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ABSTRACT: The general relativistic symmetry of QED (quantum electrodynamics) predicts that

the spin vorticity of electron contributes to the kinetic momentum of electron. The canonical
quantization of QED is performed by using new b -photon, f -electron, and f ©-positron algebras.

These algebras work for interacting particles and are useful for nonperturbationally solving the

dual Cauchy problems of QED.

Key Words: spin vorticity; general relativity; QED; b -photon; f -electron; f°-positron

1. Introduction
Let us ask a simple but “odd” question: what is momentum of electron spin? “How odd this
question is” should be obvious since electron is considered a point particle and spin is its internal
degree of freedom and then spin is considered to have nothing to do with momentum. On the
contrary to this obvious common sense, we shall prove that the spin vorticity of electron
contributes to the kinetic momentum of electron.

The key idea is the general relativistic symmetry of QED (quantum electrodynamics) [1,2]. QED
is reformulated in a way that is covariant under general coordinate transformation [3-5]. The

consequence gives the right answer to the odd question raised above.



In QED, every dynamical variable is given by the quantized gq-number field operator defined

on the background Minkowski spacetime x* :(ct, 7() with symbol on it, e.g. F (x) , distinct from
countable c-number, e.g. F(x) [1]. Surprisingly, it is not the velocity a§(x)/6t but the vorticity

rots (x) of the spin vector field operator 5 (x) that contributes to the kinetic momentum operator

ﬁ(x) under the covariant symmetry of the general coordinate transformation (with factor 1/2; see

Eg. (2.21) in Section 2.3).

In Section 2, we shall first quickly review our preceding publications on general relativistic
symmetry of QED [6-9] in such a way that it warrants the derivation of the general relativistic
symmetry of electron spin vorticity. In Section 3, the canonical commutation relationship of the
electromagnetic field of photon and the canonical anticommutation relationship of the Dirac field
of electron and positron is studied nonpertubationally using new devices called the b -photon,

f -electron, and f -positron algebras. In Section 4, we construct the ket vector with wave

function for the dual Cauchy problems of QED and conclude the concrete space-time resolved

simulation of the c-number <lE (x)> for the g-number F (x) . Mathematical details are summarized

in Appendix A for the Minkowski spacetime and Appendix B for general relativity.

2. Spin vorticity
2.1. Covariant derivative on the background Minkowski spacetime

On the background Minkowski spacetime, the Dirac equation of the Dirac spinor operator  with

the covariant derivative Iﬁﬂ of QED is given as [1]
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where m is the mass of electron, c is the speed of light in vacuum, g =—e is the charge of
electron, and A“ the Abelian gauge potential of photon in the Coulomb gauge. The charge current

A
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satisfies the conservation law

8# j“=0 (2.4)
and the kinetic momentum
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satisfies the equation of motion [6]
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In the right hand side, the force is composed of the Lorentz force f and the tension 7"

1 =divi", 7 =0,7™ 2.7)
which is the divergence of the stress tensor 1
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T :E(l// V(—IhDﬂ)y/+h.C.) (2.8)

The stress tensor itself is not defined uniquely since mathematically any tensor whose divergence

is zero can be added to.

2.2. Covariant derivative of general relativity



To seek for the variation principle of the equation of motion on the background curved spacetime,
the semiclassical Einstein-Hilbert action integral has been used under the symmetry of the general

coordinate transformation of gravity [1]

oT=0, T=-C[RFgd'xe[LFgd'x, k=202 (2.9)

where R is the Ricci scalar, G is the universal gravitational constant, and L is the Lagrangian

density of QED including the interaction with gravity.

The gravitational covariant derivative f)ﬂ (9) is then given as [3-5]
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with the spin angular momentum
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and spin connection
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Using the gravitational covariant derivative, the stress tensor of electron 7' (g) becomes [6,7]

1 (g) =%(;ﬁyv (<D, (9))y + h.c.) (2.13)

2.3. Spin vorticity

In this variation principle, due to the presence of the spin connection y,, , a new

symmetry-polarized geometrical tensor éf}v appears and whose antisymmetric component cancels



with that of 7}, (g)

g™+ (g)=0 (2.14)
where

Shuv _ %(éﬂ/w _g"HVﬂ) (2.15)

- 1,. -

4 (g) =E(Tnuv (g)_rnm(g)) (2.16)

This cancellation is originated from the fact that in order to satisfy the symmetry under the general

coordinate transformation the energy-momentum tensor 'I:W should be symmetric

A

=T, (217)

u

It follows that the electronic part of the energy-momentum tensor 'I:ew of 'I:W should be

symmetric
Tow =6 70 (9) =T, (2.18)

Consequently, the cancelling is mandatory.
What is the physical meaning of Eq. (2.14)? The answer is two-fold as is found if we take the

limit to the Minkowski spacetime. First, for the time sector with =0, v =1,2,3 we obtain
roté +11 —l(lﬁy(ihﬁo)y} +he)=0 (2.19)
2
Second, for the space sector with x,v =1,2,3 we obtain

0: 2 2
Cs-t-£=0 2.20
p ¢ (2.20)

with torque f and zeta force ¢ . Furthermore, similarly taking the limit of Eq. (2.18) to the



Minkowski spacetime, it is found that half the vorticity, %rot%, appears as the component of the
momentum added to the kinetic momentum

=

P, =T+ rots (2.21)

(see, AppendixB, Eq. (B.22)).
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Figure 1. Symmetry of the stress tensor of the Dirac field of electron and positron. Antisymmetric

stress tensor drives spin torque and zeta force through vorticity.

Consequently, the left hand side of Eq. (2.6) should change from %ﬁ to %(ﬁ +% rotgj ; for this

purpose, we need to use Eq. (2.20), and after some manipulations, we finally arrive at
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This assures the equation of motion using solely the symmetric part of the tensor 7, in the right

hand side. This is schematically shown in Figure 1.

2.4. The Cauchy problem
In QED, the dynamics of §(x) is mediated by the electromagnetic field, and the associated charge

current Eq. (2.3) is conventionally represented as
(2.25)

i (x)=(cA(x). 7 (x))
The Cauchy problem of the QED operator dynamics in the Heisenberg representation has been

elaborated elegantly by Nakanishi using ghost field in the Landau gauge [2]. Here in this paper we

use the Coulomb gauge for the vector potential ,&(x) as
divA(x) = 0 (2.26)
with the conjugate transversal electric field
o 10 2
E.(X)=———A(x 2.27
1) = 2 A) (2:27)

and we do not invoke the additional ghost field.
To solve for the Cauchy problem of QED, clocks at different space points are synchronized at

t =t,, when canonical quantization is performed with the definition of the vacuum ket vector

|0> The j* (x) develops forward t >t, with the retarded interactions mediated by photon. The



vacuum and field operators are not defined backward t <t, (see, Figure 2).

Synchronization of clocks located at different space points at t=t0
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Figure 2. Synchronization of clocks. The charge current develops forward t > t, with the retarded

interactions mediated by photon. The vacuum and field operators are not defined backward t <t,.

The equal-time canonical quantization of the electromagnetic field leads to the equal-time

commutation relationships

[A.AW], =0 (2.28)

[E'0.EVw], =0 (2.29)
1 Ai = i i3/ o inj _i_ 1

4—7[C[A(x), E, (V)L:yo _mLU 53 (X—-y)+0'd ( ph. —|>z—y|ﬂ (2.30)

Second, the equal-time canonical quantization of the Dirac field leads to the equal-time



anti-commutation relationships

W () (D) o =10 ()07 (Y)) 0 =0 (2.31)

=y

W (0.0, (V) oo =8,08° (%= 7) (2.32)
The (x) commutes with ,&(x)

[y?(x), A(x)} 0 (2.33)

These fields should of course be renormalized in a step-by-step way, reflecting the time-dependent
minimal coupling.

The time-development of §(x) , or any field operator F(x) obeys the Heisenberg equation of

motion
IR A
|haF(x):[F(x),HQED} (2.34)

with the QED Hamiltonian H,,. Note that H, is made to be independent of time

D

0 ~
a HQED = O (235)

The ﬁQED is given in the Coulomb gauge using the normal order denoted as : : modulo c-number
albeit infinity if any
Haeo = [ A% : Hogo (%) (2.36)
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X-Y]
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In due course, for application to realistic situation in experiments of spin dynamics, we need to
set up wave function in order to discriminate numbers of electrons, positrons and photons, and

calculate

= H<\P|ﬁ(x)|\P>H
(F(x))= RCIEoN (2.39)

where |‘P>H denotes the time-independent ket vector in the Heisenberg representation. This is

another Cauchy problem in QED (see Section 4).

3. New algebras

3.1. Causality and initial condition

To obtain If(x) with x* =(ct,X) at position X with time t in the Minkowski spacetime, we may

collect information of j#(y) with y* =(cu, V) at distant y with the retarded time u :t—|X_y|
c
satisfying causality
j“(cu,y)=0, u>t (3.1)

and initial condition (see Figure 3)

J(cu,9)=0, u<t, (3.2)
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Figure 3. Causality and initial condition.

For this purpose, in the following discussions we may use that any function F(u) satisfying

F(u)y=0, u<t,, u>t (3.3)

X9

may be obtained at u with t, <u=t— <t as[8]

F(u), e = du'F(u ')5[u'-(t_|*—VID
=] :

(3.4)

where we have used the delta function

S((u-t)* -a?) :2—181(5((u ~t)-a)+5((u'-t)+a)), a>0 (3.5)
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with

> (3.6)

3.2. Electromagnetic field

The vector potential ,i(x) should satisfy the Maxwell equation
- drr 2

DA(X) =— b (x) 3.7)
with the transversal charge current

2 2 1 0 A

b (x) = 1(x) = —grad —- A, (x) (3.8)

V4 ot
Using the standard Green function, we have [1]

A = Aaion 00+ Ay (%) (3.9)
Ao -1 ds*JLECUyT/) {u [tﬁj'j]

du.[ daI d? ij(CU ¥)e [(

(3.10)

C7Z'

where A_..... (X) denotes the radiation vector potential. It should be noted that we have used Eq.

(3.4) using the causality and initial condition and then obtained the retarded potential AA(X) with

separation of space-time variables (see Figure 4).
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Figure 4. Separation of variables for real-time simulation.

The ,&radiaﬁon(x) is given by the a,,.;., -pPhoton field

A'adiation (X) = E_iraldiation (X) + é::Ladiation (X)

Z \/4 hz © dsﬂ A~ . —ix M,
aradiation (X) = (L)C?, — Tpoaradiation ( p’ O-) e o Prein /he( p: O-)
27h) o=t radiation

with the usual dispersion relationship of spectrum

0 _ hVradiation — | —>|

c

0 =

Mo
pradiation _(pradiation ’p)’ pradiation -

and the polarization vector €(p, o)

pe€(p.o)=0

(3.11)

(3.12)

(3.13)

(3.14)
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S e (p.o)e’ (p,a)=—n‘+% (3.15)
o=%1 - p

3 . .

Y€ (p.o)e"(B.o)=6, (3.16)
i=1

Note the usual commutation algebra of the a_,.,, -photon field

I:éradiation ( p’ O-) ' é\'racliation (q1 o I):| = [é:adiation ( p O-)’ A:adlatlon (q o ):| O (317)
I:éradiation ( p’ O-) ' é\‘:au;iiation (q1 o I):' = 500'53 ( r) - q) (318)

The generic solution may be given by using the b -photon field defined as follows

A(X) =b(x)+b" (%) (3.19)
= 47rh c
b(X p O_ —|2/rvté>(p O_)elx p/h (320)
NG By
By using the integral form of the current
JT(X) J’ va’ d? p(JT v, p g izmtgite p/h+JT ( 1p)e+i2m/te—ii-ﬁ/h) (3.21)

the b -photon field may be represented as

Jarhie L (Zm/J |p| sz o)&(p, O.)__A (v,p) (3.22)

\/zp e c |

Comparing Eq. (3.22) with Egs. (3.9), (3.11), and (3.19), we may observe that the a,_,..., -Photon

fields are sticking to the b -photon field through J;T (x) . This sticking process may be called

“thermalization” of the a,;;.,, -Photon fields to the b -photon field. Note that the real positive

number p°(v,|d|) in Eq. (3.20) is the counterpart of p_.,," in Egs. (3.12) and (3.13). The
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p° (v||6|) is a function of v and |p| serving as the thermalized solution of Eqg. (3.22).

The field algebra in Egs. (2.28)-(2.30) are recovered if we assume the b -photon algebra
[6(v,p.0).b(vd,0")|=[b" (v, p.o)b' (v'd,07) | =0 (3.23)
[6(v,p,0).0"(v'd,07)|=6,,6°(p-a)s(v—v(|p), )& (v-v(adl),) (3.24)

where v(|r)|)b denotes real positive frequency that depends on |f|. The b -photon field apparently
includes the a,_,, -photon field in a delta-function form
b(v,5,6) > Auion (F:7) 8 (V ~Vingiation) (3.25)
Then, the electromagnetic part of |—A|QED (modulo c-number vacuum energy) in Egs. (2.36) and

(2.37) is given as

Sl 20" (v.[B))y2p° (v'[B]) (3.26)
{(ZZVJLZZV'} |:l JB* (v, B,0)B (v, B o)

(modulo c-number)

which part may depend on t and t, although ﬁQED is independent of t. Moreover, Eq. (3.26)

includes the radiation part (modulo time-independent c-number vacuum energy) given as

jdsizé((li (x))2 +(roti(x))2]:
- Id X é[( I§Tradialion (X))2 + (rOtiYadiation (X))ZJ : (3.27)

= z J.j:o d ’ ﬁcpradiationoé‘radiationT ( ﬁ’ O-) é\‘radia\tion ( rj’ O-)

o=%1

(modulo time-independent c-number )
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which is manifestly independent of t as well as t, .

3.3. The Dirac field

The y(x) may be given by using the spinor Green function K (x,y) as [1]
00 =1 00+ YK (x y)[—%/&(y)jw(y)
(-ind +me)K (x,y) =ins* (x—y)
where y,..(x) denotes the free field. The .., (x) is given by the free e, -electron and

€ -POsItron fields

l/}free (X) = é\free (X) + é\freeCJr (X)

1 * =2 ix _
(2 h)3 Z]_J:oodgpefree(po-)e P /huﬂ(p!o-)
T o=t=
2

é\free, (X) =

é\free’ﬂ (X) _ \/(7 J‘ d 3 p»éfreec’r b,o +|x pfree“/hvé ( r—j, O')
o= +7

with the usual dispersion relationship of spectrum

- h —
pfreep = ( pfreeO’ p)1 pfree0 :% = (mc)2 +| p|2

and the anti-commutation algebra

The Dirac spinors u(p,o) for electron and v(p,o) for positron satisfy

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)
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(pfreeﬂyy —mC)U(ﬁ,G)ZO (336)
( pfree”y/,x + mC)V(ﬁ’ O-) =0 (337)
1
Z u(p,o)u(p,o) —W( Prec"7, +MC) (3.39)
P free
o 1 .
> v(p,0)V(p,0) = ﬁ( Pres”7, —MC) (3.39)
a:i1 pfree
2
(B, 0)7"u(p,0") =V(P,0)y"v(P,0) = Prec” ! Prec’ ) Sor (3.40)
u(p,o)r"v(-p,0") =V(p,0)y°u(-p,0) =0 (3.41)

The generic solution may be given by using the f -electron and f °-positron fields defined as
follows

w(x)=f(x)+f(x) (3.42)

p.i’; V B, O‘ —IZ;rvtu (p )elx p/h (3.43)

f, d
= 1/Zh G+I VJ

2 j dvj d*pf (v, p,o)e" >, (p,o)e ™" (3.44)

O
w/( e

Applying the first thermalization of the b -photon field Eq. (3.22) to Eq. (2.1), we obtain the

second thermalization of the f -electron field
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e[ av ] aA(v-vip-0) X f(vidop@o)
1
a=i5
4 o L d3_~ 2 = A Vo= = = =
=[] : N rd(via) 2 f(v-vip-doju(p-a.0) 349
SEoEd
+;/k]TTk(v,q) Z f(v+v P+{ a)u(p+q o)
1
o‘=i5
with
A = q © © 13
= d d
P Gy 2 2 oL
2 2

x(f'(vd.0) f (v+v.p+d.o)u’@ou(p+d.0)

+fAT(v',q,0')fA "(-v-v',-p-G,0)u’(d,0)v(-p-d,0) (3.46)
+fe(vido) f(v-vip-do)v'(@ G)U(ﬁ—da)

+f°(v',q,a) f°T(—v+v,—p+q,o-)vT(q,o-)v(—p’+q,o-))

and the third thermalization of the f°-positron field
jdvj d*dA, (v-v', p-d Zf“v d,0N(d, o)
o‘+5
I dv I J Z £ (v4+v', p+d,0)(p+4,0) 347)

The field algebra in Egs. (2.31) and (2.32) are recovered if we assume the f -electron and

f ¢-positron algebras
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(3.48)

(f(v.p.0). T (v\a.o))={F(v.p.o). T (via.0))

(3.49)
:500.53(|§—q)5(v—v(| Bl). )5( '

<
I
<
0
~
~——

where v(| r)|)f denotes real positive frequency that depends on ||6| Also, Eq. (2.33) is recovered if

Wwe assume

[ f(v.p.o)b(via.0") =] F*(v.p.0).b(v\d0")]
=[f'(v.p.0).b(v.8.0")|=[ I (v.B.0).b(v"d.57)]=0

N—

(3.50)

The f -electronand f°-positron fields apparently include the e, -electron and e, °-positron
fields respectively in the delta-function forms
f(v, P,0) D € (P.0)5(V—Viee) (3.51)
fe(v,5.0) 2 8" (P.0)5(V—Vieo) (3.52)
Then, the Dirac part of |—A|QED (modulo c-number vacuum energy) in Egs. (2.36) and (2.37) is
given as
Hoeo O _[d3>? : 1,/3(x)(—ih;/kak +mc )y (x)xc:
= azl [Fdv] dv[” d*pepy’

(71 (71 Bo) T (1 Bi)e ™ 4 T (11, 3,0) T (1, o) 22

(modulo c-number)

(3.53)

which part may depend on t and t, although ﬁQED is independent of t. Moreover, Eq. (3.53)

includes the free part (modulo time-independent c-number vacuum energy) given as
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jd3>? 1 (x)(=ihy o, +me )i (x)xc:
> jd3x : l;free(x)(_ihykak + mC)lﬁﬂee(X)XC :
= Zl J: d3 rjcpfreeo (é\freear ( ﬁ! O-)éfree ( ﬁ! O-) + é\freem ( D' O-)éfreeC ( pi O-))

o=t—

(3.54)

(modulo time-independent c-number)

which is manifestly independent of t as well as t, .

4. Conclusion

The wave function @ (@,,---,®,) in the Hilbert space of QED is equipped with the ket vector
|\P>H ors ZJ.dwlmdwN |a)1""’a)N>H ors O (@ o) (4.1)
N=0

in term of the Heisenberg (H ) or Schrédinger (S) representation satisfying the Heisenberg
equation

0
'h5|‘P>H =0 (4.2)

or the Schrédinger equation

. 8 q -iAED(_)
i %), = oo ¥), . [¥), =€) 43)

S H

The @ denotes the collected set of variables for expansion of the wave function using the basis ket

vectors; a primitive choice may be given with the obvious notation

|a)l,...,a)N>H oty = ! .BT(a)lb)---Bf(th)

e (a, ) (@) (4.4)
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Dy (@, 00) = Oy (@, 0y, @, Oy @@ )
N=N,®N, ®N,,

0=0,0; Q.

@y, 0,0, ={v,p,o}

For permutation P of variables

D (Do, Opy) = Dy (@ By s Doy 1, Doy, v“’Pfclfc""*“’Pchfc)
P=R,®P, ®P,

the wave function changes the antisymmetric (—) sign
sgn(P)cDN(a)Pl’”"a)PN):q)N(a)l""’a)N)

son(P)=()" ()"

Using the primitive choice described above, the basis vectors are orthonormal

with

Y8 (v=v(pl),)s(v=v(Ip1),)

jis7)
—
£
|
e-
N
I
8%
3
<2
£
|
ol

5 (0 -0")=0,. (0, ~0".) =5, (p=p)s(v=r(|B]), )s(v-v(pT),)

(4.5)

(4.6)

4.7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

This demonstrates another Cauchy problem in QED. Namely, for an event ¢, starting at t,
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with t, <t ; i=12,3,---, we set up the initial ket vector “P(ai,ti )>H for Eq. (4.2) but need to
obtain the wave function @ (¢;,t;m,, -, »,,t) developing from t, to t with t, <t onward
obeying

ih%@N(ai,ti;a)l,---,a)N,t)

B (4.16)
= Zjda)'l---da)'M Hw (@, o0, 0\, (.t ao'y,t)
M=0
using the time-independent function
Hw (@, oy, @', 0'y) (4.17)
- s<ml"“’a)N |HQED|wI1""’m'M >s T H <a)1""’a)N |HQED|wI1""aa)'M >H
0 . .
EHNM (v, 0n0, - 0'\y)=0 (4.18)

Finally, substituting this time-dependent @ («;,t;; @, -+, @, ,t) Into Eq. (4.1), we calculate

A for each event ¢, starting at t; with

t, <t <t ; i=12,3,-- developing onward with x* = (ct,X) at position X with time t in using
Eq. (2.39).

This concludes the way for solving the dual Cauchy problems in QED using the new b -photon,
f -electron, and f °-positron algebras. These new algebras work for interacting particles through
the first thermalization Eq. (3.22), the second Eg. (3.45), and the third Eq. (3.47). As compared
with the conventional Gell-Mann-Low relationship using covariant perturbational approach [1],

this present approach paves the way for realizing nonperturbationally space-time resolved

simulation of QED.



23

Appendix A

In this Appendix, we may first quickly review basic mathematics. The coordinate x with the

contravariant components x“ and the covariant components x, and the metric tensor n,, = n*"
of the Minkowski spacetime, together with the inner product of two 4-vectors A and B written as
A-B as well as the inner product of the Dirac gamma matrices y* and a 4-vector A written as the

Dirac slash A are defined as

X =(x°,x ) = (X% %, %%, x*) = (ct,x, y, 2) = (ct, 7)) = (ct, X) (A1)
X, =17,,X" = (%% ) = (X0, %, X5, X5 ) = (Ct, =X, —y,—2) = (ct,—F) = (ct, —X) (A.2)
1 0 0 O
0 -1 0 0 1, u=v
= = ’UV, Hp :5’” = A.3
Tw=lo o -1 ol 7+ T M V{O’W&V (A-3)
00 0 -1
0 o6 6 o0 0 16 =) (10
0 = =| - 2 % “ 122 ¥ |=| =< grad A4
"o oxH (axf’ oxt ' ox? 6x3j (cat j (cat J ] (A4)
0 6 o o 0 10 =) (10
o=t = — = |=| =V |=| ==, —grad A5
T [ax° o o axJ [c&t ](c@t J j (A3)
A-B=n,AB" =AB°—AeB, AeB=AB +AB,+AB, (A.6)
A=n, 7N =y"N 7oA FeA=y'A+yA +7°A (A7)
10Y 2
_ A2 _ _ _ (v
o=0 _(EEJ A, A—(V) (A.8)

{A,Bl=AB+BA=[AB]; [AB]=AB-BA=[AB] (A.9)

L

where the Einstein summation convention is used.
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The spinor w(x) in the chiral representation ., (x) is constructed by the undotted spinor
we (X)=&%(x) with right-handed chirality and the dotted spinor y, (x)=1;(x) with

left-handed chirality as

¥V =V hira = (WRJ = [ég } (A.10)
Ve s

'3 =[§2j, X :(’hj (A.11)
g M5

The undotted and dotted capital Latin letters run from 1 to 2 and change position by using the

antisymmetric matrix ¢ as

£y =E%4,, 1 =e"n, (A.12)

&t :5AB§Bv Ul =77V8VU (A.13)
0 1 o 0 1

Epg = (_1 Oj =", &V = (_1 OJ =&y, (A.14)

where the Einstein summation convention is used.

The Pauli matrix o with the contravariant components ¢* and the covariant components o,
ot = (O'O,O'k): (0'0,01,0'2,03) = (1, O'X,O'y,O'Z)Z(l,5') (A.15)

o,=1,0" =(0,0,)=(0,,0,,0,,0,)= (1, -0,,-0,,—0, ) =(1-05) (A.16)

(note the use of 1 as the unit matrix) are cast into the MTW (Misner-Thorne-Wheeler)

representation [10]
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(A.17)
AU 2 _ 0 —i _
(o) _(0 )v’B_ i o) %
AU 1 0
(0-3) :(O-S)V'B :(O _]J:O-z
Also, the Dirac gamma matrices y* and the chiral matrix y,
s =ir'r'r’y’? (A.18)

are given in the chiral representation using the MTW representation of the Pauli matrices as

& (af)v,B (Goo)w]:(jo ZHE 3}
y = ko _(Gk)AU]{Ok _Gk] (A.19)

o (G;)B (;)UV‘ :[00 —ZHé —01}2_75

(@)= (), ="
() =), = o
(o), =(), =,
(o) =("), =o.

The Clifford algebra of the Dirac gamma matrices should be
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0\A 0
{rr}=2n" () i : =2n‘”(1 Oj=277”” (A.21)

Appendix B

In this Appendix B, we quickly review variation principle of QED with gravitation.

B.1. Semiclassical Einstein-Hilbert gravitational action for QED

The semiclassical Einstein-Hilbert gravitational action | is added to the system action I, and
made stationary

S1=0, I=lg+I (B.1)

First, for the variation 6g*" of the symmetric metric tensor g“* = g*, the Einstein equation is

derived as
G/zv = Y/tv (BZ)
1 6 2 1
G”V:ﬁWTIG :Ryv __gva:Gvy (B3)
1 o 2k K
Y,uv :——EWTIS :_C_ZT'UV :Yv,u (B4)
In QED system, the variation principle leads to the Dirac equation of electron
(iny%e, D, (g)-mc)y =0 (B.5)
and the Maxwell equation of photon
v, FA :4_” j“ (B.6)
C

with the continuity equation of current



27

8 j*=0

U

In terms of the vector potential, we have the field equation

V'V A+ RE A 7Ry A = 2
C

Let the Coulomb gauge be given as

VA =0

Then, we get the Laplace equation

VIV A+ RO A = 47 o
C

and the d’Alembert equation

VAV A 4R A —V'V A _A7
C

We may further introduce the longitudinal and the transversal currents as
ji = jTi + jLi
in such a way that Eq. (B.11) is reduced to a separable form

_viVvo = 4% jLi

vV A +RA :4—”jTi
C

The symmetric energy-momentum tensor

up ' vo u

1
T =" =70 (9) =07 Fu R~ 0, (Lew + L) =T,

T =Tewuw +T,

euv

1
EMuv = __gP pr Fvo‘ - g/zv LEM :TEM/JV

4

T

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)
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I1 I1
Teyv =—¢ uv -7 uv (g)_g,uvLe =Te;zv
satisfies the conservation law
v, T *# =0
Also the antisymmetric angular momentum tensor

M Auv — X,uT/lv _XvT/l,u — _M Avu

satisfies the conservation law

o,M* =0

B.2. Energy-momentum tensor and spin vorticity

In the limit to non-gravitation field, the energy-momentum tensor T

is reduced to

euv

l(M +he) f+lrots| o A+tros| of fi+trots
2 ) 2 ), 2 ),
c( %rots % +L —°, -,
T —> . g

C(H +—rots —rsyx —rsyy +L, —rsyz
2 y

C( 1 otsS - —rszy +L
2 z

with the mass term M . The energy-momentum tensor Ty, is then reduced to

H, ¢G, cG, cG,

T uv % CGX GXX O-xy GXZ
EM

CGy Ox O, Oy

CGZ O-ZX zy O-ZZ

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)

with the Poynting vector G and the Maxwell stress tensor & . The conservation law Eq. (B.19) of

energy and momentum is then reduced to
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VTP=0-> %cP%czdivﬁ =0 (B.24)
vk 0 5 H - =S
V,T*=0——_P+div(6-7°)=0 (B.25)
ot
1
“(M+hc)+H, 1 B
pu —| 2 - ,1‘[+§rot§+G (B.26)

The conservation law Eqg. (B.21) of angular momentum is then reduced to

) a_’ -
ke _ v Fuls_#5)) =
oM™ =0 - atJ+o||v(r><(<-; 7 )) 0 (B.27)
1ok =
=M — J:rxH+errot +rxG (B.28)
C

Now that the vorticity plays an important role as momentum, and it is associated with
antisymmetric electronic stress tensor 7", we may further prove that symmetric electronic stress

tensor 7° plays an important role as tension 7° =div#® compensating the Lorentz force L as

%(ﬁ +%rot§j =L+78 (B.29)
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