but the theory
does not always work well. For instance, the parameter pair
(M0,U ) = (0.5,0.7) has no solutions to the four conditions
(25)–(28).

For checking the robustness of the theory, we introduce an
artificial energy Uart and replace it with the proper U in the
energy condition (28). The ranges of Uart for which solutions
are found are arranged in Table I. Momentum distributions
for some Uart picked up from such ranges are shown in
Fig. 7 for U = 0.7 and for U = 0.9 with M0 = 0.5. The theory
with a suitable choice of Uart gives a good approximation to
the N -body result; for instance, Uart = 0.691 for U = 0.7 and

0
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g
(p

)
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(a)

N -body
Theory (Uart=0.683)
Theory (Uart=0.691)
Theory (Uart=0.699)
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0.5

-3 -2 -1 0 1 2 3

g
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)
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(b)

N -body
Theory (U=0.900)

Theory (Uart=0.905)
Theory (Uart=0.911)

FIG. 7. (Color online) Momentum distributions for (M0,U ) =
(0.5,0.7) (a) and for (M0,U ) = (0.5,0.9) (b). Solid red distributions
are obtained by N -body simulations with N = 107 at t = 509.5 for
(a) and at t = 502.1 for (b). They are taken when the phases of
two clusters coincide. Theoretical distributions are reported for some
values of artificial energy Uart, where Uart increases in the order of
dashed green, dotted blue, and dot-dashed black. The arrows mark
positions ±ω1 of the main roots.

Uart = 0.911 for U = 0.9. Discrepancies between the proper
U and the suitable Uart are less than 1.3%, and hence we
need a more accurate theory, both for the based homogeneous
backgrounds and for cluster states, in order to make the theory
robust.

Another check of the robustness of the theory regards the
ambiguity included in the theory, which is the choice of
the smoothing function (19). We remark that a change of
choice, for instance S(η) connecting 0 and 1 in the interval

TABLE I. Ranges of Uart in which solutions to the four conditions
are found.

U Range of Uart

0.9 0.900 � Uart � 0.911
0.8 0.800 � Uart � 0.800
0.7 0.683 � Uart � 0.699
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[1,1.5] instead of [1,2], does not qualitatively affect the above
robustness and distributions with Uart.

IX. CONCLUSION

A phenomenological theory has been proposed for pre-
dicting a two-cluster state from a given waterbag initial
state, which is characterized by two parameters. The two-
cluster states are constructed on homogeneous backgrounds
predicted by the Lynden-Bell statistics, and include four
unknown parameters. Determining the four parameters by four
constraints, the two-cluster states are in good agreement with
N -body simulations starting from waterbag initial states at
some points on the parameter plane.

However, the theoretical approximations possibly do not
agree with N -body simulations. Moreover, no solutions are
obtained to the four constraints in a region of the parameter
plane. This nonrobustness of the theory has been examined
by replacing the proper energy U , appearing in one of the
four constraints, with an artificial energy Uart. The range
of Uart giving the solutions is very narrow, and the narrow
window suggests that we need a more accurate prediction of
the homogeneous background beyond Lynden-Bell statistics.
For instance, in the tail of momentum distributions, N -body
simulations give sharper decay than that predicted by Lynden-
Bell statistics, and hence the energy effectively changes from
the proper value U .

Nevertheless, since the two-cluster states with the artifi-
cial energy are close to the N -body simulations, we may
conjecture that the mechanism of the traveling clusters on
a homogeneous background starting from a waterbag initial
state is as follows: A waterbag initial state with high energy
goes toward a homogeneous Lynden-Bell state, but does not
perfectly coincide. Some particles are trapped in the resonant
region which is predicted by the Landau dispersion relation,
and the state reaches an almost periodic state with traveling
clusters. Such a cluster state can be approximately constructed
as a nonlinearly superposed BGK wave.

The above scenario makes it possible to discuss the
following two phenomena observed in the HMF model: One
phenomenon is the bifurcation from one big cluster to the
two small traveling clusters reported in [12]. The bifurcation
point corresponds to the critical point of the order-disorder
transition in nonequilibrium. Velocities of the two small
traveling clusters are understood by the real part of the main
roots, and hence we can theoretically reproduce the bifurcation
diagram from the Landau dispersion relation, although it is not
reported. The other phenomenon is the long-lasting traveling
clusters on an inhomogeneous background [28]. The clusters
appear around the separatrix, and the position of the clusters
can be understood by the dispersion relation. To consider
the resonance frequency on an inhomogeneous background,
we need to introduce the action-angle variables and define
frequency as the derivative of the one-particle Hamiltonian
with respect to action. The frequency has a sharp slope around
the separatrix action, and a wide range of frequency is hence
expected around the separatrix. Appearance of the traveling
clusters in resonance is hence favorable around the separatrix.
The dispersion relation for the inhomogeneous background

is complicated [29,30] and reconstruction of the traveling
clusters along this scenario is left as a future problem.

The strategy of the present theory is useful in other
systems, but we need (i) to extend the construction method
of BGK waves to inhomogeneous backgrounds and (ii) to
use a reasonable nonequilibrium statistical theory to describe
quasistationary states. For instance, the core-halo structure
found in self-gravitating systems and plasma systems cannot
be described by the Lynden-Bell theory. Recently, other ap-
proaches to describe quasistationary states have been proposed
by reproducing the core-halo structure [31] and by assuming
conservation of energy for each particle [3]. It might be
interesting to replace Lynden-Bell statistics in the present
theory with one of these approaches for the HMF model and
for other realistic models. Another improvement of the present
theory is possible for the construction of periodic states, since
we considered two traveling clusters and neglected the other
smaller clusters. This improvement increases the number of
unknown parameters; for instance, the height of distribution
in each cluster, and we have to introduce more constraints
in order to determine such parameters. The Vlasov equation
has an infinite number of Casimir invariants, and using the
Casimirs as the additional constraints might be a possible
way.
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APPENDIX: COMPUTATION OF PARAMETERS

The unknown parameters N2,γ,N1, and M1 are computed
from the following four steps: (i) fixing a value of M1,
(ii) obtaining N2 and γ as functions of M1 by Eqs. (27) and
(28), (iii) computing N1 as a function of M1 by Eq. (26), and
(iv) determining M1 self-consistently by Eq. (25).

In step (ii), we use the fact that the integrals of Eqs. (27)
and (28) can be represented by using f2+ from the symmetry
of f2−(−θ, − p) = f2+(θ,p). The function f2+ is, referring
to Eq. (24), written in the form

f2+(θ,p) = N2A2(θ,p) + γB2(θ,p). (A1)

The two conditions (27) and (28) are hence rewritten as

1 = 2[N2 〈A2〉 + γ 〈B2〉] (A2)

and

U − 1
2 = N2〈A2p

2〉 + γ 〈B2p
2〉 − 2(N2 〈A2 cos θ〉

+ γ 〈B2 cos θ〉)2, (A3)

where, for a function A of (θ,p), the symbol 〈·〉 represents

〈A〉 =
∫ π

−π

dθ

∫ ∞

0
dpA(θ,p). (A4)

Note that the integral starts from 0 instead of −∞ in the p

integration. The averaged values can be numerically computed,
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and the solutions of Eqs. (A2) and (A3) with respect to N2 and
γ are computed as

N2 = −b ± √
b2 − 4ac

2a
(A5)

and

γ = 1

〈B2〉
[

1

2
− N2 〈A2〉

]
, (A6)

where the coefficients a, b, and c are

a = [〈B2〉〈A2 cos θ〉 − 〈A2〉〈B2 cos θ〉]2,

b = 1
2 〈B2〉[〈A2〉〈B2p

2〉 − 〈B2〉〈A2p
2〉]

+〈B2 cos θ〉[〈B2〉〈A2 cos θ〉 − 〈A2〉〈B2 cos θ〉],
c= 1

4 [−〈B2〉〈B2p
2〉+〈B2 cos θ〉2+(2U−1)〈B2〉2]. (A7)

From two pairs of solutions, we adopt a pair satisfying N2 > 0
and 0 � γ � 1. We remark that only one pair was acceptable
at most in our computations shown in the text.

For step (iii), we also rewrite f1+ in the form

f1+(θ,p) = N1A1(θ,p) + γB1(θ,p). (A8)

From the normalization condition (26), we get

N1 = 1 − γ
∫ π

−π
dθ

∫ ∞
−∞ dpB1∫ π

−π
dθ

∫ ∞
−∞ dpA1

. (A9)

Note that the lower boundary is −∞ in the p integration.
Finally we seek M1 which satisfies the self-consistent

equation (25).
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