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Abstract. The existence of classical solutions to the Cauchy problem for the
Boltzmann equation without angular cutoff has been extensively studied in the
framework when the solution has Maxwellian decay in the velocity variable.
cf. [8, 6] and the references therein. In this paper, we prove local existence

of solutions with polynomial decay in the velocity variable for the Boltzmann
equation with soft potential. In the proof, the singular change of variables
between post- and pre-collision velocities plays an important role, as well as

the regular one introduced in the celebrated cancellation lemma by Alexandre-
Desvillettes-Villani-Wennberg [1].

1. Introduction

Consider the Cauchy problem for the Boltzmann equation,

(1.1) ∂tf + v · ∇xf = Q(f, f), f(0, x, v) = f0(x, v),

where f = f(t, x, v) is the density distribution function of particles with velocity
v ∈ R3 at time t and position x. The right hand side of (1.1) is given by the
Boltzmann bilinear collision operator

Q(g, f)(v) =

∫
R3

∫
S2
B (v − v∗, σ) {g(v′∗)f(v′)− g(v∗)f(v)} dσdv∗ ,

which is well-defined for suitable functions f and g, specified later. Notice that the
collision operator Q(· , ·) acts only on the velocity variable v ∈ R3. In the following
discussion, we will use the σ−representation, that is, for σ ∈ S2,

v′ =
v + v∗

2
+

|v − v∗|
2

σ, v′∗ =
v + v∗

2
− |v − v∗|

2
σ,

which follows from the conservation of the moment and energy in the elastic col-
lision. The non-negative cross section B(z, σ) depends only on |z| and the scalar
product z

|z| · σ. From the consideration of physical models, it usually takes the

form

(1.2) B(|v − v∗|, cos θ) = Φ(|v − v∗|)b(cos θ), cos θ =
v − v∗
|v − v∗|

· σ , 0 ≤ θ ≤ π

2
,

where

Φ(|z|) = Φγ(|z|) = |z|γ , for some γ > −3,

b(cos θ)θ2+2s → K when θ → 0+, for 0 < s < 1 and K > 0.

In fact, if the inter-molecule potential satisfies the inverse power law with poten-
tial being U(ρ) = ρ−(q−1), q > 2, where ρ denotes the distance between the two

1



2 YOSHINORI MORIMOTO AND TONG YANG

interacting molecules, then s and γ are given by

0 < s = 1/(q − 1) < 1 , 1 > γ = 1− 4s = (q − 5)/(q − 1) > −3 .

As usual, the hard (γ > 0) and soft (γ < 0) potentials correspond to q > 5 and
2 < q < 5, respectively, and the Maxwellian potential (γ = 0) corresponds to q = 5.

The angle θ is the deviation angle, i.e., the angle between post- and pre-collisional
velocities. Though the range of θ is originally the interval [0, π], it should be noted
that the angle θ in (1.2) is now restricted to [0, π/2], as in [1], by replacing b(cos θ)
by its “symmetrized” version

[b(cos θ) + b(cos(π − θ))]10≤θ≤π/2,

which is possible due to the invariance of the product f(v′)f(v′∗) in the collision
operator Q(f, f) under the change of variables σ → −σ. This enables us to use the
regular change of variables v → v′ between post- and pre-collisional velocities ( see
the proof of the cancellation lemma in [1] and (2.3) below).

The singular change of variables v∗ → v′ was firstly introduced in [9, 2] to show
the existence of solutions to the linearized Boltzmann equation, and was used in
[3, 4, 7] to show the uniqueness of solutions with polynomial decay in the velocity
variable to the nonlinear Boltzmann equation for Maxwellian and soft potentials.

The purpose of the present paper is to give a local existence result concerning
polynomial decay solutions in the velocity variable to the nonlinear Boltzmann
equation for certain soft potentials. Namely, because of the technical difficulties,
we confine ourselves to the case

0 < s <
1

2
, −3

2
< γ ≤ 0 ,(1.3)

though the uniqueness of solutions was discussed in [7] under a more general con-
dition that requires 0 < s < 1 and max{−3,−2s− 3/2} < γ ≤ 0.

We introduce the function space for the solutions as follows. Set

∂αβ = ∂αx ∂
β
v , α, β ∈ N3,

and

W =

{
⟨v⟩ if 0 < s ≤ 1/4 ,
⟨v⟩2s/(1−2s) if 1/4 < s < 1/2 ,

(1.4)

which ensures ⟨v⟩ ≤ min{W 1−2s
2s ,W} for the later use. As in [5], we use a weight

function in both the space and velocity variables

ϕ(x, v) =
1

1 + |v|2 + |x|2
,(1.5)

which possesses the commutator property |[v · ∇x, ϕ]| = 2|v · x|ϕ2 ≤ ϕ. For k ∈ N,
ℓ ∈ R with k < ℓ, we define

Hk,ℓ
ul (R

6) = {g
∣∣ ∥g∥2Hk,ℓ

ul (R6)
(1.6)

=
∑

|α+β|≤k

sup
a∈R3

∫
R6

∣∣∣ϕ(x− a, v)Wℓ−|α+β|∂αβ g(x, v)
∣∣∣2 dxdv < +∞}.

The function space Hk,ℓ
ul (R6) is a variant of the uniformly local Sobolev space

Hk,ℓ
ul (R6) used in [6], which is defined by replacing Wℓ−|α+β| and ϕ(x, v) by ⟨v⟩ℓ

and a usual smooth cutoff function ϕ1(x) ∈ C∞
0 (R3), respectively. In [6], bounded

classical solution with Maxwellian decay in the velocity variable is constructed in
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the whole space without specifying any limit behavior at the spatial infinity and
without assuming the smallness condition on initial data, under the assumption
0 < s < 1/2,−3/2 < γ, γ + 2s < 1 on the cross section B.

Now for the local existence of polynomial decay solution in the velocity variable,
we have the following improvement of Theorem 1.1 of [6] for the soft potentials.

Theorem 1.1. Assume that the cross section B takes the form (1.2) and satisfies

(1.3). If the initial data f0 is non-negative and belongs to Hk,ℓ
ul (R6) for k ≥ 6 and

ℓ ≥ k + 7, then there exists a T∗ > 0 such that the Cauchy problem (1.1) admits a

non-negative unique solution in the function space C0([0, T∗];Hk,ℓ
ul (R6)).

Throughout this paper, we will use the following notation: A ≲ B means that
there exists a generic positive constant C > 0 such that A ≤ CB. Furthermore,
A ∼ B means that A ≲ B and B ≲ A.

The rest of the paper will be organized as follows. In the next section, we will
present some preliminary lemmas, in particular, including an estimate about how to
compensate the order of moment and the order of differentiation that is one of the
key observations in the analysis. The uniform estimate based on the estimations on
the commutators and the collision operator will be given in Section 3. In Section 4,
we study the cutoff approximations for the construction of local solutions. Finally,
the technical estimation on the gain part of the collision operator will be given in
the last section.

2. preliminary lemmas

First we prepare a lemma concerning the interpolation of moments and deriva-
tives.

Lemma 2.1. Let m > 0 and 0 < δ < 1. Then for any f ∈ S(Rn), we have

∥⟨v⟩−mδ⟨Dv⟩δf∥ ≲ ∥f∥+ ∥⟨v⟩−m⟨Dv⟩f∥ .

Proof. Take the Paley-Littlewood decomposition

∞∑
j=0

φj(v) = 1 , φ0 ∈ C∞
0 , φj(v) = φ(2−jv) for j ≥ 1 ,

where φ ∈ C∞
0 with suppφ ⊂ {1 ≤ |v| ≤ 2}. It follows from the locally finite

covering property that

∥⟨v⟩−mδ
∞∑
j=0

φj⟨Dv⟩δf∥2 ≲
∞∑
j=0

∥⟨v⟩−mδφj⟨Dv⟩δf∥2

≲
∞∑
j=0

4−mjδ∥φj⟨Dv⟩δf∥2

≲
∞∑
j=0

(
4−mjδ∥⟨Dv⟩δφjf∥2 + 4−mjδ∥[φj , ⟨Dv⟩δ]f∥2

)
=

∞∑
j=0

Ij +
∞∑
j=0

Rj .
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Since [φj , ⟨Dv⟩δ] is a L2 bounded operator uniformly with respect to j, we have∑
Rj ≲ ∥f∥2

∑
4−mjδ ≲ ∥f∥2.

Noting

(
⟨ξ⟩2

4mj

)δ

≤ 1 +
⟨ξ⟩2

4mj
, we get

Ij ≤ ∥φjf∥2 + 4−mj∥⟨Dv⟩φjf∥2

≲ ∥φjf∥2 + 4−mj∥φj⟨Dv⟩f∥2 + 4−mj∥[⟨Dv⟩, φj ]f∥2,

from which we have
∑
Ij ≲ ∥f∥2 + ∥⟨v⟩−m⟨Dv⟩f∥2 because

∞∑
j=0

φ2
j ≲ 1 ,

∞∑
j=0

4−mjφ2
j ≲ ⟨v⟩−2m .

□

Lemma 2.2. Let ϕ(x, v) be the function defined in (1.5). Then we have

∥f∥L∞(R3
x;L

2(Rv)) ≲
∑
|α|≤2

sup
a∈R3

x

∥ϕ(x− a, v)⟨v⟩2∂αx f∥L2(R6)

∼ sup
a∈R3

x

∥(1−∆x)ϕ(x− a, v)⟨v⟩2f∥L2(R6) .

Proof. If we denote g(x, v; a) = ⟨v⟩2f(x, v)/(1+ |v|2+ |x−a|2), then it follows from
the Sobolev embedding that

|f(a, v)|2 ≤ ∥g(·, v; a)∥2L∞
x

≲ ∥(1−∆x)g(·, v; a)∥2L2
x

≲
∑
|α|≤2

∫
R3

x

∣∣ϕ(x− a, v)⟨v⟩2∂αx f(x, v)
∣∣2 dx.

Here the last inequality follows from |∂αxϕ| ≲ ϕ. Integrating both sides with respect
to v, we obtain∫

R3
v

|f(a, v)|2dv ≲
∑
|α|≤2

∫
R6

∣∣ϕ(x− a, v)⟨v⟩2∂αx f(x, v)
∣∣2 dxdv

≲
∑
|α|≤2

sup
a′∈R3

x

∫
R6

∣∣ϕ(x− a′, v)⟨v⟩2∂αx f(x, v)
∣∣2 dxdv,

which gives the desired estimate because a ∈ R3 is arbitrary. □

For the estimation on ∥Q(∂kf, ϕaWℓ−kf)∥L2(R6), we need the following

Lemma 2.3. Denote ϕa(x, v) = ϕ(x− a, v). Then we have∫
∥f(x, ·)∥2L2(R3

v)
∥ϕa(x, ·)g(x, ·)∥2L2(R3

v)
dx

≲
∫

∥ϕa(x, ·)f(x, ·)∥2L2
2(R3

v)
∥g(x, ·)∥2L2(R3

v)
dx

≲ ∥ϕa⟨v⟩2f∥2L2(R6)∥g∥
2
L∞(R3

x;L
2(Rv))

.
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Proof. This is a direct consequence of

f(x, v∗)ϕa(x, v)g(x, v) = ⟨v∗⟩2ϕa(x, v∗)f(x, v∗)ϕa(x, v)g(x, v)
+ ϕa(x, v∗)f(x, v∗)(|x− a|2ϕa(x, v))g(x, v).

□

For the weight Wϕ,ℓ(v) = ϕ(x, v)⟨v⟩ℓ, we first recall Lemma 3.1 and Remark 3.2
of [7] summarized as follows.

Lemma 2.4. For ℓ ≥ 4, we have

(2.1) |Wϕ,ℓ(v)−Wϕ,ℓ(v
′)| ≲ θ⟨v⟩ℓ⟨v∗⟩3 + θℓ−2⟨v∗⟩ℓ

1 + |v|2 + |v∗|2 + |x|2
.

For the commutator of Wϕ,ℓ(v) and the collision operator, we have

Lemma 2.5. If −3/2 < γ ≤ 0, 0 < s < 1/2 and l > max{7
2 + 2s, 4}, then we have∣∣∣∣((Wϕ,ℓ Q(f, g)−Q(f, Wϕ,ℓ g)

)
, h

)
L2(R3

v)

∣∣∣∣
≲ ∥h∥L2(R3

v)

(
min

{
∥ϕf∥L2

5(R3
v)
∥g∥L2

ℓ(R3
v)
, ∥f∥L2

5(R3
v)
∥ϕg∥L2

ℓ(R3
v)

}
(2.2)

+ min
{
∥ϕf∥L2

ℓ(R3
v)
∥g∥L2

2(R3
v)
, ∥f∥L2

ℓ(R3
v)
∥ϕg∥L2

2(R3
v)

})
,

by regarding x in ϕ as a parameter.

Proof. It follows from (2.1) that∣∣∣(Wϕ,ℓQ(f, g)−Q(f,Wϕ,ℓg), h
)
L2

∣∣∣
≲

∫∫∫
|v − v∗|γ1|v−v∗|≤1b θ|⟨v∗⟩3f∗||⟨v⟩ℓg||h′|min{ϕ∗, ϕ}dvdv∗dσ

+

∫∫∫
b θ|⟨v′∗⟩3f ′∗||⟨v′⟩ℓg′|min{ϕ′∗, ϕ′}|h|dvdv∗dσ

+

∫∫∫
b θℓ−2|⟨v′∗⟩ℓf ′∗||g′|min{ϕ′∗, ϕ′}|h|dvdv∗dσ

= B1 +B2 +B3 ,

where ϕ∗ = ϕ(x, v∗), ϕ
′ = ϕ(x, v′) and so on. By the Cauchy-Schwarz inequality,

we have

B2
1 ≲

∫∫∫
|v − v∗|γ1|v−v∗|≤1 b θ|⟨v∗⟩3f̃∗||⟨v⟩ℓg̃|2dvdv∗dσ

×
∫∫∫

|v′ − v∗|γ1|v′−v∗|≤2 b θ|⟨v∗⟩3f̃∗||h′|2dvdv∗dσ

= B11 ×B12 ,

where (f̃ , g̃) equals (f, ϕg) or (ϕf, g). Since it follows from 0 < s < 1/2 that∫
b θdσ <∞, we have

B11 ≲
∫ (∫

|v − v∗|2γ1|v−v∗|≤1dv∗

∫
|⟨v∗⟩3f̃∗|2dv∗

)1/2

|⟨v⟩ℓg̃|2dv

≲ ∥f̃∥L2
3
∥g̃∥2L2

ℓ
,
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because γ > −3/2. The estimation on B12 is obtained with the help of the regular
change of variables

(2.3) v 7→ v′ =
v + v∗

2
+

|v − v∗|
2

σ,

which was introduced in [1]. Note that for this change of variables, the Jacobian
satisfies

(2.4)
∣∣∣ ∂v
∂v′

∣∣∣ = 8∣∣∣I + k⊗ σ
∣∣∣ = 8

|1 + k · σ|
=

4

cos2(θ/2)
≤ 8, θ ∈ [0,

π

2
].

As in [1], note that after this change of variables, k = (v−v∗)/|v−v∗| is a function of
v∗, v

′, σ so that θ no longer plays the role of polar angle because the “pole” k moves
with σ so that the surface measure dσ is no longer given by sin θdθdϕ. Therefore,
we need a new pole which is independent of σ to carry out the integration in σ. A
possible (and indeed the best) choice is k′ = (v′ − v∗)/|v′ − v∗|, for which the polar
angle ψ defined by cosψ = k′ · σ satisfies (cf. [1, Fig. 1]),

ψ =
θ

2
, dσ = sinψdψdϕ, ψ ∈ [0,

π

4
].

This implies that θ works almost as polar angle and we can write

B12 ≲
∫
R3

(∫
R3

|v′ − v∗|γ1|v′−v∗|≤2 |⟨v∗⟩3f̃∗|D0(v∗, v
′)dv∗

)
|h′|2dv′,

with

D0(v∗, v
′) =

∫
S2

θ(v∗, v
′, σ)b(cos θ(v∗, v

′, σ))dσ

≲
∫ π/4

0

ψb(cos 2ψ) sinψdψ < +∞.

This deduces B12 ≲ ∥f̃∥L2
3
∥h∥2L2 , and then

|B1| ≲ ∥f̃∥L2
3
∥g̃∥L2

ℓ
∥h∥L2 .(2.5)

Using the regular change of variables v → v′ again, we have

|B2| ≲ ∥f̃∥L1
3
∥g̃∥L2

ℓ
∥h∥L2 ≲ ∥f̃∥L2

5
∥g̃∥L2

ℓ
∥h∥L2 ,(2.6)

by the almost same procedure. As for B3, we firstly have

B2
3 =

(∫∫∫
b θℓ−2|⟨v∗⟩ℓf̃∗||g̃||h′|dvdv∗dσ

)2

≤
∫∫∫

b θℓ−2− 3
2 |g̃||⟨v∗⟩ℓf̃∗|2|dvdv∗dσ

×
∫∫∫

b θℓ−2+ 3
2 |g̃||h′|2dvdv∗dσ

= B31 ×B32 .

Then, if ℓ− 2− 3
2 − 2s− 1 > −1, that is, ℓ > 2s+ 7

2 , we have

B31 ≤ C∥g̃∥L1∥f̃∥2L2
ℓ
.
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On the other hand, for B32 we need to apply the singular change of variables
v∗ → v′. The Jacobian of this transform is, with k = (v − v∗)/|v − v∗|,

(2.7)
∣∣∣∂v∗
∂v′

∣∣∣ = 8∣∣∣I − k⊗ σ
∣∣∣ = 8

|1− k · σ|
=

4

sin2(θ/2)
≤ 16θ−2, θ ∈ [0, π/2].

Notice that this gives rise to an additional singularity in the angle θ around 0.
Actually, the situation is even worse in the following sense. Recall that θ is no longer
legitimate polar angle. In this case, the best choice of the pole is k′′ = (v′−v)/|v′−v|
for which polar angle ψ defined by cosψ = k′′ · σ satisfies (cf. [1, Fig. 1])

ψ =
π − θ

2
, dσ = sinψdψdϕ, ψ ∈ [

π

4
,
π

2
].

This measure does not cancel the singularity of b(cos θ), unlike the case in the usual
polar coordinates. Nevertheless, this singular change of variables yields

B32 ≲
∫∫∫

b |θ|ℓ−2+ 3
2 |g̃| |h′|2 dvdv∗dσ

≲
∫∫

D1(v, v
′)|g̃| |h′|2dvdv′,

with

D1(v, v
′) =

∫
S2
θℓ−2+ 3

2−2b(cos θ)dσ ≲
∫ π/2

π/4

(
π

2
− ψ)−2−2s+ℓ−2+ 3

2−2dψ <∞,

because of ℓ > 7
2 + 2s. Therefore,

B32 ≲ ∥g̃∥L1∥h∥2L2 ≲ ∥g̃∥L2
2
∥h∥2L2 ,

which concludes

|B3| ≲ ∥f̃∥L2
ℓ
∥g̃∥L2

2
∥h∥L2 .

This together with (2.5) and (2.6) yield the desired estimate. □

Before ending this section, we recall the upper and lower bound estimates. It
follows from Proposition 2.9 of [5] that

Proposition 2.6. Let 0 < s < 1 and γ > max{−3,−2s− 3/2}. Then we have∣∣∣(Q(f, g), h)L2(R3
v)

∣∣∣(2.8)

≲
(
∥f∥L1

(γ+2s)+
(R3

v)
+ ∥f∥L2(R3

v)

)
∥g∥H2s

(γ+2s)+
(R3

v)
∥h∥L2(R3

v)
.

Proposition 2.7. Let 0 < s < 1 and −3/2 < γ ≤ 0. Then we have

(Q(f, h), h) ≤ −1

2

∫∫∫
Bf∗(h− h′)2dvdv∗dσ(2.9)

+ C
(
∥f∥L1 + ∥f∥L2

)
∥h∥2L2 .

The above proposition is a direct consequence of the cancellation lemma [1].
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3. Uniform estimate

In this section, we will obtain a uniform estimate for solutions in the given
function space. We will start with the commutator estimate. For simplicity of
notation, we denote ϕa = ϕ(x−a, v). By using the fact that ⟨v⟩ ≤ W, the following
lemma on the commutator follows from Lemma 2.5 and Lemma 2.2.

Lemma 3.1. If −3/2 < γ ≤ 0, 0 < s < 1/2 and ℓ ≥ 5, then∣∣∣((ϕaWℓQ(f, g)− Q(f, ϕaWℓ g)
)
, h

)
L2(R6)

∣∣∣∣(3.1)

≲ ∥h∥
[
min

{
∥ϕaW5f∥

(
sup
a′

∥(1−∆x)ϕa′Wℓ+2g∥
)
,(

sup
a′

∥(1−∆x)ϕa′W7f∥
)
∥ϕaWℓg∥

}
+min

{
∥ϕaWℓf∥

(
sup
a′

∥(1−∆x)ϕa′W4g∥
)
,(

sup
a′

∥(1−∆x)ϕa′Wℓ+2f∥
)
∥ϕaW2g∥

}]
,

where ∥ · ∥ = ∥ · ∥L2(R6).

Now by ⟨v⟩2s ≤ W1−2s, the following upper bound estimate follows from Propo-
sition 2.6 and Lemma 2.2.

Lemma 3.2. Let 0 < s < 1/2 and 0 ≥ γ > max{−3,−2s− 3/2}. Then∣∣∣(Q(f, ϕaWℓg), h)L2(R6)

∣∣∣ ≲ (
sup
a′

∥(1−∆x)ϕa′W5f∥
)

(3.2) (
∥ϕaWℓ+1g∥+ ∥ϕaWℓ∇vg∥

)
∥h∥,

and ∣∣∣(Q(f,ϕaWℓg), h)L2(R6)

∣∣∣ ≲ ∥ϕaW5f∥(3.3) (
sup
a′

∥(1−∆x)ϕa′Wℓ+3g∥+ sup
a′

∥(1−∆x)ϕa′Wℓ+2∇vg∥
)
∥h∥.

Proof. Since ⟨v⟩2s ≤ W1−2s, it follows from Lemma 2.1 that we have

∥G∥H2s
(γ+2s)+

(R3
v)

≲ ∥W1−2s⟨Dv⟩2sG∥L2(R3
v)

≲ ∥WG∥L2(R3
v)

+ ∥∇vG∥L2(R3
v)
.

Let G = ϕaWℓg, then the above estitmate together with Lemma 2.2 yield the first
estimate in the lemma. The second estimate is a direct consequence of Lemma
2.3. □

By Proposition 2.7 together with Lemma 2.2, we have

Lemma 3.3. If 0 < s < 1, −3/2 < γ ≤ 0 and f ≥ 0, then we have(
Q(f, ϕaWℓg), ϕaWℓg

)
L2(R6)

≲
(
sup
a′

∥(1−∆x)ϕa′W4f∥
)
∥ϕaWℓg∥2 .(3.4)
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With the above preparation, we now perform the energy estimate for obtaining
the uniform estimate on the solution. By differentiating the equation by ∂αx ∂

β
v with

|α + β| ≤ k, where k will be chosen later, and multiplying it by ϕaWℓ−|α+β|, we
have (

∂t + v · ∇x

)
ϕaWℓ−|α+β|∂αβ f − ϕaWℓ−|α+β|Q(f, ∂αβ f)

= [v · ∇x, ϕaWℓ−|α+β|∂αβ ]f(3.5)

+
∑

|α′+β′|≠0

α′!β′!α′′!β′′!

α!β!
ϕaWℓ−|α+β|Q(∂α

′

β′ f, ∂α
′′

β′′ f).

Therefore, if f ≥ 0 then it follows from (3.4) and (3.1) that

(ϕaWℓ−|α+β|Q(f, ∂αβ f), ϕaWℓ−|α+β|∂αβ f)L2(R6)

≲
(
sup
a′

∥(1−∆x)ϕa′W7f∥
)
∥ϕaWℓ−|α+β|∂αβ f∥2

+ ∥ϕaWℓ−|α+β|∂αβ f∥min
{
∥ϕaWℓ−|α+β|f∥

(
sup
a′

∥(1−∆x)ϕa′W4∂αβ f∥
)
,(

sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2f∥
)
∥ϕaW2∂αβ f∥

}
= A+B.

If |α+ β| ≥ 4 then

B ≲ ∥ϕaWℓ−|α+β|∂αβ f∥2
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2f∥
)

≲ ∥ϕaWℓ−|α+β|∂αβ f∥2
( ∑

|α′|≤2

sup
a′

∥ϕa′Wℓ−|α′|∂α
′
f∥

)
.

On the other hand, when |α+ β| ≤ 3 then

B ≲ ∥ϕaWℓ−|α+β|∂αβ f∥ ∥ϕaWℓf∥
(
sup
a′

∥(1−∆x)ϕa′W4∂αβ f∥
)

≲ ∥ϕaWℓ−|α+β|∂αβ f∥ ∥ϕaWℓf∥
( ∑

|α′+β|≤5

sup
a′

∥ϕa′Wℓ−|α′+β|∂α
′

β f∥
)
,

when ℓ ≥ 9 is assumed, which is also enough to estimate A.
When |α′ + β′| ̸= 0, by means of (3.2), (3.3) and (3.1) we have∣∣∣(ϕaWℓ−|α+β|Q(∂α

′

β′ f, ∂α
′′

β′′ f), ϕaWℓ−|α+β|∂αβ f)L2(R6)

∣∣∣
≲ ∥ϕaWℓ−|α+β|∂αβ f∥

(
D1 +D2 +D3

)
,

where

D1 = min
{(

sup
a′

∥(1−∆x)ϕa′W5∂α
′

β′ f∥
)

×
(
∥ϕaWℓ−|α+β|+1∂α

′′

β′′ f∥+ ∥ϕaWℓ−|α+β|∇v∂
α′′

β′′ f∥
)
,

∥ϕaW5∂α
′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+3∂α
′′

β′′ f∥

+ sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∇v∂
α′′

β′′ f∥
)}

,



10 YOSHINORI MORIMOTO AND TONG YANG

D2 = min
{
∥ϕaW5∂α

′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂α
′′

β′′ f∥
)
,(

sup
a′

∥(1−∆x)ϕa′W7∂α
′

β′ f∥
)
∥ϕaWℓ−|α+β|∂α

′′

β′′ f∥
}
,

and

D3 = min
{
∥ϕaWℓ−|α+β|∂α

′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′W4∂α
′′

β′′ f∥
)
,(

sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂α
′

β′ f∥
)
∥ϕaW2∂α

′′

β′′ f∥
}
.

If 1 ≤ |α′ + β′| ≤ k − 2 then |α′′ + β′′| ≤ |α+ β| − 1, from which we have

D1 +D2 ≲
(
sup
a′

∥(1−∆x)ϕa′W7∂α
′

β′ f∥
)

×
(
∥ϕaWℓ−|α′′+β′′|∂α

′′

β′′ f∥+ ∥ϕaWℓ−(|α′′+β′′|+1)∇v∂
α′′

β′′ f∥
)

provided that ℓ ≥ k+7. On the other hand, if |α′ +β′| ≥ k− 1 and k ≥ 6, then we
have

ℓ− |α+ β|+ 3 = ℓ− (|α′′ + β′′|+ 2) + 5− |α′ + β′| ≤ ℓ− (|α′′ + β′′|+ 2)

and therefore

D1 +D2 ≲ ∥ϕaW5∂α
′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+3∂α
′′

β′′ f∥

+ sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∇v∂
α′′

β′′ f∥
)

≲ ∥f∥2Hk,ℓ
ul

.

It remains to estimate D3. If |α′′ + β′′| ≤ k − 2, then

D3 ≲ ∥ϕaWℓ−|α+β|∂α
′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′W4∂α
′′

β′′ f∥
)
≲ ∥f∥2Hk,ℓ

ul

.

While, if |α′′ + β′′| ≥ k − 1, then it follows from k ≥ 6 that

ℓ− |α+ β|+ 2 ≤ ℓ− (|α′ + β′|+ 2)− (k − 1) + 2 < ℓ− (|α′ + β′|+ 2) ,

from which we have

D3 ≲
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂α
′

β′ f∥
)
∥ϕaW2∂α

′′

β′′ f∥ ≲ ∥f∥2Hk,ℓ
ul

.

Notice that

∥[v · ∇x, ϕaWℓ−|α+β|∂αβ ]f∥

≲
∑
ej≤β

∥ϕaWℓ−|α+β|∂
α+ej
β−ej

f∥+ ∥ϕaWℓ−|α+β|∂αβ f∥ ≲ ∥f∥Hk,ℓ
ul
.

In summary, let T > 0 and f(t) ∈ C0([0, T ];Hk,ℓ
ul (R6)) with k ≥ 6 and ℓ ≥ k+7.

If we put

E(t) = ∥f(t)∥2Hk,ℓ
ul

,
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then there exists a C > 0 depending only on s, γ, k, ℓ and K > 0 in the hypothesis
of b such that

E(t) ≤ E(0) + C

∫ t

0

E(τ)(1 + E(τ))dτ , t ∈ [0, T ] .(3.6)

To make the argument rigorous, in fact, we can choose S(τ) ∈ C∞
0 (R) satisfies

S(τ) = 1 for |τ | ≤ 1 and put SN (Dx) = S(|Dx|2/N) for N ∈ N, then we have(
v · ∇x(SN (Dx)ϕaWℓ−|α+β|∂αβ f), SN (Dx)ϕaWℓ−|α+β|∂αβ f

)
L2(R6)

= 0 ,

and (
F, SN (Dx)

2G
)
L2(R6)

→
(
F,G

)
L2(R6)

, (N → ∞) , F,G ∈ L2(R6) .

Therefore, multiplying SN (Dx)
2ϕaWℓ−|α+β|∂αβ f by (3.5) and integrating with re-

spect to t, x, by means of the limiting procedure N → ∞, we have (3.6) in view of
above estimations.

It follows from (3.6) that we have

E(t) ≤ E(0)eCt

1− (eCt − 1)E(0)
,

by exactly the same calculation as the one after (4.3.11) of [3]. If we choose T∗ > 0
small enough such that

T∗ =
1

C
log

(
1 +

3

1 + 4∥f0∥Hk,ℓ
ul (R6)

)
then we obtain a uniform estimate

∥f(t)∥Hk,ℓ
ul (R6) ≤ 2∥f0∥Hk,ℓ

ul (R6) for t ∈ [0, T∗] .(3.7)

4. Cutoff Approximation

To complete the proof of local existence, we still need to construct a sequence of
approximate solutions.

As usual, we construct the approximate solutions by angular cutoff approxima-
tion. That is, for 0 < ε≪ 1, we approximate (cutoff) the cross section by

bϵ(cos θ) =

{
b(cos θ) (θ ≥ 2ϵ),
0 (θ < 2ϵ).

Theorem 4.1 (Cutoff case). Assume that −3/2 < γ ≤ 0 and replace the angular
factor of the cross section b by bε. If the initial data f0 is non-negative and belongs

to Hk,ℓ
ul (R6) for k ≥ 5, ℓ ≥ k + 7, then, there exists a Tε > 0 such that the Cauchy

problem (1.1) admits a non-negative unique solution fε(t, x, v) in the function space

C0([0, Tε];Hk,ℓ
ul (R6)).

Remark 4.2. In the cutoff case, the order of derivative k can be taken not less
than 5 instead of 6 for the non-cutoff case in our analysis.

To prove this theorem, define a sequence of successive approximate solutions
{fn}n∈N by

(4.1)

 f0 = f0 ;
∂tf

n+1 + v · ∇xf
n+1 = Q+

ε (f
n, fn)−Q−

ε (f
n, fn+1),

fn+1|t=0 = f0.
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Here

Q+
ε (g, h) =

∫∫
R3

v∗×S2σ
Bε(v − v∗, σ)g

′
∗h

′dv∗dσ,

Q−
ε (g, h) = hLε(g),

Lε(g) =

∫∫
R3

v∗×S2σ
Bε(v − v∗, σ)g∗dv∗dσ.

Notice that

|∂αβLε(f)(t, x, v)| = |Lε(∂
α
β f)(t, x, v)|

≤ C

∫ (
|v − v∗|γ1|v−v∗|≤1 + 1|v−v∗|≥1

)
|(∂αβ f)(t, x, v∗)|dv∗

≤ C
{(∫

|v − v∗|2γ1|v−v∗|≤1dv∗

)1/2

∥∂αβ f(t, x, ·)∥L2
v
+ ∥∂αβ f(t, x, ·)∥L1

v

}
(4.2)

≤ C∥∂αβ f(t, x, ·)∥L2
3/2+ε′ (R

3
v)
, t ∈ [0, T0],

for a constant C > 0 depending on ε. Here we have used γ > −3/2. Putting

V n(t, s, x, v) =

∫ t

s

Lε(f
n)(τ, x− (t− τ)v, v)dτ (≥ 0 if fn ≥ 0),

in the following, we will consider the solution in the mild form

fn+1(t, x, v) = e−V n(t, 0,x,v)f0(x− tv, v)(4.3)

+

∫ t

0

e−V n(t, s,x,v)Q+
ε (f

n, fn)(s, x− (t− s)v, v)ds.

Note that

∂αβV
n(t, s, x, v)(4.4)

=
∑

β′+β′′=β

∫ t

s

(τ − t)|β
′′|β!

β′!β′′!
Lε(∂

α+β′′

β′ fn)(τ, x− (t− τ)v, v)dτ,

and

∂αβQ
+
ε (g, h)(x, v) =

∑
α′+α′′=α
β′+β′′=β

α!β!

α′!β′!α′′!β′′!
Q+

ε

(
∂α

′

β′ g, ∂α
′′

β′′ h
)
(x, v) .

Furthermore, notice that

∂αβQ
+
ε (g, h)(x− (t− τ)v, v)

=
∑

β̃′+β̃′′=β

(τ − t)|β̃
′′|β!

β̃′!β̃′′!

(
∂α+β̃′′

β̃′ Q+
ε (g, h)

)
(x− (t− τ)v, v)

=
∑

β̃′+β̃′′=β

(τ − t)|β̃
′′|β!

β̃′!β̃′′!

×
( ∑

α′+α′′=α+β̃′′

β′+β′′=β̃′

α!β!

α′!β′!α′′!β′′!
Q+

ε

(
∂α

′

β′ g, ∂α
′′

β′′ h
)
(x− (t− τ), v)

)
.
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Then, by applying Lemma 2.2 we have

∥V n(t, s, ·, ·)∥L∞ ≲ (t− s) sup
s≤τ≤t

∥fn(τ, ·, ·)∥L∞(R3
x,L

2
3/2+ε′ (R

3
v))

≲ (t− s) sup
s≤τ≤t

(
sup
a∈R3

x

∥(1−∆x)ϕaW4fn(τ, x, ·)∥L2(R6)

)
.

Furthermore

∥∂αβV n(t, s, ·, ·)∥L∞(4.5)

≲ (t− s) sup
s≤τ≤t

∑
|q|=|α+β|

sup
s≤τ≤t

(
sup
a∈R3

x

∥(1−∆x)ϕa∂
qW4fn(τ, x, ·)∥L2(R6)

)
.

Here ∂q = ∂α
′

x ∂
β′

v with α′, β′ satisfying |α′ + β′| = |q|.
In order to obtain a variant of (4.5) which includes the factor ϕa, we recall the

property ϕa(x, v) ≤ ⟨v∗⟩2ϕa(x, v∗) and prepare a simple lemma about the transla-
tion invariance of ϕa in finite time.

Lemma 4.3. For |t| ≤ T , then we have

ϕa(x, v) ≤ max{2, 4T 2}ϕa(x− tv, v) = max{2, 4T 2}ϕa+tv(x, v) .

Proof. This follows from

⟨v⟩2 + |x− tv − a|2 ≤ ⟨v⟩2 + 2|x− a|2 + 2t2|v|2 ≤ max{2, 4T 2}ϕa(x, v)−1 .

□

From now on, to be concrete, we take T < 1
2 . It follows from (4.4) and the above

lemma that∣∣∣ϕa(x, v)∂αβV n(t, s, x, v)
∣∣∣2(4.6)

≲
∑

|q|=|α+β|

∫ t

s

|ϕa+(t−τ)v(x, v)Lε(∂
qfn)(τ, x− (t− τ)v, v)|2dτ

≲
∑

|q|=|α+β|

∫ t

s

∥
(
ϕaW4∂qfn

)
(τ, x− (t− τ)v, ·)∥2L2(R3)dτ ,

where, in the second inequality, we have used a variant of (4.2), namely,

|ϕa(x, v)Lε(∂
qf)(t, x, v)|

≲
∫ (

|v − v∗|γ1|v−v∗|≤1 + 1|v−v∗|≥1

)
|ϕa(x, v∗)⟨v∗⟩2(∂qf)(t, x, v∗)|dv∗

≲
(∫

|
(
ϕaW4∂qfn

)
(t, x, v∗)|2dv∗

)1/2

,

with x = x− (t− τ)v.
Moreover, observe that

∥ϕaWℓe−V n

f0(x− tv, v)∥L2(R6) ≤ 2 sup
a′

∥ϕa′Wℓf0∥L2(R6) .

Proposition 4.4. Assume that −3/2 < γ ≤ 0. Let ε > 0 and D0 > 0. Then there
exists a T ′

ε > 0 such that for any f0(x, v) satisfying

f0 ≥ 0, ∥f0∥2Hk,ℓ
ul

≤ D2
0,
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with k ≥ 5 and ℓ ≥ k + 7, we have for any n ≥ 0

fn ≥ 0, ∥fn(t)∥2Hk,ℓ
ul

≤ 6D2
0 for t ∈ [0, Tε] .(4.7)

Proof. In view of (4.3), for q ∈ Z6
+ with |q| ≤ k we consider

∂q
(
e−V n(t, s,x,v)Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)
=

∑
p+q′=q

q!

p!q′!
∂p

(
e−V n(t, s,x,v)

)
∂q

′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)
.

The Faà di Bruno formula gives

∂p
(
e−V n

)
= e−V n ∑

j≤|p|

∑
p1+···+pj=p

Cp1,...,pj∂
p1

(
−V n

)
· · · ∂pj

(
− V n

)
.

Note that∣∣∣∂p(e−V n(t, s,x,v)
)
∂q

′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)∣∣∣2
≲

∑
j≤|p|

∑
p1+···+pj=p

∣∣∣∂p1

(
V n

)
· · · ∂pj

(
V n

)
∂q

′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)∣∣∣2
because V n ≥ 0. First we consider the case |p| ≥ k−1 and the term with |p1| ≥ k−1.
Since |p2|, . . . , |pj | ≤ k − 2, it follows from (4.5) and (4.6) that if we denote the
integration of its corresponding term with product of weight ϕa by J(p, q′), then
we have

J(p, q′) ≤ (2D0)
2j

∫∫
R3

x×R3
v

∣∣∣ϕaWℓ−|q|∂p1

(
V n

)
· · · ∂pj

(
V n

)
× ∂q

′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)∣∣∣2dxdv
≲ (2D0)

2(j−1)

∫∫
R3

x×R3
v

∣∣∣(ϕa∂p1V n
)
(t, s, x, v)

∣∣∣2
×
∣∣∣Wℓ−|q|∂q

′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)∣∣∣2dxdv
≲ (2D0)

2(j−1)
∑

|p̃1|=|p1|

∫ t

s

∫∫
R3

x×R3
v

∥
(
ϕaW4∂p̃1fn

)
(τ, x, ·)∥2L2(R3)

×
∣∣∣Wℓ−|q|∂q

′
(
Q+

ε (f
n, fn)(s, x− (τ − s)v, v)

)∣∣∣2dxdvdτ
≲ (2D0)

2(j−1)
∑

|p̃1|=|p1|

∫ t

s

∫
R3

x

∥
(
ϕaW4∂p̃1fn

)
(τ, x, ·)∥2L2(R3)dxdτ

× ∥Wℓ−|q|∂q
′
(
Q+

ε (f
n, fn)

)
∥2L∞(R3

x,L
2(R3

v))

≲ (t− s)(2D0)
2j+4 ,

where in the third inequality, we have used the translation x − (t − τ)v → x; and
the fifth inequality follows from (5.4), in view of |q′| ≤ 1 ( |p| ≥ k − 1 ).
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The other cases are now easy. For example, if |p| ≤ k − 2, then it follows from
(4.5) that

J(p, q′) ≤ (2D0)
2j

∫∫
R3

x×R3
v

∣∣∣ϕaWℓ−|q|∂q
′
(
Q+

ε (f
n, fn)(s, x− (t− s)v, v)

)∣∣∣2dxdv
≲ (2D0)

2j
∑

q1+q2=q′

∫∫
R3

x×R3
v

∣∣∣ϕa−(t−s)vWℓ−|q|
(
Q+

ε (∂
q1fn, ∂q2fn)(s, x, v)

)∣∣∣2dxdv
≤ CεD

2j+4
0 ,

by means of (5.3) and Lemma 4.3.
Finally, if gn+1(t, x, v) denotes the second term of the right hand side of (4.3)

then

∥gn+1(t)∥2Hk,ℓ
ul

≤ Cεt(D
4
0 +D2k+4

0 ) .

It is not difficult to see

∥e−V n(t, 0,x,v)f0(x− tv, v)∥2Hk,ℓ
ul

≤ 4D2
0 + Cεt(D

2
0 +D2k+4

0 ) .

Hence, it is straightforward to check that for any given k and D0, there exists a time
T ′
ε > 0 such that (4.7) holds. And this completes the proof of the proposition. □

Proposition 4.5. Assume that −3/2 < γ ≤ 0. Let ε > 0 and D0 > 0. Assume
that

f0 ≥ 0, ∥f0∥2Hk,ℓ
ul

≤ D2
0,

with k ≥ 5 and ℓ ≥ k + 7. Then for any δ > 0, there exists another T ′′
ε > 0 such

that

sup
t∈[0,T ′′

ε ]

∥fn+1(t)− fn(t)∥Hk,ℓ
ul

≤ (1− δ) sup
t∈[0,T ′′

ε ]

∥fn(t)− fn−1(t)∥Hk,ℓ
ul
.

Proof. If we put wn = fn+1 − fn, then

∂tw
n + v · ∇xw

n + Lε(f
n)wn =

−Lε(w
n−1)fn+Q+

ε (w
n−1, fn) +Q+

ε (f
n−1, wn−1) := Rn

ε (t, x, v),

so that we have

wn(t, x, v) =

∫ t

0

e−V n(t,s,x,v)Rn
ε (s, x− (t− s)v, v)ds.

Therefore, by the almost same argument used in the proof of Lemma 4.4, we have

∥wn(t)∥2Hk,ℓ
ul

≤ Cεt(D
2
0 +D2k+2

0 ) sup
0≤τ≤t

∥wn−1(τ)∥2Hk,ℓ
ul

.

□

If we put Tε = min{T ′
ε, T

′′
ε }. then Theorem 4.1 is a direct consequence of Propo-

sitions 4.4 and 4.5.
The proof of Theorem 1.1 can be completed in the almost same way as in the

proof of Theorem 4.11 of [3] and the subsequent paragraph there, taking into ac-
count the uniform estimate (3.7) and Theorem 4.1.
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5. Estimate for Q+
ε

In this last section, we will complete the estimate on Q+
ε that has been used in

the previous section. We start with an almost obvious lemma.

Lemma 5.1. Let 0 ≥ γ > −3/2. Then there exists a Cε > 0 such that

∥Q+
ε (f, g)∥L2(R3

v)
≤ Cε∥f∥L2

2(R3
v)
∥g∥L2(R3

v)
.

Proof. It follows from the Cauchy-Schwarz inequality and the change of variables
(v, v∗, σ) → (v′, v′∗,k), ( k = (v − v∗)/|v − v∗|) that∣∣∣(Q+

ε (f, g), h
)
L2(R3

v)

∣∣∣ ≤ (∫∫∫
R3

v×R3
v∗×S2σ

Bε(v − v∗, σ)|f∗||g|2dvdv∗dσ
)2

×
(∫∫∫

R3
v×R3

v∗×S2σ
Bε(v − v∗, σ)|f∗||h′|2dvdv∗dσ

)2

= A1 ×A2.

By means of the regular change of variables v → v′, we have

A2
2 ≤ Cε

∫∫
|v′ − v∗|γ |f∗||h′|2dv′dv∗

≤ Cε

∫
|h′|2

(∫
|v′−v∗|≤1

|v′ − v∗|γ |f∗|dv∗ +
∫
|v′−v∗|>1

|f∗|dv∗
)
dv′

≤ C ′
ε∥h∥L2

(
∥f∥L2 + ∥f∥L1

)
.

Similarly, we get A2
1 ≤ Cε∥g∥L2

(
∥f∥L2 + ∥f∥L1

)
so that the proof of the lemma is

completed. □

Since it follows that

ϕaWℓQ+
ε (f, g)−Q+

ε (f, ϕaWℓ) = ϕaWℓQε(f, g)−Qε(f, ϕaWℓ) ,

similar to Lemma 2.5, we have

Lemma 5.2. If −3/2 < γ ≤ 0, 0 < s < 1/2 and ℓ ≥ 5, then there exists a C > 0
independent of ε > 0 such that

∥
(
ϕaWℓQ+

ε (f, g)−Q+
ε (f, ϕaWℓ g)

)
∥L2(R3

v)
(5.1)

≤ Cmin
{
∥ϕaW5f∥L2(R3

v)
∥Wℓg∥L2(R3

v)
, ∥W5f∥L2(R3

v)
∥ϕaWℓg∥L2(R3

v)

}
+min

{
∥ϕaWℓf∥L2(R3

v)
, ∥W2g∥L2(R3

v)
∥Wℓf∥L2(R3

v)
∥ϕaW2g∥L2(R3

v)

}
,

by regarding x, a in ϕa as parameters.

Notice that

∥W2f∥L2(R3
v)
∥ϕaWℓg∥L2(R3

v)
≤ ∥ϕaW4f∥L2(R3

v)
∥Wℓg∥L2(R3

v)

because of ϕa(x, v) ≤ ⟨v∗⟩2ϕ(x, v∗). Therefore, it follows from Lemma 5.1 and
Lemma 5.2 to have



LOCAL EXISTENCE 17

Corollary 5.3. If −3/2 < γ ≤ 0, 0 < s < 1/2 and ℓ ≥ 5, then there exists a
Cε > 0 such that

∥ϕaWℓQ+
ε (f, g)∥L2(R3

v)
(5.2)

≤ Cε min
{
∥ϕaW5f∥L2(R3

v)
∥Wℓg∥L2(R3

v)
, ∥W5f∥L2(R3

v)
∥ϕaWℓg∥L2(R3

v)

}
+min

{
∥ϕaWℓf∥L2(R3

v)
∥W2g∥L2(R3

v)
, ∥Wℓf∥L2(R3

v)
∥ϕaW2g∥L2(R3

v)

}
,

by regarding x, a in ϕa as parameters.

It follows from this corollary and Lemma 2.2 that if |α′+α′′|+ |β′+β′′| ≤ |α+β|,
then

∥ϕaWℓ−|α+β|Q+
ε (∂

α′

β′ f, ∂α
′′

β′′ g)∥L2(R6) ≲ E1 + E2 ,

where

E1 = min
{
∥ϕaW5∂α

′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂α
′′

β′′ f∥
)
,(

sup
a′

∥(1−∆x)ϕa′W7∂α
′

β′ f∥
)
∥ϕaWℓ−|α+β|∂α

′′

β′′ f∥
}
,

and

E2 = min
{
∥ϕaWℓ−|α+β|∂α

′

β′ f∥
(
sup
a′

∥(1−∆x)ϕa′W4∂α
′′

β′′ f∥
)
,(

sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂α
′

β′ f∥
)
∥ϕaW2∂α

′′

β′′ f∥
}
.

Since E1, E2 are the same as D2, D3 in the section 3, respectively, we have

∥ϕaWℓ−|α+β|Q+
ε (∂

α′

β′ f, ∂α
′′

β′′ f)∥L2(R6) ≲ ∥f∥2Hk,ℓ
ul

(5.3)

if |α′ + α′′|+ |β′ + β′′| ≤ |α+ β|.
Now we consider the following special case:

α+ β = α′ + β′ + α′′ + β′′ + α′′′ + β′′′ , |α′′′ + β′′′| ≥ k − 1 ,

and write ∂q1 , ∂q2 = ∂α
′

β′ , ∂α
′′

β′′ . Noting (5.2) with a = x, by applying Lemma 2.2 to
both factors, we have

∥Wℓ−|α+β|Q+
ε (∂

α′

β′ f, ∂α
′′

β′′ f)∥L∞(R3
x;L

2(R3
v))

≲
∑

|q1+q2|≤1

(5.4)

(
sup
a′

∥(1−∆x)ϕa′W7∂q1f∥
)(

sup
a′

∥(1−∆x)ϕa′Wℓ−|α+β|+2∂q2f∥
)

≲ ∥f∥2Hk,ℓ
ul

because ℓ− 3 ≥ 7, and the fact that from |qj |+ |α′′′ + β′′′| ≤ |α+ β| it holds that
ℓ− |α+ β|+ 2 ≤ ℓ− (|qj |+ 2) + 4− |α′′′ + β′′′| ≤ ℓ− (|qj |+ 2) + (5− k) .
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