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Abstract. We propose new symmetry-adapted rigidity matrices to analyze the infinitesimal
rigidity of bar-joint frameworks of arbitrary-dimension with Abelian point group symmetries. These
matrices define new symmetry-adapted rigidity matroids on group-labeled quotient graphs. Using
these new tools, we establish combinatorial characterizations of infinitesimally rigid two-dimensional
bar-joint frameworks whose joints are positioned as generically as possible subject to the symmetry
constraints imposed by a reflection, a half-turn, or a threefold rotation in the plane. For bar-joint
frameworks which are generic with respect to any other cyclic point group in the plane, we provide
a number of necessary conditions for infinitesimal rigidity.
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1. Introduction. A d-dimensional bar-joint framework is a straight-line realiza-
tion of a finite simple graphG in Euclidean d-space. Intuitively, we think of a bar-joint
framework as a collection of fixed-length bars (corresponding to the edges of G) which
are connected at their ends by joints (corresponding to the vertices of G) that allow
bending in any direction of Rd. Such a framework is said to be rigid if there exists no
nontrivial continuous bar-length preserving motion of the framework vertices, and is
said to be flexible otherwise (see [23] for basic definitions and background).

The theory of generic rigidity seeks to characterize the graphs which form rigid
frameworks for all generic (i.e., almost all) realizations of the vertices in Euclidean
d-space. For d = 2, this problem was first solved by Laman [8] in 1970: Laman proved
that a generic two-dimensional bar-joint framework is minimally rigid if and only if
the underlying graph G satisfies |E(G)| = 2|V (G)| − 3 and |E(G′)| ≤ 2|V (G′)| − 3
for any subgraph G′ of G with |V (G′)| ≥ 2, where V (H) and E(H) denote the set
of vertices and the set of edges of a graph H , respectively. For dimensions d ≥ 3,
however, the analogous questions remain long-standing open problems, although there
exist some significant partial results [23].

The theory of rigid and flexible frameworks has a wide variety of practical ap-
plications in many areas of science, engineering, and design, where frameworks serve
as a suitable mathematical model for various kinds of physical structures, mechanical
gadgets (such as linkages or robots), sensor networks, biomolecules, etc. Since many
of these structures exhibit nontrivial symmetries, it is natural to explore the impact
of symmetry on the rigidity and flexibility properties of frameworks. Over the last
decade, this research area has gained an ever increasing attention in both the math-
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1260 BERND SCHULZE AND SHIN-ICHI TANIGAWA

ematical community and in the applied sciences. Two separate fundamental research
directions can be identified:

1. Forced symmetry: The framework starts in a symmetric position and must
maintain this symmetry throughout its motion.

2. Incidental symmetry: The framework starts in a symmetric position, but may
move in unrestricted ways.

Over the last few years, significant progress has been made in the rigidity analy-
sis of forced-symmetric frameworks [11, 10, 22, 6, 19, 20]. A key motivation for this
research is that for symmetry-generic frameworks (that is, for frameworks which are
as generic as possible subject to the given symmetry constraints), the existence of a
nontrivial symmetric infinitesimal motion also guarantees the existence of a nontrivial
finite (i.e., continuous) symmetry-preserving motion of the framework [14]. To sim-
plify the symmetry-forced rigidity analysis of a symmetric framework, a symmetric
analog of the rigidity matrix, called the orbit rigidity matrix, was recently estab-
lished in [19]. In particular, this matrix was used in [6] to formulate combinatorial
characterizations of symmetry-forced rigid symmetry-generic frameworks in terms of
Henneberg-type construction moves on gain graphs (group-labeled graphs), for all
rotational groups Cn and for all dihedral groups Cnv with odd n in the plane.

In contrast, for the more general question of how to analyze the rigidity properties
of an incidentally symmetric framework, there has not been any major progress in the
last few years. This paper proposes a systematic way to analyze this general case.
The state of the art in this research area is as follows.

The most fundamental result concerning the rigidity of symmetric frameworks is
that the rigidity matrix of a framework with nontrivial point group Γ can be trans-
formed into a block-decomposed form so that each block corresponds to an irreducible
representation of Γ. This goes back to an observation of Kangwai and Guest [7], and
was proved rigorously in [14, 12]. Note that the submatrix block which corresponds
to the trivial irreducible representation of Γ describes the forced-symmetric rigidity
properties of the framework [19]. Using this block decomposition of the rigidity ma-
trix, necessary conditions for a symmetric bar-joint framework to be isostatic (i.e.,
minimally infinitesimally rigid) in Rd have been derived in [5, 4].

In [4] the necessary conditions were conjectured to be sufficient for two-dimensional
symmetry-generic frameworks to be isostatic. This was confirmed for the groups C2,
C3, and Cs in [16, 17], but it remains open for the dihedral groups.

However, note that in order to obtain combinatorial characterizations of symmetry-
generic infinitesimally rigid frameworks in the plane these symmetrized Laman-type
results are only of limited use since, by the conditions derived in [4], a symmetric
infinitesimally rigid framework usually does not contain an isostatic subframework on
the same vertex set with the same symmetry. For example, it turns out that there
does not exist an isostatic framework in the plane with point group C2 or Cs, where
the group acts freely on the edges of the framework (see Figure 1) [4]. Moreover, there
does not exist any isostatic framework in the plane with k-fold rotational symmetry
for k > 3 [4].

In this paper, we establish several new results concerning the infinitesimal rigidity
of (“incidentally”) symmetric frameworks. First, for any Abelian point group Γ which
acts freely on the vertices of a d-dimensional framework, we extend the concept of the
orbit rigidity matrix described in [19] and show how to construct an “antisymmetric”
orbit rigidity matrix for each of the irreducible representations ρj of Γ (see section 4).
These antisymmetric orbit rigidity matrices are equivalent to their corresponding sub-
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Fig. 1. Infinitesimally rigid symmetric frameworks in R2 with respective point groups Cs and
C2 which do not contain a spanning isostatic subframework with the same symmetry.

matrix blocks in the block-decomposed rigidity matrix, but their entries can explicitly
be derived in a transparent fashion.

For the reflection group Cs and for the rotational groups C2 and C3, we then
use these orbit rigidity matrices in combination with Henneberg-type inductive con-
struction moves on their corresponding gain graphs to establish combinatorial char-
acterizations of symmetry-generic frameworks in R2 which do not have a nontrivial
ρj-symmetric infinitesimal motion. Taken together, these results lead to the desired
combinatorial characterizations of infinitesimally rigid symmetry-generic frameworks
for these groups (see sections 5 and 6).

For the other cyclic groups Ck, k > 3, we provide a number of necessary conditions
for infinitesimal rigidity, and we also offer some conjectures.

Finally, in section 7, we briefly discuss some further applications of our tools and
methods and outline some directions for future developments.

2. Rigidity of bar-joint frameworks. For a finite graph G, we denote the
vertex set of G by V (G) and the edge set of G by E(G). A bar-joint framework (or
simply a framework) in Rd is a pair (G,p), where G is a simple graph and p : V (G) →
Rd is a map such that p(u) �= p(v) for all {u, v} ∈ E(G). For v ∈ V (G), we say that
p(v) is the joint of (G,p) corresponding to v, and for e = {u, v} ∈ E(G), we say that
the line segment between p(u) and p(v) is the bar of (G,p) corresponding to e. For
simplicity, we shall denote p(v) by pv for v ∈ V (G).

An infinitesimal motion of a framework (G,p) in Rd is a function m : V (G) → Rd

such that

(1) 〈pu − pv,mu −mv〉 = 0 for all {u, v} ∈ E(G),

where mv = m(v) for each v.
An infinitesimal motion m of (G,p) is a trivial infinitesimal motion if there

exists a skew-symmetric matrix S and a vector t such that m(v) = Sp(v) + t for
all v ∈ V (G). Otherwise m is called an infinitesimal flex (or nontrivial infinitesimal
motion) of (G,p). (G,p) is infinitesimally rigid if every infinitesimal motion of (G,p)
is trivial. Otherwise (G,p) is said to be infinitesimally flexible [23].

These definitions are motivated by the fact that if (G,p) is infinitesimally rigid,
then (G,p) is rigid in the sense that every continuous deformation of (G,p) which
preserves the edge lengths ‖pi− pj‖ for all {i, j} ∈ E(G), must preserve the distances
‖ps − pt‖ for all pairs of vertices s and t of G.

A key tool to study the infinitesimal rigidity properties of a d-dimensional frame-
work (G,p) is the rigidity matrix of (G,p). For a vector x ∈ Rd, we denote the kth
component of x by (x)k. The rigidity matrix R(G,p) is an |E(G)| × d|V (G)| matrix
associated with the system of linear equations (1) with respect to m, in which each
row is associated with an edge and consecutive d columns are associated with a vertex
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1262 BERND SCHULZE AND SHIN-ICHI TANIGAWA

as follows,

⎛⎜⎝
u v

...
e = {u, v} 0 . . . 0 (pu − pv) 0 . . . 0 (pv − pu) 0 . . . 0

...

⎞⎟⎠,

where, for each edge {u, v} ∈ E(G), R(G,p) has the row with (pu−pv)1, . . . , (pu−pv)d
in the columns associated with u, (pv−pu)1, . . . , (pv−pu)d in the columns associated
with v, and 0 elsewhere [23].

Throughout the paper, for a finite set S and a finite dimensional vector space W
over some field, the set of all functions f : S → W is denoted by WS or by

⊕
s∈SW

(taking copies of W ). Then R(G,p) is regarded as a linear map from (Rd)V (G) to
RE(G). Note that m ∈ (Rd)V (G) is an infinitesimal motion if and only if R(G,p)m =
0, which means that the kernel of the rigidity matrix R(G,p) is the space of all
infinitesimal motions of (G,p). It is well known that a framework (G,p) in Rd with
n = |V (G)| is infinitesimally rigid if and only if either the rank of its associated
rigidity matrix R(G,p) is precisely dn− (d+1

2

)
, or G is a complete graph Kn and the

points pi, i = 1, . . . , n, are affinely independent [2].
A self-stress of a framework (G,p) is a function ω : E(G) → R such that at each

joint pu of (G,p) we have ∑
v:{u,v}∈E(G)

ωuv(pu − pv) = 0,

where ωuv denotes ω({u, v}) for all {u, v} ∈ E(G). Note that ω ∈ RE(G) is a self-
stress if and only if R(G,p)�ω = 0. In structural engineering, the self-stresses are
also called equilibrium stresses as they record tensions and compressions in the bars
balancing at each vertex.

If (G,p) has a nonzero self-stress, then (G,p) is said to be dependent (since
in this case there exists a linear dependency among the row vectors of R(G,p)).
Otherwise, (G,p) is said to be independent. A framework which is both independent
and infinitesimally rigid is called isostatic [23].

A d-dimensional framework (G,p) with n vertices is called generic if the co-
ordinates of p are algebraically independent over Q, i.e., if there does not exist a
polynomial h(x1, . . . , xdn) with rational coefficients such that h((p1)1 . . . , (pn)d) = 0.
Note that the set of all generic realizations of G is a dense, but not an open subset of
(Rd)V (G).

We say that (G,p) is regular if the rigidity matrix R(G,p) has maximal rank
among all realizations of G. It is easy to see that the set of all regular realizations
of G is a dense and open subset of (Rd)V (G) which contains the set of all generic
realizations of G [2, 23].

It is well known that for regular frameworks (and hence also for generic frame-
works), infinitesimal rigidity is purely combinatorial, and hence a property of the
underlying graph. Thus, we say that a graph G is d-rigid (d-independent, d-isostatic)
if d-dimensional regular realizations of G are infinitesimally rigid (independent, iso-
static).

3. Rigidity of symmetric bar-joint frameworks. In this subsection, we re-
view some recent approaches for analyzing the rigidity of symmetric frameworks.
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v1 v4

v2 v5

v3 v6

(a)

v1

v2

v3
s

s

(b)

Fig. 2. A Cs-symmetric graph (a) and its quotient gain graph (b), where Cs = {id, s}. For
simplicity, we omit the direction and the label of every edge with gain id.

First, we introduce gain graphs, which turn out to be useful tools for describing the
underlying combinatorics of symmetric frameworks. We then provide precise defini-
tions of symmetric graphs and symmetric frameworks, and then explain the block
diagonalization of rigidity matrices.

3.1. Gain graphs. Let H be a directed graph which may contain multiple edges
and loops, and let Γ be a group. A Γ-gain graph (or Γ-labeled graph) is a pair (H,ψ) in
which each edge is associated with an element of Γ via a gain function ψ : E(H) → Γ.
See Figure 2(b) for an example. A gain graph is a directed graph, but its orientation
is used only for the reference of the gains. That is, we can change the orientation of
each edge as we like by imposing the property on ψ that if an edge has gain g in one
direction, then it has gain g−1 in the other direction.

3.2. Symmetric graphs. Let G be a finite simple graph. An automorphism
of G is a permutation π : V (G) → V (G) such that {u, v} ∈ E(G) if and only if
{π(u), π(j)} ∈ E(G). The set of all automorphisms of G forms a subgroup of the
symmetric group on V (G), known as the automorphism group Aut(G) of G. An
action of a group Γ on G is a group homomorphism θ : Γ → Aut(G). An action θ is
called free on V (G) (resp., E(G)) if θ(γ)(v) �= v for any v ∈ V (G) (resp., θ(γ)(e) �= e
for any e ∈ E(G)) and any nonidentity γ ∈ Γ. We say that a graph G is Γ-symmetric
(with respect to θ) if Γ acts on G by θ. Throughout the paper, we only consider the
case when θ is free on V (G), and we omit specifying the action θ, if it is clear from
the context. We then denote θ(γ)(v) by γv.

For a Γ-symmetric graph G, the quotient graph G/Γ is a multigraph whose vertex
set is the set V (G)/Γ of vertex orbits and whose edge set is the set E(G)/Γ of edge
orbits. An edge orbit may be represented by a loop in G/Γ.

Several distinct graphs may have the same quotient graph. However, if we assume
that the underlying action is free on V (G), then a gain labeling makes the relation
one-to-one. To see this, we arbitrarily choose a vertex v as a representative vertex from
each vertex orbit. Then each orbit is of the form Γv = {gv | g ∈ Γ}. If the action is
free, an edge orbit connecting Γu and Γv in G/Γ can be written as {{gu, ghv} | g ∈ Γ}
for a unique h ∈ Γ. We then orient the edge orbit from Γu to Γv in G/Γ and assign to
it the gain h. In this way, we obtain the quotient Γ-gain graph, denoted by (G/Γ, ψ).
(G/Γ, ψ) is unique up to choices of representative vertices. Figure 2 illustrates an
example, where Γ is the reflection group Cs.

Conversely, let (H,ψ) be a finite Γ-gain graph. We simply denote a pair (g, v),
where g ∈ Γ and v ∈ V (H), by gv. The covering graph (also known as the
derived graph) of (H,ψ) is the simple graph with the vertex set Γ × V (H) =
{gv | g ∈ Γ, v ∈ V (H)} and the edge set {{gu, gψ(e)v} | e = (u, v) ∈ E(H), g ∈ Γ}.
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p1 p4

p2 p3
s

(a)

p1 p3

p2 p4
s

(b)

Fig. 3. Two-dimensional realizations of K2,2 in R(K2,2,Cs) of different types: the framework

in (a) is of type θa, where θa : Cs → Aut(K2,2) is the homomorphism defined by θa(s) = (1 4)(2 3),
and the framework in (b) is of type θb, where θb : Cs → Aut(K2,2) is the homomorphism defined by
θb(s) = (1 3)(2 4).

Clearly, Γ acts freely on the covering graph with the action θ defined by θ(g) :
v 
→ gv for g ∈ Γ, under which the quotient graph comes back to (H,ψ). In this way,
there is a one-to-one correspondence between Γ-gain graphs and Γ-symmetric graphs
with free actions (up to the choices of representative vertices).

The map c : G→ H defined by c(gv) = v and c({gu, gψ(e)v}) = (u, v) is called a
covering map. In order to avoid confusion, throughout the paper, a vertex or an edge
in a quotient gain graph H is denoted with a tilde, e.g., ṽ or ẽ. Then the fiber c−1(ṽ)
of a vertex ṽ ∈ V (H) and the fiber c−1(ẽ) of an edge ẽ ∈ E(H) coincide with a vertex
orbit and an edge orbit, respectively, in G.

3.3. Symmetric bar-joint frameworks. Given a finite simple graph G and
a map p : V (G) → Rd, a symmetry operation of the framework (G,p) in Rd is an
isometry x of Rd such that for some αx ∈ Aut(G), we have

x(pi) = pαx(i) for all i ∈ V (G).

The set of all symmetry operations of a framework (G,p) forms a group under compo-
sition, called the point group of (G,p). Since translating a framework does not change
its rigidity properties, we may assume without loss of generality that the point group
of a framework is always a symmetry group, i.e., a subgroup of the orthogonal group
O(Rd).

Given a symmetry group Γ and a graph G, we let R(G,Γ) denote the set of all
d-dimensional realizations of G whose point group is either equal to Γ or contains Γ as
a subgroup [15, 14, 16, 17]. In other words, the set R(G,Γ) consists of all realizations
(G,p) of G for which there exists an action θ : Γ → Aut(G) so that

(2) x
(
p(v)) = p(θ(x)(v)) for all v ∈ V (G) and all x ∈ Γ.

A framework (G,p) ∈ R(G,Γ) satisfying the equations in (2) for θ : Γ → Aut(G) is said
to be of type θ, and the set of all realizations in R(G,Γ) which are of type θ is denoted
by R(G,Γ,θ) (see again [15, 14, 16] and Figure 3). It is shown in [15] that (G,p) is of
a unique type θ and θ is necessarily also a homomorphism, when p is injective.

For simplicity, we will assume throughout this paper that a framework (G,p) ∈
R(G,Γ) has no joint that is “fixed” by a nontrivial symmetry operation in Γ (i.e., (G,p)
has no joint pi with x(pi) = pi for some x ∈ Γ, x �= id).

Let Γ be an abstract group, and G be a Γ-symmetric graph with respect to a
free action θ : Γ → Aut(G). Suppose also that Γ acts on Rd via a homomorphism
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τ : Γ → O(Rd). Then we say that a framework (G,p) is Γ-symmetric (with respect
to θ and τ) if (G,p) ∈ R(G,τ(Γ),θ), that is, if

(3) τ(γ)(p(v)) = p(θ(γ)v) for all γ ∈ Γ and all v ∈ V (G).

Let H be the quotient graph of G with the covering map c : G→ H . It is conve-
nient to fix a representative vertex v of each vertex orbit Γv = {gv : g ∈ Γ}, and define
the quotient of p to be p̃ : V (H) → Rd, so that there is a one-to-one correspondence
between p and p̃ given by p(v) = p̃(c(v)) for each representative vertex v.

For a discrete point group Γ, let QΓ be the field generated by Q and the entries
of the matrices in Γ. We say that p (or p̃) is Γ-generic if the set of coordinates of the
image of p̃ is algebraically independent over QΓ. Note that this definition does not
depend on the choice of representative vertices. A Γ-symmetric framework (G,p) is
called Γ-generic if p is Γ-generic.

Further, we say that (G,p) is Γ-regular if the rigidity matrix R(G,p) has maximal
rank among all Γ-symmetric realizations of G (see also [15]). If a framework is Γ-
generic, then it is clearly also Γ-regular.

3.4. Block diagonalization of the rigidity matrix. It is shown in [7, 14]
that the rigidity matrix of a symmetric framework can be transformed into a block-
diagonalized form using techniques from group representation theory. In the following,
we will briefly present the details of this fundamental result in order to clarify the
combinatorics underlying our further analyses in the subsequent sections.

For an m×n matrix A and a p×q matrix B, A⊗B denotes the Kronecker product
of A and B. The following are well-known properties of this algebraic operation:

(A+B)⊗ C = A⊗ C +B ⊗ C and C ⊗ (A+B) = C ⊗A+ C ⊗B,
(A⊗B)(C ⊗D) = (AC)⊗ (BD),
(A⊗B)� = A� ⊗B�.

Given two matrix representations ρ1 and ρ2 of a group Γ, the tensor product ρ1 ⊗ ρ2
is defined by ρ1 ⊗ ρ2(γ) = ρ1(γ)⊗ ρ2(γ) for γ ∈ Γ.

A matrixM : Rd → Rh is called a Γ-linear map of ρ1 and ρ2 ifMρ1(γ) = ρ2(γ)M
for γ ∈ Γ. The set of all Γ-linear maps of ρ1 and ρ2 forms a linear space which is
denoted by HomΓ(ρ1, ρ2).

Let (G,p) be a Γ-symmetric framework with respect to a free action θ : Γ →
Aut(G) and a homomorphism τ : Γ → O(Rd). We denote by PV : Γ → GL(RV ) the
linear representation of Γ induced by θ over V (G), that is, PV (γ) is the permutation
matrix of the permutation θ(γ) of V (G). Specifically, PV (γ) = [δi,θ(γ)(j))]i,j , where δ
denotes the Kronecker delta symbol. Similarly, let PE : Γ → GL(RE) be the linear
representation of Γ consisting of permutation matrices of permutations induced by θ
over E(G).

Let �G be a directed graph obtained from G by assigning an orientation to each
edge so that it preserves the action θ (i.e., an edge {u, v} is directed from u to v if

and only if {γu, γv} is directed from γu to γv). The incidence matrix I�G of �G is the

|E(G)| × |V (G)| matrix, where the row of e = (i, j) ∈ E(�G) has the entries −1 and 1
in the columns of i and j, respectively, and the other entries are zero.

It is important to notice that since θ is an action onG we have I�G ∈ HomΓ(PV , PE).
To see this, we let for each e ∈ E(G), Ie be the |E(G)|× |V (G)| matrix obtained from
I�G by changing each entry to zero except those in the row of e. Then I�G =

∑
e∈E(�G) Ie,

and we can easily verify that

PE(γ)IePV (γ)
� = Iθ(γ)(e) for all γ ∈ Γ.
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1266 BERND SCHULZE AND SHIN-ICHI TANIGAWA

This relation can naturally be extended to rigidity matrices, as shown in [14, 12].
Here we give a short proof.

Theorem 3.1. Let Γ be a finite group with τ : Γ → O(Rd), G be a Γ-symmetric
graph with a free action θ (on V (G)), and (G,p) be a Γ-symmetric framework with
respect to θ and τ . Then R(G,p) ∈ HomΓ(τ ⊗ PV , PE).

Proof. Let Re be the |E(G)|×d|V (G)| matrix obtained from R(G,p) by changing
each entry to zero except those in the row of e. As above, we consider the directed
graph �G and, for each e = (u, v), we let p(e) = p(v) − p(u). Note that R(G,p) =∑

e∈E(�G)Re =
∑

e∈E(�G) p(e)
� ⊗ Ie, where Ie is defined as above. For each e ∈ E(�G)

and γ ∈ Γ, we now have

PE(γ)(p(e)
� ⊗ Ie)(τ(γ)⊗ PV (γ))

� = PE(γ)(p(e)
�τ(γ)�)⊗ (IePV (γ)

�)

= (τ(γ)p(e))� ⊗ (PE(γ)IePV (γ)
�)

= p(θ(γ)(e))� ⊗ Iθ(γ)(e)

= Rθ(γ)(e),

where for the third equation we used the fact that (G,p) is Γ-symmetric and hence
τ(γ)p(e) = τ(γ)(p(u) − p(v)) = p(θ(γ)(u)) − p(θ(γ)(v)) = p(θ(γ)(e)). Therefore, we
obtain PE(γ)R(G,p)(τ

�(γ)⊗ PV (γ)) =
∑

e∈E(�G)Rθ(γ)(e) = R(G,p).

Since R(G,p) ∈ HomΓ(τ ⊗ PV , PE), there are nonsingular matrices S and T
such that T�R(G,p)S is block diagonalized, by Schur’s lemma. If ρ0, . . . , ρr are the
irreducible representations of Γ, then for an appropriate choice of symmetry-adapted
coordinate systems, the rigidity matrix takes on the following block form

(4) T�R(G,p)S := R̃(G,p) =

⎛⎜⎝ R̃0(G,p) 0
. . .

0 R̃r(G,p)

⎞⎟⎠ ,

where the submatrix block R̃i(G,p) corresponds to the irreducible representation ρi
of Γ. The kernel of R̃i(G,p) consists of all infinitesimal motions of (G,p) which are
symmetric with respect to ρi (see [14] for details).

3.5. Fully symmetric motions and the orbit rigidity matrix. Suppose
that ρ0 is the trivial irreducible representation of Γ, i.e., ρ0(γ) = 1 for all γ ∈ Γ. The

kernel of R̃0(G,p) consists of all infinitesimal motions of (G,p) which exhibit the full
symmetry of Γ (see also Figure 4). Specifically, an infinitesimal motion m : V (G) →

p4

p1 p2

p3

(a)

p1 p4

p2 p3

(b)

Fig. 4. Fully symmetric infinitesimal motions of frameworks in the plane: (a) a C2-symmetric
nontrivial infinitesimal motion; (b) a Cs-symmetric trivial infinitesimal motion.
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Rd of (G,p) is called fully Γ-symmetric if

(5) m(θ(γ)v) = τ(γ)m(v) for all v ∈ V (G) and γ ∈ Γ.

We say that (G,p) is symmetry-forced (infinitesimally) rigid if every fully Γ-symmetric
infinitesimal motion is trivial.

To simplify the detection of fully Γ-symmetric motions of (G,p), the orbit rigidity
matrix of (G,p) was introduced in [19]. The orbit rigidity matrix is equivalent to

R̃0(G,p), and has successfully been used for characterizing symmetry-forced rigid
frameworks in [6, 20, 11]. In the next section, we will extend this concept to each
irreducible representation of Γ.

4. Antisymmetric orbit rigidity matrices for bar-joint frameworks with
Abelian point group symmetry. Let (G,p) be a Γ-symmetric framework in Rd

with respect to θ : Γ → Aut(G) and τ : Γ → O(Rd). In general, the entries of each

block R̃j(G, p) are not as simple as those of R̃0(G,p). However, if we restrict our
attention to the case where Γ is an Abelian group, then we can specifically describe
an antisymmetric orbit rigidity matrix for each of the irreducible representations of
Γ.

For simplicity, we will first consider the case where Γ is cyclic (section 4.1). The
argument is then easily extended to general Abelian groups in section 4.2. Throughout
these two subsections we assume, again for the sake of simplicity, that θ acts freely
on E(G). In section 4.3, we will discuss the case when θ may not be free on E(G). In
section 4.4, we give several examples.

4.1. Case of cyclic groups. Throughout this subsection, Γ is assumed to be a
cyclic group Z/kZ = {0, 1, 2, . . . , k− 1} of order k, and θ acts freely on E(G). It is an
elementary fact from group representation theory that Γ = Z/kZ has k nonequivalent
irreducible representations ρ0, ρ1, . . . , ρk−1, and that each of these representations is
one dimensional. Specifically, for j = 0, 1, . . . , k − 1, we have

ρj : Γ → C \ {0},
i 
→ ωij ,

where ω denotes e
2π

√−1
k , a root of unity. To cope with such representations, we need

to extend the underlying field to C if k ≥ 3, and regard R(G,p) as a linear function

from (Ck)V (G) to CE(G). Next we show how each block R̃j(G,p) is described in the
complex field.

4.1.1. Decompositions of the regular representation of Γ. Let ρreg : Γ →
GL(Rk) be the regular representation of Γ, that is, regarding Γ as a subgroup of the
symmetric group Sk, ρreg(γ) = [δi,γ+j ]i,j for any γ ∈ Γ. Recall that ρreg is equivalent

to
⊕k−1

j=0 ρj .

For j = 0, 1, . . . , k− 1, let bj = (1, ω̄j, ω̄2j , . . . , ω̄(k−1)j)� be a vector in Ck, where
ω̄ is the complex conjugate of ω. Then we have

ρreg(i)bj = ωijbj = ρj(i)bj .

This says that bj is a common eigenvector of {ρreg(i) | i = 0, 1, . . . , k − 1}, and the
one-dimensional subspace Ij spanned by bj is an invariant subspace corresponding to

ρj . Hence, by decomposing Ck into
⊕k−1

j=0 Ij , ρreg is diagonalized to
⊕k−1

j=0 ρj .
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1268 BERND SCHULZE AND SHIN-ICHI TANIGAWA

Next, consider τ ⊗ ρreg. Since the character of the Kronecker product of two
representations is written by the coordinatewise product of the corresponding two
characters, we see that the multiplicity of ρj in τ ⊗ ρreg is equal to Trace(τ(0)), that

is, equal to d. Hence, τ ⊗ ρreg is equivalent to
⊕k−1

j=0 dρj .

For j = 0, 1, . . . , k − 1, we define a d-dimensional subspace Jj of C
dk by

(6) Jj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

τ(0)
ω̄jτ(1)

...
ω̄j(k−1)τ(k − 1)

⎤⎥⎥⎥⎦x : x ∈ Cd

⎫⎪⎪⎪⎬⎪⎪⎪⎭ ,

where ⎡⎢⎣ τ(0)
...

ω̄j(k−1)τ(k − 1)

⎤⎥⎦
denotes a dk × d matrix. Then observe that for each i ∈ Γ,

(τ ⊗ ρreg(i))y = ρj(i)y for all y ∈ Jj

and, hence, Jj is a common eigenspace of {τ ⊗ ρreg(i) : i = 0, . . . , k − 1}, and Jj is
an invariant subspace corresponding to ρj . Cdk is thus decomposed into invariant

subspaces
⊕k−1

j=0 Jj .

4.1.2. Decompositions of PE and τ ⊗ PV . Since our goal is to characterize
the infinitesimal rigidity of symmetric frameworks in terms of their quotient graphs,
let us introduce a quotient Γ-gain graph (H,ψ) of G with a covering map c : G→ H .

Observe, then, that since Γ acts freely on V (G), PV is the direct sum of |V (H)|
copies of ρreg, each of which represents an action of Γ over a fiber c−1(v). Thus, PV =⊕

ṽ∈V (H) ρreg, and PV is equivalent to
⊕k−1

j=0 |V (H)|ρj . Similarly, if we assume that Γ

acts freely onE(G), then PE =
⊕

ẽ∈E(H) ρreg, and PE is equivalent to
⊕k−1

j=0 |E(H)|ρj .
(We will treat the case where Γ does not act freely on the edge set of G in section 4.3.)

Observe also that τ⊗PV = τ⊗(
⊕

ṽ∈V (H) ρreg) =
⊕

ṽ∈V (H) τ⊗ρreg. Thus, τ⊗PV
is equivalent to

⊕k−1
j=0 d|V (H)|ρj . In total, each block R̃j(G, p) corresponding to ρj

has the size |E(H)| × d|V (H)|.
The decompositions of PE and τ⊗PV give us further information about R̃j(G,p).

Since Γ acts freely on G, each vertex orbit is associated with a dk-dimensional sub-
space of (Cd)V (G), while each edge orbit is associated with a k-dimensional subspace

of CE(G). In other words, CV (G) and CE(G) can be written as
⊕

ṽ∈V (H) C
dk and⊕

ẽ∈E(H) C
k in terms of the quotient graph H .

Since τ ⊗PV =
⊕

ṽ∈V (H) τ ⊗ ρreg and PE =
⊕

ẽ∈E(H) ρreg, it follows that J
mo
j :=⊕

ṽ∈V (H) Jj is an invariant subspace of CV (G) while Istj :=
⊕

ẽ∈E(H) Ij is an invariant

subspace of CE(G) with respect to ρj . Therefore R̃j(G,p) is a linear mapping from
Jmo
j to Istj .

An infinitesimal motion m : V (G) → Cd contained in Jmo
j is said to be ρj-

symmetric. By definition (6), m is ρj-symmetric if and only if

(7) m(γv) = ω̄jγτ(γ)m(v) for all γ ∈ Γ and v ∈ V (G).
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Recall that m : V (G) → Cd is an infinitesimal motion of (G,p) if

(8) 〈p(u)− p(v),m(u)−m(v)〉 = 0 for all {u, v} ∈ E(G).

This system of linear equations for m is redundant if m is restricted to be ρj-
symmetric, and we now eliminate such redundancy as follows.

Recall that each edge orbit is written as a set c−1(ẽ) = {{γu, γψẽv} : γ ∈ Γ} of
edges of G, where ψẽ is the label assigned to ẽ in (H,ψ). So (8) can be written as

(9) 〈p(γu)− p(γψẽv),m(γu)−m(γψẽv)〉 = 0 (γ ∈ Γ)

for each ẽ ∈ E(H). By the symmetry of p and m with respect to Γ, these k equations
can be simplified to one equation

(10) 〈p(u)− τ(ψẽ)p(v),m(u)− ω̄jψẽτ(ψẽ)m(v)〉 = 0

for each edge orbit.
Let us define the joint p̃(w̃) and the motion m̃(w̃) of a vertex w̃ ∈ V (H) to be

the joint p(v) and the motion m(v) of the representative vertex v of the vertex orbit
c−1(w̃). Then the analysis can be done on the quotient graph (H,ψ). More formally,
for a Γ-gain graph (H,ψ) and p̃ : V (H) → Rd, a map m̃ : V (H) → Cd is said to be a
ρj-symmetric motion of (H,ψ, p̃) if

(11) 〈p̃(ũ)− τ(ψẽ)p̃(ṽ), m̃(ũ)− ω̄jψẽτ(ψẽ)m̃(ṽ)〉 = 0 for all ẽ = (ũ, ṽ) ∈ E(H).

We define the ρj-orbit rigidity matrix, denoted byOj(H,ψ, p̃), as the |E(H)|×d|V (H)|
matrix associated with the system (11), where each vertex has the corresponding d
columns, each edge has the corresponding row, and the row corresponding to ẽ =
(ũ, ṽ) ∈ E(H) is given by

ũ︷ ︸︸ ︷ ṽ︷ ︸︸ ︷
0 . . . 0 p̃(ũ)− τ(ψẽ)p̃(ṽ) 0 . . . 0 ωjψẽ(p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)) 0 . . . 0
,

where each vector is assumed to be transposed, and if ẽ is a loop at ṽ the entries of
ṽ become the sum of the two entries given above.

Due to the one-to-one correspondence between Jmo
j and (Cd)V (H), we conclude

the following.
Proposition 4.1. Let Γ be a cyclic group of order k, (G,p) be a Γ-symmetric

framework in Rd, and (H,ψ) be the quotient Γ-gain graph. Then, for each j =
0, . . . , k − 1,

rank R̃j(G,p) = rank Oj(H,ψ, p̃).

4.2. Case of noncyclic groups. It is well known that any finite Abelian group
Γ is isomorphic to Z/k1Z×· · ·×Z/klZ for some positive integers k1, . . . , kl. Thus, we
may denote each element of Γ by i = (i1, . . . , il), where 0 ≤ i1 ≤ k1, . . . , 0 ≤ il ≤ kl,
and regard Γ as an additive group.

Let k = |Γ| = k1k2 . . . kl. Γ has k nonequivalent irreducible representations which
are denoted by {ρj : j ∈ Γ}. Specifically, for each j ∈ Γ, ρj is defined by

ρj : Γ → C/{0}
i 
→ ωi1j11 · ωi2j22 · . . . · ωiljll ,(12)

where ωt = e
2π

√−1
kt , t = 1, . . . , l.
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We now apply the analysis for cyclic groups by simply replacing each index with
a tuple of indices. By Theorem 3.1, R(G,p) is decomposed into k blocks, and the

block corresponding to ρj is denoted by R̃j(G,p).
For each j = (j1, . . . , jl) ∈ Γ, let bj be the k-dimensional vector such that each

coordinate is indexed by a tuple i ∈ Γ and its ith coordinate is equal to ω̄i1j11 ·· · ··ω̄iljll .
Then, for the regular representation ρreg of Γ, we have

ρreg(i)bj = ωi1j11 · · · · · ωiljll bj = ρj(i)bj

and, hence, bj is a common eigenvector of {ρreg(i) | i ∈ Γ}. Hence, the one-
dimensional subspace Ij spanned by bj is an invariant subspace of Ck corresponding
to ρj .

A similar analysis determines the common eigenspace Jj of {τ ⊗ ρreg(i) | i ∈ Γ}
for the eigenvalue ρj(i) as a counterpart to the one defined in (6).

Following the analysis given in the previous subsection, we see that R̃j(G,p) is
a linear mapping from Jmo

j :=
⊕

ṽ∈V (H) Jj to Istj :=
⊕

ẽ∈E(H) Ij . If we define the

ρj-orbit rigidity matrix, denoted by Oj(H,ψ, p̃), as the |E(H)| × d|V (H)| matrix,
where each ẽ = (ũ, ṽ) ∈ E(H) has the associated row

ũ︷ ︸︸ ︷ ṽ︷ ︸︸ ︷
0 . . . 0 p̃(ũ)− τ(ψẽ)p̃(ṽ) 0 . . . 0 ρj(ψe)(p̃(ṽ)− τ(ψẽ)

−1p̃(ũ)) 0 . . . 0,

then we have the following result.
Proposition 4.2. Let Γ be a finite Abelian group, (G,p) be a Γ-symmetric

framework in Rd, and (H,ψ) be the quotient Γ-gain graph. Then, for each j ∈ Γ,

rank R̃j(G,p) = rank Oj(H,ψ, p̃).

4.3. Group actions which are not free on the edge set. In the previous
sections, we restricted ourselves to the situation where the group Γ acts freely on
both the vertex set and the edge set of the graph G. Let us now also consider the
case where Γ acts freely on the vertex set, but not on the edge set of G. In other
words, there exists an element γ ∈ Γ with θ(γ)(u) = v and θ(γ)(v) = u for some
{u, v} ∈ E(G). Since Γ still acts freely on V (G), it follows that if Γ does not act

freely on c−1((ũ, ṽ)), then the edge orbit of (ũ, ṽ) is of size |Γ|
2 , that is, Γ/(Z/2Z) acts

freely on c−1((ũ, ṽ)).
Now, let (G,p) be a Γ-symmetric framework, where Γ is a finite Abelian group

of order k, and suppose there are n edge orbits of size k and m edge orbits of size
k
2 . Let g1, . . . , gt be the nontrivial elements of Γ which fix an edge of G, and let mi

be the number of edge orbits whose representatives are fixed by gi. (Note that if an
edge e of G is fixed by an element of Γ, then so is every other element in the orbit of
e, because Γ is Abelian.) So we have m =

∑t
i=1mi, and the character of PE is the

vector χ(PE) which has nk +mk
2 in the first entry corresponding to id ∈ Γ, mi

k
2 in

the entry corresponding to gi, i = 1, . . . , t, and 0 elsewhere.
Now, let ρj be an irreducible representation of Γ. Then, since each gi must be

an involution, ρj(gi) is 1 or −1. Without loss of generality assume ρj(gi) = 1 for
1 ≤ i ≤ s and ρj(gi) = −1 for s + 1 ≤ i ≤ t. It is a well-known result from group
representation theory that the dimension of the invariant subspace Istj of C|E(G)| is
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given by 1
k (χ(PE) · ρj). Thus,

dim(Istj ) =
1

k

(
nk +m

k

2
+

s∑
i=1

mi
k

2
−

t∑
i=s+1

mi
k

2

)

=
1

k

(
nk +

s∑
i=1

mik

)

= n+

s∑
i=1

mi.

It follows that the submatrix block R̃j(G,p) has n+
∑s

i=1mi many rows.

Although the size of R̃
j
(G,p) and that of Oj(H,ψ, p̃) are different, we can still

use Oj(H,ψ, p̃) to compute the rank of R̃j(G,p), as Proposition 4.2 still holds. To see
this, observe that if gi fixes c

−1(ẽ) for some ẽ ∈ E(H), then ẽ is a loop with ψ(ẽ) = gi.
Since g2i = id, if ρj(gi) = −1, the row corresponding to ẽ in Oj(H,ψ, p̃) turns out
to be a zero vector. The following proposition implies that the reverse implication is
also true, where a loop ẽ is called a zero loop in Oj(H,ψ, p̃) if the row of ẽ is a zero
vector in Oj(H,ψ, p̃).

Proposition 4.3. Let Γ be an Abelian group along with a faithful representation
τ : Γ → O(Rd), (G,p) be a Γ-symmetric framework with respect to θ and τ , and
(H,ψ) be a quotient Γ-gain graph. Then, for each j ∈ Γ, a loop ẽ is a zero loop in
Oj(H,ψ, p̃) if and only if ρj(ψẽ) = −1 and ψ2

ẽ = id.
Proof. For simplicity, let ω = ρj(ψẽ) and A = τ(ψẽ) �= Id. By definition, the row

of ẽ is a zero vector if and only if Id + ωId − A− ωA−1 = 0. The latter condition is
equivalent to (A− Id)(A−ωId) = 0. This holds if ω = −1 and A2 = Id, which implies
the sufficiency.

To see the necessity, let μA be the minimal polynomial of A. Since A is diago-
nalizable (as Γ is Abelian) and μA divides (t − 1)(t − ω), an elementary theorem of
linear algebra implies that the eigenvalues of A are only 1 and ω. Since Γ is Abelian
and A �= Id, we have ω = −1. This also implies A2 = Id, and hence ψ2

ẽ = id.
It follows from Proposition 4.3 and the remarks above that the number of rows

of R̃j(G,p) equals the number of nonzero rows of Oj(H,ψ, p̃). Moreover, these two
matrices clearly have the same number of columns, and by the same reasoning as in
the previous sections, Propositions 4.1 and 4.2 still hold.

4.4. Examples.

4.4.1. Reflection symmetry Cs. The symmetry group Cs has two nonequiva-
lent real irreducible representations each of which is of dimension 1. In the Mulliken
notation, they are denoted by A′ and A′′ (see Table 1).

It follows that the block-decomposed rigidity matrix R̃(G,p) of a Cs-symmetric

framework (G,p) consists of only two blocks: the submatrix block R̃0(G,p) corre-

sponding to the trivial representation ρ0, and the submatrix block R̃1(G,p) corre-

Table 1

The irreducible representations of Cs.

Cs id s

A′ = ρ0 1 1

A′′ = ρ1 1 −1
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p3

p1

p2

p6

p4

p5

(a)

p1 p4

p2 p3

(b)

p1 p4

p2 p3

(c)

Fig. 5. Antisymmetric infinitesimal motions of frameworks with mirror symmetry in the plane:
(a), (b) antisymmetric infinitesimal motions; (c) an antisymmetric trivial infinitesimal motion.

3

1

2
s

s

s s

Fig. 6. The Cs-gain graph (H,ψ) of the framework in Figure 5(a), where the directions and
labels of edges with gain id are omitted.

sponding to the representation ρ1. The block R̃0(G,p) is equivalent to the (fully

symmetric) orbit rigidity matrix (see also [19]). The block R̃1(G,p) describes the ρ1-
symmetric (or simply antisymmetric) infinitesimal rigidity properties of (G,p), where
an infinitesimal motion m of (G,p) is antisymmetric if

τ(s)
(
mi

)
= −mθ(s)(i) for all i ∈ V (G),

i.e., if all the velocity vectors of m are reversed by s (see also Figure 5). As shown

in Proposition 4.1, R̃1(G,p) is equivalent to the antisymmetric orbit rigidity matrix
O1(H,ψ, p̃).

For example, consider the framework (G,p) shown in Figure 5(a) which is Cs-
symmetric with respect to θ and τ , where θ : Cs → Aut(G) is the action defined by
θ(s) = (1 4)(2 5)(3 6) and τ : Cs → O(R2) is the homomorphism defined by τ(s) =(−1 0

0 1

)
. The corresponding quotient Cs-gain graph (H,ψ) is depicted in Figure 6, and

the antisymmetric orbit rigidity matrix O1(H,ψ, p̃) of (G,p) is the following 6 × 6
matrix:

⎛⎜⎜⎜⎜⎜⎜⎝

1 2 3

(1, 3; id) p̃(1)− p̃(3) 0 0 p̃(3)− p̃(1)
(1, 2; s) p̃(1)− τ(s)p̃(2) −(p̃(2)− τ(s)−1p̃(1)) 0 0
(2, 3; id) 0 0 p̃(2)− p̃(3) p̃(3)− p̃(2)
(1, 1; s) 0 0 0 0 0 0
(2, 2; s) 0 0 0 0 0 0
(3, 3; s) 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠,

where an edge (u, v) with label g is denoted by (u, v; g).
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Table 2

The irreducible representations of C3, where ω = 2π
√−1
3

.

C3 id C3 C2
3

A = ρ0 1 1 1

E(1) = ρ1 1 ω ω2

E(2) = ρ2 1 ω2 ω

p1

p2 p3

p4

p5
p6

(a)

5

2
C3

C3

(b)

Fig. 7. (a) A C3-symmetric framework and (b) its corresponding C3 quotient gain graph.

Recall from Proposition 4.3 that each loop in (H,ψ) gives rise to a zero vector
in O1(H,ψ, p̃), and hence O1(H,ψ, p̃) has only three nontrivial rows. Geometrically,
this is also obvious, as any loop in (H,ψ) clearly does not constitute any constraint if
we restrict ourselves to antisymmetric infinitesimal motions (see again Figure 5(a)).

4.4.2. Rotation symmetry C3. Over the complex numbers, the symmetry
group C3 has three nonequivalent one-dimensional irreducible representations. In the
Mulliken notation, they are denoted by A, E(1), and E(2) (see Table 2).

It follows that the block-decomposed rigidity matrix R̃(G,p) of a C3-symmetric

framework (G,p) consists of three blocks: the submatrix block R̃0(G,p) corresponding

to the trivial representation ρ0, the submatrix block R̃1(G,p) corresponding to ρ1,

and the submatrix block R̃2(G,p) corresponding to ρ2. By Proposition 4.1, each block

R̃j(G,p) is equivalent to its corresponding orbit rigidity matrix Oj(H,ψ, p̃).
As an example, consider the C3-symmetric framework (G,p) shown in Figure 7,

where θ : C3 → Aut(G) is the action defined by θ(C3) = (1 2 3)(4 5 6), and τ : C3 →
O(R2) is the homomorphism defined by

τ(C3) =

(− 1
2 −

√
3
2√

3
2 − 1

2

)
.

Note that for this example, each of the three orbit rigidity matrices is a 3× 4 matrix.
The orbit rigidity matrix O1(H,ψ, p̃) is the 3× 4 matrix

⎛
⎝

2 5

p̃(2)− p̃(5) p̃(5)− p̃(2)
p̃(2)− τ (C3)p̃(2) + ω

(
p̃(2)− τ (C3)

−1p̃(2)
)

0 0
0 0 p̃(5)− τ (C3)p̃(5) + ω2

(
p̃(5) − τ (C3)

−1p̃(5)
)

⎞
⎠,

where the first row corresponds to the edge (2, 5; id), the second row to the loop
(2, 2;C3), and the third row to the loop (5, 5;C3).
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Table 3

The irreducible representations of C2v .

C2v id C2 sh sv

A1 = ρ(0,0) 1 1 1 1

A2 = ρ(1,0) 1 1 −1 −1

B1 = ρ(0,1) 1 −1 1 −1

B2 = ρ(1,1) 1 −1 −1 1

p4 p3

p2p1

p8 p7

p6p5

(a)

1

5

C2

sh sv

(b)

Fig. 8. A framework in R(K4,4,C2v) with a fully symmetric infinitesimal flex (a) and its cor-

responding quotient C2v-gain graph (b), where the direction and label of the edge with gain id is
omitted.

The orbit rigidity matrix O2(H,ψ, p̃) is the 3× 4 matrix

⎛
⎝

2 5

p̃(2)− p̃(5) p̃(5)− p̃(2)
p̃(2)− τ (C3)p̃(2) + ω2

(
p̃(2)− τ (C3)

−1p̃(2)
)

0 0
0 0 p̃(5)− τ (C3)p̃(5) + ω

(
p̃(5) − τ (C3)

−1p̃(5)
)

⎞
⎠,

where the first row corresponds to the edge (2, 5; id), the second row to the loop
(2, 2;C3), and the third row to the loop (5, 5;C3).

4.4.3. Dihedral symmetry C2v. Finally, we consider the dihedral group C2v =
{id, C2, sh, sv} of order four which is the only noncyclic Abelian point group in the
plane. In the following, we think of C2v as the additive group Z/2Z × Z/2Z, where
id = (0, 0), C2 = (0, 1), sh = (1, 0), and sv = (1, 1). This group has four non-
equivalent irreducible linear representations each of which is real and one dimensional.
In the Mulliken notation, these representations are denoted by A1, A2, B1, and B2

(see Table 3).

Thus, for the dihedral group C2v, the block-decomposed rigidity matrix R̃(G,p)
consists of four blocks, each of which corresponds to one of the four irreducible rep-
resentations of C2v. The submatrix block corresponding to ρ0 is of course again
equivalent to the (fully symmetric) orbit rigidity matrix. In the following, we give an
example of a B1-symmetric orbit rigidity matrix O(0,1)(H,ψ, p̃) which, by Proposi-

tion 4.2, is equivalent to its corresponding submatrix block R̃(0,1)(G,p).
Consider the C2v-symmetric framework (G,p) shown in Figure 8(a), where θ :

C2v → Aut(G) is the action defined by θ(sh) = (1 4)(2 3)(5 8)(6 7) and θ(sv) =
(1 2)(3 4)(5 6)(7 8), and τ : C2v → O(R2) is the homomorphism defined by τ(sh) =(
1 0
0 −1

)
and τ(sv) =

(−1 0
0 1

)
.
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The B1-symmetric orbit rigidity matrix O(0,1)(H,ψ, p̃) of (G,p) is the 4×4 matrix

⎛⎜⎜⎝
1 5

(1, 5) p̃(1)− p̃(5) p̃(5)− p̃(1)
(1, 5;C2) p̃(1)− τ(C2)p̃(5) −(p̃(5)− τ(C2)

−1p̃(1)
)

(1, 5; sh) p̃(1)− τ(sh)p̃(5) p̃(5)− τ(sh)
−1p̃(1)

(1, 5; sv) p̃(1)− τ(sv)p̃(5) −(p̃(5)− τ(sv)
−1p̃(1)

)
⎞⎟⎟⎠.

The other orbit rigidity matrices Oj(H,ψ, p̃) can be obtained analogously.
Note that the framework in Figure 8(a) has a nontrivial fully symmetric infinites-

imal motion which even extends to a continuous C2v-preserving motion [19, 6]. (In
the engineering literature, this motion is known as Bottema’s mechanism.) It was
shown in [6] that this framework is falsely predicted to be forced-symmetric rigid by
the matroidal counts for the fully symmetric orbit rigidity matrix. Thus, the problem
of finding combinatorial characterizations for forced-symmetric rigidity (and hence
also for incidentally symmetric rigidity) of C2v-generic frameworks (or C2nv-generic
frameworks, n ≥ 1) remains open.

5. Gain sparsity and constructive characterizations. We now turn our
attention to combinatorial characterizations of infinitesimally rigid symmetric frame-
works in the plane. In this section we first present some preliminary facts concerning
gain graphs and matroids on gain graphs which will be used in the next section to
derive the desired combinatorial characterizations.

5.1. Gain sparsity. Let (H,ψ) be a Γ-gain graph. A cycle is called balanced if
the product of its edge gains is equal to the identity. (If Γ is an additive group, we take
the sum instead of the product.) More precisely, a cycle of the form ṽ1, ẽ1, ṽ2, ẽ2, ṽ3, . . . ,
ṽk, ẽk, ṽ1, is balanced if Πki=1ψ(ẽi)

sign(ẽi) = id, where sign(ẽi) = 1 if ẽi is directed from
ṽi to ṽi+1, and sign(ẽi) = −1 otherwise.

We say that an edge subset F ⊆ E(H) is balanced if all cycles in F are balanced;
otherwise it is called unbalanced. The following is a slightly generalized concept of the
one proposed in [6].

Definition 1. Let (H,ψ) be a Γ-gain graph and k, ,m be nonnegative integers
with m ≤ . (H,ψ) is called (k, ,m)-gain-sparse if

• |F | ≤ k|V (F )| −  for any nonempty balanced F ⊆ E(H);
• |F | ≤ k|V (F )| −m for any nonempty F ⊆ E(H).

Similarly, an edge set E is called (k, ,m)-gain-sparse if it induces a (k, ,m)-gain-
sparse graph.

Let Ik,�,m be a family of (k, ,m)-gain-sparse edge sets in (H,ψ). As noted in
[6], Ik,�,m forms the family of independence sets of a matroid on E(H) for certain
(k, ,m), which we denote by Mk,�,m(H,ψ), or simply by Mk,�,m. Let us take a closer
look at this fact.

If (k, ,m) = (1, 1, 0), then M1,1,0 is known as the frame matroid (or bias matroid)
of (H,ψ), which is extensively studied in matroid theory (see, e.g., [24]). It is known
that F ⊆ E(H) is independent in M1,1,0 if and only if each connected component
of F contains no cycle or just one cycle, and the cycle is unbalanced if it exists.
When Γ = {id}, M1,1,0 is equal to the graphic matroid of H , where F ⊆ E(H) is
independent if and only if F is cycle free.

If k = , Mk,k,m is the union of m copies of the graphic matroid of H and (k−m)
copies of the frame matroid of (H,ψ). In other words, F ⊆ E(H) is independent in
Mk,k,m if and only if F can be partitioned into k sets F1, . . . , Fk such that Fi is a
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forest for 1 ≤ i ≤ m and Fi is independent in M1,1,0 for m+1 ≤ i ≤ k. In particular,
if |E(H)| = k|V (H)| −m, then E(H) can be partitioned into k sets E1, . . . , Ek such
that Ei is a spanning tree for 1 ≤ i ≤ m and Ei is a spanning edge set such that each
connected component contains exactly one unbalanced cycle.

If (k, ,m) = (k, k+ ′,m′+ ′) for some 0 ≤ m′ ≥ k and ′ ≥ 0, then Mk,�,m is ′

times Dilworth truncations ofMk,k,m′ , and it forms a matroid. In particular, for k = 2
and  = 3, M2,3,m implicitly or explicitly appeared in the study of symmetry-forced
rigidity. The generic symmetry-forced rigidity of Cs-symmetric frameworks or Ck-
symmetric frameworks is characterized by the (2, 3, 1)-gain-sparsity of the underlying
quotient gain graphs [9, 10, 11, 22, 6]. We shall extend this result in section 6. For
infinite periodic graphs, it was proved by Ross that the (2, 3, 2)-gain-sparsity of Z2-
gain graphs characterizes the symmetry-forced rigidity of periodic frameworks on a
fixed lattice [13].

For other triples (k, ,m) very few properties are known for (k, ,m)-gain-sparse
graphs. Csaba Kiraly recently pointed out that M2,3,0 is not a matroid in general.
A number of different (or generalized) sparsity conditions of gain graphs are also
discussed in [11, 9, 6, 20].

5.2. Constructive characterizations of (2, 3,m)-gain-sparse graphs. In
this subsection we will review a constructive characterization of (2, 3,m)-gain-sparse
graphs given in [6]. We define three operations, called extensions, that preserve
(2, 3,m)-gain-sparsity. The first two operations generalize the well-known Henneberg
operations [23] to gain graphs.

Let (H,ψ) be a Γ-gain graph. The 0-extension adds a new vertex ṽ and two new
nonloop edges ẽ1 and ẽ2 to H such that the new edges are incident to ṽ and the other
end vertices are two not necessarily distinct vertices of V (H). If ẽ1 and ẽ2 are not
parallel, then their labels can be arbitrary. Otherwise the labels are assigned such
that ψ(ẽ1) �= ψ(ẽ2), assuming that ẽ1 and ẽ2 are directed to ṽ (see Figure 9(a)).

The 1-extension (see Figure 9(b)) first chooses an edge ẽ and a vertex z̃, where ẽ
may be a loop and z̃ may be an end vertex of ẽ. It subdivides ẽ, with a new vertex ṽ
and new edges ẽ1, ẽ2, such that the tail of ẽ1 is the tail of ẽ and the tail of ẽ2 is the
head of ẽ. The labels of the new edges are assigned such that ψ(ẽ1) ·ψ(ẽ2)−1 = ψ(ẽ).
The 1-extension also adds a third edge ẽ3 oriented from z̃ to ṽ. The label of ẽ3

(a) (b)

(c)

Fig. 9. (a) 0-extension, where the new edges may be parallel. (b) 1-extension, where the
removed edge may be a loop and the new edges may be parallel. (c) loop-1-extension.
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is assigned so that it is locally unbalanced, i.e., every two-cycle ẽiẽj , if it exists, is
unbalanced.

The loop 1-extension (see Figure 9(c)), adds a new vertex ṽ to H and connects it
to a vertex z̃ ∈ V (H) by a new edge with any label. It also adds a new loop l̃ incident
to ṽ with ψ(l̃) �= id.

Theorem 5.1 (Jordán, Kaszanitzky, and Tanigawa [6]). Let m ∈ {1, 2} and let
(H,ψ) be a Γ-gain graph with |E(H)| = 2|V (H)| −m. Then (H,ψ) is (2, 3,m)-gain-
sparse if and only if it can be built up from a Γ-gain graph with one vertex without any
edge if m = 2 and with an unbalanced loop if m = 1 by a sequence of 0-extensions,
1-extensions, and loop-1-extensions.

The theorem is proved for m = 1 in [6, Theorem 4.4], and exactly the same proof
can be applied in the case of m = 2. For special cases, Theorem 5.1 was proved by
Schulze [16], Ross [13], and Theran [22].

In the covering graph these operations can be seen as graph operations that
preserve the underlying symmetry. Some of them can be recognized as performing
standard nonsymmetric Henneberg operations [23] simultaneously [6].

5.3. Subgroups induced by edge sets. We have introduced the balancedness
of an edge set in (H,ψ) in order to define gain-sparsity matroids on E(H). However,
we sometimes need to extract more information on the underlying group from (H,ψ).
Such information is represented as subgroups induced by edge sets, which we are about
to introduce. For simplicity, we will assume that Γ is Abelian. (See [6] for the general
treatment.)

Recall that for a cycle C of the form ṽ1, ẽ1, ṽ2, . . . , ẽk, ṽ1 in (H,ψ), the gain ψ(C) of
C is ψ(C) = Πki=1ψ(ẽi)

sign(ẽi). For F ⊆ E(H), define 〈F 〉 to be the subgroup of Γ gen-
erated by the elements in the set {ψ(C)| C is a cycle in the subgraph induced by F}.
Note that F is balanced if and only if 〈F 〉 is trivial.

A switching at a vertex ṽ with γ ∈ Γ is an operation that constructs a new labeling
ψ′ : E(H) → Γ from ψ by setting

ψ′(ẽ) =

⎧⎪⎨⎪⎩
γψ(ẽ) if ẽ is directed to ṽ,

ψ(ẽ)γ−1 if ẽ is directed from ṽ,

ψ(ẽ) otherwise.

We say that ψ′ is equivalent to ψ if ψ′ can be obtained from ψ by a sequence of
switchings. Then it can easily be checked that for any F ⊆ E(H), 〈F 〉 is invariant up
to equivalence (see, e.g., [6, Proposition 2.2] for the proof).

In the proof of [6, Lemma 5.2], it was shown that the rank of fully symmetric
orbit rigidity matrices (i.e., the case when ρj is trivial) is invariant up to equivalence.
Exactly the same proof can be applied to show the following.

Proposition 5.2. Let (H,ψ) be a Γ-gain graph with Abelian group Γ, let p̃ :
V (H) → Rd be Γ-generic, and let ψ′ be a gain function equivalent to ψ. Then
rank Oj(H,ψ, p̃) = rank Oj(H,ψ

′, p̃).
The following proposition is very useful to compute 〈F 〉.
Proposition 5.3. Let (H,ψ) be a Γ-gain graph with Abelian Γ.
• For any forest T in E(H), there exists a ψ′ equivalent to ψ such that ψ′(ẽ) =
id for every ẽ ∈ T .

• For any F ⊆ E(H) and a maximal forest T in F , if ψ(ẽ) = id holds for every
ẽ ∈ T , then 〈F 〉 is the subgroup generated by {ψ(ẽ)| ẽ ∈ F \ T }.

The proof is given in [6, Proposition 2.3, Lemma 2.4].
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6. Combinatorial characterizations for bar-joint frameworks in the
plane. Based on the theory of block diagonalizations of rigidity matrices, in this
section we present combinatorial characterizations of infinitesimally rigid frameworks
which are generic modulo cyclic symmetry in the plane. By (4) and Proposition 4.2
our task of computing the rank of the rigidity matrix is reduced to computing the
rank of each orbit rigidity matrix.

Recall that each orbit rigidity matrix is defined for any Γ-gain graph (H,ψ) with
p̃ : V (H) → Rd, and its rows define a matroid on the edge set of H . We will show that
when p̃ is τ(Γ)-regular, this orbit-rigidity matroid is isomorphic to the (2, 3,m)-gain-
sparsity matroid of (H,ψ) given in section 5 if the underlying symmetry is Cs, C2,
or C3. If the underlying symmetry is Ck for k ≥ 4, then it turns out that orbit-
rigidity matroids have more complicated combinatorial structures and the problem
of characterizing them is still unsolved. However, we will present some nontrivial
necessary conditions in the last subsection.

The following lemma implies that the row independence of an orbit rigidity matrix
is preserved by the three operations given in section 5.

Lemma 6.1. Let Γ be an Abelian group of order k, j ∈ Γ, and τ : Γ → O(R2)
be a faithful orthogonal representation. Let (H ′, ψ′) be a Γ-gain graph obtained from
(H,ψ) by a 0-extension, 1-extension, or loop-1-extension. If there is a mapping p̃ :
V (H) → R2 such that Oj(H,ψ, p̃) is row independent, then there is p̃′ : V (H ′) → R2

such that Oj(H
′, ψ, p̃′) is row independent, unless the new loop is a zero loop in the

case of a loop-1-extension.
Proof. The proof is basically the same as the one given in [6, Lemma 6.1] for

symmetry-forced rigidity. Due to the definition of genericity, we may assume that p̃
is Γ-generic. Then it is easy to prove the statement for a 0-extension and a loop-1-
extension (see the proof of [6, Lemma 6.1] for a formal proof). We therefore focus on
the case where H ′ is obtained from H by a 1-extension. This is the only nontrivial
case.

Suppose that H ′ is obtained from H by a 1-extension which removes an existing
edge ẽ and adds a new vertex ṽ with three new nonloop edges ẽ1, ẽ2, ẽ3 incident to ṽ.
We may assume that ẽi is outgoing from ṽ. Let ũi be the other end vertex of ẽi, and
let gi = τ(ψ′(ẽi)) and p̃i = p̃(ũi) for i = 1, 2, 3. By the definition of the 1-extension,
we have τ(ψ(ẽ)) = g−1

1 g2. We also denote ωi = ρj(ψ
′(ẽi)) for i = 1, 2, 3.

Note that the three points gip̃i (i = 1, 2, 3) never lie on a line due to the Γ-
genericity of p̃ (see [6, Lemma 6.1] for a formal proof). We take p̃′ : V (H ′) → R2

such that p̃′(w̃) = p̃(w̃) for all w̃ ∈ V (H), and p̃′(ṽ) is a point on the line through
g1p̃1 and g2p̃2, but distinct from g1p̃1 and g2p̃2. For the simplicity of the description,
we assume ũ1 �= ũ2 in the subsequent discussion, but exactly the same proof can be
also applied if ũ1 = ũ2. Then Oj(H

′, ψ′, p̃′) has the form

ṽ ũ1 ũ2
ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 p̃′(ṽ)− g1p̃1 ω1(p̃1 − g−1

1 p̃′(ṽ)) 0 0
ẽ2 p̃′(ṽ)− g2p̃2 0 ω2(p̃2 − g−1

2 p̃′(ṽ)) 0
E(H)− ẽ 0 Oj(H − ẽ, ψ, p̃)

where the bottom right block Oj(H − ẽ, ψ, p̃) denotes the ρj-orbit rigidity matrix
obtained from Oj(H,ψ, p̃) by removing the row of ẽ.

Since p̃′(v) lies on the line through g1p̃1 and g2p̃2, p̃′(ṽ) − gip̃(ũi) is a scalar
multiple of g1p̃1 − g2p̃2 for i = 1, 2. Hence, by multiplying the rows of ẽ1 and ẽ2 by
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an appropriate scalar, O(H ′, ψ′, p̃′) becomes

ṽ ũ1 ũ2
ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 g1p̃1 − g2p̃2 −ω1g

−1
1 (g1p̃1 − g2p̃2) 0 0

ẽ2 g1p̃1 − g2p̃2 0 −ω2g
−1
2 (g1p̃1 − g2p̃2) 0

E(H)− ẽ 0 Oj(H − ẽ, ψ, p̃)

Subtracting the row of ẽ1 from that of ẽ2, we get

ṽ ũ1 ũ2
ẽ3 p̃′(ṽ)− g3p̃3 ∗ ∗ ∗
ẽ1 g1p̃1 − g2p̃2 −ω1g

−1
1 (g1p̃1 − g2p̃2) 0 0

ẽ2 0 p̃1 − g−1
1 g2p̃2 ω−1

1 ω2(p̃2 − g−1
2 g1p̃1) 0

E(H)− ẽ 0 O(H − ẽ, ψ, p̃)

Since τ(ψ(ẽ)) = g−1
1 g2, the row of ẽ2 is equal to the row of ẽ in Oj(H,ψ, p̃). This

means that the right-bottom block together with the row of ẽ2 forms Oj(H,ψ, p̃),
which is row independent. Thus, the matrix is row independent if and only if the
top-left block is row independent. Since gip̃i (i = 1, 2, 3) are not on a line, the line
through p̃′(v) and g3p̃3 is not parallel to the line through g1p̃1 and g2p̃2. This implies
that the top-left 2 × 2-block is row independent, and consequently Oj(H

′, ψ′, p̃′) is
row independent.

6.1. Characterizations for bar-joint frameworks with reflection symme-
try. We now give a combinatorial characterization of infinitesimally rigid bar-joint
frameworks with reflection symmetry Cs in the plane. The following characterization
of rigid frameworks with forced Cs symmetry was already established in [10, 6].

Theorem 6.2 (Malestein and Theran [10], Theran [22], and Jordán, Kaszanitzky,
and Tanigawa [6]). Let τ : Z/2Z → Cs be a faithful representation, (H,ψ) be a Z/2Z-
gain graph, and p̃ : V (H) → R2 be Cs-regular. Then O0(H,ψ, p̃) is row independent
if and only if (H,ψ) is (2, 3, 1)-gain-sparse.

We now show that the independence of the other submatrix block is characterized
by (2, 3, 2)-gain-sparsity.

Theorem 6.3. Let τ : Z/2Z → Cs be a faithful representation, (H,ψ) be a Z/2Z-
gain graph, and p̃ : V (H) → R2 be Cs-regular. Then O1(H,ψ, p̃) is row independent
if and only if (H,ψ) is (2, 3, 2)-gain-sparse.

Proof. First we show that if O1(H,ψ, p̃) is row independent then (H,ψ) is (2, 3, 2)-
gain-sparse. Suppose to the contrary that there exists a balanced F ⊆ E(H) with
|F | > 2|V (F )| − 3. Then, by Propositions 5.2 and 5.3, we may assume that ψ(ẽ) = id
for every ẽ ∈ F . Then O1(H,ψ, p̃) has a row dependency, because the submatrix
of O1(H,ψ, p̃) obtained by deleting all rows in O1(H,ψ, p̃) that do not correspond
to edges in F is a standard two-dimensional rigidity matrix with 2|V (F )| columns
and |F | > 2|V (F )| − 3 edges. Suppose next that there exists an unbalanced subset
F of E(H) with |F | > 2|V (F )| − 2, and assume without loss of generality that the
reflection is given by

(−1 0
0 1

)
. Then O1(H,ψ, p̃) again has a row dependency since

it is easy to check that the infinitesimal translation m̃ : V (H) → R2 defined by
m̃(ṽ) =

(
1
0

)
for ṽ ∈ V (H) and the infinitesimal rotation m̃′ : V (H) → R2 defined by

m̃′(ṽ) =
(−(pṽ)2

(pṽ)1

)
for ṽ ∈ V (H) both lie in the kernel of O1(H,ψ, p̃), and hence the

kernel of O1(H,ψ, p̃) is of dimension at least two.
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To prove that (2, 3, 2)-gain-sparsity is sufficient for O1(H,ψ, p̃) to be row indepen-
dent, we may employ induction on |V (H)|. Suppose that (H,ψ) is (2, 3, 2)-gain-sparse.
If |V (H)| = 1, then |E(H)| = 0, and there is nothing to prove. If |V (H)| > 1, we
may assume that |E(H)| = 2|V (H)| − 2. Combining Theorem 5.1 and Lemma 6.1,
we conclude that O1(H,ψ, p̃) is row independent for a Cs-regular p̃.

It is easy to see that the same proof can be applied to show Theorem 6.2 (which
is the proof given in [6]).

Theorem 6.4. Le τ : Z/2Z → Cs be a faithful representation, G be a Z/2Z-
symmetric graph with θ : Z/2Z → Aut(G), and (G,p) be a Cs-regular framework
with respect to θ and τ . Then the rank of R(G,p) is equal to the sum of the rank of
M2,3,1(H,ψ) and that of M2,3,2(H,ψ), where (H,ψ) denotes the quotient gain graph.

Proof. We may assume that p is Cs-generic. By (4) and Proposition 4.1, we have

rank R(G,p) = rank O0(H,ψ, p̃) + rank O1(H,ψ, p̃)

for the quotient p̃ of p. By Theorems 6.2 and 6.3, the rank of Oj(H,ψ, p̃) is equal to
the rank of M2,3,1+j(H,ψ) for j = 0, 1.

Corollary 6.5. Let τ : Z/2Z → Cs be a faithful representation, G be a Z/2Z-
symmetric graph with θ : Z/2Z → Aut(G), and (G,p) be a Cs-regular framework with
respect to θ and τ . Then (G,p) is infinitesimally rigid if and only if the quotient gain
graph (H,ψ) contains a spanning (2, 3, i)-gain-sparse subgraph (Hi, ψi) with |E(Hi)| =
2|V (Hi)| − i for each i = 1, 2.

For example, using Corollary 6.5, it is easy to verify that the framework shown in
Figure 5(a) is infinitesimally flexible (with an antisymmetric infinitesimal flex): while
the corresponding gain graph (H,ψ) shown in Figure 6 is (2, 3, 1)-gain-sparse with
|E(H)| = 6 > 5 = 2|V (H)| − 1, it does not contain a spanning subgraph (H ′, ψ′)
which is (2, 3, 2)-gain-sparse with |E(H ′)| = 2|V (H ′)| − 2. (Note that a loop violates
(2, 3, 2)-gain sparsity.)

6.2. Characterizations for bar-joint frameworks with rotational sym-
metry. We now discuss combinatorial characterizations of infinitesimally rigid frame-
works with rotational symmetry Ck in the plane. A characterization of the row in-
dependence of O0(H,ψ, p̃) was already established in [9]. (See also [6] for a simpler
proof.)

Theorem 6.6 (Malestein and Theran [9]). Let k ≥ 2, τ : Z/kZ → Ck be a faithful
representation, (H,ψ) be a Z/kZ-gain graph, and p̃ : V (H) → R2 be Ck-regular. Then
O0(H,ψ, p̃) is row independent if and only if (H,ψ) is (2, 3, 1)-gain-sparse.

For frameworks with an arbitrary rotational symmetry Ck, it is not as easy as
for frameworks with reflection symmetry to extend Theorem 6.6 to the other orbit
matrices. However, the following result holds for all rotational groups Ck.

Lemma 6.7. Let k ≥ 3, τ : Z/kZ → Ck be a faithful representation, (H,ψ)
be a Z/kZ-gain graph, and p̃ : V (H) → R2 be Ck-regular. If Oj(H,ψ, p̃) is row
independent, then (H,ψ) is (2, 3, 0)-gain-sparse. Moreover, if j = 1 or j = k−1, then
Oj(H,ψ, p̃) has a kernel of dimension at least 1, and (H,ψ) is (2, 3, 1)-gain-sparse.

Similarly, if k = 2, then the independence of O1(H,ψ, p̃) implies that (H,ψ) is
(2, 3, 2)-gain-sparse.

Proof. Suppose that Oj(H,ψ, p̃) is row independent. It is easy to see that |F | ≤
2|V (F )| for any F ⊆ E(H).

If F is balanced, then, by Propositions 5.2 and 5.3, we may assume that ψ(ẽ) = id
for every ẽ ∈ F . Then the submatrix of Oj(H,ψ, p̃) corresponding to the edges in F
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is a standard two-dimensional rigidity matrix. Thus, |F | ≤ 2|V (F )| − 3 holds, and
hence (H,ψ) is (2, 3, 0)-gain-sparse.

Suppose further that j = 1 or j = k − 1. We will show that Oj(H,ψ, p̃) always
has a kernel of dimension at least 1. To see this, recall that for any γ ∈ Z/kZ,

(13) τ(γ)

(
1√−1

)
= ωγ

(
1√−1

)
, τ(γ)

(
1

−√−1

)
= ω̄γ

(
1

−√−1

)
,

where τ(γ) =
( cos γθ sin γθ
− sin γθ cos γθ

)
and ω = e

√−1θ with θ = 2π
k .

If j = 1, we define m̃ : V (H) → C2 by m̃(ṽ) =
( 1√−1

)
for ṽ ∈ V (H). Then, for

any ũ, ṽ ∈ V (H), we have m̃(ũ) − ω̄γτ(γ)m̃(ṽ) = m̃(ũ) − ω̄γωγm̃(ṽ) = 0 by (13),
which means that m̃ is in the kernel of O1(H,ψ, p̃) by (11). Similarly, for j = k − 1,
m̃ : V (H) → C2 defined by m̃(ṽ) =

( 1
−√−1

)
for ṽ ∈ V (H) is in the kernel of

Ok−1(H,ψ, p̃).
Therefore, if j = 1 or j = k − 1, |F | ≤ 2|V (F )| − 1 must hold for any F ⊆ E(H),

implying that (H,ψ) is (2, 3, 1)-gain-sparse.
Similarly, if k = 2, then the kernel of O1(H,ψ, p̃) has dimension at least two

(which corresponds to the space of infinitesimal translations), and hence (H,ψ) is
(2, 3, 2)-gain-sparse.

Note that Lemma 6.7 also shows how the space of infinitesimal translations is
decomposed. This decomposition can also be read off from the character tables for
the groups Ck (see [1, 3], for example).

6.2.1. Case of C2. Combining Theorem 5.1, Lemma 6.1, Theorem 6.6, and
Lemma 6.7, we obtain the following characterization of infinitesimally rigid frame-
works with C2 symmetry. The proof is identical to that for Cs and hence is omitted.

Theorem 6.8. Let τ : Z/2Z → C2 be a faithful representation, (H,ψ) be a Z/2Z-
gain graph, and p̃ : V (H) → R2 be C2-regular. Then O1(H,ψ, p̃) is row independent
if and only if (H,ψ) is (2, 3, 2)-gain-sparse.

Theorem 6.9. Let τ : Z/2Z → C2 be a faithful representation, G be a Z/2Z-
symmetric graph with θ : Z/2Z → Aut(G), and (G,p) be a C2-regular framework
with respect to θ and τ . Then the rank of R(G,p) is equal to the sum of the rank of
M2,3,1(H,ψ) and that of M2,3,2(H,ψ), where (H,ψ) denotes the quotient gain graph.

Corollary 6.10. Let τ : Z/2Z → C2 be a faithful representation, G be a Z/2Z-
symmetric graph with θ : Z/2Z → Aut(G), and (G,p) be a C2-regular framework with
respect to θ and τ . Then (G,p) is infinitesimally rigid if and only if the quotient gain
graph (H,ψ) contains a spanning (2, 3, i)-gain-sparse subgraph (Hi, ψi) with |E(Hi)| =
2|V (Hi)| − i for each i = 1, 2.

6.2.2. Case of C3.
Theorem 6.11. Let τ : Z/3Z → C3 be a faithful representation, G be a Z/3Z-

symmetric graph with θ : Z/3Z → Aut(G), and (G,p) be a C3-regular framework
with respect to θ and τ . Then the rank of R(G,p) is equal to three times the rank of
M2,3,1(H,ψ), where (H,ψ) denotes the quotient gain graph.

Proof. We show that for each j = 1, 2, Oj(H,ψ, p̃) is row independent if and only
if (H,ψ) is (2, 3, 1)-gain-sparse. This implies the statement, by Proposition 4.1 and
Theorem 6.6.

By Lemma 6.7, if Oj(H,ψ, p̃) is row independent, (H,ψ) is (2, 3, 1)-gain-sparse.
We show the converse direction by induction on |V (H)|. Suppose (H,ψ) is

(2, 3, 1)-gain-sparse. Proposition 4.3 implies that an unbalanced loop is a zero loop
in Oj(H,ψ, p̃) only if the underlying group contains a subgroup isomorphic to Z/2Z.
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Hence, in this case, a loop cannot be a zero loop, which in particular implies that
Oj(H,ψ, p̃) is row independent when |V (H)| = 1. If |V (H)| > 1, then we can con-
struct p̃ : V (H) → R2 such that (H,ψ, p̃) is row independent by induction, using
Theorem 5.1 and Lemma 6.1.

As a corollary, we obtain the following characterization given in [16].
Corollary 6.12 (Schulze [16]). Let τ : Z/3Z → C3 be a faithful representation,

G be a Z/3Z-symmetric graph with θ : Z/3Z → Aut(G), and (G,p) be a C3-regular
framework with respect to θ and τ . Then (G,p) is infinitesimally rigid if and only if
the quotient gain graph (H,ψ) contains a spanning subgraph (H ′, ψ′) which is (2, 3, 1)-
gain sparse with |E(H ′)| = 2|V (H ′)| − 1.

6.2.3. Case of Ck with k ≥ 4. The following lemma gives a necessary condition
for the row independence of Oj(H,ψ, p̃) for even k, which is stronger than the one
given in Lemma 6.7.

Lemma 6.13. Let k ≥ 4, τ : Z/kZ → Ck be a faithful representation, (H,ψ)
be a Z/kZ-gain graph, p̃ : V (H) → R2 be Ck-regular, and j be an odd integer with
1 ≤ j < k. If Oj(H,ψ, p̃) is row independent, then F is (2, 3, 2)-gain-sparse for any
F ⊆ E(H) such that 〈F 〉 is isomorphic to Z/2Z.

Proof. Let ω = e
2π

√−1
k . Since 〈F 〉 is isomorphic to Z/2Z, 〈F 〉 consists of {0, k/2}.

Let h : {0, k/2} → Z/2Z be the isomorphism.
By Propositions 5.2 and 5.3, we may assume that ψ(ẽ) ∈ {0, k/2} for all ẽ ∈ F ,

and hence we can define a gain function ψ′ : F → Z/2Z by ψ′(ẽ) = h(ψ(ẽ)) for ẽ ∈ F .
Also, we can define τ ′ : Z/2Z → C2 by τ ′ = τ ◦ h−1.

Observe that ωjk/2 = ωk/2 = −1 if j is odd, which implies ωjψ(ẽ) = (−1)ψ
′(ẽ) for

ẽ ∈ F . Therefore, for ẽ = (ũ, ṽ) ∈ F , we have

p̃(ũ)− τ(ψ(ẽ))p̃(ṽ) = p̃(ũ)− τ ′(ψ′(ẽ))p̃(ṽ),

ωjψ(ẽ)(p̃(ṽ)− τ(ψ(ẽ))−1p̃(ũ)) = (−1)ψ
′(ẽ)(p̃(ṽ)− τ ′(ψ′(ẽ))−1p̃(ũ)).

In other words, we haveOj(H [F ], ψ, p̃) = O1(H [F ], ψ′, p̃), whereH [F ] is the subgraph
of H induced by the edge set F . Since (H [F ], ψ′) is a Z/2Z-gain graph along with a
faithful representation τ ′ : Z/2Z → C2, F is (2, 3, 2)-gain-sparse by Lemma 6.7.

It follows from this lemma that if k is even, then there is a Ck-generic framework
(G,p) such that the underlying graph is 2-rigid (i.e., generically rigid in the plane) but
(G,p) is not infinitesimally rigid. However, we still conjecture that Laman’s condition
characterizes infinitesimal rigidity for odd k.

Conjecture 1. Let Ck be the group generated by a k-fold rotation in the plane,
where k is odd. Let (G,p) be a Ck-generic framework. Then (G,p) is infinitesimally
rigid if and only if G is 2-rigid.

One possible approach for proving this conjecture is to develop a constructive
characterization of 2-rigid Z/kZ-symmetric graphs. Since there is a one-to-one corre-
spondence between Z/kZ-symmetric graphs and Z/kZ-gain graphs (up to the choices
of representative vertices), our task is to extend Theorem 5.1. In the following, we
make several observations concerning Conjecture 1.

The following gives a relation between generic independence and gain sparsity,
which was observed in [22] for odd prime k.

Theorem 6.14. Let G be a Z/kZ-symmetric graph with odd k ≥ 3 and (H,ψ) be
its quotient Z/kZ-gain graph. Suppose that Z/kZ acts freely on V (G). Then (H,ψ)
is (2, 3, 1)-gain-sparse if and only if G is 2-independent.
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(a) (b) (c)

γ

γ

γ

(d)

Fig. 10. A balanced circuit (b) and its corresponding covering graph (a). Note that we may
assume that the label of each edge is the identity, by Proposition 5.3. An unbalanced circuit (d) and
its corresponding covering graph (c).

Proof. Suppose that (H,ψ) is (2, 3, 1)-gain-sparse. By Theorem 5.1, (H,ψ) can
be constructed from a gain graph with one vertex with a loop with nonidentity label
by 0-extensions, 1-extensions, and loop-1-extensions. Since k is odd, Proposition 4.3
implies that a zero-loop does not occur. Therefore, by Lemma 6.1, there is an injective
p : V (G) → R2 such that (G,p) is Ck-symmetric and R(G,p) is row independent.
The row independence of R(G,p) implies that G is 2-independent.

Conversely suppose that (H,ψ) is not (2, 3, 1)-gain-sparse. If (H,ψ) contains a
balanced subgraph which is not (2, 3, 1)-gain-sparse, then its lifting is clearly not 2-
independent. If (H,ψ) contains an unbalanced subgraph (H ′, ψ′) which is not (2, 3, 1)-
gain-sparse, then |E(H ′)| ≥ 2|V (H ′)|. Let G′ be the lifting of (H ′, ψ′). Since k is odd,
Z/kZ freely acts on E(G), which means |E(G′)| = k|E(H ′)| ≥ 2k|V (H ′)| = 2|V (G′)|.
Thus G′ is not 2-independent.

Theorem 6.14 says that the covering graph of any (2, 3, 1)-gain-tight graph (H,ψ)
is 2-independent if k is odd. Since the covering graph G has k|E(H)| edges, which
is equal to k(2|V (H)| − 1) = 2|V (G)| − k, G cannot be 2-rigid if k > 3. The next
step is hence to investigate which new edges we should add so that the covering
graph is 2-rigid. This question turns out to be complicated, as the following examples
illustrate.

Let us consider a Z/kZ-gain graph (H,ψ) which consists of a (2, 3, 1)-gain-tight
graph (H ′, ψ) together with one additional edge ẽ (i.e., H = H ′ + ẽ). The covering
graph of H and the covering map are denoted by G and c, respectively. It follows
easily from Proposition 5.3 that if (H,ψ) contains an edge set F such that (i) F
is balanced and (ii) |F | > 2|V (F )| − 3, then c−1(F ) consists of k vertex-disjoint 2-
dependent sets. A minimal edge set F satisfying (i) and (ii) is called a balanced circuit.
See Figures 10(a), (b) for an example.

There is another obstacle. Suppose that there is an edge subset F such that (i’)
F is unbalanced, (ii’) |F | > 2|V (F )| − 1, and (iii’) there are a vertex ṽ ∈ V (F ),
an element γ ∈ Z/kZ, and a labeling function ψ′ : E(H) → Z/kZ equivalent to ψ
such that ψ′(ẽ) = id for every ẽ ∈ F not incident to ṽ, and ψ′(ẽ) ∈ {id, γ} for every
ẽ ∈ F directed to ṽ (assuming that every edge incident to ṽ is directed to ṽ); see also
Figures 10(c), (d). Then it can easily be checked that the covering graph c−1(F ) is
the union of k edge-disjoint 2-dependent sets. A minimal edge set F satisfying (i’),
(ii’), (iii’) is called an unbalanced circuit.

Consequently, if H = H ′+ ẽ contains an unbalanced circuit or a balanced circuit,
the covering graph G contains k edge-disjoint 2-dependent sets, which means that no
edge of c−1(ẽ) increases the rank of the 2-rigidity matroid of the covering graph.
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7. Extensions. We finish by making some further comments about antisym-
metric orbit rigidity matrices and their applications and by outlining some directions
for future developments.

7.1. Bar-joint frameworks in higher dimensions. As we mentioned in the
introduction, it is a key open problem in rigidity theory to find a combinatorial char-
acterization of infinitesimally rigid generic bar-joint frameworks (without symmetry)
in dimensions three and higher. Therefore, we restricted attention to two-dimensional
symmetric frameworks in sections 5 and 6. However, note that we showed in section 4
how to construct antisymmetric orbit rigidity matrices for a symmetric framework in
an arbitrary dimension d.

Each of these antisymmetric orbit rigidity matrices gives rise to an independent
set of necessary conditions for the framework to be infinitesimally rigid in Rd. Anal-
ogously to the conditions derived for various symmetric two-dimensional frameworks
in section 6, these conditions can of course be expressed as gain-sparsity conditions
for the corresponding quotient gain graph. However, to state these conditions, we
need to compute the dimension of the space of trivial infinitesimal motions which are
symmetric with respect to the given irreducible representation. In dimension three,
the dimensions of these spaces can be read off directly from the character tables of the
group (see [1, 3], for example); for dimensions four and higher, one needs to compute
these dimensions for each individual group. This can be done in a similar way to the
proof of Lemma 6.7, for example (see also [14]).

Finally, note that due the simplicity of its entries and its straightforward construc-
tion, each of the orbit rigidity matrices of a given d-dimensional framework allows a
quick analysis of its row or column dependencies, and hence provides a powerful tool
for the detection of infinitesimal motions and self-stresses which exhibit the symme-
tries of the corresponding irreducible representation and which cannot be found by
checking the corresponding gain-sparsity counts.

7.2. Non-Abelian groups. In section 4 we showed how to construct antisym-
metric orbit rigidity matrices for frameworks with any Abelian point group symmetry
in an arbitrary dimension. The key problem to extending these constructions to
frameworks with non-Abelian point group symmetries is that each non-Abelian point
group has an irreducible representation which is of dimension at least two, and an
infinitesimal motion which is symmetric with respect to such a higher-dimensional
representation is not uniquely determined by the velocity vectors assigned to the
vertices in the quotient gain graph. Therefore, the entries of an orbit rigidity matrix
corresponding to such a representation (as well as the underlying combinatorial struc-
ture for such an orbit matrix) are more complicated. It remains open how to extend
our methods and results to frameworks with non-Abelian point group symmetries.

7.3. Group actions which are not free on the vertex set. Throughout this
paper, we assumed that the group Γ acts freely on the vertex set of the graphG. While
in principle we do not expect any major new complications to arise if we allowed Γ to
act nonfreely on the vertices of G, the structures of the orbit rigidity matrices and the
corresponding gain-sparsity counts would need to be adjusted accordingly and would
become significantly less clear and transparent (see also [19]).

For example, suppose a joint pi of a two-dimensional Cs-symmetric framework
(G,p) is “fixed” by the reflection s in Cs, i.e., we have τ(s)(pi) = pi. Then pi con-
tributes only one column to the fully symmetric orbit rigidity matrix of (G,p) (as pi
has only a one-dimensional space of fully symmetric displacement vectors: The space
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of all vectors which lie along the mirror line of s) and only one column to the antisym-
metric orbit rigidity matrix of (G,p) (as pi has also only a one-dimensional space of
antisymmetric displacement vectors: The space of all vectors which lie perpendicular
to the mirror line of s). Similarly, if pi is a joint of a two-dimensional C2-symmetric
framework (G,p) which is fixed by the half-turn C2, then pi would contribute no col-
umn to the fully symmetric orbit rigidity matrix of (G,p) (as pi has no fully symmetric
displacement vectors) and two columns to the antisymmetric orbit rigidity matrix of
(G,p) (as pi has a two-dimensional space of antisymmetric displacement vectors).

Due to these modifications to the structures and entries of the orbit rigidity
matrices, the constructions of these matrices and the proofs for the combinatorial
characterizations of Γ-generic infinitesimally rigid frameworks in the plane will become
significantly more messy.

7.4. Extensions to body-bar and body-hinge frameworks. The class of
body-bar frameworks [23, 21] is another well-studied structural model in the rigidity
context. These form a special class of bar-joint frameworks, which have many impor-
tant practical applications in fields such as engineering, robotics, and biochemistry.
Note that while a combinatorial characterization of three- or higher-dimensional bar-
joint frameworks has not yet been found, rigid generic body-bar frameworks (without
symmetry) were characterized in all dimensions by Tay [21].

In [18], we extend our tools and methods to d-dimensional body-bar frameworks
with Abelian point group symmetries by giving a description of symmetric body-bar
frameworks in terms of the Grassmann–Cayley algebra. Moreover, we establish com-
binatorial characterizations of body-bar frameworks which are generic with respect to
a point group of the form Z/2Z× · · · × Z/2Z using signed graphic matroids.

Finally, in [18] we also extend our methods and results to body-hinge frameworks,
i.e., to structures which consist of rigid bodies that are connected, in pairs, by revolute
hinges along assigned lines. This is an important step towards applying our results to
the rigidity and flexibility analysis of certain physical structures like robotic linkages
or biomolecules.
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