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ABSTRACT: The general relativistic symmetry of QED (quantum electrodynamics) predicts that 

the spin vorticity of electron contributes to the kinetic momentum of electron. The canonical 

quantization of QED is performed by using new b -photon, f -electron, and cf -positron algebras. 

These algebras work for interacting particles and are useful for nonperturbationally solving the 

dual Cauchy problems of QED. 
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1. Introduction 

Let us ask a simple but “odd” question: what is momentum of electron spin? “How odd this 

question is” should be obvious since electron is considered a point particle and spin is its internal 

degree of freedom and then spin is considered to have nothing to do with momentum. On the 

contrary to this obvious common sense, we shall prove that the spin vorticity of electron 

contributes to the kinetic momentum of electron. 

   The key idea is the general relativistic symmetry of QED (quantum electrodynamics) [1,2]. QED 

is reformulated in a way that is covariant under general coordinate transformation [3-5]. The 

consequence gives the right answer to the odd question raised above. 
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In QED, every dynamical variable is given by the quantized q-number field operator defined 

on the background Minkowski spacetime ( ),x ct xµ =
  with symbol on it, e.g. ( )F̂ x , distinct from 

countable c-number, e.g. ( )F x  [1]. Surprisingly, it is not the velocity ( )ˆ /s x t∂ ∂
  but the vorticity 

( )ˆrots x  of the spin vector field operator ( )ŝ x  that contributes to the kinetic momentum operator 

( )ˆ xΠ


 under the covariant symmetry of the general coordinate transformation (with factor 1/2; see 

Eq. (2.21) in Section 2.3).  

In Section 2, we shall first quickly review our preceding publications on general relativistic 

symmetry of QED [6-9] in such a way that it warrants the derivation of the general relativistic 

symmetry of electron spin vorticity. In Section 3, the canonical commutation relationship of the 

electromagnetic field of photon and the canonical anticommutation relationship of the Dirac field 

of electron and positron is studied nonpertubationally using new devices called the b -photon, 

f -electron, and cf -positron algebras. In Section 4, we construct the ket vector with wave 

function for the dual Cauchy problems of QED and conclude the concrete space-time resolved 

simulation of the c-number ( )F̂ x  for the q-number ( )F̂ x . Mathematical details are summarized 

in Appendix A for the Minkowski spacetime and Appendix B for general relativity. 

 

2. Spin vorticity 

2.1. Covariant derivative on the background Minkowski spacetime 

On the background Minkowski spacetime, the Dirac equation of the Dirac spinor operator ψ̂  with 

the covariant derivative D̂µ  of QED is given as [1]  
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( )ˆ ˆ 0i D mcµ
µγ ψ− =          (2.1) 

ˆˆ qD i A
cµ µ µ= ∂ +


          (2.2) 

where m  is the mass of electron, c  is the speed of light in vacuum, q e= −  is the charge of 

electron, and Âµ  the Abelian gauge potential of photon in the Coulomb gauge. The charge current 

† 0ˆ ˆˆ ˆ ˆ,  j cqµ µψγ ψ ψ ψ γ= =          (2.3)  

satisfies the conservation law 

ˆ 0jµµ∂ =
     

      (2.4) 

and the kinetic momentum 

( )†1 ˆˆ ˆ ˆ . .
2

i D h cψ ψ Π = + 
 



          (2.5)  

satisfies the equation of motion [6] 

ˆˆ ˆL
t

t Π∂
Π = +

∂



           (2.6) 

In the right hand side, the force is composed of the Lorentz force L̂


 and the tension t̂ Π  

ˆ ˆ ˆ ˆdiv ,   k kt t t tΠ Π Π Π= = ∂ 



  

  

       (2.7)  

which is the divergence of the stress tensor t̂ Π  

( )( )ˆˆ ˆˆ . .
2
c i D h cµν ν µt ψγ ψΠ = − +         (2.8)  

The stress tensor itself is not defined uniquely since mathematically any tensor whose divergence 

is zero can be added to. 

 

2.2. Covariant derivative of general relativity  
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To seek for the variation principle of the equation of motion on the background curved spacetime, 

the semiclassical Einstein-Hilbert action integral has been used under the symmetry of the general 

coordinate transformation of gravity [1] 

4 4
2

1 8ˆ ˆ ˆ0,    + ,  
2
c GI I R gd x L gd x

c c
πd κ

κ
= = − − =∫ ∫      (2.9)  

where R  is the Ricci scalar, G  is the universal gravitational constant, and L̂  is the Lagrangian 

density of QED including the interaction with gravity. 

The gravitational covariant derivative ( )D̂ gµ  is then given as [3-5] 

( ) 1ˆˆ
2

1ˆ
2

ab
ab

ab
ab

qD g i A i J
c

D i J

µ µ µ µ

µ µ

γ

γ

= ∂ + + +

= +

 



       (2.10)  

with the spin angular momentum 

,
4

ab a biJ γ γ =  
           (2.11) 

and spin connection 

;
b bc

a a ce e ν
µ ν µγ η=           (2.12) 

Using the gravitational covariant derivative, the stress tensor of electron ( )ˆ gµνt Π  becomes [6,7] 

( ) ( )( )( )ˆˆ ˆˆ g . .
2
c i D g h cµν ν µt ψγ ψΠ = − +        (2.13)  

 

2.3. Spin vorticity 

In this variation principle, due to the presence of the spin connection abµγ , a new 

symmetry-polarized geometrical tensor ˆµνε Π  appears and whose antisymmetric component cancels 
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with that of ( )ˆ gµνt Π  

( )ˆ ˆ 0A A gµν µνε t+ =
  

        (2.14)  

where 

( )1ˆ ˆ ˆ
2

Aµν µν νµε ε εΠ Π= −
  

       (2.15)  

( ) ( ) ( )( )1ˆ ˆ ˆ
2

A g g gµν µν νµt t tΠ Π= −        (2.16) 

This cancellation is originated from the fact that in order to satisfy the symmetry under the general 

coordinate transformation the energy-momentum tensor T̂µν  should be symmetric 

ˆ ˆT Tµν νµ=           (2.17) 

It follows that the electronic part of the energy-momentum tensor êT µν  of T̂µν  should be 

symmetric 

( )e e
ˆ ˆˆ ˆT g Tµν µν µν νµε tΠ Π= − − =         (2.18) 

Consequently, the cancelling is mandatory. 

What is the physical meaning of Eq. (2.14)? The answer is two-fold as is found if we take the 

limit to the Minkowski spacetime. First, for the time sector with 0µ = , 1, 2,3ν =  we obtain 

( )( )0
1ˆˆ ˆˆ ˆrot . . 0
2

s i D h cψγ ψ+Π − + =





       (2.19)  

Second, for the space sector with , 1, 2,3µ ν =  we obtain 

ˆˆˆ 0s t
t

ζ∂
− − =

∂





           (2.20) 

with torque t̂


 and zeta force ζ̂


. Furthermore, similarly taking the limit of Eq. (2.18) to the 
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Minkowski spacetime, it is found that half the vorticity, 1 ˆrot
2

s ,  appears as the component of the 

momentum added to the kinetic momentum 

e
1ˆ ˆˆ rot
2

P s= Π +


           (2.21)  

(see, AppendixB, Eq. (B.22)). 

 
Figure 1. Symmetry of the stress tensor of the Dirac field of electron and positron. Antisymmetric 

stress tensor drives spin torque and zeta force through vorticity. 

 

Consequently, the left hand side of Eq. (2.6) should change from ˆ
t
∂
Π

∂



 to 1ˆ ˆrot
2

s
t
∂  Π + ∂  



 ; for this 

purpose, we need to use Eq. (2.20), and after some manipulations, we finally arrive at 

e
ˆ ˆˆ SP L

t
t∂

= +
∂



           (2.22)  
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ˆ ˆ ˆ ˆdiv ,   S S Sk Skt t t t= = ∂ 



            (2.23)  

( )1ˆ ˆ ˆ
2

Sµν µν νµt t tΠ Π= +          (2.24) 

This assures the equation of motion using solely the symmetric part of the tensor ˆS
kt 

 in the right 

hand side. This is schematically shown in Figure 1. 

 

2.4. The Cauchy problem 

In QED, the dynamics of ( )ŝ x  is mediated by the electromagnetic field, and the associated charge 

current Eq. (2.3) is conventionally represented as 

( ) ( ) ( )( )ˆˆ ˆ ,j x c x j xµ ρ=


         (2.25) 

The Cauchy problem of the QED operator dynamics in the Heisenberg representation has been 

elaborated elegantly by Nakanishi using ghost field in the Landau gauge [2]. Here in this paper we 

use the Coulomb gauge for the vector potential ˆ( )A x


 as 

ˆdiv ( ) 0A x =


          (2.26) 

with the conjugate transversal electric field 

1 ˆˆ ( ) ( )TE x A x
c t
∂

= −
∂



          (2.27) 

and we do not invoke the additional ghost field.  

To solve for the Cauchy problem of QED, clocks at different space points are synchronized at 

0t t= ,  when canonical quantization is performed with the definition of the vacuum ket vector 

0 .The ( )ĵ xµ  develops forward 0t t>  with the retarded interactions mediated by photon. The 
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vacuum and field operators are not defined backward 0t t<  (see, Figure 2). 

 

Figure 2. Synchronization of clocks. The charge current develops forward 0t t>  with the retarded 

interactions mediated by photon. The vacuum and field operators are not defined backward 0t t< . 

 

The equal-time canonical quantization of the electromagnetic field leads to the equal-time 

commutation relationships 

0 0
ˆ ˆ( ), ( ) 0i j

x y
A x A y

=
  = 

 

        (2.28) 

0 0
ˆ ˆ( ), ( ) 0i j

T T x y
E x E y

=
  =     

      (2.29) 

0 0

31 1 1ˆ ˆ( ), ( ) ( )
4 4

i j ij i j
T x y

A x E y i x y
c x y

η d
π π=

  
  = − + ∂ ∂ − ⋅      −  

 



 

 
   (2.30)  

Second, the equal-time canonical quantization of the Dirac field leads to the equal-time 
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anti-commutation relationships 

( ) ( ){ } ( ) ( ){ }0 0 0 0

† †
' 'ˆ ˆ ˆ ˆ, , 0

x y x y
x y x yψ ψ ψ ψ

= =
= =

   

      (2.31) 

( ) ( ){ } ( )0 0

† 3
' 'ˆ ˆ,

x y
x y x yψ ψ d d

=
= −

  

         (2.32) 

The ( )ˆ xψ  commutes with ˆ( )A x


 

( ) ˆˆ , ( ) 0x A xψ  =  



          (2.33) 

These fields should of course be renormalized in a step-by-step way, reflecting the time-dependent 

minimal coupling. 

The time-development of ( )ŝ x , or any field operator ˆ ( )F x  obeys the Heisenberg equation of 

motion 

QED
ˆ ˆ ˆ( ) ( ),i F x F x H

t
∂  =  ∂


         (2.34) 

with the QED Hamiltonian QEDĤ . Note that QEDĤ   is made to be independent of time 

QED
ˆ 0H

t
∂

=
∂

          (2.35) 

The QEDĤ   is given in the Coulomb gauge using the normal order denoted as : : modulo c-number 

albeit infinity if any 

3
QED QED

ˆ ˆ: ( ) :H d x H x= ∫
          (2.36)  

( ) ( )
( )

22

QED

0 0

1 ˆˆˆ ( ) ( ) rot ( )
8

1 1ˆˆ ˆ ˆˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
2

T

k
k

H x E x A x

j x A x j x A x x i mc x c
c c

π

ψ γ ψ

 
= + 

 

− • + + − ∂ + ×








    (2.37) 
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0 03
0

ˆ ( )ˆ ( )  y x
y

A x d y
x y

ρ∞ =

−∞
=

−∫


 

         (2.38) 

In due course, for application to realistic situation in experiments of spin dynamics, we need to 

set up wave function in order to discriminate numbers of electrons, positrons and photons, and 

calculate 

( ) ( )ˆ
ˆ

|
H H

H H

F x
F x

Ψ Ψ
=

Ψ Ψ
          (2.39) 

where 
H

Ψ  denotes the time-independent ket vector in the Heisenberg representation. This is 

another Cauchy problem in QED (see Section 4). 

 

3. New algebras 

3.1. Causality and initial condition 

To obtain ( )F̂ x  with ( , )x ct xµ =
  at position x  with time t  in the Minkowski spacetime, we may 

collect information of ˆ ( )j yµ  with ( , )y cu yµ =
  at distant y  with the retarded time 

x y
u t

c
−

= −
 

  

satisfying causality 

ˆ ( , ) 0,    j cu y u tµ = >
          (3.1)  

and initial condition (see Figure 3) 

0
ˆ ( , ) 0,    j cu y u tµ = <

          (3.2)  
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Figure 3. Causality and initial condition. 

 

For this purpose, in the following discussions we may use that any function ( )F u  satisfying 

0( ) 0,    ,    F u u t u t= < >          (3.3) 

may be obtained at u  with 0

x y
t u t t

c
−

< = − <
 

 as [8] 

( ) ( )22
2

0

'

( ) ' ( ') '

' ( ')

x y
u t

c

x y
i u tt c

t

x y
F u du F u u t

c

x y
du d F u e

c

α

d

α
π

∞
−

= − −∞

 − − −
∞  

 

−∞

  −
= − −     

−
=

∫

∫ ∫

 

 

 

     
  (3.4) 

where we have used the delta function 

( ) ( ) ( )( )2 2 1( ' ) ( ' ) ( ' ) ,    0
2

u t a u t a u t a a
a

d d d− − = − − + − + >
 

  (3.5) 
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with 

( ) ( ) ( ) ( )22
2

2 '
2

2

1( ' )
2

x y
i u t

cx y
u t d e

c

α

d α
π

 − − −
∞  

 
−∞

−
− − = ∫

 

 

    
 (3.6) 

 

3.2. Electromagnetic field 

The vector potential ˆ( )A x


 should satisfy the Maxwell equation 

4ˆ ˆ( ) ( )TA x j x
c
π

=






     
     (3.7) 

with the transversal charge current 

0
1ˆ ˆ ˆ( ) ( ) grad ( )

4Tj x j x A x
tπ
∂

= −
∂

 

    
   (3.8)  

Using the standard Green function, we have [1] 

radiation
ˆ ˆ ˆ( ) ( ) ( )AA x A x A x= +
  

       
 (3.9)  

( ) ( )22
2

0

 3 T

  3
T2  

ˆ ( , )1ˆ ( , )

1 ˆ ( , )

A

x y
i t ut c

t

x yj cu yA ct x du d y u t
c x y c

du d d yj cu y e
c

α

d

α
π

∞ ∞

−∞ −∞

 − − −
∞ ∞  

 
−∞ −∞

  −
= − −   −   

=

∫ ∫

∫ ∫ ∫
 



 





 

 



 

    (3.10)  

where radiation
ˆ ( )A x


 denotes the radiation vector potential. It should be noted that we have used Eq. 

(3.4) using the causality and initial condition and then obtained the retarded potential ˆ ( )AA x


 with 

separation of space-time variables (see Figure 4). 
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Figure 4. Separation of variables for real-time simulation. 

 

The radiation
ˆ ( )A x


 is given by the radiationa -photon field 

†
radiation radiation radiation

ˆ ˆ ˆ( ) ( ) ( )A x a x a x= +


 

      
  (3.11)  

( )
( ) radiation

2 3
/

radiation radiation3 0
1 radiation

4ˆ ˆ( ) , ( , )
22

ix pc d pa x a p e e p
p

µ
µ

σ

π σ σ
π

∞ −

−∞
=±

= ∑ ∫ 



   

  
 (3.12)  

with the usual dispersion relationship of spectrum 

( )0 0 radiation
radiation radiation radiation, ,    hp p p p p

c
µ ν
= = =

        (3.13) 

and the polarization vector ( , )e p σ   

( , ) 0p e p σ• =
  

         

 (3.14) 
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( ) ( )*
2

1
, ,

i j
i j ij p pe p e p

pσ

σ σ η
=±

= − +
−

∑  



        (3.15) 

( ) ( )
3

*
'

1
, , 'i i

i
e p e p σσσ σ d

=

=∑            (3.16) 

Note the usual commutation algebra of the radiationa -photon field 

( ) ( ) ( ) ( )† †
radiation radiation radiation radiationˆ ˆ ˆ ˆ, , , ' , , , ' 0a p a q a p a qσ σ σ σ   = =   

        (3.17) 

( ) ( ) ( )† 3
radiation radiation 'ˆ ˆ, , , 'a p a q p qσσσ σ d d  = − 

   

    

 

(3.18) 

The generic solution may be given by using the b -photon field defined as follows 

†ˆ ˆˆ( ) ( ) ( )A x b x b x= +
 

          (3.19) 

( ) ( )
( )

2 3
2 /

3 0 01

4ˆ ˆ( ) , , ( , )
2 ,2

i t ix pc d pb x d b p e e p e
p p

πν

σ

π ν ν σ σ
νπ

∞ ∞ − •

−∞
=±

= ∑ ∫ ∫
 







   





 

 

(3.20) 

By using the integral form of the current 

( )
( ) ( )( )3 2 / † 2 /

3 0

1ˆ ˆ ˆ( ) , ,
2

i t ix p i t ix p
T T Tj x d d p j p e e j p e eπν πνν ν ν

π

∞ ∞ − • + − •

−∞
= +∫ ∫

   

 

  

  



  (3.21) 

the b -photon field may be represented as 

( )
( ) ( )

222

20 1

4 2 4 ˆˆ , , ( , ) ,
2 ,

T

pc b p e p j p
c cp p σ

π πν πν σ σ ν
ν =±

   − + =    
∑





    





  

 

(3.22) 

Comparing Eq. (3.22) with Eqs. (3.9), (3.11), and (3.19), we may observe that the radiationa -photon 

fields are sticking to the b -photon field through ˆ ( )Tj x


. This sticking process may be called 

“thermalization” of the radiationa -photon fields to the b -photon field.  Note that the real positive 

number ( )0 ,p pν   in Eq. (3.20) is the counterpart of 0
radiationp  in Eqs. (3.12) and (3.13). The 
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( )0 ,p pν   is a function of ν   and p   serving as the thermalized solution of Eq. (3.22). 

The field algebra in Eqs. (2.28)-(2.30) are recovered if we assume the b -photon algebra 

( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , ' 0b p b q b p b qν σ ν σ ν σ ν σ   = =   
   

    

 (3.23) 

( ) ( ) ( ) ( )( ) ( )( )† 3
'

ˆ ˆ, , , ', , ' '
b b

b p b q p q p qσσν σ ν σ d d d ν ν d ν ν  = − − − 
         (3.24) 

where ( )b
pν   denotes real positive frequency that depends on p . The b -photon field apparently 

includes the radiationa -photon field in a delta-function form 

( ) ( ) ( )radiation radiation
ˆ ˆ, ,   ,b p a pν σ σ d ν ν⊃ −

 

      

 (3.25) 

Then, the electromagnetic part of QEDĤ  (modulo c-number vacuum energy) in Eqs. (2.36) and 

(2.37) is given as 

( ) ( )

( ) ( )

( ) ( ) ( )

( )

22
3

QED

3
2

0 0 0 01

2
2 '†

2

1 ˆˆˆ   : ( ) rot ( ) :
8

'
2 , 2 ',

2 2 ' ˆ ˆ, , ', ,

 modulo c-number

T

i t

H d x E x A x

d pc d d
p p p p

p
b p b p e

c c

σ

π ν ν

π

ν ν
ν ν

πν πν ν σ ν σ

∞ ∞ ∞

−∞
=±

−

 
⊃ + 

 

=

    × +      

∫

∑ ∫ ∫ ∫









 



 



     (3.26) 

which part may depend on t  and 0t  although QEDĤ  is independent of t . Moreover, Eq. (3.26) 

includes the radiation part (modulo time-independent c-number vacuum energy) given as 

( ) ( )
( ) ( )

( ) ( )

( )

radiation

22
3

22
3

radiation

3 0 †
radiation radiation radiation

1

1 ˆˆ: ( ) rot ( ) :  
8

1 ˆˆ : ( ) rot ( ) :
8

ˆ ˆ, ,

modulo time-independent c-number

T

T

d x E x A x

d x E x A x

d pcp a p a p
σ

π

π

σ σ
∞

−∞
=±

 
+ 

 
 

⊃ + 
 

=

∫

∫

∑ ∫









  

    

 

(3.27) 
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which is manifestly independent of t  as well as 0t . 

 

3.3. The Dirac field 

The ˆ ( )xψ  may be given by using the spinor Green function ( ),K x y  as [1] 

( ) ( )4
free

1 ˆˆ ˆ ˆ( ) ( ) , ( )qx x d yK x y A y y
i c

ψ ψ ψ /= + − 
 ∫

   
    (3.28)  

( ) ( )4( ) ,i mc K x y i x yd− ∂/ + = − 

      
 (3.29)  

where freeˆ ( )xψ  denotes the free field. The freeˆ ( )xψ  is given by the free freee -electron and 

free
ce -positron fields  

†
free free freeˆ ˆ ˆ( ) ( ) ( )cx e x e xψ = +

  

       (3.30)  

( )
( ) free /3

free free3 1
2

1ˆ ˆ( ) , ( , )
2

ix pe x d pe p e u p
µ

µ

σ

σ σ
π

∞ −

−∞
=±

= ∑ ∫






  



    (3.31)  

( )
( ) free /† 3 †

free free3 1
2

1ˆ ˆ( ) , ( , )
2

ix pc ce x d pe p e v p
µ

µ

σ

σ σ
π

∞ +

−∞
=±

= ∑ ∫






  



   (3.32) 

with the usual dispersion relationship of spectrum 

( ) ( )2 20 0 free
free free free, ,    hp p p p mc p

c
µ ν
= = = +

       (3.33)  

and the anti-commutation algebra 

( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }

free free free free

† † † †
free free free free

ˆ ˆ ˆ ˆ, , , ' , , , '

ˆ ˆ ˆ ˆ, , , ' , , , ' 0

c c

c c

e p e q e p e q

e p e q e p e q

σ σ σ σ

σ σ σ σ

=

= = =

   

   

 

   (3.34)  

( ) ( ){ } ( ) ( ){ } ( )† † 3
free free free free 'ˆ ˆ ˆ ˆ, , , ' , , , 'c ce p e q e p e q p qσσσ σ σ σ d d= = −

        (3.35)  

The Dirac spinors ( , )u p σ  for electron and ( , )v p σ  for positron satisfy 
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( )free ( , ) 0p mc u pµ
µγ σ− =

         (3.36) 

( )free ( , ) 0p mc v pµ
µγ σ+ =



  

       (3.37)  

( )free0
1 free
2

1( , ) ( , )
2

u p u p p mc
p

µ
µ

σ

σ σ γ
=±

= +∑  

      (3.38)  

( )free0
1 free
2

1( , ) ( , )
2

v p v p p mc
p

µ
µ

σ

σ σ γ
=±

= −∑         (3.39)  

( )0
free free '( , ) ( , ') ( , ) ( , ') /u p u p v p v p p pµ µ µ

σσσ γ σ σ γ σ d= =
   

    (3.40)  

0 0( , ) ( , ') ( , ) ( , ') 0u p v p v p u pσ γ σ σ γ σ− = − =
          (3.41) 

The generic solution may be given by using the f -electron and cf -positron fields defined as 

follows 

†ˆ ˆˆ ( ) ( ) ( )cx f x f xψ = +          (3.42) 

( )
( )3 2 /

3 01
2

1ˆ ˆ( ) , , ( , )
2

i t ix pf x d d p f p e u p eπν

σ

ν ν σ σ
π

∞ ∞ − •

−∞
=±

= ∑ ∫ ∫
 



 

  



  

 (3.43)  

( )
( )† 3 † 2 /

3 01
2

1ˆ ˆ( ) , , ( , )
2

c c i t ix pf x d d p f p e v p eπν

σ

ν ν σ σ
π

∞ ∞ + − •

−∞
=±

= ∑ ∫ ∫
 



 

  



   (3.44)  

Applying the first thermalization of the b -photon field Eq. (3.22) to Eq. (2.1), we obtain the 

second thermalization of the f -electron field 
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( ) ( )

( ) ( )

( ) ( )

0 3
00 1

2

3

220 1
22

†

1
2

ˆˆ' ', ', , ( , )

4 ˆˆ' ', ', , ( , )
2 '

ˆˆ ', ', , ( , )

k
k T

k
k T

q d d qA p q f q u q
c

d qd j q f p q u p q
c q

c

j q f p q u p q

σ

σ

σ

γ ν ν ν ν σ σ

π ν γ ν ν ν σ σ
πν

γ ν ν ν σ σ

∞ ∞

−∞
=±

∞ ∞

−∞
=±

=±

− −


= − − −    − +     


+ + + + 


∑∫ ∫

∑∫ ∫

∑

    



    





    

 (3.45)  

with 

( )
( )

( ) ( )(
( ) ( )
( ) ( )
( )

3
0 3 01 1'

2 2

† †

† † †

†

†

ˆ , '
2

ˆ ˆ', , ', , ' ( , ) ( , ')

ˆ ˆ', , ', , ' ( , ) ( , ')
ˆ ˆ', , ', , ' ( , ) ( , ')

ˆ ˆ', , '

c

c

c c

qA p d d q

f q f p q u q u p q

f q f p q u q v p q

f q f p q v q u p q

f q f

σ σ

ν ν
π

ν σ ν ν σ σ σ

ν σ ν ν σ σ σ

ν σ ν ν σ σ σ

ν σ ν ν

∞ ∞

−∞
=± =±

=

× + + +

+ − − − − − −

+ − − −

+ − +

∑ ∑ ∫ ∫
 



     

     

     

 ( ) )†, , ' ( , ) ( , ')p q v q v p qσ σ σ− + − +
    

    (3.46)  

and the third thermalization of the cf -positron field 

( ) ( )

( ) ( )

( ) ( )

0 3 † †
00 1

2

3
†

220 1
22

† †

1
2

ˆˆ' ', ', , ( , )

4 ˆˆ' ', ', , ( , )
2 '

ˆˆ ', ', , ( , )

c

k c
k T

k c
k T

q d d qA p q f q v q
c

d qd j q f p q v p q
c q

c

j q f p q v p q

σ

σ

σ

γ ν ν ν ν σ σ

π ν γ ν ν ν σ σ
πν

γ ν ν ν σ σ

∞ ∞

−∞
=±

∞ ∞

−∞
=±

=±

− −


= + + +    − +     


+ − − − 


∑∫ ∫

∑∫ ∫

∑

    



    





    

 (3.47) 

The field algebra in Eqs. (2.31) and (2.32) are recovered if we assume the f -electron and 

cf -positron algebras 
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( ) ( ){ } ( ) ( ){ }
( ) ( ){ } ( ) ( ){ }† † † †

ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , '

ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , ' 0

c c

c c

f p f q f p f q

f p f q f p f q

ν σ ν σ ν σ ν σ

ν σ ν σ ν σ ν σ

=

= = =

   

   

   (3.48)  

( ) ( ){ } ( ) ( ){ }
( ) ( )( ) ( )( )

† †

3
'

ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , '

'

c c

f f

f p f q f p f q

p q p qσσ

ν σ ν σ ν σ ν σ

d d d ν ν d ν ν

=

= − − −

   

   

    (3.49) 

where ( ) f
pν   denotes real positive frequency that depends on p . Also, Eq. (2.33) is recovered if 

we assume 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )† †

ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , '

ˆ ˆ ˆ ˆ, , , ', , ' , , , ', , ' 0

c

c

f p b q f p b q

f p b q f p b q

ν σ ν σ ν σ ν σ

ν σ ν σ ν σ ν σ

   =   
   = = =   

   

   

   (3.50) 

The f -electron and cf -positron fields apparently include the freee -electron and free
ce -positron 

fields respectively in the delta-function forms 

( ) ( ) ( )free free
ˆ ˆ, ,   ,f p e pν σ σ d ν ν⊃ −

 

       

 (3.51) 

( ) ( ) ( )free free
ˆ ˆ, ,   ,c cf p e pν σ σ d ν ν⊃ −

 

      

 (3.52) 

Then, the Dirac part of QEDĤ  (modulo c-number vacuum energy) in Eqs. (2.36) and (2.37)  is 

given as 

( )

( ) ( ) ( ) ( ) ( ) ( )( )
( )

3
QED

3 0
free0 0

1

2 ' 2 '† †

ˆ ˆ ˆ  : ( ) ( ) :

'

ˆ ˆ ˆ ˆ, , ', , ', , , ,

 modulo c-number

k
k

i t i tc c

H d x x i mc x c

d d d pcp

f p f p e f p f p e
σ

π ν ν π ν ν

ψ γ ψ

ν ν

ν σ ν σ ν σ ν σ

∞ ∞ ∞

−∞
=±

+ − − −

⊃ − ∂ + ×

=

× +

∫
∑ ∫ ∫ ∫







   

  (3.53) 

which part may depend on t  and 0t  although QEDĤ  is independent of t . Moreover, Eq. (3.53) 

includes the free part (modulo time-independent c-number vacuum energy) given as 
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( )
( )

( ) ( ) ( ) ( )( )

( )

3

3
free free

3 0 † †
free free free free free

1
2

ˆ ˆ: ( ) ( ) :

ˆ ˆ  : ( ) ( ) :

ˆ ˆ ˆ ˆ, , , ,

modulo time-independent c-number

k
k

k
k

c c

d x x i mc x c

d x x i mc x c

d pcp e p e p e p e p
σ

ψ γ ψ

ψ γ ψ

σ σ σ σ
∞

−∞
=±

− ∂ + ×

⊃ − ∂ + ×

= +

∫
∫
∑ ∫









    

   (3.54) 

which is manifestly independent of t  as well as 0t . 

 

4. Conclusion 

The wave function 1( , , )N Nω ωΦ   in the Hilbert space of QED is equipped with the ket vector 

1 1 1 or  or 
0

, , ( , , )N N N NH S H S
N

d dω ω ω ω ω ω
∞

=

Ψ = Φ∑ ∫   
    (4.1)  

in term of the Heisenberg ( H ) or Schrődinger ( S ) representation satisfying the Heisenberg 
equation 

0
H

i
t
∂

Ψ =
∂


          (4.2)  

or the Schrődinger equation 
( )QED 0

1 ˆ

QED
ˆ   ,   

H t t
i

S S S H
i H e

t
−∂

Ψ = Ψ Ψ = Ψ
∂



       (4.3)  

The ω  denotes the collected set of variables for expansion of the wave function using the basis ket 

vectors; a primitive choice may be given with the obvious notation 

( ) ( )

( ) ( )

( ) ( )

0

† †
1 1 at 

† †
1

† †
1

1 ˆ ˆ, ,
!

1 ˆ ˆ
!

1 ˆ ˆ 0
!

b b

f f

c cf f
c

N NH t t
b

N
f

c c
N

f

b b
N

f f
N

f f
N

ω ω ω ω

ω ω

ω ω

=
=

×

×

 





      (4.4)  
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1 1 1 1( , , ) ( , , , , , , , , )
b b f f c cf f

N N N N N Nω ω ω ω ω ω ω ωΦ = Φ   
     (4.5)  

cb f f
N N N N= ⊕ ⊕           (4.6)  

cb f f
ω ω ω ω= ⊗ ⊗           (4.7)  

{ }, , , ,cb f f
pω ω ω ν σ=
          (4.8) 

For permutation P  of variables 

1 1 1 1( , , ) ( , , , , , , , , )
b b b b f f f f c c c cf f f f

N P PN N P P N P P N P P Nω ω ω ω ω ω ω ωΦ = Φ   
   (4.9) 

cb f f
P P P P= ⊗ ⊗           (4.10) 

the wave function changes the antisymmetric ( )−  sign 

( ) 1 1sgn ( , , ) ( , , )N P PN N NP ω ω ω ωΦ = Φ 
       (4.11)  

( ) ( ) ( )sgn f cf
P PP = − −          (4.12) 

Using the primitive choice described above, the basis vectors are orthonormal 

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

1 1

1 1

, , | ' , , '

1 ' '
!

1 ' '
!

1 ' '
!

b b b b b b b b

b

f

f f f f f f f f

f

cf
c c

c c c c c c c cf f f f f f f f
c cf

N MH H

N M b P b N P N
Pb

P
N M f P f N P N

Pf

P
N M P N P Nf f

Pf

N

N

N

ω ω ω ω

d d ω ω d ω ω

d d ω ω d ω ω

d d ω ω d ω ω

= − −

× − − −

× − − −

∑

∑

∑

 







    (4.13) 

with 

( ) ( ) ( )( ) ( )( )3
'' ' ' 'b b b b b

p p p pσσd ω ω d d d ν ν d ν ν− = − − −
         (4.14)  

( ) ( ) ( ) ( )( ) ( )( )3
'' ' ' ' 'c c cf f f f f f f f

p p p pσσd ω ω d ω ω d d d ν ν d ν ν− = − = − − −
      (4.15)  

This demonstrates another Cauchy problem in QED. Namely, for an event iα  starting at it  
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with 0   ;  1, 2,3,it t i< = , we set up the initial ket vector ( ),i i H
tαΨ  for Eq. (4.2) but need to 

obtain the wave function 1( , ; , , , )N i i Nt tα ω ωΦ   developing from it  to t  with it t<  onward 

obeying 

1

1 1 1 1
0

( , ; , , , )

' ' ( , , , ' , , ' ) ( , ; ' , , ' , )

N i i N

M NM N M M i i M
M

i t t
t

d d H t t

α ω ω

ω ω ω ω ω ω α ω ω
∞

=

∂
Φ

∂

= Φ∑ ∫

 

   

  (4.16) 

using the time-independent function 

1 1

1 QED 1 1 QED 1

( , , , ' , , ' )
ˆ ˆ, , ' , , ' , , ' , , '

NM N M

N M N MS S H H

H

H H

ω ω ω ω

ω ω ω ω ω ω ω ω= =

 

   

  (4.17) 

1 1( , , , ' , , ' ) 0NM N MH
t

ω ω ω ω∂
=

∂
 

       (4.18) 

Finally, substituting this time-dependent 1( , ; , , , )N i i Nt tα ω ωΦ 
 into Eq. (4.1), we calculate 

( )
( ) ( ) ( )

( ) ( ),

ˆ, ,ˆ
, | ,i i

i i i iH H

t
i i i iH H

t F x t
F x

t tα

α α

α α

Ψ Ψ
=

Ψ Ψ
 for each event iα  starting at it  with 

0   ;  1, 2,3,it t t i< < =   developing onward with ( , )x ct xµ =
  at position x  with time t  in using 

Eq. (2.39). 

   This concludes the way for solving the dual Cauchy problems in QED using the new b -photon, 

f -electron, and cf -positron algebras. These new algebras work for interacting particles through 

the first thermalization Eq. (3.22), the second Eq. (3.45), and the third Eq. (3.47). As compared 

with the conventional Gell-Mann-Low relationship using covariant perturbational approach [1], 

this present approach paves the way for realizing nonperturbationally space-time resolved 

simulation of QED. 
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Appendix A 

In this Appendix, we may first quickly review basic mathematics. The coordinate x  with the 

contravariant components xµ   and the covariant components xµ   and the metric tensor µν
µνη η=  

of the Minkowski spacetime, together with the inner product of two 4-vectors A  and B  written as 

A B⋅  as well as the inner product of the Dirac gamma matrices µγ  and a 4-vector A  written as the 

Dirac slash A/  are defined as 

( ) ( ) ( ) ( ) ( )0 0 1 2 3, , , , , , , , ,kx x x x x x x ct x y z ct r ct xµ = = = = =
 

 
  (A.1) 

( ) ( ) ( ) ( ) ( )0 0 1 2 3, , , , , , , , ,kx x x x x x x x ct x y z ct r ct xν
µ µνη= = = = − − − = − = −

   (A.2) 

1 0 0 0
0 1 0 0 1,  =

,   
0 0 1 0 0,  
0 0 0 1

µν µρ µ
µν ρν ν

µ ν
η η η η d

µ ν

 
 −  = = = =  − ≠
 

− 

   
 (A.3) 

0 1 2 3

1 1, , , , ,grad
x x x x x c t c tµ µ

∂ ∂ ∂ ∂ ∂ ∂ ∂     ∂ = = = ∇ =     ∂ ∂ ∂ ∂ ∂ ∂ ∂     



   
(A.4)

 

0 1 2 3

1 1, , , , , grad
x x x x x c t c t

µ µν
νη ∂ ∂ ∂ ∂ ∂ ∂ ∂     ∂ = = − − − = −∇ = −     ∂ ∂ ∂ ∂ ∂ ∂ ∂     



 
 

(A.5) 

0 0 ,    x x y y z zA B A B A B A B A B A B A B A Bµ ν
µνη⋅ = = − • • = + +

  

    (A.6)  

0 0 1 2 3,    x y zA A A A A A A Aµ ν
µνη γ γ γ γ γ γ γ/ = = − • • = + +

 

     
 

(A.7) 

( )
2

22 1 ,    
c t
∂ = ∂ = −∆ ∆ = ∇ ∂ 



       
 

(A.8) 

{ } [ ] [ ] [ ],  = , ;   , ,A B AB BA A B A B AB BA A B
+ −

= + = − =    
 

(A.9) 

where the Einstein summation convention is used. 
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The spinor ( )xψ  in the chiral representation ( )chiral xψ  is constructed by the undotted spinor 

( ) ( )A
R x xψ x=  with right-handed chirality and the dotted spinor ( ) ( )L Ux xψ η=



 with 

left-handed chirality as 

chiral

A
R

L U

ψ x
ψ ψ

ψ η
  

= = =        
        (A.10) 

1
1

2
2

,    A
U

ηx
x η

ηx
   

= =   
  







        
 

(A.11) 

The undotted and dotted capital Latin letters run from 1 to 2 and change position by using the 

antisymmetric matrix ε  as 

,   B U UV
A BA Vx x ε η ε η= =  



        (A.12)  

,   A AB V
B U VUx ε x η η ε= = 

  

        (A.13) 

0 1 0 1
,   

1 0 1 0
AB UV

AB UVε ε ε ε
   

= = = =   − −   

 

 

      (A.14) 

where the Einstein summation convention is used. 

The Pauli matrix σ  with the contravariant components µσ  and the covariant components µσ  

( ) ( ) ( ) ( )0 0 1 2 3, , , , 1, , , 1,k
x y z

µσ σ σ σ σ σ σ σ σ σ σ= = = =
     (A.15)  

( ) ( ) ( ) ( )0 0 1 2 3, , , , 1, , , 1,k x y z
ν

µ µνσ η σ σ σ σ σ σ σ σ σ σ σ= = = = − − − = −
   (A.16) 

(note the use of 1 as the unit matrix) are cast into the MTW (Misner-Thorne-Wheeler) 

representation [10] 
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

0 0
0

1
1

2
2

3
3

1 0
0 1

0 1
1 0

0
0

1 0
0 1

AU

V B

AU
xV B

AU
yV B

AU
zV B

i
i

σ σ σ

σ σ σ

σ σ σ

σ σ σ

 
= = = 

 
 

= = = 
 

− 
= = = 

 
 

= = = − 

















       (A.17) 

Also, the Dirac gamma matrices µγ  and the chiral matrix 5γ  

0 1 2 3
5 iγ γ γ γ γ=           (A.18)  

are given in the chiral representation using the MTW representation of the Pauli matrices as 

( )
( )

( )
( )
( )

( )

0
00

00

0
0

5
5 00

0 0 10
1 000

0 0
00

0 1 00
0 100

AU

V B

AU k
kk

kk

V B

A

B

V

U

σ σ
γ

σσ

σ σ
γ

σσ

σ σ
γ γ

σσ

      = = =        
 −  − = =      
 

    = = = = −     −−    − 













    (A.19) 

where the following MTW representation is found for the diagonal block 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

0 0 0

1 1

2 2

3 3

A V

B U

A V

xB U

A V

yB U

A V

zB U

σ σ σ

σ σ σ

σ σ σ

σ σ σ

= =

= =

= =

= =

















        (A.20)  

The Clifford algebra of the Dirac gamma matrices should be 
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{ }
( )

( )

0

0

0 1 0
, 2 2 2

0 10

A

B

V

U

µ ν µν µν µν
σ

γ γ η η η
σ

 
  = = =     

 




    (A.21) 

 

Appendix B 

In this Appendix B, we quickly review variation principle of QED with gravitation. 

B.1. Semiclassical Einstein-Hilbert gravitational action for QED 

The semiclassical Einstein-Hilbert gravitational action GI  is added to the system action SI  and 

made stationary 
 

0,    G SI I I Id = = +           (B.1) 

First, for the variation g µνd  of the symmetric metric tensor g gµν νµ= , the Einstein equation is 

derived as 

G Yµν µν=            (B.2) 

1 2 1
2GG I R g R G

g cgµν µν µν νµµν

d κ
d

= = − =
−

      (B.3) 

2

1 2
SY I T Y

g c cgµν µν νµµν

d κ κ
d

= − = − =
−

       (B.4) 

In QED system, the variation principle leads to the Dirac equation of electron 

( )( ) 0a
ai e D g mcµ

µγ ψ− =
         (B.5)  

and the Maxwell equation of photon 
4F j
c

µν µ
ν

π
∇ =

  
        (B.6)  

with the continuity equation of current 
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0jµµ∂ =
  

         (B.7)  

In terms of the vector potential, we have the field equation 

4A R A A j
c

ν µ µ ν µ ν µ
ν ν ν

π
∇ ∇ + −∇ ∇ =

    
   (B.8) 

Let the Coulomb gauge be given as 

0i
i A∇ =     

    
   (B.9) 

Then, we get the Laplace equation 

0 0 04i
i A R A j

c
ν

ν
π

∇ ∇ + =   
    

   (B.10) 

and the d’Alembert equation 

0
0

4i i i iA R A A j
c

µ ν
µ ν

π
∇ ∇ + −∇ ∇ =

  
      (B.11) 

We may further introduce the longitudinal and the transversal currents as 

i i i
T Lj j j= +

  
         (B.12) 

in such a way that Eq. (B.11) is reduced to a separable form 

0
0

4i i
LA j

c
π

−∇ ∇ =
  

        (B.13)  

4i i i
TA R A j

c
µ ν

µ ν
π

∇ ∇ + =
  

       (B.14)  

The symmetric energy-momentum tensor 

( ) ( )EM e
1

4
T g g F F g L L Tρσ
µν µν µν µρ νσ µν νµε t

π
Π Π= − − − − + =    (B.15)  

EM eT T Tµν µν µν= +          (B.16) 

EM EM EM
1

4
T g F F g L Tρσ

µν µρ νσ µν µνπ
= − − =       (B.17)  
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( )e e eT g g L Tµν µν µν µν µνε tΠ Π= − − − =        (B.18)  

satisfies the conservation law 

 0T λ
λ µ∇ =            (B.19)  

Also the antisymmetric angular momentum tensor 

 M x T x T Mλµν µ λν ν λµ λνµ= − = −         (B.20)  

satisfies the conservation law 

 0kM λ
λ∂ =            (B.21)  

 

B.2. Energy-momentum tensor and spin vorticity 

In the limit to non-gravitation field, the energy-momentum tensor eT µν  is reduced to 

( )

e

e

e

e

1 1 1 1. . rot rot rot
2 2 2 2

1 rot
2
1 rot
2

1 rot
2

x y z

S S S
xx xy xz

x

S S S
yx yy yz

y

S S S
zx zy zz

z

M h c c s c s c s

c s L
T

c s L

c s L

µν

t t t

t t t

t t t

      + Π + Π + Π +       
      

  Π + − + − −  
  →    Π + − − + −   

 
  Π + − − − +    

  

  















  (B.22)  

with the mass term M . The energy-momentum tensor EMT µν  is then reduced to 

EM

x y z

x xx xy xz

y yx yy yz

z zx zy zz

H cG cG cG
cG

T
cG
cG

γ

µν σ σ σ
σ σ σ
σ σ σ

 
 
 →  
  
 

        (B.23)  

with the Poynting vector G


 and the Maxwell stress tensor σ . The conservation law Eq. (B.19) of 

energy and momentum is then reduced to  
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0 0 20 div 0T cP c P
t

ν
ν

∂
∇ = → + =

∂



        (B.24) 

( )0 div 0k ST P
t

ν
ν σ t∂

∇ = → + − =
∂



         (B.25) 

( )1 . . 12 ,  rot
2

M h c H
P s G

c

γ
µ

 + + 
= Π + + 
 
 






       (B.26) 

The conservation law Eq. (B.21) of angular momentum is then reduced to  

( )( )0      div 0k SM J r
t

λ
λ σ t∂
∂ = → + × − =

∂




         (B.27) 

01 1      rot
2

kM J r r s r G
c

→ = ×Π + × + ×

 

           (B.28) 

Now that the vorticity plays an important role as momentum, and it is associated with 

antisymmetric electronic stress tensor At , we may further prove that symmetric electronic stress 

tensor St  plays an important role as tension divS St t=
   compensating the Lorentz force L



 as 

1 rot
2

Ss L
t

t∂  Π + = + ∂  



 

 
        (B.29)  
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