
Abstract—The numerical stability of a space-time finite integration (FI) method is examined. The growth rate of instability is 
evaluated by a numerical eigenvalue analysis formulated from the explicit time-marching scheme of the FI method. The 
space-time subgrid schemes using the 3D and 4D space-time FI methods are shown to be conditionally stable. For the 
constitutive relation at the subgrid connections, a symmetric correction is proposed that does not induce numerical 
instability. The staircase-type space-time subgrid improves stability compared with the straight-type subgrid. 
 
Index Terms—eigenvalue analysis, space-time grid, subgrid, symmetric correction. 

I. INTRODUCTION 

The finite integration (FI) method (Weiland 1996) (Lager 
et. al 2003) (Codecasa and Politi 2008) has been 
reassessed for time-domain computations on unstructured 
spatial grids of electromagnetic fields. Similar to the 
FDTD method, the FI method uses a uniform time-step, 
which is restricted by the Courant-Friedrichs-Lewy 
(CFL) condition (Taflove and Hagness 2006) based on 
the smallest spatial grid size. 

Previous work (Matsuo 2011) (Kawahara et. al 2013) 
introduced a space-time FI method to relax the CFL 
condition that achieves non-uniform time-steps on 3D 
and 4D space-time grids. A numerical eigenvalue 
analysis (Matsuo and Mifune 2014) showed that a 3D 
space-time FI scheme having a temporal grid subdivision 
can be stable. However, the eigenvalue analysis for the 
space-time FI scheme including both temporal and spatial 
grid subdivision has not yet been performed. 

This study evaluates the numerical stability of 3D and 
4D simple subgrid scheme (Matsuo et. al 2015) using the 
space-time FI method. 

II. SPACE-TIME FINITE INTEGRATION METHOD 

A. Electromagnetic Equations in Space-Time 

The coordinate system is denoted by (ct, x, y, z) = (x0, 
x1, x2, x3), where c = 1/√(ε0μ0) and ε0 and μ0 are 
respectively the permittivity and permeability of the 
vacuum. The Maxwell equations, given in the integral 
form, are:  

0 F ,  
 JF           (1) 

   



3

1

3

1

0 dddd
j

lk
j

i

i
i xxcBxxEF  

   



3

1

3

1

0 dddd
j

lk
j

i

i
i xxcDxxHF ,  





3

1

0321 dddddd
j

lk
j xxxJxxxcJ  ,    (2) 

where (j, k, l) is a cyclic permutation of (1, 2, 3); Ω and Ω 
are hypersurfaces in space-time; ρ is the electric charge 
density. In the FI method, the electromagnetic variables 
are defined as: 
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where p and p are the faces of the primal and dual grids 
that constitute Ω and Ω. 

To express the constitutive equation simply, the Hodge 
dual grid (Matsuo 2011)  is introduced as 
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where cr = 1/√(εrμr); κ is a constant determined for each 
pair p and p; εr and μr are respectively the relative 
permittivity and permeability. Equation (4) implies that p 
is orthogonal to p using the Lorentzian metric with speed 
of light crc. Combining (3) and (4) yields  

f = Zg / κ                                    (5) 

where Z = √(μrμ0/εrε0) is the impedance. 

B. Explicit Time-Marching Scheme 

The FI method is generally formulated with the 
Maxwell grid equations using the incidence matrices 
from graph theory. Following (Kawahara et. al 2013), the 
geometrical formulation of (x0, x1, x2)-3D space-time FI 
method is summarized in Appendix A, where the 
propagation of (E1, E2, B3) is described. Equation (27) or 
(29) in Appendix gives an implicit expression for the 
time-evolution of the electromagnetic wave. There exist 
space-time grids having explicit time-marching schemes 
that are compatible with (27) (or (29)). Their numerical 
stability is discussed in the following sections. 

III. STABILITY ANALYSIS 

Figure 1 shows an example of a space-time grid having 
a temporal period Δx0 = Δw, where the solid and dashed 
lines are the primal and dual grids, respectively. The 
variables given by (3) are periodically allocated along the 
x0-direction on the space-time grid. The variables are 
accordingly denoted V0, V1, …, where Vn+1 is assigned 
after Vn by the time-interval Δw, as illustrated in Fig. 2. 
The variable vector Vn is divided into vn and un where the 
components of vn are linearly independent and the 
components of un are given as linear combinations of the 
components of vn , i.e., un = P vn with P a constant 
matrix. The numerical stability of the time-marching 
scheme is evaluated using the eigenvalues of matrix 
vn+1/vn. 
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If the explicit time-marching scheme exists, its 
derivation from (27) takes the form 

A0v
n + B0u

n + A1v
n+1 + B1u

n+1 

    = (A0+B0P)vn + A1v
n+1 + B1u

n+1 = 0  (6) 

where Ai and Bi (i = 1, 2) are N×N and M×M constant 
matrices, respectively; N and M are the dimensions of v 
and u. The influence of permittivity/permeability of 
material is included in Ai and Bi. 

From (6), vn+1/vn is obtained by solving  
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If un+1 and vn+1 are determined from the pairs vn and un 
and vn and un+1, respectively, the time-marching scheme 
is rewritten as:  

un+1 = Q un + R vn ,  vn+1 = S vn + T un+1    
 (8) 

where Q, R, S, and T are constant matrices. Equation (8) 
gives 

vn+1/vn = S + T (R + QP) .        (9) 

By setting  
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then (9) is equivalent to (7) because 
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where 1N and 1M are the N×N and M×M unit matrices. 
Even when the material has nonlinear properties, it is 

possible to define vn+1/vn and to use it for a rough 
evaluation of numerical stability and also for the stability 
analysis of the steady-state field that is static or periodic. 
However, the strict numerical stability analysis for 
general nonlinear media is difficult because vn+1/vn 
depends on the filed amplitude.  
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Figure 1:  Space-time grid. 
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Figure 2:  Periodic allocation of variables. 
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Figure 3: Connection to subgrid. 
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Figure 4: Corner part: (a) non-orthogonal grid, (b) 
symmetric correction. 

 

IV. COMPUTATIONAL RESULTS  

The numerical stability of the space-time subgrid (Fig. 
1) is examined. There, the spatial cell size and the 
temporal step of the coarse grid (main grid) are Δx and 
Δw = cΔt, respectively, whereas those of the fine grid 
(subgrid) are Δx/2 and Δw/2. 

A. Stability in 3D-Space-Time 

To examine the propagation of (E1, E2, B3) on the (x0, 
x1, x2)-3D space-time grid, its connection to the subgrid is 
illustrated in Fig. 3. The associated time-marching 
scheme is presented in (Matsuo et. al 2015). 

Figure 4(a) illustrates the corner part of subgrid 
connection for which the variables ex and ey are given by 
(18) and dx and dy are given by (19); δ is a free 



parameter. When δ ≠ 0, the face for ex (or ey) is not 
orthogonal to the edge for dx (dy), which causes a 
numerical error. 

Based on the vectorial relation shown in Fig. 4(b), a 
symmetric correction,  

ex = ZΔw [(1−δ’)dx – δ’dy] 

 ey = ZΔw [(1−δ’)dy – δ’dx] ,     (12) 

can be used to avoid asymmetry arising in the impedance 
matrix. Because the face for ex (or ey) is slanted along the 
x0-direction, as in Fig. 3, δ’ is given by δ + (crΔw)2/12. 

A small 3D space-time grid having spatial domain size 
of 30Δx  30Δx, and including a subgrid domain of 
28(Δx/2)  28(Δx/2), is used in the numerical eigenvalue 
analysis with εr = μr = 1. Spatially periodic boundary 
conditions are imposed. 

Figure 5 plots the eigenvalue distribution of vn+1/vn 
without correction when Δw / Δx = 0.5, 0.51 and δ = 
0.08. For Δw / Δx = 0.5, all the eigenvalues of vn+1/vn 
are on the unit circle, which implies that the explicit time-
marching scheme is stable. When Δw / Δx = 0.51, some 
of the eigenvalues move outside the unit circle [Fig. 
5(b)], causing numerical instability. 

Figure 6 plots the eigenvalue distribution with the 
symmetric correction, which does not affect the stability. 
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Figure 5:  Eigenvalues of vn+1/vn without correction 
when Δw / Δx is  (a) 0.5 and (b) 0.51. 
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Figure 6:  Eigenvalues of vn+1/vn with symmetric 
correction when Δw / Δx is  (a) 0.5 and (b) 0.51. 

 
The FI method allows slanted edges to be curved [Cf. 

Fig. 7(a) and (b)], where node positions () are 
unchanged (Matsuo et. al 2015). A further transformation 
leads to staircase-like edges [Fig. 7(c)]. The edges can be 
transformed along the temporal direction also [Fig. 8].  

Hereon, the space-time grids of Figs. 7(a) and 8(a) are 
referred to as straight type whereas the grids of Figs. 7(c) 
and 8(c) are referred to as staircase type. It is difficult for 

the straight type subgrid connection to locate the subgrid 
boundary at the planar boundary of two materials, which 
is possible for the staircase type connection. 

Figure 9 plots the eigenvalue distribution using the 
staircase-type space-time grid without correction for Δw / 
Δx = 0.5, 0.51 and δ = 0.02. Figure 10 plots the 
eigenvalue distribution with symmetric correction. 
Similar distributions in Figs. 9 and 10 to those in Figs. 5 
and 6 show that the space-time FI method is conditionally 
stable. 

The effect of grid type and symmetric correction on the 
computational accuracy is examined in Appendix B. 
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Figure 7:  Transformation of spatial edges without 
changing node positions (). 
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Figure 8:  Transformation of space-time edges without 
changing node positions (). 
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Figure 9:  Eigenvalues of vn+1/vn with staircase-type 
grid without correction when Δw / Δx is  (a) 0.5 and (b) 
0.51. 
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Figure 10:  Eigenvalues of vn+1/vn with staircase-type 
grid and symmetric correction when Δw / Δx is  (a) 0.5 
and (b) 0.51. 
 

B. Stability in 4D Space-Time 

Figure 11(a) illustrates a 4D connection to the subgrid 
of straight type, where δ is a free parameter. Similar to 
the case for the 3D subgrid, the edges and faces can 
curve resulting in a staircase-type grid [Fig. 11(b)]. 



A small 4D space-time grid having spatial domain size 
of 12Δx  12Δx  12Δx including a subgrid domain of 
8(Δx/2)  8(Δx/2)  8(Δx/2) (see Fig. 12) is used in the 
numerical analysis of eigenvalues; spatially periodic 
boundary conditions are imposed. Figures 13 and 14 plot 
the eigenvalue distribution using the straight- and 
staircase-type grids, respectively. The 4D space-time FI 
scheme is conditionally stable because for small-valued 
Δw/Δx all the eigenvalues of vn+1/vn are on the unit 
circle. The staircase-type grid type allows a temporal step 
size of Δw / Δx = 0.4 for stable explicit time marching 
whereas the straight-type grid suffers from instability 
with Δw / Δx  0.34. 
 

x1

x0
x2

(b)

x1

x3
x2

x1

x0
x2

(1−δ)Δx

(1/2+δ)Δx

Δx/6

(1/2+δ)Δx

(1−δ)Δx

(crΔw)2/(6Δx)

(a)

x1

x3
x2

 
Figure 11:  4D subgrid connection of (a) straight type and 
(b) staircase type. 
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Figure 12:  Small space-time grid for eigenvalue analysis. 
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Figure 13:  Eigenvalues of vn+1/vn with 4D straight-type 
grid for Δw / Δx is (a) 0.32 and (b) 0.34. 
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Figure 14:  Eigenvalues of vn+1/vn with 4D staircase-
type grid for Δw / Δx is (a) 0.4 and (b) 0.42. 
 

V. CONCLUDING REMARKS 

A scheme for the numerical analysis of stability of the 
space-time FI method is presented. The 3D and 4D 
subgrid schemes using the space-time FI method are 
conditionally stable, where a symmetric correction for the 
constitutive relation does not induce numerical 
instability. The staircase-type 4D space-time subgrid 
allows a larger time-step than the straight-type subgrid. 

APPENDIX 

A. Geometrical Formulation of Space-Time FI method 

The geometrical formulation of the 3D space-time FI 
method is derived, where the coordinates are (x0, x1, x2) 
and the propagation of fields (E1, E2, B3) is described:  

  F = cB3dx1dx2 + E2dx2dx0  E1dx0dx1 ,   

 F = H3dx0  cD2dx1 + cD1dx2 .       (13) 

Compared with the 4D case, Fdx3 corresponds to F in (2). 
Let arrays {n}, {s}, {p}, and {v} denote the sets of 

nodes, edges, faces, and volumes in the 3D space-time 
primal grid, respectively. These are related by incidence 
matrices [G], [C], and [D] as. 

  {s} = [G]{n} , {p} = [C]{s} ,  {v} = [D]{p} (14) 

where  denotes the restriction to the boundary. 
Similarly, the sets of nodes, edges, faces, and volumes in 
the dual grid are related as, 

  {s} = [G]{n} , {p} = [C]{s} ,  {v} = [D]{p} (15) 

The k-th face p(k) on the primal grid and its 
corresponding edge s(k) on the dual grid are written 

  p(k) = p(k)
0dx1dx2 + p(k)

1dx2dx0 + p(k)
2dx0dx1  

  s(k) = s(k)
0dx0 + s(k)

1dx1 + s(k)
2dx2 .       (16) 

Using p(k)
i and s(k)

i, the area vector p(k) and the edge 
vector s(k) are defined as 

  p(k) = (p(k)
0, p(k)

1, p(k)
2) ,  s(k) = (s(k)

0, s(k)
1, s(k)

2)   (17) 

Corresponding to p(k) and s(k), the variables for the 
space-time FI method is given as  

  f(k) = ∫p(k) F = p(k)
0cB3[k] + p(k)

1E2[k] – p(k)
2E1[k] ,  (18) 

  g(k) =∫s(k) F = s(k)
0H3[k] – s(k)

1cD2[k] + s(k)
2cD1[k], 

 (19) 



where the subscript ‘[k]’ denotes an averaged value on 
p(k) or s(k). Equation (4) is rewritten as  

  crs(k)
0/p(k)

0 = − s(k)
1/crp(k)

1 = − s(k)
2/crp(k)

2 = κ(k) , (20) 

and implies that s(k) is orthogonal to p(k) by the Lorentzian 
metric but may be non-orthogonal to p(k) by the Euclidean 
metric. Figure 15 illustrates the geometrical relation 
between p(k) and s(k), where p(k)s(k) denotes the inner 
product using the Euclidean metric. 

From (18)–(20), f(k) and g(k) are related by impedance 
Z(k): 

  f(k) = z(k)g(k)          (21) 

where  

  z(k) = Z(k) / κ .        (22) 

In integral form, Maxwell’s equations (1) without source 
terms are  

  [D]{f} = 0 ,  [C]{g} = 0 ,     (23) 

where {f} and {g} consist of the variables defined by 
(18) and (19). In matrix form, 

  {f} = [z]{g},         (24) 

where [z] is the diagonal matrix formed with elements 
(22). 
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Figure 15:  Geometrical relation between face p(k) and 
edge s(k):  (a) p(k)s(k) > 0, and (b) p(k)s(k) <0. 

 
If vectors p(k) and s(k) are represented as in Fig. 15, s(k) 

may have the opposite direction [Fig. 15(b)]. This fact is 
due to the relation (20) and results in the relation  

  [C] = [C]*T .           (25) 

The matrix operator *T is defined as 
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where cij and cji are the respective elements of [C] and 
[C] corresponding to the pair p(k) and s(k). 

Equations (22), (23), and (25) determine the space-time 
Maxwell grid equations  

  0}{
][][

][
1T* 







 f

zC

D .       (27) 

By modifying the impedance matrix, another formulation 
is possible, where relation [C] = [C]T holds. The modified 
impedance matrix [z*] is defined as  
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where z(k)
* is the element of [z] corresponding to the pair 

p(k) and s(k). Equations (23), (24), and (28) determine 
another form of the space-time Maxwell grid equations,  
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which is equivalent to (27). 

B. Effect of Symmetrical Correction 

Wave propagation is simulated to compare subgrid 
schemes in the same way as in (Matsuo et. al 2015). For 
simplicity, the permittivity and permeability are set to 
unity by normalization; also Δx and Δw are set to 1 and 
0.5 by normalization. The spatial domain of [80: 80] × 
[80: 80] includes a subgrid domain of [16: 36] × [20: 
40] having spatial step Δx/2 and temporal step Δw/2. The 
normalized initial conditions are E1 = E2 = 0 and B3 = 
exp{[(x1)2+(x2)2]/25}. Spatially periodic boundary 
conditions are imposed. Figure 16 presents the 
distributions of discrepancy ΔB between B3 obtained by 
the FDTD method and the space-time subgrid at ct = 60. 
The discrepancy seen for x  16 and y  20 is mainly 
caused by numerical dispersion whereas that for x  16 or 
y  20 is caused by an unphysical wave reflection at the 
subgrid connection. The staircase-type grid with 
symmetric correction reduces this unphysical reflection. 
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Figure 16:  Discrepancy ΔB relative to B3 obtained 
employing the FDTD method: (a) straight-type grid 
without correction, and (b) staircase-type grid with 
symmetric correction. 
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