<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>T memory stem cells are the hierarchical apex of adult T-cell leukemia. (摘要)</td>
</tr>
<tr>
<td>著者(s)</td>
<td>Nagai, Yuya</td>
</tr>
<tr>
<td>引用</td>
<td>Kyoto University (京都大学)</td>
</tr>
<tr>
<td>発行日</td>
<td>2015-09-24</td>
</tr>
<tr>
<td>URL</td>
<td>https://dx.doi.org/10.14989/doctor.k19267</td>
</tr>
<tr>
<td>右</td>
<td>学位規則第9条第2項により要約公開</td>
</tr>
<tr>
<td>Type</td>
<td>Thesis or Dissertation</td>
</tr>
<tr>
<td>Textversion</td>
<td>none</td>
</tr>
</tbody>
</table>

京都大学
T memory stem cells are the hierarchical apex of adult T-cell leukemia

Yuya Nagai¹†, Masahiro Kawahara¹†, Masakatsu Hishizawa¹*, Yayoi Shimazu¹, Noriko Sugino¹, Sumie Fujii¹, Norimitsu Kadowaki¹ and Akifumi Takaori-Kondo¹

¹ Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University.

Abstract

Background & Aims

Adult T-cell leukemia (ATL) is a mature CD4⁺ T cell neoplasm associated with human T-cell leukemia virus type 1 (HTLV-1).¹² Despite a number of investigations using human specimens and mice models, the exact origin of ATL cells remains unclear.³⁻⁷ Recently T memory stem (T_{SCM}) cells were identified as a unique CD45RA⁺ T cell subpopulation with stem cell-like properties such as enhanced self-renewal capacity and multipotency.⁸ In this study, we investigate the phenotypic and functional heterogeneity and the hierarchy of ATL cells and whether T_{SCM} cells are involved in the development of ATL.

Materials & Methods

Clinical samples from healthy individuals (HIs), HTLV-1 carriers, and ATL patients were collected after written informed consent was obtained. To separate CD4⁺ T cells into four subpopulations including naïve T (T_N), T_{SCM}, central memory T (T_{CM}), and effector memory T (T_{EM}) cells, we adapted 8 colors FACS sorting according to a previously described protocol⁸,⁹ with minor modifications. Peripheral blood mononuclear cells (PBMCs) were stained with anti-CD45RO, anti-CCR7, anti-CD95, anti-CD122, anti-CD25, anti-CD4, and anti-CD45RA, in addition to a cocktail including anti-CD11b, anti-CD14, and anti-CD56. Qualitative and
quantitative PCR were performed for the pX region which is relatively conserved in the
HTLV-1 genome, and RNase P as the internal control. HTLV-1 proviral load (PVL) was
described as the relative value of pX/RNase P to that in CD3⁺CD4⁺CD25⁺ cells from an ATL
patient with single provirus integration proven by Southern blot hybridization analysis.
Inverse long PCR was performed to identify ATL clones among numerous HTLV-1-infected
cells as previously described. ATL clone-specific integration sites were determined by direct
sequencing of inverse long PCR products, and ATL clone-specific PCR assay was constructed
in the individual cases. Each sorted CD4⁺ T cell subpopulation was cultured in Iscove’s
modified Dulbecco’s medium supplemented with recombinant human interleukin 7 (IL-7) for
2 weeks and analyzed for the phenotypic change. NOD.Cg-Prkdc^{scid} Il2rg^{tm1Wjl} /SzJ (NSG)
mice, NOD.Cg-Prkdc^{scid} Il2rg^{tm1Sug} /Jic (NOG) mice, and NOD.Cg-Rag1^{tm1Mom} Il2rg^{tm1Wjl}
/SzJ (NRG) mice were used for xenogeneic transplantation assay and repopulating human
cells were analyzed for phenotype and clonality.

Results

We first investigated whether hematopoietic stem and progenitor cells (HSPCs) were infected
with HTLV-1. We obtained bone marrow mononuclear cells from five ATL patients and sorted
lineage CD34⁺ cells that contain HSPCs but not mature hematopoietic cells including T, B,
natural killer, myeloid, and erythroid cells. PCR which can successfully amplify five or greater
copies of the pX region showed that no amplification was observed in HSPCs from all tested
samples, indicating that HTLV-1-infected cells do not exist in HSPCs.

CD4⁺ T cells from PBMCs of HI s were successfully separated into four subpopulations
including T_N (CD4⁺CCR7⁺CD45RA⁺CD45RO⁻CD95⁻CD122⁻), T_{SCM}
(CD4⁺CCR7⁺CD45RA⁺CD45RO⁻CD95⁺CD122^{dim}), T_{CM} (CD4⁺CCR7⁺CD45RA⁻CD45RO⁺),
and T_{EM} (CD4⁺CCR7⁺CD45RA⁻CD45RO⁺) in agreement with previous studies. We applied
the same gating method to PBMCs from 3 HTLV-1 carriers and 17 ATL patients and found
that all four populations were separable across all disease phases. Numbers of entire CD45RO\(^+\) memory T cells (T\(_{CM}\) plus T\(_{EM}\)) were increased in ATL patients consistently with the clinical aspect that the majority of ATL cells express CD45RO, whereas numbers of T\(_{SCM}\) cells were mostly comparable between HIs and ATL patients. To examine the exact distribution of HTLV-1-infected cells in CD4\(^+\) T cell subpopulations, we sorted these four subpopulations and measured PVL. The majority of T\(_{CM}\) and T\(_{EM}\) cells were infected with HTLV-1 in agreement with a previous study reporting the correlation of CD4\(^+\) memory T cell number and PVL.\(^{15}\)

Intriguingly, PVL of T\(_{SCM}\) cells was clearly measurable in all tested cases including not only ATL patients but also HTLV-1 carriers, whereas PVL of T\(_N\) cells was barely detectable in only half of tested cases at the level which is explicable as contamination. Furthermore to investigate the distribution of ATL clones in CD4\(^+\) T cell subpopulations, we constructed ATL clone-specific PCR that amplified the unique flanking region of HTLV-1 integration site in the individual cases. In all tested cases, each targeted site was amplified not only in T\(_{CM}\) and T\(_{EM}\) cells but in T\(_{SCM}\) cells, while no amplification was detected in T\(_N\) cells. These results indicate that ATL clones are composed of phenotypically heterogeneous memory T cells including T\(_{SCM}\), T\(_{CM}\), and T\(_{EM}\) cells.

Next, to investigate the possibility of functional hierarchy among T\(_{SCM}\), T\(_{CM}\), and T\(_{EM}\) cells, we purified each memory T cell population and performed an in vitro culture assay with IL-7 that promotes survival but not differentiation of CD4\(^+\) T cells.\(^{16}\) Interestingly T\(_{SCM}\) cells from HTLV-1 carriers and ATL patients sustained the original phenotype and concurrently generate CD45RO\(^+\) memory T cells, whereas the opposite induction from T\(_{CM}\) or T\(_{EM}\) cells to T\(_{SCM}\) cells was never observed in all tested cases. These results indicate that T\(_{SCM}\) cells from HTLV-1 carriers and ATL patients are hierarchically upstream of CD45RO\(^+\) memory T cells.

Finally to investigate tumorigenicity of T\(_{SCM}\) cells, we performed a xenogeneic transplantation assay. We inoculated 2 to 3 × 10\(^4\) cells of sorted T\(_N\), T\(_{SCM}\), T\(_{CM}\), or T\(_{EM}\) cells from one ATL
case intraperitoneally into immunodeficient mice and evaluated the phenotype and clonal architecture of repopulating cells in mice. Unidirectional differentiation from T_{SCM} to T_{CM} and T_{EM} was reconfirmed and T_{SCM} cells displayed high repopulating capacity of the identical ATL clone compared to other CD45RO^{+} memory T cells. These results indicate that T_{SCM} cells are competent to preserve ATL clones and to give rise to ATL cells.

Conclusions

In this study, we clearly demonstrated the presence of ATL clones in T_{SCM} population as well as in T_{CM} and T_{EM} populations. Our in vitro culture and xenogeneic transplantation assay showed unidirectional differentiation from T_{SCM} to T_{CM} and T_{EM} and that T_{SCM} cells have high repopulating capacity of the identical ATL clone. Collectively, ATL cells are phenotypically and functionally heterogeneous. T_{SCM} cells are identified as the hierarchical apex capable of reconstituting the identical ATL clones and could be the source for development of ATL.

References

