- Title: FGF-2 Stimulates the Growth of Tenogenic Progenitor Cells to Facilitate the Generation of
 Tenomodulin-positive Tenocytes in a Rat Rotator Cuff Healing Model
- **Running title:** Effect of FGF-2 on Rotator Cuff Healing
- $\mathbf{5}$

7 Abstract

Background: Fibroblast growth factor (FGF)-2 has the potential to enhance tendon-to-bone healing
after rotator cuff (RC) injury.

Hypothesis: FGF-2 stimulates tenogenic differentiation of progenitors to improve the biomechanical
 strength and histological appearance of repaired RCs in rats.

- 12 **Study Design:** Controlled laboratory study.
- 13 Methods: Adult male Sprague-Dawley rats (n = 156) underwent unilateral surgery to repair the
- 14 supraspinatus tendon to insertion sites. The FGF-2-treated (gelatin hydrogel containing 5 µg of

15 FGF-2) and control groups (gelatin hydrogel only) were compared to investigate the effects of FGF-2

- 16 at 2, 4, 6, 8, and 12 weeks postoperatively. Biomechanical testing was performed at 6 and 12 weeks.
- 17 Semi-quantitative histological analysis and immunohistochemistry for the proliferating cell nuclear
- 18 antigen (PCNA) was performed, and the expression of tendon-related markers, including *Scleraxis*
- 19 (Scx) and Tenomodulin (Tnmd) were monitored by real-time reverse transcription polymerase chain

20 reaction (RT-PCR) and *in situ* hybridization. SRY-box containing gene 9 (Sox9) expression was

- 21 monitored by RT-PCR and immunohistochemistry. At 2 and 4 weeks, immunohistochemistry for
- 22 mesenchymal stem cell (MSC) markers were also performed.
- 23 **Results:** The FGF-2-treated group demonstrated a significant improvement in mechanical strength at
- 6 and 12 weeks and significantly higher histological scores than the control at \geq 4 weeks. The average
- 25 incidence of PCNA-positive cells was significantly higher at 2 and 4 weeks, and more cells

26	expressing MSC markers were detected at the insertion site in the FGF-2-treated group. The
27	expression level of Scx increased significantly in the FGF-2-treated group from 4 to 8 weeks, while
28	the <i>Tnmd</i> level increased significantly from 4 to 12 weeks postoperatively. The localization of <i>Tnmd</i>
29	overlapped with the locations of reparative tissues accompanying collagen fibers with an aligned
30	orientation. The Sox9 expression was significantly upregulated at 4 weeks in the FGF-2-treated
31	group.
32	Conclusion: FGF-2 promotes growth of the tenogenic progenitor cells, which participates in
33	tendon-to-bone healing, resulting in the biomechanical and histological improvement of repaired RC.
34	Clinical Relevance: These findings provide clues on the clinical development of regenerative repair
35	strategies for RC injury.
36	Key Terms: FGF-2, rotator cuff healing, <i>Scleraxis</i> , <i>Tenomodulin</i> , <i>Sox9</i> , cell proliferation, tenogenic
37	progenitors

39 What is known about the subject:

40	Rotator cuff (RC) tears are a common cause of shoulder pain and dysfunction that often require
41	surgical repair. A relatively high repair failure rate (21.7%, 187/861 patients) was reported in a recent
42	meta-analysis of 14 studies after RC surgical repair. ¹⁴ Various efforts (e.g., the application of growth
43	factors or transplantation of mesenchymal stem cells) have been made to promote a reparative
44	response. ^{7,8,9,24,28} Administration of the fibroblast growth factor 2 (FGF-2) has the potential to
45	enhance the reparative response during the RC healing process;9 however, little is known about the
46	biological mechanism of the repair-promoting effect (improvement of biomechanical strength or
47	histological appearance) by FGF-2 during RC healing.
48	
49	What this study adds to existing knowledge:
49 50	What this study adds to existing knowledge: In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical
50	In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical
50 51	In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical repair of an acute supraspinatus injury improved the mechanical strength and histological appearance
50 51 52	In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical repair of an acute supraspinatus injury improved the mechanical strength and histological appearance between the tendon and bone at \geq 4 weeks. Moreover, the proliferation of cells expressing markers of
50 51 52 53	In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical repair of an acute supraspinatus injury improved the mechanical strength and histological appearance between the tendon and bone at \geq 4 weeks. Moreover, the proliferation of cells expressing markers of mesenchymal stem cells was stimulated in the FGF-2-treated group during the early phase of RC
50 51 52 53 54	In a rat model, the administration of FGF-2 to the healing tendon-bone interface after surgical repair of an acute supraspinatus injury improved the mechanical strength and histological appearance between the tendon and bone at \geq 4 weeks. Moreover, the proliferation of cells expressing markers of mesenchymal stem cells was stimulated in the FGF-2-treated group during the early phase of RC healing. Subsequently, upregulation of the tendon markers such as <i>Scleraxis</i> (<i>Scx</i>) and <i>Tenomodulin</i>

- 58 This suggests that FGF-2 promotes the growth of tenogenic progenitor cells to participate in
- 59 tendon-to-bone healing, resulting in the histological and biomechanical improvement of RC healing.

61 Introduction

A rotator cuff (RC) injury is one of the most common causes of shoulder pain and dysfunction, 62 often requiring surgical repair. Despite great improvement in surgical techniques for repairing RC 63 tears, a recent meta-analysis of 14 studies reported on an imaging assessment of the structural 64 integrity of RC repair, and it demonstrated a high rate of failed repair (21.7 %, 187/861 patients) at 65the latest follow-up.¹⁴ Therefore, developing new strategies for enhancing tendon-to-bone healing is 66 imperative. 67 Various growth factors are endogenously expressed during tendon-to-bone healing, suggesting that 68 they play critical roles in the repair process,²⁷ and there is an interest regarding their use as 69 therapeutic agents for enhancing RC repairs. Of those, fibroblast growth factor-2 (FGF-2) is a potent 70mitogen for a wide variety of cells, including mesenchymal stem cells (MSCs) and progenitor cells.^{11,} 71^{19, 25} We previously demonstrated that the local administration of FGF-2 accelerates the initial 72tendon-to-bone healing as indicated by biomechanical tests and histological analyses after 73supraspinatus tendon repair in rats.⁹ However, the biological mechanism of the reparative 74enhancement by FGF-2 during RC healing is unclear. 7576Recently, several genes have been identified as specific tendon markers. Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed in both tenogenic progenitors and tenocytes.^{13,} 77¹⁵ Tenomodulin (Tnmd) is a type II transmembrane protein that is specifically expressed in the dense 78connective tissues such as tendons and ligaments.^{17, 18} Tnmd is detected in mature tenocytes and is 79

80	positively regulated by Scx. ^{3, 18} Identification of these marker genes enables us to study the cellular
81	and molecular events that occur during the establishment of the osteotendinous junction in detail.
82	Recently, we reported that a subset of Scx-positive progenitors with an expression history of SRY-box
83	containing gene 9 (Sox9) contributes to the formation of enthesis during development. ²⁰
84	The purpose of this study was to investigate the effects of FGF-2 administration on cell
85	proliferation and the expression of enthesis-related marker genes (i.e., Scx, Sox9, and Tnmd) during
86	RC tendon-to-bone healing in rats. The effects on biomechanical strength and histological
87	appearance during healing were also investigated. We hypothesized that FGF-2 stimulates the
88	tenogenic differentiation of progenitors and improves the biomechanical strength and histological
89	appearance of repaired RCs in rats.
90	

90

91 Materials and Methods

92 Study Design

This study was approved by our institution's Animal Studies Committee and the Institutional Animal Care and Use Committee. We used a rat RC healing model, in which the supraspinatus tendon insertion site was transected and surgically repaired immediately, to investigate the effects of FGF-2 on tendon-to-bone healing. In this model, a normal tendon-to-bone insertion site is not regenerated even after 16 weeks postoperatively.²³

We included 156 adult male Sprague-Dawley rats (19–21 weeks old; mean weight, 475 ± 37 g) 98that underwent unilateral surgery for supraspinatus tendon repair immediately after transaction, and 99 they were randomly allocated to the control or FGF-2-treated groups (n = 78 per group). In the 100 101 control, gelatin hydrogel sheets (MedGEL Co., Kyoto, Japan) with a phosphate-buffered saline 102(PBS) were applied between the supraspinatus tendon and bone. In the FGF-2-treated group, gelatin hydrogel sheets containing 5 µg of rhFGF-2 (Kaken Pharmaceutical Co., Tokyo, Japan) were applied. 103 All rats were sacrificed at 2, 4, 6, 8, or 12 weeks postoperatively. At each time point, 6 specimens per 104 group were used for histological evaluation (i.e., histology, immunohistochemistry, or in situ 105106 hybridization), and 6 per group were analyzed with real-time reverse transcription polymerase chain reaction (RT-PCR). At 6 and 12 weeks, 9 specimens per group were used for biomechanical testing. 107

108

109 Local Administration of FGF-2

110	We used a biodegradable gelatin hydrogel sheet ²¹ (MedGel PI5, MedGEL Co) as a carrier for
111	the FGF-2. In our pilot study, three doses of FGF-2 (0.5, 5, and 50 μ g/site) in gelatin hydrogel sheets
112	were compared between the carrier-only and suture-only groups using the same method in the
113	present study ($n = 6$ per group underwent histological and biomechanical testing). At 12 weeks
114	postoperatively, a significant improvement in the ultimate load-to-failure was achieved in all
115	FGF-2-treated groups (0.5- μ g, 29.1 ± 10.1 N; 5- μ g, 31.7 ± 8.5 N; and 50- μ g, 25.9 ± 8.6 N) compared
116	to the carrier-only (15.8 \pm 4.5 N) and suture-only groups (12.4 \pm 2.4 N). The histological scores in
117	the FGF-2-treated groups (0.5- μ g, 9.7 ± 1.0; 5- μ g, 10.7 ± 0.5; and 50- μ g, 10.3 ± 0.5) were higher
118	than that in the suture-only (7.5 \pm 0.5) and carrier-only groups (7.8 \pm 0.8). Although there were no
119	significant differences among the three FGF-2-treated groups, we used the 5-µg dose of FGF-2,
120	because the 5- μ g FGF-2-treated group showed the highest histological score and the ultimate
121	load-to-failure.
122	Before administration, freeze-dried gelatin hydrogel sheets (1 mg) for each shoulder were soaked
123	with 10 μ L of a PBS or FGF-2 (500 μ g/mL), and the sheets were incubated for 60 min at room

temperature (RT).

Surgical Procedure

The rats underwent left shoulder surgery, as previously described.^{6, 23} Briefly, after the administration of general anesthesia with an intraperitoneal injection of pentobarbital (25-30 mg/kg),

129longitudinal antero-lateral skin and deltoid muscle incisions were made, and the supraspinatus tendon was exposure. The supraspinatus tendon was detached sharply at its insertion (3 mm in the 130131anterior-to-posterior dimension), and the fibrocartilaginous stump on the greater tuberosity was completely removed using a high-speed bur until bleeding was observed. A 0.8-mm drill hole was 132created transversely in an anterior-posterior orientation through the proximal part of the humerus. We 133sutured the torn supraspinatus tendon to its anatomic position using a double-armed 5-0 prolene 134suture (Ethicon, Somerville, NJ) using a modified Mason-Allen method. A gelatin hydrogel sheet 135136 soaked with PBS or FGF-2 was fixed to the torn end of the tendon using a 5-0 prolene suture, which is used for repair, and it was secured between the tendon and bone. The incision was closed in layers 137with 4-0 nylon sutures. All rats were permitted cage activities without immobilization 138139postoperatively.

140

141 Biomechanical Testing

As previously described,^{9, 26} 9 animals per group were tested at 6 and 12 weeks postoperatively, and 9 intact shoulders were used as a normal control. All specimens were frozen at -80°C until testing. After thawing, the supraspinatus tendon repair to the humerus was dissected from the surrounding tissues with a custom-designed double scalpel blade to a 2-mm-width to standardize the tendon tested, and the supraspinatus muscle belly and any scar tissue was removed. Each specimen was preloaded to 0.1 N and loaded to failure with a conventional tensile tester (STA1225; Orientec,

148	Tokyo, Japan) at a rate of 10 mm/min, and the ultimate load-to-failure and the failure site were
149	recorded. The linear region of the load-displacement curve was used to calculate the stiffness. The
150	cross-sectional area of the repaired insertion site, including its width and thickness, was measured
151	using a digital micro-caliper. ⁷ The ultimate load-to-failure was divided by the cross-sectional area of
152	the repair site to determine the ultimate stress-to-failure.
153	
154	Histological Evaluation
155	The tissues were fixed overnight in 4% paraformaldehyde at an abduction angle of 30° and were
156	decalcified in Morse's solution (10% sodium citrate and 22.5% formic acid). After decalcification,
157	the tissues were dehydrated and were embedded in paraffin. The sections were viewed under an
158	Olympus BX-51 microscope (Olympus Optical, Tokyo, Japan), and digital images were taken using
159	a DP70 camera (Olympus Optical). To evaluate healing at the tendon-to-bone site semi-quantitatively,
160	we used a computerized image analysis (Image J, National Institutes of Health, Bethesda, MD) and a
161	modified scoring system (Table 1) based on previously reported histological evaluations. ^{24, 26, 28} We
162	scored the healing insertion site according to three histological parameters (i.e., cellularity,
163	vascularity, and collagen fiber orientation). Three sequential sections were obtained from each
164	animal for each staining, and the results were averaged.

165	To analyze cellularity, all cell nuclei in a randomly selected region of interest (200 \times 200 μm) were
166	counted to calculate the number per mm^2 at the insertion site (100–400 μm proximal to the bone
167	trough) on hematoxylin and eosin (HE)-stained slides under 100-fold magnification.
168	To analyze vascularity, all blood vessels were counted to calculate the mean vessel number from
169	three sequential sections at the insertion site (100–400 μ m proximal to the bone trough) on
170	HE-stained slides under 100-fold magnification.
171	The collagen fiber orientation was assessed by picrosirius-red stained sections using a polarizing
172	microscope. ^{7, 26} On eight-bit digitized images, intense white areas of brightly diffracted light on a
173	gray scale (black, 0; white, 255), were observed. Higher gray scales indicated more organized
174	collagen fibers. We randomly selected 10 square areas (100 \times 100 μm) at the insertion site (100–400
175	μ m proximal to the bone trough) under 12.5-fold magnification, and gray scales were measured
176	using Image J. The values from the 10 areas were averaged to obtain a value of average gray scales
177	per specimen. To reduce sampling errors, we took photomicrographs of three sequential sections
178	from each specimen under the same illumination conditions.
179	Cellularity and collagen fiber orientation were scored using the percentage of the value measured
180	in six right shoulders (intact side). A perfect score is 12 points (Table 1). Analysis was performed by
181	two colleagues who were blinded to the groups for each specimen and the time points throughout the
182	histological examinations.
183	

184 Immunohistochemistry

185	Semi-serial sections (4 µm)	were prepared for	immunostaining. To assess	the cell proliferation, the
-----	-----------------------------	-------------------	---------------------------	-----------------------------

- 186 expression of Sox9 and existence of MSCs, we performed immunostaining for PCNA and Sox9 at all
- time points, MSC-related surface antigens (CD105, CD90, and CD73), and hematopoietic cell
- 188 antigen (CD45 and CD34) at 2 and 4 weeks postoperatively.²
- 189 The sections were deparaffinized; rehydrated; and incubated overnight at 4°C with a primary
- antibody recognizing PCNA (dilution 1:200, clone PC10; Dakopatts, Copenhagen, Denmark), Sox9
- 191 (1:200, AB5535; Millipore, Billerica, MA), CD105 (1:50,#05-1424; Millipore), CD90 (1:200,
- 192 AB225; Abcam, Cambridge, MA), CD73 (1:200, AB175396; Abcam), CD45 (1:1000, AB10558;
- Abcam), and CD34 (1:100, AB 64480; Abcam). Subsequent reactions were performed using a
- 194 peroxidase-labeled antibody (Histofine Simple Stain Max PO; Nichirei, Tokyo, Japan), which
- reacted with a 3, 3-diaminobenzidine solution and were counterstained in 0.5% Mayer's

196 hematoxylin.

197

198 Estimation of Cell Proliferation and the Expression of Sox9 at the Healing Site

To estimate cell proliferation at the healing site, we modified the previously described method for PCNA-positive cell counting.¹² Three square areas ($200 \times 200 \,\mu$ m) at the insertion site ($100-400 \,\mu$ m proximal to the bone trough) were selected randomly under 200-fold magnification. The percentage 202 of PCNA-positive cells was calculated by dividing the number of PCNA-positive cells by the total

- 203 number of cells in the area; the average percentage of three areas from each slide was recorded.
- 204 The percentage of Sox9-positive cells was calculated in the same manner.
- 205

206 **RNA Isolation and Real-time Reverse Transcription Polymerase Chain Reaction Analysis**

At all time points, the left (operative side) and right (intact side) tendon-to-bone tissues were 207 dissected and flash frozen in liquid nitrogen and crushed using a Multi-beads Shocker (Yasui Kikai, 208Osaka, Japan). After homogenization, total RNA was extracted and purified per the manufacturer's 209instructions using the TRIzol Plus RNA Purification Kit (Invitrogen, Carlsbad, CA). The total RNA 210(1 µg) was reverse transcribed to complementary DNA (cDNA) using the Thermoscript RT kit 211(Invitrogen). Real-time PCR was performed using an ABI7500 system (Applied Biosystems, Foster, 212CA) with TaqMan Universal PCR Master Mix and TaqManTM Gene Expression Assays for the 213following Rn01504576 m1), Tnmd (Rn00574164 m1), Sox9 214genes: Scx (Assay ID: (Rn01751069_mH), and 18S ribosomal RNA (Rn03928990_g1). Each sample was analyzed in 215duplicate. The relative expression levels for the target genes were analyzed using the comparative Ct 216217method. The delta-Ct values were calculated by the difference between the Ct values of the target genes and 18S ribosomal RNA. The results are represented as the relative gene expression compared 218to the intact tendon.¹⁶ 219

221 In situ Hybridization

In situ hybridization was performed to detect the expression of Scx and Tnmd mRNA as previously 222223described.¹ Briefly, 5-µm sections were deparaffinized, rehydrated, incubated with proteinase K (20 224µg/mL; Gibco BRL, Rockville, MO), post-fixed in 4% paraformaldehyde, acetylated with 0.1 M triethanolamine containing 0.25% acetic anhydride for 10 min, dehydrated, and air-dried. 225Sense and antisense RNA probes labeled with digoxigenin (DIG) for Scx or Tnmd were 226227synthesized by *in vitro* transcription with a DIG RNA labeling kit (Roche, Mannheim, Germany) using the following cDNA clones: rat Scx cDNA containing a 0.726 kb fragment was subcloned into 228pBSII SK+ (Stratagene, La Jolla, CA) and rat *Tnmd* cDNA containing a 0.607 kb fragment was 229subcloned into pCRII-TOPO (Invitrogen), as a template after linearization. Hybridization was 230231performed at 50°C for 16 h. After hybridization, the sections were washed in $2 \times SSC$ containing 50% formamide, treated with RNase A (20 μ g/mL), and washed in 2 × SSC. Immunological probe 232detection was performed with an anti-DIG-AP Fab fragment (Roche) and BM Purple (Roche). The 233specificity of these antisense probes was confirmed on mouse embryo (E16.5) sections as positive 234controls. Sense probes for Scx and Tnmd were used on sections as negative controls. 235

236

Evaluation of the Association between the Locations of Reparative Tissue Accompanying Collagen Fibers with an Aligned Orientation and *Scx* or *Tnmd* mRNA

239	To investigate the correlation between the location of healing tissues with aligned collagen fiber
240	orientation and the localization of Scx or Tnmd mRNA, images from picrosirius-red staining and in
241	<i>situ</i> hybridization in sections in the treatment and control groups at 8 weeks postoperatively $(n = 12)$
242	were evaluated, and nine areas (tendon, suture, and insertion areas of the articular side, middle, and
243	bursal side) were set (see Figure 5C). Collagen fiber orientation for each area was evaluated by
244	applying the gray scale as described above. Expression levels of Scx or Tnmd mRNA (density of
245	hybridization signals) in each area were graded using previously reported ²³ standards to define high
246	(4), moderate (3), low (2), and undetectable (1) levels, and the highest grade for each area from each
247	specimen was recorded.
248	
249	Statistical Analysis
250	Before the study initiation, a power analysis was performed using the G*Power 3.1 program, ⁵
251	which we used in our pilot study described above that had a similar rat model. A minimum of 9
252	specimens per group for each time point was required for biomechanical testing (Cohen's d, \geq 1.45),
253	and a minimum of 6 specimens per group for each time point was required for histological evaluation
254	(Cohen's d, \geq 2.04), with an α value of 0.05 and a power of 0.80 based on the effect size. The sample
255	size for real-time RT-PCR was determined according to the power analysis for histological
256	

and the secondary analysis compared measurements within the groups over time. We used

258	nonparametric statistical methods for all the analyses, because the data were non-normally
259	distributed. Statistical significance between the groups at each time point was estimated using the
260	Mann-Whitney U test. Differences in the measurements within groups over time were analyzed using
261	the Kruskal-Wallis test, followed by the post-hoc Scheffe test for multiple comparisons.
262	The correlation between the collagen fiber orientation and the expression levels of Scx or Tnmd
263	mRNA were assessed using Spearman's correlation analysis. Values of $P < .05$ were considered
264	statistically significant.

266	Results
267	Biomechanical Testing
268	Three of 9 specimens from the normal shoulders failed at the insertion site; the other 6 failed at the
269	tendon mid-substance. All specimens from the operated groups failed at the site of surgical repair
270	(Table 2).
271	At 6 weeks postoperatively, the ultimate load-to-failure, stiffness, and ultimate stress-to-failure
272	were significantly higher in the FGF-2-treated group than in the control. No significant differences
273	were observed between the groups in the cross-sectional area of the repair site.
274	At 12 weeks postoperatively, the ultimate load-to-failure and ultimate stress-to-failure were
275	significantly higher in the FGF-2-treated group than in the control. No significant differences were
276	observed between the groups in the stiffness and cross-sectional area of the repair site.
277	
278	Histological Analysis
279	Effects of FGF-2 on the histological appearance
280	At 2 weeks postoperatively, hyper-cellular and hyper-vascular granulations were noted in the
281	insertion site (Figure 1A, G), and areas of brightly diffracted polarized light were rarely observed at
282	the insertion site in any of the groups (Figure 1D, J).
283	From 6 to 12 weeks, although granulations decreased compared to the previous time point, the
284	tendon-to-bone area remained hyper-vascular and filled with disorganized collagen fibers in the

285	controls (Figure 1B, C, E, F). Conversely, in the FGF-2-treated groups, these granulations were
286	decreased, and the area of brightly diffracted polarized light at the insertion site was larger than that
287	in the controls (Figure 1H, I, K, L). The histological differences between the treatment and control
288	group were observed at \geq 4 weeks.
289	At the bone surface, normal fibrocartilaginous enthesis was not regenerated in any specimen from
290	any group at any time point.
291	In both groups, cellularity and vascularity decreased, but the collagen fiber orientation and total
292	histological scores increased with time (Table 3). The mean number of blood vessels at the insertion
293	site was significantly smaller in the FGF-2-treated group than in the control at 8 and 12 weeks
294	postoperatively. Collagen fiber orientation and the total score were significantly higher in the
295	FGF-2-treated group than in the control at \geq 4 weeks.
296	
297	Effects of FGF-2 on cell proliferation
298	At 2 and 4 weeks postoperatively, greater numbers of PCNA-positive cells were observed in the
299	granulation tissue between the tendon and bone in the FGF-2-treated group than those in the control
300	(Figure 2A, C). At \geq 6 weeks, PCNA-positive cells obviously decreased and were mainly present at
301	the bone surface in both groups (Figure 2E). The percentage of PCNA-positive cells was
302	significantly larger in the FGF-2-treated group than in the control at 2 weeks (45.4 \pm 9.3% vs. 30.8 \pm
303	5.7%; $P = .016$) and 4 weeks (41.9 ± 8.0% vs. 29.0 ± 7.4%; $P = .025$). There were no differences

between the groups at 6 weeks (control, $21.2 \pm 4.6\%$; FGF-2-treated, $23.8 \pm 5.3\%$; P = .423), 8

305 weeks (control, $19.7 \pm 2.7\%$; FGF-2-treated, $22.3 \pm 5.7\%$; P = .263) and 12 weeks (control, $19.0 \pm 10.0\%$)

306 3.8%; FGF-2-treated, $19.6 \pm 5.3\%$; P = .749) (Figure 2E).

307

308 Effect of FGF-2 on the expression of Scx and Tnmd

309	Real-time RT-PCR analysis showed that a significantly higher expression of Scx was detected in
310	the FGF-2-treated group than in the control at 4, 6, and 8 weeks ($P = .010$, .010, and .004,
311	respectively). There were no differences between the control and FGF-2 groups at 2 and 12 weeks (P
312	= .631, and .150, respectively) (Figure 3A). <i>Tnmd</i> expression was significantly higher in the
313	FGF-2-treated group than in the control at 4, 6, 8, and 12 weeks ($P = .004$, .010, .004, and .016,
314	respectively). There were no differences between the groups at 2 weeks ($P = .631$) (Figure 3B). Scx
315	expression was transiently upregulated from 4 to 8 weeks; meanwhile <i>Tnmd</i> expression was
316	persistently upregulated by FGF-2 treatment even after 12 weeks postoperatively (Figure 3).
317	We then performed <i>in situ</i> hybridization to analyze the localization of <i>Scx</i> and <i>Tnmd</i> mRNA. In
318	both groups, hybridization signals for Scx were detected in the spindle-shaped cells at the tendon
319	mid-substance at all time points (Figure 4A, C, I, K), and a few hybridization signals for Scx were
320	detected in the round and spindle-shaped cells within the granulation tissue around the suture at 4, 6,
321	and 8 weeks (data not shown). In the control, hybridization signals for Scx were rarely detected
322	within the fibro-vascular tissue at the bone surface at any time points (Figure 4E, G). However, in the

FGF-2-treated group, *Scx* were expressed in the spindle-shaped cells at the bone surface at \geq 4 weeks (Figure 4M, O).

- 325*Tnmd* signals were also detected in the spindle-shaped cells at the tendon mid-substance in both groups at all time points, and hybridization signals increased with time (Figure 4B, D, J, L). In the 326 FGF-2-treated group, the distribution of these signals expanded into reparative tissues near the 327suturing site compared to the control. However, *Tnmd* was rarely detected at the bone surface in 328either group at any time point (Figure 4F, H, N, P). 329330 Correlation between the locations of healing tissue with aligned collagen fiber orientation and 331Scx or Tnmd mRNA 332333We assessed 108 areas in both groups at 8 weeks postoperatively (Figure 5). A weak positive correlation between the location of aligned collagen fiber orientation and expression levels of Scx 334mRNA in each area was observed (Spearman's rank correlation $[\rho] = .27, P < .001$) (Figure 5D). 335Meanwhile, a strong positive correlation between the location of aligned collagen fiber orientation 336 and the expression levels of *Tnmd* mRNA in each area was observed ($\rho = .88, P < .001$) (Figure 5E). 337338
- 339 Effect of FGF-2 on Sox9 expression

340 Real-time RT-PCR analysis showed that *Sox9* expression was significantly higher in the

FGF-2-treated group than in the control at 4 weeks (P = .004). However, at 2, 6, 8 and 12 weeks,

there were no statistically significant differences between the groups (P = .337, .749, .200 and, .337, respectively) (Figure 6).

344	In immunostaining for Sox9 (Figure 7), Sox9-positive cells were mainly observed at the
345	tendon-to-bone insertion site, but a few Sox9-positive spindle-shaped cells were also detected at the
346	tendon mid-substance at \geq 4 weeks in both groups. The percentage of Sox9-positive cells was
347	significantly higher in the FGF-2-treated group than in the control at 4 weeks (23.7 \pm 4.9% vs. 14.0 \pm
348	3.6%; $P = .010$). There were no differences between the groups at 2 weeks (control, $10.1 \pm 4.8\%$;
349	FGF-2-treated, $13.4 \pm 6.6\%$; $P = .337$), 6 weeks (control, $19.7 \pm 2.7\%$; FGF-2-treated, $22.3 \pm 5.7\%$;
350	$P = .263$), 8 weeks (control, $10.3 \pm 1.1\%$; FGF-2-treated, $11.2 \pm 1.5\%$; $P = .423$), and 12 weeks
351	(control, $10.1 \pm 2.6\%$; FGF-2-treated, $11.3 \pm 3.4\%$; $P = .749$) (Figure 7I).
352	
353	Effect of FGF-2 on mesenchymal stem cells marker-positive cells in the early phase of healing

To analyze MSCs, serial sections were immunostained for MSC-related surface antigens (CD105,

- 355 CD90, and CD73) and hematopoietic cell antigen (CD45 and CD34) at 2 and 4 weeks
- 356 postoperatively. CD45- and CD34-positive cells were rarely detectable at the insertion site in either
- 357 group. In the FGF-2-treated group, cells positive for CD105, CD90, and CD73 were detected more
- 358 within the reparative tissue at the insertion site than in the control (Figure 8).

359 **Discussion**

Our findings support our hypothesis that FGF-2 stimulates the tenogenic differentiation of 360 progenitors to improve the biomechanical strength and histological appearance of repaired RCs in 361 rats. Previous studies^{6, 23} have described the healing response as observed using histological 362 evaluation in a rat RC acute injury and immediate repair model, and the healing response occurred 363almost exclusively within the tendon-to-bone insertion site that was filled with hyper-cellular and 364 hyper-vascular granulation tissues by postoperative day 10. As healing progresses, cellularity and 365366 vascularity decrease, and then the improvement of collagen fiber orientation and fiber integration into the bone were observed to some extent. However, a histologically normal tissue is not 367 regenerated. Instead, the disorganized fibro-vascular scar interposes at the insertion site without 368 supplementation of growth/differentiation factors.²³ Without FGF-2 administration, in this study, the 369370fibro-vascular scar interposes between the tendon and bone even 12 weeks after RC repair surgery. 371In contrast, the administration of FGF-2 clearly decreased the occurrence of fibro-vascular scarring at the insertion site and increased the aligned orientation of collagen fibers at \geq 4 weeks, as indicated 372by significantly higher histological scores (Figure 1, Table 3). Moreover, even though normal 373374biomechanical strength was not achieved at 12 weeks postoperatively (ultimate load-to-failure, 56.7% of normal controls; stiffness, 33.3% of normal controls; ultimate load-to-stress, 35.1% of 375376normal controls), FGF-2 administration significantly increased the biomechanical strength by 6 weeks postoperatively (Table 2). In an ovine study model on tendon-to-bone healing, the 377

378	disorganized fibro-vascular scar at the insertion site was weaker than the axially-aligned collagen
379	fibers in the bone. ⁸ These results suggest that the improvement of mechanical strength by FGF-2
380	treatment is associated with decreases in the fibro-vascular scarring and improvement in the collagen
381	fiber orientation at the insertion site.
382	Accumulating evidence suggests that Scx-expressing tenogenic cells can participate in a
383	regenerative repair of tendons to promote the formation of collagen fibers with an aligned orientation,
384	which have better tensile strength. Gulotta et al. ⁷ demonstrated that application of bone
385	marrow-derived MSCs transduced with Scx resulted in an improvement in histological and
386	biomechanical properties at 4 weeks postoperatively in a similar rat RC healing model. Tan et al. ²²
387	also reported that transplantation of Scx-transduced tendon-derived stem cells provided better tendon
388	repair than that of mock-transduced cells in a rat patellar tendon injury model from the histological
389	and biomechanical viewpoints.
390	Our study showed that FGF-2 administration induced Scx expression in the cells of healing tissue
391	4-8 weeks postoperatively, indicating that more tenogenic progenitor cells were generated at the
392	healing sites from the mid-to-late stages of healing (Figures 3–4). During differentiation from
393	tenogenic progenitors to mature tenocytes, the Scx expression declines, while Tnmd is continuously
394	expressed. ^{10, 18} In murine tendon development, Scx expression increases from E10.5 to E12.5 and
395	decreases at E13.5, meanwhile the expression of <i>Tnmd</i> sharply increases from E13.5 and persists
396	until the late stage in the forelimb tendon cells. ¹⁰ These temporal expression patterns of Scx and

397	<i>Tnmd</i> were also demonstrated in mouse patellar healing. ¹⁶ In this study, <i>Tnmd</i> -positive tenocyte-like
398	cells were persistently observed until the later stage of healing from 4–12 weeks postoperatively.
399	Interestingly, <i>Tnmd</i> -positive tenocyte-like cells were only observed in the area with highly oriented
400	collagen fibers. In particular, these cells were distributed into the reparative tissues near the suturing
401	site in the FGF-2-treated group 4-12 weeks postoperatively, which was consistent with highly
402	oriented collagen fiber areas as shown by the histological evaluation in this study (Figure 5E). These
403	spatial patterns of <i>Tnmd</i> expression are similar to that in the late-stage of tendon development, ¹⁸
404	suggesting that <i>Tnmd</i> is a useful marker for evaluating the differentiation of mature tenocyte-like
405	cells in tendon healing.
406	Despite enhanced differentiation of <i>Tnmd</i> -positive tenocyte-like cells, it is unlikely that FGF-2
407	directly stimulated tenogenic differentiation of cells in this later phase of RC healing, since FGF-2 is
408	known to be released from gelatin hydrogel sheets within 2 weeks. ²¹ Thus, the FGF-2-stimulated
409	tenogenic repair responses in this study must be primarily mediated by the growth stimulation of
410	undifferentiated mesenchymal cells, as indicated by a higher incidence of PCNA-positive cells at the
411	repair sites during the early phase (Figure 2). In a mouse patellar tendon healing model, ⁴
412	undifferentiated mesenchymal progenitors migrate from a paratenon to the healing site by 1 week
413	post-injury. Subsequently, <i>Scx</i> -expressing cells appear at ≥ 2 weeks, suggesting that the initial growth
414	of undifferentiated mesenchymal progenitors have a critical role for the subsequent tenogenic
415	differentiation of cells during the later phase of healing. In agreement with the previous in vitro

416	studies ^{11, 19, 25} that have shown that FGF-2 potently stimulates the self-renewal of MSCs and/or
417	progenitor cells without a loss of potentials for the subsequent cell differentiation, we demonstrated
418	at least in the present study that the healing process started with a better accumulation of cells
419	expressing MSC-related markers within 2 weeks in the FGF-2-treated group (Figure 8).
420	There are several limitations to the current study. First, our acutely created tear and immediate
421	repair model does not reflect chronic degenerative RC tears, and our findings in this rat model may
422	not directly translate to humans, because the healing processes in healthy animals may not mirror the
423	situations encountered in clinical practice. However, based on anatomical similarities between
424	humans, this model has been widely used to investigate the mechanism of healing ^{6, 23, 27} and the
425	method of healing enhancement. ^{7, 9, 24} Second, this study did not directly identify the function of
426	tenogenic marker genes during the RC healing process. Further studies using a knockout model on
427	Scx or Tnmd are required to determine the roles of these genes during the RC healing process. Third,
428	our findings demonstrated that the biomechanical and histological values of the control group did not
429	reach those of the FGF-2-treated group by 12 weeks. A longer time period may be necessary to
430	understand whether the effect observed in the FGF-2-treated group will persist throughout the
431	healing response. Fourth, the sample size, which was based on the large effect size, was relatively
432	small, and it may be underpowered to detect significant differences. Likewise, our histological
433	evaluation may also be underpowered, because it did not include all sections from the specimens.
434	However, there was little or no discrepancy among our findings observed in various evaluation

435	methods during RC healing. Lastly, direct clinical implications for treatment may be difficult to
436	determine from this small animal model. Currently, little is known about the biological mechanisms
437	underlying the RC healing response. ⁶ Therefore, basic research on these mechanisms may provide
438	clues in order to determine the safety, effect, dose, and method of administration in larger models.
439	Ultimately, human clinical trials are also needed to translate these findings to clinical use.
440	It is not known whether FGF-2 can selectively facilitate the growth of undifferentiated tenogenic
441	cells of a certain mesenchymal lineage. However, the enhanced expression of Scx and Tnmd genes in
442	the mid-to-late stages indicates that a certain microenvironment favorable for the growth response of
443	tenogenic progenitor cells to FGF-2 may be provided in the present RC healing model. Interestingly,
444	the transient upregulation of Sox9 detected in the FGF-2-treated group at 4 weeks postoperatively
445	may indicate that a possible occurrence of Sox9 and Scx double-positive tenogenic progenitors
446	contributes to enthesis formation during development. ²⁰ Thus, further analysis of the cellular
447	components and the microenvironment at the RC repair sites will help develop clinical strategies for
448	inducing a specific regenerative healing response in RC injuries.

450 **References**

- Anraku Y, Mizuta H, Sei A, et al. Analyses of early events during chondrogenic repair in rat
 full-thickness articular cartilage defects. *J Bone Miner Metab.* 2009;27(3):272-286.
- 453 2. Chamberlain G, Fox J, Ashton B, Middleton J. Concise review: mesenchymal stem cells:
- their phenotype, differentiation capacity, immunological features, and potential for homing. *Stem Cells*. 2007;25(11):2739-2749.
- 456 3. Docheva D, Hunziker EB, Fassler R, Brandau O. Tenomodulin is necessary for tenocyte
 457 proliferation and tendon maturation. *Mol Cell Biol.* 2005;25(2):699-705.
- 458 4. Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of
 459 resident tendon progenitor cells during growth and natural healing. *PLoS One*.
 460 2014;9(4):e96113.
- 461 5. Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1:
 462 tests for correlation and regression analyses. *Behav Res Methods*. 2009;41(4):1149-1160.
- Galatz LM, Sandell LJ, Rothermich SY, et al. Characteristics of the rat supraspinatus tendon
 during tendon-to-bone healing after acute injury. *J Orthop Res.* 2006;24(3):541-550.
- Gulotta LV, Kovacevic D, Packer JD, Deng XH, Rodeo SA. Bone marrow-derived
 mesenchymal stem cells transduced with scleraxis improve rotator cuff healing in a rat model. *Am J Sports Med.* 2011;39(6):1282-1289.
- 468 8. Hee CK, Dines JS, Dines DM, et al. Augmentation of a rotator cuff suture repair using
 469 rhPDGF-BB and a type I bovine collagen matrix in an ovine model. *Am J Sports Med.*470 2011;39(8):1630-1639.
- 471 9. Ide J, Kikukawa K, Hirose J, et al. The effect of a local application of fibroblast growth
 472 factor-2 on tendon-to-bone remodeling in rats with acute injury and repair of the
 473 supraspinatus tendon. *J Shoulder Elbow Surg.* 2009;18(3):391-398.
- 10. Liu H, Zhang C, Zhu S, et al. Mohawk promotes the tenogenesis of mesenchymal stem cells

- 475 through activation of the TGF β signaling pathway. *Stem Cells*. 2014;33(2):443-455.
- 476 11. Lotz S, Goderie S, Tokas N, et al. Sustained levels of FGF2 maintain undifferentiated stem
 477 cell cultures with biweekly feeding. *PLoS One*. 2013;8(2):e56289.
- Mizuta H, Kudo S, Nakamura E, Otsuka Y, Takagi K, Hiraki Y. Active proliferation of
 mesenchymal cells prior to the chondrogenic repair response in rabbit full-thickness defects
 of articular cartilage. *Osteoarthritis Cartilage*. 2004;12(7):586-596.
- Murchison ND, Price BA, Conner DA, et al. Regulation of tendon differentiation by scleraxis
 distinguishes force-transmitting tendons from muscle-anchoring tendons. *Development*.
 2007;134(14):2697-2708.
- Russell RD, Knight JR, Mulligan E, Khazzam MS. Structural integrity after rotator cuff
 repair does not correlate with patient function and pain: a meta-analysis. *J Bone Joint Surg Am.* 2014;96(4):265-271.
- Schweitzer R, Chyung JH, Murtaugh LC, et al. Analysis of the tendon cell fate using
 Scleraxis, a specific marker for tendons and ligaments. *Development*.
 2001;128(19):3855-3866.
- Scott A, Sampaio A, Abraham T, Duronio C, Underhill TM. Scleraxis expression is
 coordinately regulated in a murine model of patellar tendon injury. *J Orthop Res.*2011;29(2):289-296.
- 493 17. Shukunami C, Oshima Y, Hiraki Y. Chondromodulin-I and tenomodulin: a new class of
 494 tissue-specific angiogenesis inhibitors found in hypovascular connective tissues. *Biochem*495 *Biophys Res Commun.* 2005;333(2):299-307.
- 18. Shukunami C, Takimoto A, Oro M, Hiraki Y. Scleraxis positively regulates the expression of
 tenomodulin, a differentiation marker of tenocytes. *Dev Biol.* 2006;298(1):234-247.
- 498 19. Solchaga LA, Penick K, Goldberg VM, Caplan AI, Welter JF. Fibroblast growth factor-2
 499 enhances proliferation and delays loss of chondrogenic potential in human adult

- 500 bone-marrow-derived mesenchymal stem cells. *Tissue Eng Part A*. 2010;16(3):1009-1019.
- Sugimoto Y, Takimoto A, Akiyama H, et al. Scx+/Sox9+ progenitors contribute to the
 establishment of the junction between cartilage and tendon/ligament. *Development*.
 2013;140(11):2280-2288.
- 50421.Tabata Y, Ikada Y. Vascularization effect of basic fibroblast growth factor released from505gelatin hydrogels with different biodegradabilities. *Biomaterials*. 1999;20(22):2169-2175.
- Tan C, Lui PP, Lee YW, Wong YM. Scx-transduced tendon-derived stem cells (tdscs)
 promoted better tendon repair compared to mock-transduced cells in a rat patellar tendon
 window injury model. *PLoS One*. 2014;9(5):e97453.
- Thomopoulos S, Hattersley G, Rosen V, et al. The localized expression of extracellular matrix
 components in healing tendon insertion sites: an in situ hybridization study. *J Orthop Res.*2002;20(3):454-463.
- 512 24. Thomopoulos S, Soslowsky LJ, Flanagan CL, et al. The effect of fibrin clot on healing rat
 513 supraspinatus tendon defects. *J Shoulder Elbow Surg.* 2002;11(3):239-247.
- Tsutsumi S, Shimazu A, Miyazaki K, et al. Retention of multilineage differentiation potential
 of mesenchymal cells during proliferation in response to FGF. *Biochem Biophys Res Commun.*2001;288(2):413-419.
- 517 26. Uezono K, Ide J, Tokunaga T, et al. Effect of postoperative passive motion on rotator cuff
 518 reconstruction with acellular dermal matrix grafts in a rat model. *Am J Sports Med.*519 2014;42(8):1930-1938.
- 520 27. Wurgler-Hauri CC, Dourte LM, Baradet TC, Williams GR, Soslowsky LJ. Temporal
 521 expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J
 522 Shoulder Elbow Surg. 2007;16(5 Suppl):S198-203.
- 523 28. Yokoya S, Mochizuki Y, Natsu K, Omae H, Nagata Y, Ochi M. Rotator cuff regeneration
 524 using a bioabsorbable material with bone marrow-derived mesenchymal stem cells in a rabbit

525 model. Am J Sports Med. 2012;40(6):1259-1268.

527 Figure le	egends
---------------	--------

528	Figure 1: Photomicrographs of the specimens at 2, 6 and 12 weeks postoperatively (A–F: control;
529	G-L: FGF-2-treated). The hematoxylin and eosin-stained sections (A-C, G-I) and picrosirius-red
530	stained sections under polarized light (D–F, J–L). The boxed areas in A–C and G–I are shown at a
531	higher magnification in a-c and g-i, respectively. Bars, 200 µm.
532	
533	Figure 2: Immunostaining for the proliferating cell nuclear antigen (PCNA) at 2 and 6 weeks
534	postoperatively (A, B: control; C, D: FGF-2-treated). The sections are counterstained with
535	hematoxylin. Bars, 100 µm.
536	The percentage of PCNA-positive cells in the region of interest at the insertion site during rotator
537	cuff healing (E). Bar graphs, the mean for each group; error bars, one standard deviation. $*P < .05$, $**$
538	P < .01.
539	
540	Figure 3: The gene expression levels of <i>Scleraxis</i> (A) and <i>Tenomodulin</i> (B) in the healing tissues.
541	The target genes are normalized to 18S ribosomal RNA expression and are further normalized to the
542	intact supraspinatus tendon tissues that are equal to 1. Bar graphs, the mean for each group; error
543	bars, one standard deviation. * $P < .05$, ** $P < .01$.
544	

545 Figure 4: In situ hybridization of Scleraxis and Tenomodulin at the tendon mid-substance (A-F,

546 M–R) and the insertion site (G–L, S–X) at 2 and 8 weeks postoperatively (A–L: control; M–X: 547 FGF-2-treated). Sense, the negative control using a sense labeled probe. Arrows, the hybridization 548 signals. Bars, 100 μm.

549

550Figure 5: Picrosirius-red-stained sections under polarized light (A) and in situ hybridization of Tenomodulin (B) for the FGF-2-treated group at 8 weeks postoperatively. Arrows, the hybridization 551signals. Bars, 200 µm. Schematic illustration of the segmented area in healing tissues (C). (t, tendon 552areas; s, suture areas; i, insertion areas; a, articular side; m, middle layer; b, bursal side). 553Correlation between collagen fiber orientation and the expression levels of Scx mRNA (D), or Tnmd 554mRNA (E) for each area in both groups, respectively. Gray scale percentages are relative values 555compared to six intact specimens. The correlation coefficient (ρ) and *P*-value were obtained by 556Spearman's correlation analysis. 557

558

Figure 6: The gene expression levels of *Sox9* in the healing tissues. The target genes are normalized to *18S ribosomal RNA* expression and are further normalized to the intact supraspinatus tendon tissues that are equal to 1. Bar graphs, the mean for each group; error bars, one standard deviation. * P < .05, ** P < .01.

563

Figure 7: Immunostaining for Sox9 at 2, 4, 6, and 12 weeks postoperatively (A–D: control; E–H:

FGF-2-treated). The percentage of Sox9-positive cells in the region of interest at the insertion site (G). The sections are counterstained with hematoxylin. Bars, 50 μ m. Bar graphs, the mean for each group; the error bars, one standard deviation. * *P* < .05, ** *P* < .01.

- 568
- 569 Figure 8: Immunostaining for mesenchymal stem cell-related surface antigens CD105 (A, F), CD90
- 570 (B, G), and CD73 (C, H) and hematopoietic cell antigen CD45 (D, I) and CD34 (E, J) at the insertion
- 571 site at 2 weeks postoperatively. A–E (control) and F–J (FGF-2-treated) are serial sections
- 572 counterstained with hematoxylin. Bars, 50 μm.

574 Table 1

575

576

The Histological Scoring System		
Characteristics	Score	
Cellularity (%)ª		
> 400	1	
300 - 400	2	
200 - 300	3	
< 200	4	
Vascularity (bv/low PF) ^b		
> 15	1	
10 - 15	2	
6-10	3	
< 6	4	
Collagen fiber orientation	(%)c	
< 25	1	
25 - 50	2	
50 - 75	3	
> 75	4	

TABLE 1

^a Number of cells per region of interest from each section; percentages represent relative values compared to the values from normal tendon-to-bone sections (n = 6), which were set at 100%.

^b Number of blood vessels per low PF (100-fold magnification) from each section; bv, blood vessel; PF, power field.

^c Gray scale per region of interest from each section as measured using Image J, percentages represent relative values compared to the values from normal tendon-to-bone sections (n = 6), which were set at 100%.

	e e e e e e e e e e e e e e e e e e e		0	
Time point group	Ultimate load-to-failure (N)	Stiffness (N/mm)	Cross-sectional area (mm²)	Ultimate stress-to-failure (N/mm²)
6 weeks				
Control ($n = 9$)) 7.92 ± 2.54].	^{3.43 ± 1.24} ,	3.53 ± 0.51	2.34 ± 0.93].
FGF-2 (n = 9)) $15.1 \pm 3.32]^*$	$ \begin{array}{c} 3.43 \pm 1.24 \\ 7.16 \pm 3.28 \end{array} \right] *$	3.56 ± 0.35	$2.34 \pm 0.93 \\ 4.24 \pm 0.96 \end{bmatrix} *$
Pvalue	.009	.005	.627	.001
12 weeks				
Control $(n = 9)$) $13.8 \pm 4.69^{\text{b}}$	$6.83 \pm 1.25^{\rm b}$	3.53 ± 0.26	$3.88 \pm 1.12^{\text{b}}$
FGF-2 $(n = 9)$	$23.8 \pm 4.61^{\text{b}}$	8.98 ± 3.58	$3.42\pm\!\!0.28$	$3.88 \pm 1.12^{\text{b}}$ $6.92 \pm 1.10^{\text{b}}$ *
Pvalue	.003	.310	.354	.003
Normal control	42.0 ± 5.56	27.0 ± 2.85	2.09 ± 0.13	19.7 ± 2.44
(n = 9)				

TABLE 2 The Summary of The Biomechanical Testing^a

 $^{a}\mbox{All}$ values are the mean \pm standard deviation.

^bSignificantly different between time points within group (P < .05). *Significantly different between groups at the same time point (P < .01).

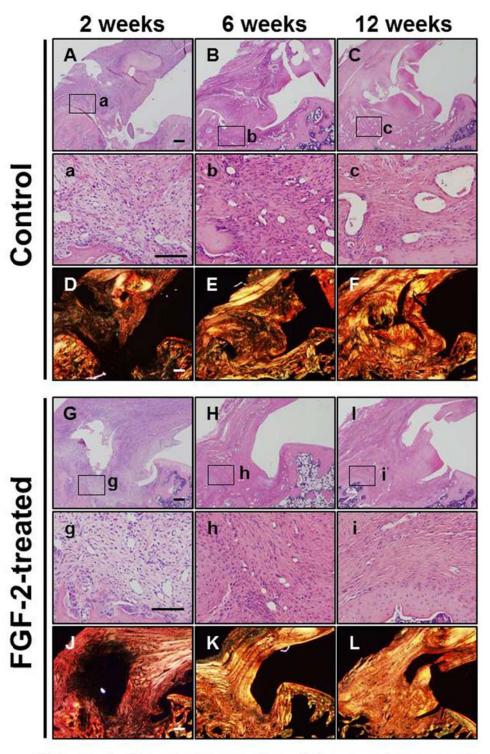
TABLE 3

Summary of The Histological Assessment ^a

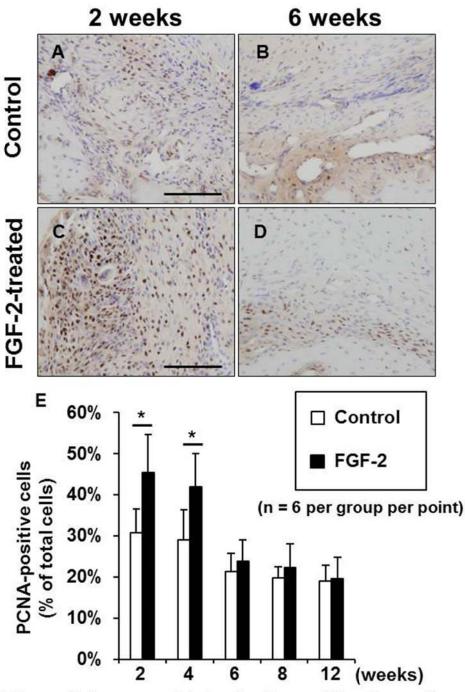
Time point Cellularity ^b Vascularity ^c Collagen fiber Total score ^e				
Treatment	(%)	(bv/ low PF)	orientation ^d (%)	Iotal score.
2 weeks				
Control $(n = 6)$	552 ± 72.5	35.7 ± 8.4	17.9 ± 2.5	3.0 ± 0.0
FGF-2 $(n = 6)$	604 ± 98.3	44.7 ± 8.7	21.6 ± 3.7	3.2 ± 0.4
P value	.423	.109	.078	.631
4 weeks				
Control $(n = 6)$	448 ± 56.9	31.5 ± 3.4	41.4 ±10.9 ^f	4.0±0.6]*
FGF-2 ($n = 6$)	503 ± 30.8	$29.9\pm\!9.2^{\rm f}$	$56.0 \pm 3.3^{\text{f}}$	$_{4.8 \pm 0.4} \Box$
P value	.078	.689	.007	.045
6 weeks				
Control $(n = 6)$	^{447 ±49.1} ⊣∗	$22.7 \pm \hspace{-0.5mm} 5.5^{\rm f}$	57.4 ±5.3f] *	$5.2 \pm 0.4^{f,g}$
FGF-2 $(n = 6)$	$377 \pm 41.2^{f,g}$	$18.4\pm5.7^{\mathrm{f}}$	$68.1 \pm 4.8^{\text{f.g}}$	$_{6.3 \pm 1.0^{\rm f}}$
P value	.025	.298	.025	.037
8 weeks				
Control $(n = 6)$	389 ± 41.2^{f}	21.6±6.6f	62.5 ±4.6 ^{fh}	$5.8 \pm 0.4^{\text{e,f}}$
FGF-2 $(n = 6)$	$338 \pm \! 59.0^{\rm e,f}$	$11.4 \pm 4.7^{f,g}$ _^	$73.4 \pm 8.1^{f,g}$	$8.0 \pm 1.7^{e,f}$
P value	.128	.020	.025	.013
12 weeks				
Control $(n = 6)$	$350 \pm 57.2^{\rm e}$	13.6 ±3.3 ^{f,g} –	$70.8 \pm 6.4^{\text{fh}}$	$7.2 \pm 1.0^{\text{fi}}$
FGF-2 $(n = 6)$	$288 \pm 52.5^{\rm f,g}$	$8.1 \pm 2.3^{f,g}$]*	81.9 ±4.5 ^{f·h} – *	$9.3 \pm 1.2^{\text{f-h}}$
Pvalue	.109	.013	.025	.013

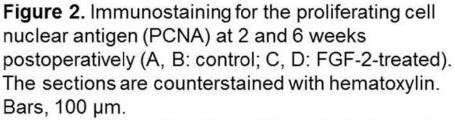
 a All values are the mean \pm standard deviation.

^b Number of cells per region of interest from each section; percentages represent relative values compared to the values from normal tendon-to-bone sections (837 ± 86.3 cells/mm2, n = 6), which were set to 100%.

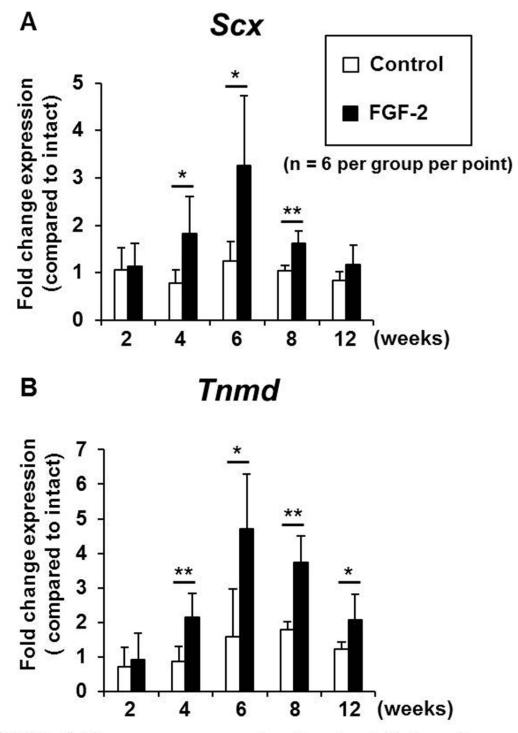

 $^{\rm c}$ Number of blood vessels per low PF (100-fold magnification) from each section; bv, blood vessel; PF, power field.

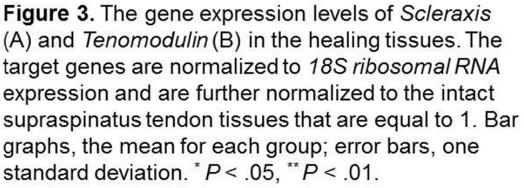
^d Gray scale per region of interest from each section as measured using Image J; percentages represent relative values compared to the values from normal tendon-to-bone sections (191.0 ± 17.5 gray scale, n = 6), which were set to 100%.

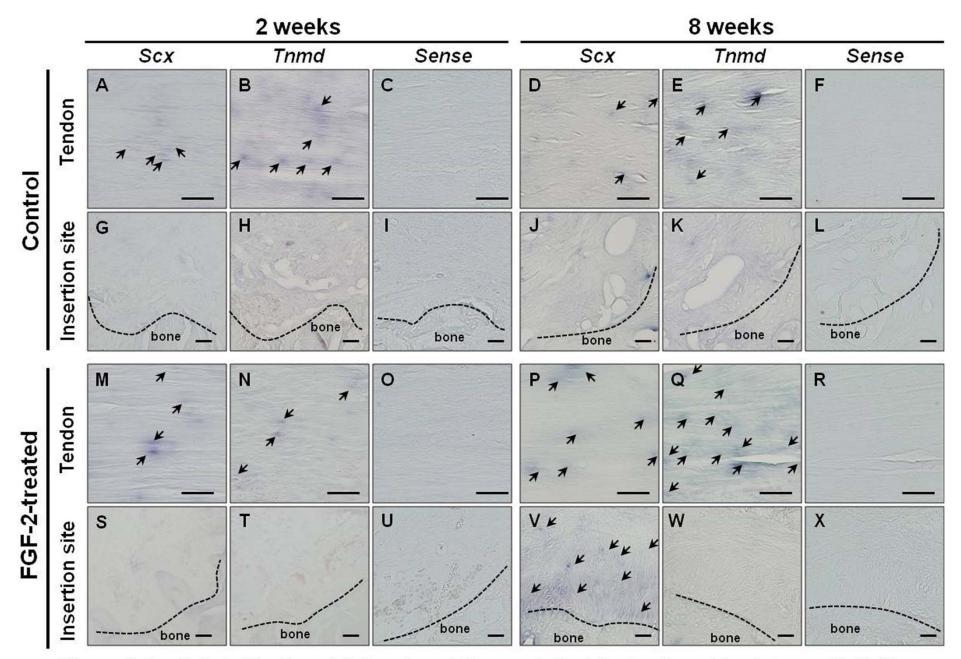

^e Scores represent a total score of three parameters including cellularity, vascularily and collagen fiber orientation. A perfect score in this scoring system is 12 points.

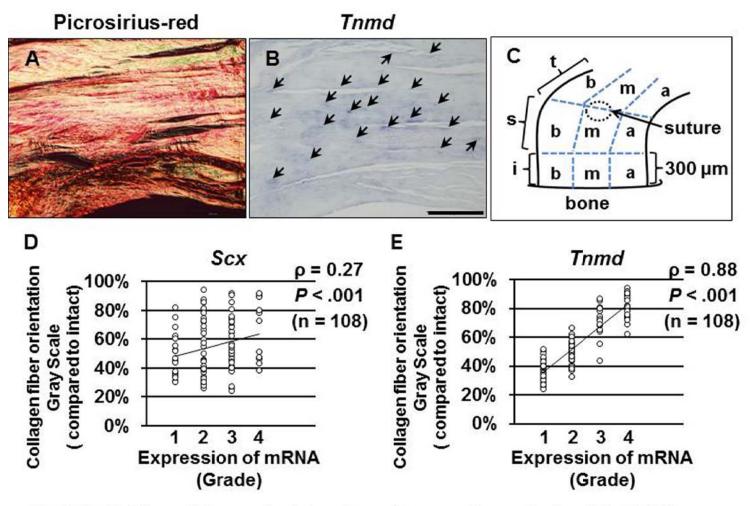

^{fi} Significantly different within group compared to 2(f), 4(g), 6(h), and 8 weeks(i), respectively (P < .05).

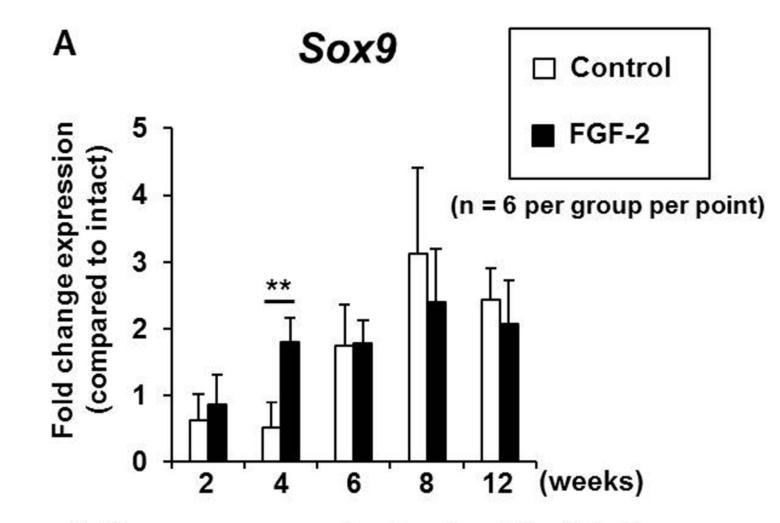
*Significantly different between groups at the same time point (P < .05).




Figure 1. Photomicrographs of the specimens at 2, 6 and 12 weeks postoperatively (A–F: control; G–L: FGF-2-treated). The hematoxylin and eosin-stained sections (A–C, G–I) and picrosirius-red stained sections under polarized light (D–F, J–L). The boxed areas in A–C and G–I are shown at a higher magnification in a–c and g–i, respectively. Bars, 200 µm.




The percentage of PCNA-positive cells in the region of interest at the insertion site during rotator cuff healing (E). Bar graphs, the mean for each group; error bars, one standard deviation. *P < .05, **P < .01.



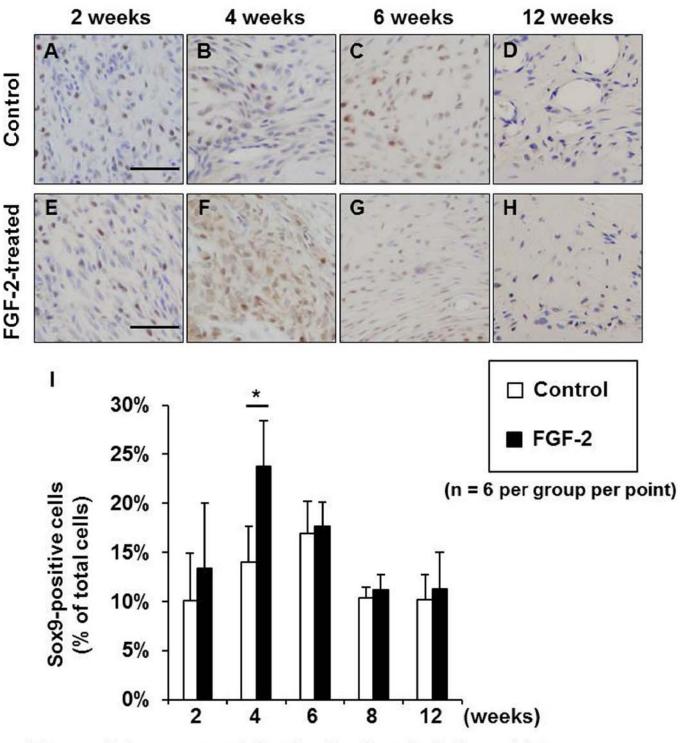

Figure 4. *In situ* hybridization of *Scleraxis* and *Tenomodulin* at the tendon mid-substance (A–F, M– R) and the insertion site (G–L, S–X) at 2 and 8 weeks postoperatively (A–L: control; M–X: FGF-2treated). Sense, the negative control using a sense labeled probe. Arrows, the hybridization signals. Bars, 100 µm.

Figure 5. Picrosirius-red-stained sections under polarized light (A) and *in situ* hybridization of *Tenomodulin* (B) for the FGF-2-treated group at 8 weeks postoperatively. Arrows, the hybridization signals. Bars, 200 μ m. Schematic illustration of the segmented area in healing tissues (C). (t, tendon areas; s, suture areas; i, insertion areas; a, articular side; m, middle layer; b, bursal side). Correlation between collagen fiber orientation and the expression levels of *Scx* mRNA (D), or *Tnmd* mRNA (E) for each area in both groups, respectively. Gray scale percentages are relative values compared to six intact specimens. The correlation coefficient (p) and *P*-value were obtained by Spearman's correlation analysis.

Figure 6. The gene expression levels of *Sox9* in the healing tissues. The target genes are normalized to *18S ribosomal RNA* expression and are further normalized to the intact supraspinatus tendon tissues that are equal to 1. Bar graphs, the mean for each group; error bars, one standard deviation. * P < .05, ** P < .01.

Figure 7. Immunostaining for Sox9 at 2, 4, 6, and 12 weeks postoperatively (A–D: control; E–H: FGF-2-treated). The percentage of Sox9-positive cells in the region of interest at the insertion site (G). The sections are counterstained with hematoxylin. Bars, 50 µm. Bar graphs, the mean for each group; the error bars, one standard deviation. *P < .05, **P < .01.

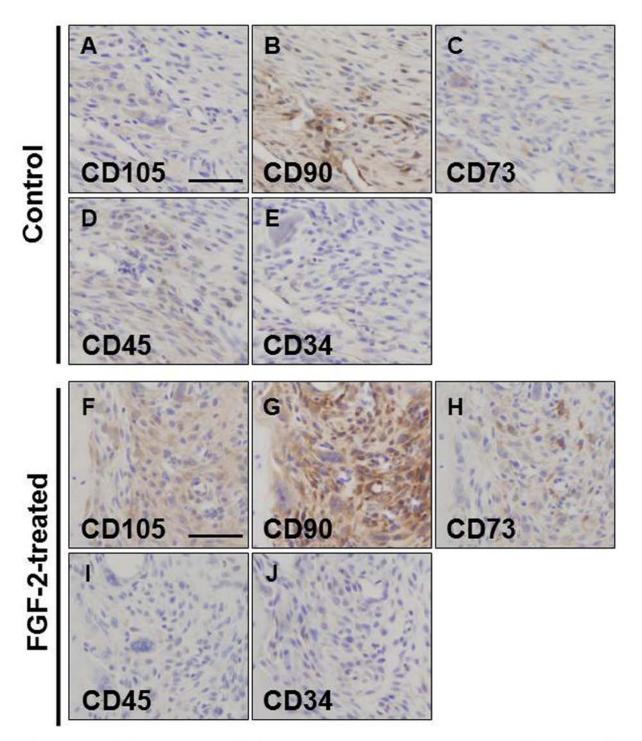


Figure 8. Immunostaining for mesenchymal stem cellrelated surface antigens CD105 (A, F), CD90 (B, G), and CD73 (C, H) and hematopoietic cell antigen CD45 (D, I) and CD34 (E, J) at the insertion site at 2 weeks postoperatively. A–E (control) and F–J (FGF-2-treated) are serial sections counterstained with hematoxylin. Bars, 50 μ m.