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We develop a formalism for the calculation of excitation energies and excited state gradients for the
self-consistent-charge density-functional tight-binding method with the third-order contributions of a
Taylor series of the density functional theory energy with respect to the fluctuation of electron density
(time-dependent density-functional tight-binding (TD-DFTB3)). The formulation of the excitation
energy is based on the existing time-dependent density functional theory and the older TD-DFTB2
formulae. The analytical gradient is computed by solving Z-vector equations, and it requires one to
calculate the third-order derivative of the total energy with respect to density matrix elements due
to the inclusion of the third-order contributions. The comparison of adiabatic excitation energies for
selected small and medium-size molecules using the TD-DFTB2 and TD-DFTB3 methods shows
that the inclusion of the third-order contributions does not affect excitation energies significantly. A
different set of parameters, which are optimized for DFTB3, slightly improves the prediction of adia-
batic excitation energies statistically. The application of TD-DFTB for the prediction of absorption
and fluorescence energies of cresyl violet demonstrates that TD-DFTB3 reproduced the experimental
fluorescence energy quite well. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929926]

I. INTRODUCTION

Prediction of photochemical properties has been increas-
ingly popular due to the advancement of time-dependent
density functional theory (TD-DFT).1–6 Its reasonable
computational cost and accuracy have given a large number
of valuable theoretical insights. The low computational cost is
partly attributed to algorithmic developments such as efficient
matrix manipulations7,8 and analytical first-9–11 and second-
order12,13 geometrical derivative techniques.

Even with such advancement in TD-DFT, the computa-
tional demanding is still a heavy burden for researchers who
wish to investigate large systems. An alternative method is
the density-functional tight-binding (DFTB) method.14–17 The
first generation of DFTB18 is based on the concept of extended
Hückel method with parameters obtained from reference
atomic DFT calculations. The total energy of DFTB is derived
from that of DFT with the introduction of the tight-binding
approach, and electron density is expanded with minimal
Slater-type valence orbitals. This type of DFTB is called
nonself-consistent-charge DFTB (NCC-DFTB or DFTB1) in
which charge-charge interactions are neglected, and the energy
for DFTB1 is obtained after single diagonalization of the
secular equation. As the second generation of DFTB, Elstner
et al. developed the self-consistent charge version of DFTB19

(SCC-DFTB or DFTB2) which includes the second-order
terms of a Taylor series of the DFT total energy with respect
to the fluctuation of electron density. In the framework of
DFTB2, atomic charges are determined iteratively during SCC
cycles, which are practically equivalent to self-consistent field

a)E-mail: nishimoto.yoshio@fukui.kyoto-u.ac.jp

(SCF) cycles, and properties such as energy, dipole moments,
and gradients are to be easily calculated after self-consistency
is fulfilled.

With DFTB2, the time-dependent version of DFTB2
(TD-DFTB2) was first introduced by Niehaus et al.20 in 2001.
The formula for TD-DFTB is closely related to those for TD-
DFT; excitation energies are obtained by solving the Casida’s
equation.2,5 Later, the analytical gradient of TD-DFTB2 was
developed by Heringer et al.21 in 2007 based on the technique
for TD-DFT9,10 utilizing the Z-vector method.22 These TD-
DFTB studies have shown that the accuracy of TD-DFTB
is comparable with that of TD-DFT, while the computational
cost is significantly reduced. Developments in TD-DFTB have
enabled us to investigate excited state properties of silicon
materials,23,24 the dynamics of microsolvated adenine,25

azobenzene,26 and cycloparaphenylenes.27

From a different scope of developments in DFTB,
DFTB3 has recently been proposed.28–30 DFTB3 conceptually
holds two independent improvements. While DFTB2 includes
a Taylor series of the DFT energy up to second order
contributions, DFTB3 includes the third-order contributions,
and this is the first improvement in DFTB3. They are
responsible for changing chemical hardness, which is related
to Hubbard parameters, of an atom depending on the charge
on it. The necessity of the flexible chemical hardness comes
from the fact that chemical hardness depends on the charge
on an atom.28,31 Another improvement in DFTB3 is the use
of a damping function for the γ function for pairs which
include a hydrogen atom. The γ function used in DFTB2
and DFTB3 ideally approaches the Hubbard value at a short
distance, but it is not the case for hydrogen atoms due to
an inconsistency between the atomic size and the chemical

0021-9606/2015/143(9)/094108/11/$30.00 143, 094108-1 © 2015 AIP Publishing LLC
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hardness.28,31 Previous investigations17,30,32–34 have proved
that DFTB3 is systematically superior to DFTB2 in describing
hydrogen-bonded and polar systems.

In spite of a number of developments in parameters for
DFTB3 at the ground state (GS),30,32,35–37 the formulation and
the performance of the time-dependent version of DFTB3
(TD-DFTB3) are still missing. In this study, we derive the
excitation energy with the restricted TD-DFTB3, following
the previous TD-DFTB2 formula, and its analytical first-
order geometrical derivative. The performance of TD-DFTB2
and TD-DFTB3 is also presented by comparing adiabatic
excitation energies and absorption and fluorescence energies
of a small dye in explicit water molecules.

II. THEORY

A. DFTB3 at the ground state

The total energy of DFTB3, E, is given by

E =

σ


i

niσ


µν

CµiσCνiσH0
µν +


A>B

Erep
AB

+
1
2


A,B

γAB∆qA∆qB

+
1
6


A,B

(ΓAB∆qA + ΓBA∆qB)∆qA∆qB + Espin, (1)

where µ and ν (for latter use, κ, λ, φ, and χ) are the indices
for atomic orbitals (AOs), A and B (C, D, and E) are those for
atoms. The occupation number of ith molecular orbital (MO)
is represented as niσ, and it is either 0 or 1 for virtual and
occupied orbitals in the present work. We only treat the case
for restricted electronic configuration in this study, but spin
indices σ, τ, and υ, which are either α- or β-orbital/electron
are explicitly denoted. The fifth term in Eq. (1) represents the
spin interaction energy defined at DFTB2 level38 explicitly, but
this term is always zero in this study due to restricted electronic
configuration. As usual, the repulsive energy, Erep

AB
, and the

non-perturbed zeroth-order Hamiltonian, H0
µν, are precom-

puted with reference DFT calculations. The Coulombic inter-
action is described with the third and fourth terms in Eq. (1)
where γAB and ΓAB depend on the distance between two
atoms A and B and their Hubbard values. As for ΓAB, it also
depends on the derivative of the Hubbard value with respect
to atomic Mulliken charges ∆qA calculated as ∆qA = qA − q0

A
,

where qA is the Mulliken population on atom A, defined as

qA =

σ


µ∈A


ν

DµνσSµν, (2)

where Dµνσ is the usual density matrix, and q0
A

is the number
of electrons on atom A in neutral. One of two developments
in DFTB3 is the modification of γ and Γ values to γh and
Γh for pairs that contain a hydrogen atom. However, we will
not explicitly make a distinction between the standard γ and
Γ and γh and Γh values. In practical calculations, one can
simply replace γ and Γ with γh and Γh, and there is no need to
modify the code other than the calculation of γ and Γ. Despite
γ and Γ are used for the derivation hereafter, all equations are
applicable for the case with and without the damping function.

The derivative of the total energy (Eq. (1)) with respect
to a density matrix element leads to the Hamiltonian (Fock)
matrix element,

Hµν = H0
µν + SµνΩAB, (3)

where µ ∈ A and ν ∈ B, and Sµν is the overlap matrix
element in AO basis. The shift contribution ΩAB describes the
Coulombic interaction,

ΩAB =
1
2


C

(γAC + γBC)∆qC

+
1
6

Sµν


C

{2(ΓAC∆qA + ΓBC∆qB)
+ (ΓCA + ΓCB)∆qC}∆qC . (4)

Since the spin contributions in ΩAB are zero with restricted
wavefunction, we omit it. Overlap matrix elements are also
precomputed as non-perturbed Hamiltonian elements are
done so. Obviously, the Hamiltonian matrix depends on the
current density of the system under consideration, so the MO
coefficients (Cµiσ) in density matrix have to be determined
self-consistently.

For a seamless connection with other ab initio methods
(e.g., Hartree-Fock or DFT), Eq. (1) can be written in a
so-called density matrix formalism,

E =
1
2


σ


µν

Dµνσ(H̃core
µν + F̃µν) + E3rd + Ẽrep, (5)

where

H̃core
µν = H0

µν −
1
2

Sµν


C

(γAC + γBC)q0
C (6)

and

F̃µν = H̃core
µν +

1
2

Sµν


C

(γAC + γBC)qC . (7)

E3rd corresponds to the fourth term in Eq. (1), and Ẽrep is
defined as

Ẽrep =

A>B

(Erep
AB
+ γABq0

Aq0
B). (8)

Because E3rd depends on the cubic of density fluctuation and
comes from the third-order derivative of exchange-correlation
contributions,30 we cannot straightforwardly incorporate it
with H̃µν and F̃µν as a previous study with DFTB2 did.39 The
third-order contributions may be seen as a pseudo-exchange-
correlation term.

The gradient of the DFTB3 energy with respect to the
geometrical displacement of the coordinate x of atom α, Rαx

(x in the derivatives can be replaced with y or z), is
∂E
∂Rαx

=

σ


i

niσ


A,α


µ∈A


ν∈α

CµiσCνiσ

×

2
∂H0

µν

∂Rαx
− 2εiσ

∂Sµν

∂Rαx
+ 2

∂Sµν

∂Rαx
ΩAα



+

A,α

∂Erep
Aα

∂Rαx
+ ∆qα


A,α

∆qA
∂γAα

∂Rαx

+
1
3
∆qα


A,α

∆qA

(
∆qA

∂ΓAα
∂Rαx

+ ∆qα
∂ΓαA

∂Rαx

)
. (9)
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In a density matrix formalism, one can express Eq. (9) as

∂E
∂Rαx

=

σ


µν

Dµνσ
*
,

∂H̃core
µν

∂Rαx
+

∂F̃µν

∂Rαx

+
-

−

σ


µν

Wµνσ

∂Sµν

∂Rαx
+
∂E3rd

∂Rαx
+
∂Ẽrep

∂Rαx
, (10)

where
∂H̃core

µν

∂Rαx
=

∂H0
µν

∂Rαx
− 1

2
∂Sµν

∂Rαx


C

(γAC + γBC)q0
C

− 1
2

Sµν


C

(
∂γAC

∂Rαx
+
∂γBC
∂Rαx

)
q0
C (11)

and

∂F̃µν

∂Rαx
=

∂H̃core
µν

∂Rαx
+

∂Sµν

∂Rαx


C

(γAC + γBC)qC

+
1
2

Sµν


C

(
∂γAC

∂Rαx
+
∂γBC
∂Rαx

)
qC . (12)

Wµνσ is the usual energy-weighted density matrix, and
(∂E3rd)/(∂Rαx) represents

∂E3rd

∂Rαx
=

1
6


σ


µν

Dµνσ

∂Sµν

∂Rαx


C

{2(ΓAC∆qA + ΓBC∆qB)

+ (ΓCA + ΓCB)∆qC}∆qC

+
1
6


A,B

∆qA∆qB

(
∆qA

∂ΓAB

∂Rαx
+ ∆qB

∂ΓBA

∂Rαx

)
. (13)

B. Excited state with the DFTB3 method

Excitation energy ω and excitation vectors X and Y can
be obtained by solving the non-Hermitian eigenvalue problem,

*
,

A B
B A

+
-
*
,

X
Y
+
-
= ω *

,

1 0
0 −1

+
-
*
,

X
Y
+
-
, (14)

where matrix elements of A and B are defined as

Aiaσ, jbτ = δστδabδi j(εaσ − εiσ) + Kiaσ, jbτ (15)

and

Biaσ, jbτ = Kiaσ,b jτ, (16)

where εiσ is the eigenvalue of ith MO, and the element of the
coupling matrix, Kiaσ, jbτ, is given as

Kiaσ, jbτ =
∂2E

∂Diaσ∂D jbτ
. (17)

In this work, i, j, . . . and a,b, . . . label occupied and virtual
orbitals, respectively, and for latter use, p,q, . . . label general
MOs. The coupling matrix is the second-order derivative of
the total energy with respect to density matrix elements. In
order to compute the coupling matrix element, it is convenient
to introduce the four-index kernels which represent the charge
and spin interaction terms for DFTB,40

Kµνσ,κλτ =
∂2E

∂Dµνσ∂Dκλτ
= ĵµνσ,κλτ + k̂µνσ,κλτ. (18)

We note that these matrix elements for TD-DFTB240 are

ĵDFTB2
µνσ,κλτ =

1
4

SµνSκλ(γAC + γBC + γAD + γBD) (19)

and

k̂DFTB2
µνσ,κλτ =

1
4

SµνSκλ(MAδAC + MBδBC

+MAδAD + MBδBD), (20)

where µ ∈ A, ν ∈ B, κ ∈ C, and λ ∈ D, and MA represents
the spin constant of atom A which is also obtained from
reference DFT calculations. For TD-DFTB3, ĵµνσ,κλτ has to
be reformulated as

ĵDFTB3
µνσ,κλτ = ĵDFTB2

µνσ,κλτ +
1
6

SµνSκλ

×
�(ΓAC + ΓAD)∆qA + (ΓBC + ΓBD)∆qB

	

+
�(ΓCA + ΓCB)∆qC + (ΓDA + ΓDB)∆qD

	

+

E

�
ΓAE(δAC + δAD)

+ ΓBE(δBC + δBD)	∆qE


. (21)

In order to derive the spin interaction term needed for
singlet-triplet excitation in the framework of DFTB3, we need
to compute the second-order derivative of the DFTB energy
with respect to spin density. The spin-polarized contributions
in DFTB38 are defined as

Espin =
1
2


A


ℓ∈A


ℓ′∈A

pAℓpAℓ′WAℓℓ′, (22)

where pAℓ is the shell(ℓ)-resolved spin density, and WAℓℓ′

is a spin constant calculated using Janak’s theorem.41 It is
clear from the derivation by Köhler et al. that Eq. (22) is
derived within the framework of DFTB2. The extension of
the spin-polarized contribution to the DFTB3 framework is
considered to require an additional parameter, the derivative of
spin constants with respect to spin density, but the development
in this direction is far beyond the scope of this study. For this
reason, we will not consider DFTB3 contributions for singlet-
triplet excitation explicitly, but only DFTB2 contribution
(Eq. (20)) in our derivation.

In order to obtain excitation energies and vectors, we need
to diagonalize the matrix operator of the left-hand in Eq. (14).
Since the size of the matrix operator becomes huge for large
systems, it is usually diagonalized iteratively.42 Practically, we
construct the four-index matrices (A + B) and (A − B) defined
as

(A + B)iaσ, jbτ = δστδabδi j(εaσ − εiσ) + 2Kiaσ, jbτ (23)

and

(A − B)iaσ, jbτ = δστδabδi j(εaσ − εiσ), (24)

which are known as orbital rotation Hessians. There has
been discussion of the character of the (A − B) matrix for TD-
DFTB.40 In TD-DFT, the matrix becomes diagonal with a pure
(i.e., without Hartree-Fock exchange) exchange-correlation
functional such as generalized gradient approximation
functionals including the Perdew, Burke, and Ernzerhof (PBE)
which is used for generating the electronic part of DFTB
parameters. As DFTB is derived from a DFT formalism
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without Hartree-Fock exchange, we assume that (A − B)
matrix for TD-DFTB3 is strictly diagonal.

By neglecting the matrix B, we only have to evaluate
Eq. (15). This approximation is known as the Tamm-Dancoff
approximation (TDA),43 and since the difference is only the
scaling of Kiaσ, jbτ, we can introduce TDA for TD-DFTB
with a slight modification. Although some advantages43 have
been recognized in TDA, we do not use TDA in this study.
Since the real value of TDA for TD-DFT calculations is the
case with hybrid or range-separated functionals with which
(A − B) matrix is not diagonal, we think that TDA does not
change the overall conclusions in this study.

C. Analytical excitation energy gradient of TD-DFTB3

Concise derivations for TD-DFT and TD-DFTB2 can
be found in the previous literature.9,21,44 Solving the non-
Hermitian eigenvalue problem given as Eq. (14) corresponds
to finding the stationary points of the functional defined as

G[X,Y,ω] = 1
2


iaσ jbτ

�(X + Y )iaσ(A + B)iaσ, jbτ(X + Y ) jbτ

+ (X − Y )iaσ(A − B)iaσ, jbτ(X − Y ) jbτ	

−ω




iaσ

(X + Y )iaσ(X − Y )iaσ − 1


, (25)

where the second term enforces the orthonormality,3 and the
excitation energy ω is given as

ω =
1
2


iaσ jbτ

�(X + Y )iaσ(A + B)iaσ, jbτ(X + Y ) jbτ

+ (X − Y )iaσ(A − B)iaσ, jbτ(X − Y ) jbτ	. (26)

Since excitation vectors are variationally optimized, we
do not need to calculate derivatives of (X + Y) and (X − Y) for
excitation energy gradient, but we need to involve derivatives
of MO coefficients, contrary to gradient calculations at
the ground state. Although one can obtain them explicitly
by solving the coupled-perturbed DFTB equations,45 it is
computationally demanding, because it requires solving a set
of 3N linear equations, where N is the number of atoms. Such
an explicit evaluation can be avoided by utilizing the Z-vector
method.9,22 Solving Z-vector equations corresponds to finding
the Lagrange multipliers of the auxiliary functional,

L[X,Y,ω,C,Z,W]
=

1
2


iaσ jbτ

�(X + Y )iaσ(A + B)iaσ, jbτ(X + Y ) jbτ

+ (X − Y )iaσ(A − B)iaσ, jbτ(X − Y ) jbτ	

−ω




iaσ

(X + Y )iaσ(X − Y )iaσ − 1



+

iaσ

ZiaσHiaσ −


pqσ,p≤q
Wpqσ(Spqσ − δpq), (27)

and Eq. (27) has to be stationary with respect to changes in
MO coefficients,

∂L
∂Cµpσ

= 0. (28)

Some supplementary equations are given in Appendix A,
and we simply introduce new terms in TD-DFTB3. In order to
evaluate the vector Z, we need to solve the following equation:

jbτ

(A + B)iaσ, jbτZ jbτ = −Riaσ, (29)

where Riaσ is obtained as the difference of Eqs. (A5) and
(A6),

Riaσ =

b

{(X + Y )ibσH+abσ[(X + Y)]} + H+iaσ[T]

+ 2


jbτkcυ

ĝiaσ, jbτ,kcυ(X + Y ) jbτ(X + Y )kcυ

−

j

{(X + Y ) jaσH+j iσ[(X + Y)]}, (30)

where the vector T is given in Appendix A, and for an arbitrary
vector V,

H+pqσ[V] =

r sτ

Kpqσ,r sτVr sτ. (31)

Note that H−pqσ[V] found in TD-DFT derivations is always
zero for both TD-DFTB2 and TD-DFTB3 unless an alternative
formulation40 is used. The third term in Eq. (30) represents the
third-order derivative of the DFTB energy, and it did not appear
in the derivation for the TD-DFTB2 analytical gradient.21 This
complication can be understood by comparing the ĵµνσ,κλτ for
TD-DFTB2 (Eq. (19)) and TD-DFTB3 (Eq. (21)). The former
becomes trivial after differentiating with an additional density
matrix element, but the latter does not, because Eq. (21)
still contains Mulliken charges, which depends on the density
matrix.

The third-order derivative in Eq. (30) can be explicitly
written by differentiating the total energy with three density
matrix elements. In AO representation, the derivative is

ĝµνσ,κλτ,φχυ =
1

12
SµνSκλSφχ

×

E

{ΓAE(δAC + δAD) + ΓBE(δBC + δBD)}

× (δφ∈E + δχ∈E). (32)

However, in practice, it is convenient to define a two-third
transformed matrix,

κλτφχυ

ĝµνσ,κλτ,φχυ(X + Y )κλτ(X + Y )φχυ

=
1
3

Sµν


C

{2(ΓACqXY
A + ΓBCqXY

B )qXY
C

+ (ΓCA + ΓCB)(qXY
C )2}, (33)

where

qXY
A =


σ


µ∈A


ν

(X + Y )µνσSµν. (34)

Once the Z-vector equation (Eq. (29)) is solved, we obtain
two Lagrange multipliers, Z and W. By defining the relaxed
one-particle difference density matrix, P = T + Z, and the
effective two-particle difference density matrix Γ̂µνσ,κλτ,

Γ̂µνσ,κλτ = (X + Y )µνσ(X + Y )κλτ + PµνσDκλτ, (35)
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the excitation energy gradient is finally given as

∂ω

∂Rαx
=


µνσ

∂H0
µν

∂Rαx
Pµνσ −


µνσ

∂Sµν

∂Rαx
Wµνσ

+
1
2


µνσκλτ

∂Kµνσ,κλτ

∂Rαx
Γ̂µνσ,κλτ. (36)

Eq. (36) for singlet-singlet and singlet-triplet excitations is
explicitly given in Appendix B. The TD-DFTB3, as well as
the TD-DFTB2, with and without TDA was implemented in
GAMESS-US46 whose TD-DFT module had been developed
by Chiba et al.10 Comparison with analytical and numerical
gradients for several excited states with glycine molecule
shows that our analytical gradient reproduces numerical
gradients in six decimal place accuracy.

III. COMPUTATIONAL DETAILS

We used the MIO19,30,47 and 3OB32,35 sets of DFTB
parameters48 in TD-DFTB2 and TD-DFTB3 calculations.
Spin constants MA = WAss used in singlet-triplet excitation
are also taken from the same place. In order to access
the performance of TD-DFTB2 and TD-DFTB3, we
consider two and three sets of TD-DFTB2 and TD-DFTB3
calculations. They are referred as TD-DFTB2/MIO, TD-
DFTB2/3OB, TD-DFTB3/MIO/calc, TD-DFTB3/MIO/fit,
and TD-DFTB3/3OB; the capital letters after the first slash
specify the employed parameter set, and the letters after the
second slash, if any, do the employed Hubbard derivatives.
The difference of methods is given in Ref. 32, and the
parameter ζ used for the damping function and Hubbard
derivatives for DFTB3 are also provided in the same reference
and Refs. 30 and 35. The Hubbard derivative for S atom for
TD-DFTB3/MIO/fit was missing, so we simply used the one
for TD-DFTB3/3OB. All DFTB calculations were performed
without symmetry constraints.

The performance of TD-DFTB2 and TD-DFTB3 is
discussed based on adiabatic excitation energies for selected
molecules listed in Refs. 9, 49, and 50. Molecules for which
we do not have parameters are excluded. The estimation
of the zero point vibration energy requires to compute the
second-order derivatives at the ground and the excited states.
We analytically calculated them for the ground state, while
numerically for excited states with a step size of 1.0 × 10−4 a.u.
with analytical gradients.

We briefly compare wall-clock timings of TD-
DFTB2/MIO and TD-DFTB3/3OB. For the demonstration,
we chose a trans-polyacetylene (C400H402) which contained
2002 basis functions. The five lowest excitation energies were
calculated, and the first excitation vectors were used in the
gradient calculation. The computation of the energy gradient at
an excited state mainly consists of three steps: SCF calculation
at the GS, solving the Casida’s equation to find excitation
energies (ES: excited state), and solving Z-vector equations
followed by the computation of gradient (ES-GRAD). Table I
shows the respective timings and the numbers of iterations
until convergence. Clearly, additional computational cost for
TD-DFTB3 compared with TD-DFTB2 is almost negligible.

TABLE I. Wall-clock timings (unit in s) and numbers of iterations to obtain
the five lowest excitation energies and the excited state gradient at the first ex-
cited state for C400H402 with TD-DFTB2/MIO and TD-DFTB3/3OB. Calcu-
lations were performed with one CPU core of Xeon E5-1620 v3 (3.50 GHz).

Step Wall-clock timings
Number of
iterations

TD-DFTB2

GS 213.80 17
ES 875.97 19
ES-GRAD 42.63 3

TD-DFTB3

GS 213.82 17
ES 819.92 18
ES-GRAD 45.54 3

The timings per iteration during ES calculations for TD-
DFTB2 and TD-DFTB3 are 46.10 and 45.55 s, respectively.
However, considering that the number of trial vectors required
for convergence is different in two calculations, it is more
meaningful to compare the timings per trial vector. The
numbers of trial vectors used in the TD-DFTB2 and TD-
DFTB3 calculations are 89 and 83, respectively, so the
timings per trial vector are 9.84 and 9.88 s. The computational
efficiency of TD-DFTB3 is actually very similar to that of
TD-DFTB2.

IV. RESULTS AND DISCUSSION

A. Performance of TD-DFTB2 and TD-DFTB3

Calculated adiabatic excitation energies are summarized
in Table II with root-mean-square (RMS) and maximum
deviations. Our TD-DFTB2/MIO results are slightly different
from those by Heringer et al.,21 and we think that parameters
and spin constants used in our calculations are slightly
different from those used in Ref. 21.

Table II shows that adiabatic excitation energies
calculated with TD-DFTB2/MIO, TD-DFTB3/MIO/calc, and
TD-DFTB3/MIO/fit are overall very similar, and the difference
is not more than 0.04 eV. The difference between RMS and
maximum deviations calculated with all items between these
methods is also very small. Additionally, the difference in
energies with TD-DFTB2/3OB and TD-DFTB3/3OB is small
as well. This indicates that the extension to TD-DFTB3
from TD-DFTB2 affects the excited state properties very
little. It is because the DFTB3 model does not affect the
levels of eigenvalues (orbital energies) significantly. The
DFTB method is originally derived from a Taylor expansion
of the total energy of DFT. The nonself-charge-consistent
version of DFTB, DFTB1, already includes the zeroth
Hamiltonian contributions which are calculated from atomic
DFT calculations. Although DFTB2 and DFTB3 take the
charge fluctuation into consideration with a better model,
it is a perturbative effect, and orbital energies are already
determined mostly with the DFTB1 level. Moreover, some
excitations are described with a single orbital transition
character whose excitation energy is simply determined by the

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.54.110.33 On: Mon, 14 Dec 2015 01:19:02



094108-6 Yoshio Nishimoto J. Chem. Phys. 143, 094108 (2015)

TABLE II. Adiabatic excitation energies (unit in eV) from experiment and those calculated with five TD-DFTB methods. RMS and maximum (MAX) deviations
(unit in eV) for singlet-singlet (S) and singlet-triplet (T) excitations and all items are shown at the bottom. Values in parentheses do not include zero point
vibration corrections.

System State Experiment TD-DFTB2/MIO TD-DFTB3/MIO/calc TD-DFTB3/MIO/fit TD-DFTB2/3OB TD-DFTB3/3OB

N2
3Πg (7.39) (7.89) (7.89) (7.89) (8.02) (8.02)
1Πg (8.59) (7.89) (7.89) (7.89) (8.02) (8.02)

CO 3Π (6.04) (7.63) (7.63) (7.63) (7.32) (7.32)
1Π (8.07) (7.63) (7.63) (7.63) (7.32) (7.32)

SO2
3B1 3.19 3.09 3.09 3.08 2.80 2.79

CS2
3A2 3.25 2.79 2.78 2.78 3.24 3.23

HCN 1A′′ 6.48 6.37 6.38 6.38 6.16 6.28
HCP 1A′′ 4.31 3.66 3.66 3.66 3.62 3.63
C2H2

1Au 5.23 4.71 4.74 4.74 4.69 4.72
CH2O 1A′′ 3.49 3.76 3.77 3.76 3.65 3.66

3A′′ 3.12 3.66 3.67 3.66 3.55 3.56
CH2S 1A2 2.03 1.74 1.73 1.74 2.00a 1.98a

3A′′ 1.80 1.74 1.73 1.73 2.01 2.00
trans-(CHO)2 1Au 2.72 2.20 2.18 2.16 2.08 2.06
Benzene 1B2u 4.72 4.92 4.91 4.91 4.92 4.92
Pyridine 1B2 4.76 5.02a 5.02a 5.01a 5.01a 5.00a

Porphyrin 1B1u (2.02) (1.89) (1.90) (1.89) (1.91) (1.92)

RMS (S) 0.42 0.42 0.42 0.46 0.45
MAX (S) 0.70 0.70 0.70 0.75 0.75

RMS (T) 0.74 0.74 0.74 0.63 0.64
MAX (T) 1.59 1.59 1.59 1.28 1.28

RMS 0.57 0.57 0.57 0.53 0.53
MAX 1.59 1.59 1.59 1.28 1.28

aSaddle point.

difference between two hole orbitals. In such case, excitation
energies are largely described with the DFTB1 level, so the
difference between excitation energies calculated with DFTB2
and DFTB3 is small.

TD-DFTB3/3OB nevertheless improved the prediction of
adiabatic excitation energies slightly, by comparing RMS and
maximum deviations for all items at the bottom in Table II. The
improvement is largely attributed to the excitation energies
for CO molecule. Since the extension to TD-DFTB3 itself
does not improve excitation energies dramatically, the small
improvement comes from the difference of two parameter sets,
MIO and 3OB. In fact, TD-DFTB2/3OB gives an adiabatic
excitation energy of 7.32 eV for CO, so the excitation energy
for CO is dominantly controlled by the employed parameter
set. The excitation corresponds to the HOMO-LUMO (π − π∗)
transition (both HOMO and LUMO are doubly generated), and
the HOMO-LUMO gaps of the optimized CO geometry on the
excited potential energy surface (PES) with TD-DFTB2 and
TD-DFTB3 are 6.66 and 6.38 eV, respectively, so the smaller
adiabatic excitation energy of TD-DFTB3 is attributed to the
difference of the HOMO-LUMO gap. It should be noted that
the 3OB parameter set uses more diffuse basis functions in
parameterization than those for the older MIO parameter set
so as to describe weak interactions correctly.17

Another remarkable difference is found for the adiabatic
excitation energy for CS2 molecule; the deviation of 0.46 eV
with TD-DFTB2/MIO is decreased to 0.02 eV with TD-
DFTB3/3OB. The excitation is characterized as a single
orbital transition from HOMO-1 (A2) to LUMO (A1).
For the optimized geometry at S2, an interesting difference is

obvious for LUMOs in Figure 1, visualized with VMD (Vi-
sual Molecular Dynamics).51 DFTB2/MIO shows π∗ character
orbitals between C and S, while DFTB3/3OB does π orbitals.
The difference of LUMOs should be attributed to the different
levels of non-interacting d orbitals in two parameters. After
optimizing parameters for DFTB3,17 the level of d orbitals for
3OB is higher than that for MIO by 0.3 hartree, and this reduces
the participation of d orbitals in MO hybridization, which is
supposed to be good for describing O–S bonds, while less good
for C–S. As a reference, we optimized CS2 with TD-PBE/STO-
3G whose gradients are obtained through numerical differen-
tiations at S2 (3A2). The STO-3G basis set was employed in
accordance with the fact that DFTB uses minimal orbitals. We
performed a TD-PBE/6-311+G* calculation and verified that
the character of the excitation with STO-3G and 6-311+G* is
very similar. The character of excitation of TD-PBE/STO-3G

FIG. 1. HOMOs-1 and LUMOs (±0.05 (e/a0)1/2 isosurface) of the opti-
mized CS2 with TD-DFTB2/MIO, TD-DFTB3/3OB, and TD-PBE/STO-3G
at the 3A2 excited state. Values in parentheses are the eigenvalues of vectors
(unit in hartree).
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TABLE III. RMS and maximum (MAX) deviations for bond distance (unit in Å) and bond and dihedral angles (degree) with respect to experiment for molecules
in Table II.

TD-DFTB2/MIO TD-DFTB3/MIO/calc TD-DFTB3/MIO/fit TD-DFTB2/3OB TD-DFTB3/3OB

RMS (distance) 0.021 0.021 0.021 0.023 0.023
MAX (distance) 0.053 0.054 0.054 0.048 0.048
RMS (angle) 8.09 8.10 8.13 8.32 8.41
MAX (angle) 15.05 15.17 15.21 17.40 17.27
RMS (dihedral) 16.65 17.48 17.45 20.67 22.05
MAX (dihedral) 19.29 19.73 19.73 21.48 22.32

is very similar to that of TD-DFTB too, and the HOMO-1 and
LUMO calculated with PBE/STO-3G are quite similar with
those of DFTB2/MIO, but the LUMO is very different from the
one obtained with DFTB3/3OB. It makes us to conclude that
the good agreement for CS2 with TD-DFTB3/3OB may come
from a fortunate error cancellation. Since the choice of the level
of d orbitals in Ref. 17 is originated by better agreement for
O–S species, the parameters for S and P are not optimal for
excited state calculations.

As for CH2S, the excitation with TD-DFTB2/MIO
is described by a pure HOMO-LUMO transition, so the
difference between singlet-singlet and singlet-triplet excitation
energies is exactly zero, which is consistent with the previous
observation.21 Moreover, the symmetry of the stationary points
at 1A2 and 3A′′ is supposed to be C2v and Cs, but the optimized
geometries with the MIO parameter set belong to C2v in both
cases. The 3A′′ state is supposed to give two hydrogen atoms
out-of-plane, but we could not observe such a geometry with
the MIO parameter set. Interestingly, TD-DFTB2/3OB and
TD-DFTB3/3OB give two out-of-plane hydrogen atoms at
the 3A′′ state. Actually, 1A2 also gives out-of-plane hydrogen
atoms if geometry optimization is started with out-of-plane
hydrogen atoms. The reason of the difference should be
attributed to the difference of MO hybridization with the MIO
and 3OB parameters too.

Since we can compute oscillator strengths with TD-DFTB
using dipole integrals, we compare those of TD-DFTB and a
set of reference calculations with TD-PBE/STO-3G. Among
11 singlet-singlet excitations, TD-PBE/STO-3G gives non-
trivial oscillator strengths for CO (0.018), HCN (0.004), C2H2
(0.005), and pyridine (0.001), while TD-DFTB gives non-
trivial oscillator strengths only for CH2O (0.002 and 0.003
with MIO and 3OB parameter sets). The discrepancy comes
from two reasons. Zero oscillator strengths in TD-DFTB
for CO, HCN, C2H2, and pyridine are attributed to the lack
of on-site interactions.52 On the other hand, the non-trivial
oscillator strengths for CH2O come from a difference in
electronic structure between DFTB and PBE/STO-3G. Note
that the characters of excitation for CH2O with TD-DFTB and
TD-PBE/STO-3G are nevertheless same.

As experimental geometrical parameters (bond distance
and bond and dihedral angles) for molecules in Table II are
available,9 we tested the five DFTB methods by comparing
these parameters. A similar comparison for TD-DFTB2/MIO
has been done in Ref. 21. The geometrical parameters are
overall better predicted with the MIO parameter set, although
the difference between the predictions with the MIO and 3OB
parameter sets is rather small (Table III).

B. Adiabatic excitation energies for medium-size dye
molecules

Considering the efficiency of TD-DFTB as shown in
Table I, it is possible to predict adiabatic excitation energies
of bigger molecules with TD-DFTB relatively easily. Goerigk
et al. proposed a benchmark set consisting of 12 dye molecules
in their works.49,50 In order to check the applicability of
TD-DFTB further, we have calculated adiabatic excitation
energies for 1–3 and 5–12 (see Ref. 50 for structures)
in vacuum with five TD-DFTB methods. For 4, we do
not have appropriate parameters. Calculated and reference
TD-PBE/TZVP49,50 energies as well as RMS and maximum
deviations with respect to TD-PBE/TZVP are summarized in
Table IV. Additional set of parameters for halogen atoms37,53

were utilized.
With the MIO parameter set, we could not obtain excited

state minima for 1 and 12. These molecules contain halogen
atoms, F in 1 and Cl in 12. Particularly, in 1, the optimized
geometry with the MIO parameter set at the ground state gives
a −CF3 group in which all four atoms in the group are on a
same plane. Such a situation is totally inconsistent with our
intuition, so we guess that the artefact should be attributed
to the limit of the parameters. We did not face with such a
difficulty with the 3OB parameter set. For fair comparison,
1 and 12 are excluded in computing RMS and maximum
deviations.

The RMS and maximum deviations in Table IV indicate
that the 3OB parameter set improves the prediction of
adiabatic excitation energies slightly. Among five TD-DFTB
methods, TD-DFTB3/3OB gives the smallest deviation from
the reference calculation, but the improvement over TD-
DFTB2/3OB is little. In computing adiabatic excitation
energies, the semi-numerical second derivative with analytical
gradient is certainly the most time consuming step. With TD-
DFTB for the biggest molecule (5; 60 atoms), it can be finished
in around 2 min using one CPU core of Xeon E5-1620 v3
(3.50 GHz).

C. Absorption and fluorescence energies of cresyl
violet

In the end, we demonstrate one possible application of
TD-DFTB. Taking the fact that DFTB3 is supposed to be
superior to DFTB2 for polar and hydrogen bonded systems,
it is still early to conclude that TD-DFTB3 does not improve
excited state properties. We therefore calculated the absorption
and fluorescence energies of cresyl violet,54 which contains
one positive charge, in explicit water molecules as a practical
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TABLE IV. Adiabatic excitation energies (unit in eV) for 11 dye molecules, obtained with TD-PBE/TZVP49,50 and five TD-DFTB methods. RMS and maximum
(MAX) deviations (unit in eV) for 2, 3, and 5–11 with respect to TD-PBE/TZVP are shown at the bottom.

TD-PBE/TZVP TD-DFTB2/MIO TD-DFTB3/MIO/calc TD-DFTB3/MIO/fit TD-DFTB2/3OB TD-DFTB3/3OB

1 2.37 . . . a . . . a . . . a 2.49 2.42
2 2.13 2.20 2.20 2.20 2.23 2.23
3 1.83 1.76 1.77 1.78 1.93 1.93
5 1.86 2.06b 2.05b 2.04b 2.04b 2.04b

6 2.22 2.30 2.30 2.30 2.30 2.30
7 3.05 2.82 2.80b 2.79 3.05 3.00
8 2.45 2.27 2.27 2.27 2.29 2.29
9 2.65 2.66 2.64 2.63 2.65 2.63
10 2.33 2.26 2.24 2.23 2.28 2.25
11 1.81 1.82 1.81 1.81 1.81 1.80
12 1.48 . . . a . . . a . . . a 1.91 1.82

RMS 0.13 0.13 0.13 0.10 0.10
MAX 0.23 0.25 0.26 0.18 0.17

aUnable to locate excited state minimum.
bSaddle point.

test example. We soaked cresyl violet at 10 locations of a
large water box optimized with the “minimize” module in
TINKER 6.055 with the AMBER99 force field parameters.56

Surrounding water molecules were then removed other than
those located at 2.0 < d < 6.0, where d is the distance between
the solute (cresyl violet) atoms and water molecules in Å.
The resultant geometries contained 323–404 atoms (cresyl
violet plus 97 to 124 water molecules). They were optimized
with (TD-)DFTB2/MIO and (TD-)DFTB3/3OB, respectively,
and excitation energies were calculated for the optimized
structures at the ground state (S0) for absorption and at the
first excited state (S1) for fluorescence energies. With explicit
water molecules, excited state geometry optimizations were
started with the optimized structure at the ground state with
the corresponding DFTB method, but we sometimes had
to start with the TD-DFTB3 structures in some TD-DFTB2
calculations because of technical problems. We added the UFF
(universal force field)-type dispersion correction57,58 in all
calculations here. Calculated (in vacuum and explicit water)
and experimental54 (in water) absorption and fluorescence
energies and oscillator strengths are summarized in Table V.

The excitation mainly corresponds to the transition from
HOMO to LUMO. These orbitals with DFTB3 for one of the
optimized geometries on S1 PES in vacuum and water are
depicted in Figure 2. The absorption energies in vacuum and
water do not differ significantly, but the fluorescence energies
are different by around 0.2 eV. This clearly indicates the

importance of solvent effects. The experimental fluorescence
energy54 in water is 1.96 eV (631 nm), which is very well
reproduced by our TD-DFTB3 calculation as well as TD-
DFTB2. Of course, a part of the good agreement may be
attributed to a fortunate error cancellation and an arbitrariness
of sampling, but it is quite probable that the improvement
of (TD-)DFTB3 in describing polar and hydrogen bonded
systems is important for the prediction of fluorescence
energies.

The difference of fluorescence energies with TD-DFTB2
and TD-DFTB3 is only 0.03 eV. Although it implies that the
difference between TD-DFTB2 and TD-DFTB3 methods is
trivial again, we would like to point out that the geometry
optimization on the excited state PES with TD-DFTB2 was
rather difficult, because the order of excited state easily
alters during geometry optimization. Actually, we could
not directly find stationary points on S1 PES from the
S0 optimized structure with DFTB2 as mentioned. Some
additional calculations prove that such a difficulty caused by
state alternation is suppressed by adding only the third-order
contributions of a Taylor series of the DFT energy, but not by
the damping function for hydrogen atoms. This indicates that
the DFTB3 contributions improve the description of excited
state PESs, but we need more analysis to conclude it.

According to oscillator strengths with TD-DFTB3
(Table V), transition intensity is very slightly (3%) enhanced
upon solvation, which is consistent with a study for a

TABLE V. Experimental and calculated absorption and fluorescence energies (unit in eV) for cresyl violet and
oscillator strengths. Calculated energies and oscillator strengths in water are the averages of 10 geometries. Values
in parentheses represent lower and upper bounds of 10 energies.

Excitation energies Oscillator strength

Method Absorption Fluorescence Absorption Fluorescence

TD-DFTB2 (in vacuum) 2.46 2.10 0.452 0.200
TD-DFTB3 (in vacuum) 2.50 2.15 0.429 0.187
TD-DFTB2 (in water) 2.40 (2.35/2.44) 1.93 (1.80/2.03) 0.427 0.175
TD-DFTB3 (in water) 2.46 (2.43/2.49) 1.96 (1.86/2.09) 0.442 0.157
Experiment (in water) 2.12 1.96 N/A N/A
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FIG. 2. HOMOs and LUMOs (±0.03 (e/a0)1/2 isosurface) of the optimized
cresyl violet in vacuum and water with TD-DFTB3/3OB on S1 PES.

explicitly hydrated acetone system.59 On the other hand,
the transition intensity is diminished with TD-DFTB2. The
oscillator strengths for fluorescence are diminished in both
TD-DFTB2 and TD-DFTB3 in solution phase. A direct
comparison between the results of the present study and those
of Ref. 59 is complicated, owing to the different characters of
the excitations involved.

V. CONCLUSIONS

We derived the time-dependent density-functional tight-
binding method with the third-order contributions of a
Taylor series expansion of the DFT energy (TD-DFTB3).
The developed method was implemented in GAMESS-
US. The analytical gradient requires to compute the third-
order derivative of the total energy with respect to density
matrix elements, while it disappears for TD-DFTB2.21 The
computational cost to include DFTB3 contributions for
excitation energies is virtually negligible.

Since the performance of TD-DFTB3 has been
completely unknown, we compared a set of adiabatic
excitation energies with TD-DFTB2 and TD-DFTB3. We
showed that the inclusion of the DFTB3 terms has small
effects for excitation energies, while the different parameter
sets optimized for DFTB3 slightly improved the prediction
of adiabatic excitation energies. The small difference of
excitation energies comes from the fact that the third-order
contributions affect orbital energies very little. Of course,
one has to realize that DFTB3 is developed to describe
charge polarized and hydrogen bonded systems better, but not
excited state properties. Although the parameters optimized
for DFTB3 slightly improved the prediction of excitation
energies, the improvement could be partly attributed to
a fortunate error cancellation. We expect that the range-
separated version of DFTB60 will improve excitation energies,
as that of DFT did improve well.10

We also demonstrated a possible application of TD-
DFTB with cresyl violet solvated by explicit water molecules.
Although the absorption energies were overestimated relative
to the experimental result,54 the agreement of the TD-DFTB3
fluorescence energy with the experiment was fairly promising.
We pointed out that DFTB3 contributions may improve the
description of excited state PESs. Since many parameters are
being produced for bio-systems with DFTB3, we think it
is important to shift from DFTB2 to DFTB3 for predicting
excited state properties, too. At present, solvent effects are

taken into account with explicit molecules, and this could
introduce the arbitrariness of positions and orientations of
solvent molecules. To eliminate such an arbitrariness, the
implicit treatment61 is of great interest as a future work. We
are also planning to apply TD-DFTB2 and TD-DFTB3 for the
fragment molecular orbital-based DFTB.62,63
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APPENDIX A: DERIVATION OF Z-VECTOR EQUATIONS
FOR TD-DFTB3

The derivative of the auxiliary Lagrangian functional in
Eq. (27) is

∂L
∂Cµpσ

=
∂G[X,Y,ω]

∂Cµpσ
+


iaτ

Ziaτ
∂Hiaτ

∂Cµpσ

−


r sτ,r ≤s
Wr sτ

∂Sr sτ
∂Cµpσ

, (A1)

which is equal to zero, and solving Z-vector equations
corresponds to finding the Lagrangian multipliers Z and W.
Because a straightforward derivative is hard to manipulate
equations, one usually multiplies both sides of the equation
with Cµqσ and sums over µ, giving

Qpqσ +

iaτ

Ziaτ


µ

∂Hiaτ

∂Cµpσ
Cµqσ

=


r sτ,r ≤s
Wr sτ


µ

∂Sr sτ
∂Cµpσ

Cµqσ, (A2)

where

Qpqσ =

µ

∂G[X,Y,ω]
∂Cµpσ

Cµqσ. (A3)

Since p and q label general MOs, they could be occupied and
virtual orbitals. Considering that we do not need the derivative
of density matrix elements when p belongs to virtual orbitals
and using the diagonal nature of the Hamiltonian matrix in
MO basis, we can express Qpqσ matrix decomposing into four
blocks: occupied-occupied (p = i ≤ q = j), occupied-virtual
(p = i and q = a), virtual-occupied (p = a and q = i), and
virtual-virtual (p = a ≤ q = b) blocks,

Qi jσ = ω

a

{(X + Y )iaσ(X − Y ) jaσ

+ (X − Y )iaσ(X + Y ) jaσ}
−


a

εaσ{(X + Y )iaσ(X + Y ) jaσ

+ (X − Y )iaσ(X − Y ) jaσ}
+H+i jσ[T]
+ 2


kcτldυ

ĝi jσ,kcτ,ldυ(X + Y )kcτ(X + Y )ldυ,
(A4)
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Qiaσ =

b

(X + Y )ibσH+abσ[(X + Y)] + H+iaσ[T]

+ 2


jbτkcυ

ĝiaσ, jbτ,kcυ(X + Y ) jbτ(X + Y )kcυ,

(A5)

Qaiσ =

j

(X + Y ) jaσH+j iσ[(X + Y)], (A6)

and

Qabσ = ω

i

{(X + Y )iaσ(X − Y )ibσ
+ (X − Y )iaσ(X + Y )ibσ}
−


i

εiσ{(X + Y )iaσ(X + Y )ibσ
+ (X − Y )iaσ(X − Y )ibσ}, (A7)

where the unrelaxed difference density matrix T is

Ti jσ = −
1
2


a

{(X + Y )iaσ(X + Y ) jaσ
+ (X − Y )iaσ(X − Y ) jaσ},

Tiaσ = 0,
Taiσ = 0,

Tabσ =
1
2


i

{(X + Y )iaσ(X + Y )ibσ
+ (X − Y )iaσ(X − Y )ibσ}.

(A8)

The derivative of the Hamiltonian and overlap matrices is
similarly obtained,
iaτ

Ziaτ


µ

∂Hiaτ

∂Cµpσ
Cµqσ=


iaτ

δστ(δi pδqa + δapδiq)εqσZiaτ

+

j

δ j pH+pqσ[Z] (A9)

and
r sτ,r ≤s

Wr sτ


µ

∂Sr sτ
∂Cµpσ

Cµqσ = (1 + δpq)Wpqσ. (A10)

Now, by combining equations above, we can obtain a set of
linear equations for different blocks,

Qi jσ + H+i jσ[Z] = (1 + δi j)Wi jσ, (A11)
Qiaσ + εaσZiaσ + H+iaσ[Z] = Wiaσ, (A12)
Qaiσ + εiσZiaσ = Wiaσ, (A13)
Qabσ = (1 + δab)Wabσ. (A14)

Subtracting Eqs. (A12) and (A13), one obtains a Z-vector
equation,

(εaσ − εiσ)Ziaσ + H+iaσ[Z] = −(Qiaσ −Qaiσ), (A15)

which is equivalent to Eq. (29). Once we obtain the vector Z
as a solution of a Z-vector equation, we can then evaluate the
vector W, according to

Wi jσ =
1

1 + δi j
(Qi jσ + H+i jσ[Z]), (A16)

Wabσ=
1

1 + δab
Qabσ, (A17)

Wiaσ = Qaiσ + εiσZiaσ. (A18)

APPENDIX B: EXPLICIT EXCITATION ENERGY
GRADIENT FOR TD-DFTB3

According to Eq. (36), after mathematical manipulations,
the explicit excitation energy gradient for singlet-singlet
excitation is

∂ω

∂Rαx
=2


σ


A,α


µ∈A


ν∈α




Pµνσ
*
,

∂H0
µν

∂Rαx
+

∂Sµν

∂Rαx
ΩAB

+
-

−Wµνσ

∂Sµν

∂a
+ Dµνσ

∂Sµν

∂a
Ω

P,XY,S
AB

+ 2(X + Y )µνσ ∂Sµν

∂Rαx
Ω

XY,S
AB




+ 2

B,α

qXY
α qXY

B

∂γAα

∂Rαx

+
2
3


B,α


2qXY

α qXY
B

(
∆qα

∂ΓαB

∂Rαx
+ ∆qB

∂ΓBα
∂Rαx

)
+
�
qXY
α

�2
∆qB

∂ΓαB

∂Rαx
+
�
qXY
B

�2
∆qα

∂ΓBα
∂Rαx


+


B,α

�
qP
α∆qB + ∆qαqP

B

� ∂γαB

∂Rαx

+
1
3


B,α


2∆qα∆qB

(
qP
α

∂ΓαB

∂Rαx
+ qP

B

∂ΓBα
∂Rαx

)

+ (∆qα)2qP
B

∂ΓαB

∂Rαx
+ (∆qB)2qP

α

∂ΓBα
∂Rαx


, (B1)

where

qP
A =


σ


µ∈A


ν

PµνσSµν, (B2)

Ω
P,XY,S
AB

=
1
2


C

(γAC + γBC)qP
C

+
1
3


C

�(ΓAC∆qA + ΓBC∆qB)qP
C

+ (ΓACqP
A + ΓBCqP

B)∆qC

+ (ΓCA + ΓCB)qP
C∆qC

	

+
1
3


C


2(ΓACqXY

A + ΓBCqXY
B )qXY

C

+ (ΓCA + ΓCB)�qXY
C

�2
, (B3)

and

Ω
XY,S
AB
=

1
2


C

(γAC + γBC)qXY
C

+
1
3


C

�(ΓAC∆qA + ΓBC∆qB)qXY
C

+ (ΓACqXY
A + ΓBCqXY

B )∆qC

+ (ΓCA + ΓCB)qXY
C ∆qC

	
. (B4)

For singlet-triplet excitation,

∂ω

∂Rαx
=2


σ


A,α


µ∈A


ν∈α




Pµνσ
*
,

∂H0
µν

∂Rαx
+

∂Sµν

∂Rαx
ΩAB

+
-
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−Wµνσ

∂Sµν

∂a
+ Dµνσ

∂Sµν

∂a
Ω

P,T
AB

+2(X + Y )µνσ ∂Sµν

∂Rαx
Ω

XY,T
AB




+ 2

B,α

qXY
α qXY

B

∂γAα

∂Rαx

+

B,α

�
qP
α∆qB + ∆qαqP

B

� ∂γαB

∂Rαx

+
1
3


B,α


2∆qα∆qB

(
qP
α

∂ΓαB

∂Rαx
+ qP

B

∂ΓBα
∂Rαx

)

+ (∆qα)2qP
B

∂ΓαB

∂Rαx
+ (∆qB)2qP

α

∂ΓBα
∂Rαx


, (B5)

where

Ω
P,T
AB
=

1
2


C

(γAC + γBC)qP
C

+
1
3


C

�(ΓAC∆qA + ΓBC∆qB)qP
C

+ (ΓACqP
A + ΓBCqP

B)∆qC

+ (ΓCA + ΓCB)qP
C∆qC

	
(B6)

and

Ω
XY,T
AB
=

1
2


C

(γAC + γBC)qXY
C

+
1
2
(MAqXY

A + MBqXY
B ). (B7)

By omitting the Γ-related terms, one obtains TD-DFTB2
gradient. The gradient expressions for excitation energies
(Eqs. (B1) and (B5)) resemble to that for the ground
state (Eq. (9)). These gradients can therefore be calculated
simultaneously.
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