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1. Introduction

An operator algebra is a closed subalgebra of B.H/ for a complex Hilbert spaceH .
Blecher and Read [2011; 2013a; 2014] and Read [2011] recently introduced and
studied a new notion of positivity in operator algebras (see also [Blecher and
Neal 2012a; 2012b; Bearden et al. 2014; Blecher et al. 2008]), with an eye to
extending certain C �-algebraic results and theories to more general algebras. Over
the last several years, we have mentioned in lectures on this work that most of
the results of those papers make sense for bigger classes of Banach algebras, and
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that many of the tools and techniques exist there. In the present paper we initiate
this direction. Thus we generalize a number of the main results from the series
of papers mentioned above, and some other facts, to a larger class of Banach
algebras. In the process we give simplifications of several facts in these earlier
papers. We will also point out some of the main results from the series of papers
mentioned above which do not seem to generalize, or are less tidy if they do.
(We will not spend much time discussing aspects from that series concerning
noncommutative peak interpolation, or generalizations of noncommutative topology
such as the noncommutative Urysohn lemma; these seem unlikely to generalize
much farther.)

Before we proceed we make an editorial/historical note: the preprint [Blecher
and Read 2013b], which contains many of the basic ideas and facts we use here,
has been split into several papers, which have each taken on a life of their own (e.g.,
[Blecher and Read 2014] which focuses on operator algebras, and the present paper
in the setting of Banach algebras).

In this paper we are interested in Banach algebras A (over the complex field)
with a bounded approximate identity (bai). In fact, often there will be a contractive
approximate identity (cai), and, in this case, we call A an approximately unital
Banach algebra. A Banach algebra with an identity of norm 1 will be called
unital. Most of our results are stated for approximately unital algebras. Frequently
this is simply because algebras in this class have an especially nice “multiplier
unitization” A1, defined below, and a large portion of our constructs are defined in
terms of A1. Also, approximately unital algebras constitute a strong platform for
the simultaneous generalization of as much as possible from the series of papers
referenced above. However, as one might expect, for algebras without any kind of
approximate identity it is easy to derive variants of a large portion of our results
(namely, almost all of Sections 3, 4, and 7), by viewing the algebra as a subalgebra
of a unital Banach algebra (any unitization, for example). We will discuss this point
in more detail in Section 9 and in a forthcoming conference proceedings survey
article [Blecher 2015].

Indeed many of our results are stated for special classes of Banach algebras, for ex-
ample, for Banach algebras with a sequential cai or which are Hahn–Banach smooth
in a sense defined later. Several of the results are sharper forM -approximately unital
Banach algebras, which means that A is an M -ideal in its multiplier unitization A1

(see Section 2). This is equivalent to saying that A is approximately unital and for
all x 2 A��, we have k1� xk.A1/�� Dmaxfke� xkA�� ; 1g. Here e is the identity
for A��, if it has one (otherwise it is a “mixed identity” of norm 1 — see below
for the definition of this). However, as will be seen from the proofs, some of the
results involving the M -approximately unital hypothesis will work under weaker
assumptions, for example, strong proximinality of A in A1 at 1 (that is, given � > 0,
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there exists a ı > 0 such that if y 2 A with k1� yk< 1C ı then there is a z 2 A
with k1� zk D 1 and ky � zk< �).

We now outline the structure of this paper, describing each section briefly. Be-
cause our paper is rather diverse, to help the readers focus we will also mention
at least one highlight from each section. In Section 2 we discuss unitization and
states, and also introduce some classes of Banach algebras. A key result in this
section ensures the existence of a “real positive” cai in Banach algebras with a
countable cai satisfying a reasonable extra condition. We also characterize this
extra condition, and the related property that the quasistate space be weak* closed
and convex. In the latter setting, by the bipolar theorem, there exists a “Kaplansky
density theorem”. (Conversely, such a density result often immediately gives a real
positive approximate identity by weak* approximating an identity in the bidual by
real positive elements in A, and using, e.g., Lemma 2.1 below.) Section 3 starts by
generalizing many of the basic ideas from the papers of Blecher and Read cited above
involving cais, roots, and positivity. With these in place, we give several applications
of the kind found in those papers; for example, we characterize when xA is closed in
terms of the “generalized invertibility” of the real positive element x, and show that
these are the right ideals qA for a real positive idempotent q inA. We also list several
examples illustrating some of the things from the cited series of papers that will
break down without further restrictions on the class of Banach algebras considered.
The main advance in Section 4 is the introduction of the concept of hereditary
subalgebras (HSAs), an important tool in C �-algebra theory, to Banach algebras,
and establishing the basics of their theory. In particular, we study the relationship
between HSAs and one-sided ideals with one-sided approximate identities. Some
aspects of this relationship are problematic for general Banach algebras, but it works
much better in separable algebras, as we shall see. We characterize the HSAs, and
the associated class of one-sided ideals, as increasing unions of “principal” ones;
and indeed in the separable case they are exactly the “principal” ones. Indeed it is
obvious that in a Banach algebra A, every closed right ideal with a real positive left
bai is of the form EA for a set E of real positive elements of A. Section 4 contains
an Aarnes–Kadison-type theorem for Banach algebras, and related results that use
the Cohen’s factorization proof technique. Some similar results and ideas have been
found by Sinclair (in [Sinclair 1978], for example), but these are somewhat different,
and were not directly connected to “positivity”. It is interesting though that Sinclair
was inspired by papers of Esterle based on the Cohen’s factorization proof technique,
and one of these does have some connection to our notion of positivity [Esterle 1978].

In Section 5 we consider the better behaved class of M -approximately unital
Banach algebras. The main result here is the generalization of Read’s theorem [Read
2011] to this class. That is, such algebras have cais .et / satisfying k1� 2etk � 1.
This may be the class to which the most results from our previous operator algebra
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papers will generalize, as we shall see at points throughout our paper. In Section 6
we show that basic aspects and notions from the classical theory of ordered linear
spaces correspond to interesting facts about our positivity for our various classes of
approximately unital Banach algebras (for example, for M -approximately unital
algebras, or certain algebras with a sequential cai). Indeed the highlight of this
section is the revealing of interesting connections between Banach algebras and
this classical ordered linear theory (see also [Blecher and Read 2014] for more, and
clearer, such connections if the algebras are in addition operator algebras). In the
process we generalize several basic facts about C �-algebras. For example, we give
the aforementioned variant of Kaplansky’s density theorem, and variants of several
well-known order-theoretic properties of the unit ball of a C �-algebra and its dual.

In Sections 7 and 8 we find variants for approximately unital Banach algebras of
several other results about two-sided ideals from [Blecher and Read 2011; 2013a;
2014]. In Section 7 we assume that A is commutative, and in this case we are able
to establish the converse of the last result mentioned in our description of Section 4
above. Thus closed ideals having a real positive bai, in a commutative Banach
algebra A, are precisely the spaces EA for sets E of real positive elements of A. In
Section 8 we only consider ideals that are M -ideals in A (this does generalize the
operator algebra case at least for two-sided ideals, since the closed two-sided ideals
with cais in an operator algebra are exactly the M -ideals [Effros and Ruan 1990]).
The lattice theoretic properties of such ideals behave considerably more like the
C �-algebra case and are related to faces in the quasistate space. Section 8 may
be considered to be a continuation of the study of M -ideals in Banach algebras
initiated in [Smith and Ward 1978; 1979; Smith 1979] and, e.g., [Harmand et al.
1993, Chapter V]. At the end of this section, we give a “noncommutative peak
interpolation” result reminiscent of Tietze’s extension theorem, which is based
on a remarkable result of Chui, Smith, Smith, and Ward [Chui et al. 1977]. This
solves an open problem from [Blecher and Read 2013b], or earlier, concerning
real positive elements in a quotient. Finally, in Section 9 we discuss which results
from earlier sections generalize to algebras without a cai; more details on this are
given in [Blecher 2015]. The latter is a survey article which also contains a few
additional details on some of the material in the present paper, as well as some
small improvements found after this paper was in press.

We now list some of our notation and general facts: We write Ball.X/ for the
set fx 2X W kxk � 1g. If E;F are sets then EF denotes the span of products xy
for x 2E; y 2 F . If x 2 A for a Banach algebra A, then ba.x/ denotes the closed
subalgebra generated by x. For two spaces X; Y which are in duality, for a subset E
of X , we use the polar Eı D fy 2 Y W hx; yi � �1 for all x 2Eg.

For us, Banach algebras satisfy kxyk � kxkkyk. We recall that a nonunital
Banach algebra A is Arens regular if and only if its unitization is Arens regular (any
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unitization will do here). In the rest of this paragraph, we consider an Arens regular
approximately unital Banach algebra A. For such an algebra, we will always write e
for the unique identity of A��. Indeed if A is an Arens regular Banach algebra
with cai .et /, and et�! � weak* in A��, then et�a! �a weak* for all a 2A. So
�a D a, and similarly a� D a. Therefore � is the unique identity e of A��, and
et! e weak*. We will show at the end of this section that the multiplier unitization
A1 is isometrically isomorphic to the subalgebra ACCe of A��.

If A is a Banach algebra which is not Arens regular, then the multiplication we
usually use on A�� is the “second Arens product” (˘ in the notation of [Dales
2000]). This is weak* continuous in the second variable. If A is a nonunital, not
necessarily Arens regular, Banach algebra with a bai, then A�� has a so-called
“mixed identity” [Dales 2000; Palmer 1994; Doran and Wichmann 1979], which
we will again write as e. This is a right identity for the first Arens product, and a
left identity for the second Arens product. A mixed identity need not be unique;
indeed, mixed identities are just the weak* limit points of bais for A.

We will also use the theory of M -ideals. These were invented by Alfsen and
Effros, and [Harmand et al. 1993] is the basic text for their theory. We recall, a
subspace E of a Banach space X is an M -ideal in X if E?? is complemented in
X�� via a contractive projection P so that X�� D E??˚1 KerP . In this case,
there is a unique contractive projection onto E??. M -ideals have many beautiful
properties, some of which will be mentioned below.

We will need the following result several times:

Lemma 1.1. Let X be a Banach space, and suppose that .xt / is a bounded net
in X with xt ! � weak* in X��. Then

k�k D lim
t

inf
˚
kyk W y 2 convfxj W j � tg

	
:

Proof. It is easy to see that k�k� limt inf
˚
kyk W y 2 convfxj W j � tg

	
, for example,

by using the weak* semicontinuity of the norm, and noting that for every t and any
choice yt 2 convfxj W j � tg, we have yt ! � weak*. By way of contradiction,
suppose that

k�k< C < lim
t

inf
˚
kyk W y 2 convfxj W j � tg

	
:

Then there exists t0 such that the norm closure of convfxj W j � tg is disjoint from
C Ball.X/ for all t � t0. By the Hahn–Banach theorem, there exists ' 2X� with

Ck'k<K < Re'.xj /; j � t;

so that Ck'k<K � Re'.�/. This contradicts k�k< C . �

Any nonunital operator algebra has a unique operator algebra unitization (see
[Blecher and Le Merdy 2004, Section 2.1]), but of course this is not true for Banach
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algebras. We will choose to use the unitization that typically has the smallest norm
among all unitizations, and which we now describe. If A is an approximately unital
Banach algebra, then the left regular representation embeds A isometrically in B.A/.
We will always write A1 for the multiplier unitization of A; that is, we identify A1

isometrically with ACCI in B.A/. For a 2 A; � 2 C, we have

kaC�1k D sup
˚
kacC�ck W c 2 Ball.A/

	
D sup

t
kaet C�etk D lim

t
kaet C�etk;

(see [loc. cit., A.4.3], for example). If A is actually nonunital then the map �0.aC
�1/ D � on A1 is contractive, as is any character on a Banach algebra. We call
this the trivial character. Below, 1 will almost always denote the identity of A1, if
A is not already unital. Note that the multiplier unitization also makes sense for
the so-called self-induced Banach algebras, namely those for which the left regular
representation embeds A isometrically in B.A/.

If A is a nonunital, approximately unital Banach algebra then the multiplier
unitization A1 may also be identified with a subalgebra of A��. Indeed if e is a
mixed identity of norm 1 for A�� then ACCe is then a unitization of A (by basic
facts about the Arens product). To see that this is isometric to A1 above, note that
for any c 2 Ball.A/; a 2 A; � 2 C, we have

kacC�ck � kaC�ekA�� D ke.aC�1/k.A1/�� � kaC�1kA1 :

Thus by the displayed equation in the last paragraph, kaC�ekA�� D kaC�1kA1
as desired.

2. Unitization and states

If A is an approximately unital Banach algebra, then we may view A in its multiplier
unitization A1, and write

FA D fa 2 A W k1� ak � 1g D fa 2 A W ke� ak � 1g;

where e is as in the last paragraph (or set e D 1 if A is unital). So
1
2
FA D fa 2 A W k1� 2ak � 1g:

If x 2 1
2
FA then x; 1� x 2 Ball.A1/. Also, FA D FA1 \A, and FA is closed under

the quasiproduct aC b� ab. (It is interesting that cones containing FA were used
to obtain nice results about “order” in unital Banach algebras and their duals in
Section 1 of the historically important paper [Kelley and Vaught 1953], based on a
1951 ICM talk. Slightly earlier, FA also appeared in a memoir by Kadison.)

If � 2 A�� then an expression such as �1C � will usually need to be interpreted
as an element of .A1/��, with 1 interpreted as the identity for A1 and .A1/��. Thus
k1� �k denotes k1� �k.A1/�� . We define

FA�� D f� 2 A
��
W k1� �k � 1g D A��\F.A1/�� :
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We write rA for the set of a 2 A whose numerical range in A1 is contained in the
right half-plane. That is,

rA D fa 2 A W Re'.a/� 0 for all ' 2 S.A1/g;

where S.A1/ denotes the states on A1. Note that rA is a closed cone in A, but it
is not proper (hence it is what is sometimes called a wedge). We write a � b if
b� a 2 rA. It is easy to see that RCFA � rA. Conversely, if A is a unital Banach
algebra and a2 rA then aC�12RCFA for every � >0. Indeed aC�12CFA, where
C Dkak2=�C �, as can be easily seen from the well-known fact that the numerical
range of a is contained in the right half-plane if and only if k1� tak � 1C t2kak2

for all t > 0 (see, e.g., [Magajna 2009, Lemma 2.1]).
One main reason why we almost always assume that A is approximately unital

in this paper is that FA and rA are well-defined as above. However, as we said in
the introduction, if A is not approximately unital, it is easy to see how to proceed
in a large number of our results (namely in almost all of Sections 3, 4, and 7), and
this is discussed briefly in Section 9.

The following is no doubt in the literature, but we do not know of a reference
that proves all that is claimed. It follows from it that mixed identities in A�� are
just the weak* limits of bais for A, when these limits exist.

Lemma 2.1. If A is a Banach algebra, and if a bounded net xt 2 A converges
weak* to a mixed identity e 2A��, then a bai for A can be found with weak* limit e,
and formed from convex combinations of the xt .

Proof. Given � > 0 and a finite set F � A�, there exists tF;� such that

j'.xt /� e.'/j< �; t � tF;�; ' 2 F:

Given a finite set E D fa1; : : : ; ang �A, we have that xtak! ak and akxt ! ak
weakly. So there is a convex combination y of the xt for t � tF;� with

kyak � akkCkaky � akk � �:

We also have j'.y/�e.'/j � � for ' 2F . Write this y as y�, where �D .E; F; �/.
Given �0>0 and a2A, if �� �0 and fag�E, then ky�a�akCkay��ak� �� �0
for �D .E; F; �/with any F . So .y�/ is a bai. Also if ' 2F then j'.y�/�e.'/j<�.
So y�! e weak*. �

Remark. The “sequential version” of the last result is false. For example, consider
the usual cai .n�Œ�1=.2n/;1=.2n/�/ of L1.R/ with convolution product. A subnet of
this converges weak* to a mixed identity e 2 L1.R/��. However, there can be no
weak* convergent sequential bai for L1.R/, since L1.R/ is weakly sequentially
complete.
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For a general approximately unital nonunital Banach algebra A with cai .et /, the
definition of “state” is problematic. There are many natural notions, for example:
(i) a contractive functional ' on A with '.et /! 1 for some fixed cai .et / for A,
(ii) a contractive functional ' on A with '.et /! 1 for all cai .et / for A, and (iii) a
norm 1 functional on A that extends to a state on A1, where A1 is the multiplier
unitization above. If A is not Arens regular then (i) and (ii) can differ; that is,
whether '.et /! 1 depends on which cai for A we use. And if e is a mixed identity
then the statement '.e/D 1 may depend on which mixed identity one considers.
In this paper, for simplicity, and because of its connections with the usual theory of
numerical range and accretive operators, we will take (iii) above as the definition of
a state of A. We shall also often consider states in the sense of (i), and will usually
ignore (ii) since in some sense it may be treated as a “special case” of (i) (that is,
almost all computations in the paper involving the class (i) are easily tweaked to
give the “(ii) version”). We define S.A/ to be the set of states in the sense of (iii)
above. This is easily seen to be norm closed, but will not be weak* closed if A is
nonunital. We define

cA� D f' 2 A
�
W Re'.a/� 0 for all a 2 rAg;

and note that this is a weak* closed cone containing S.A/. These are called the
real positive functionals on A. If eD .et / is a fixed cai for A, define

Se.A/D f' 2 Ball.A�/ W lim
t
'.et /D 1g

(this corresponds to (i) above). Note that Se.A/ is convex but S.A/ may not be (as
in, e.g., Example 3.16). An argument in the next proof shows that Se.A/� S.A/.
Finally we remark that for any y 2A of norm 1, if ' 2 Ball.A�/ satisfies '.y/D 1,
then x 7! '.yx/ is in Se.A/ for all cais e of A.

We recall that a subspace E of a Banach space X is called Hahn–Banach smooth
in X if every functional on E has a unique Hahn–Banach extension to X . Any M -
ideal in X is Hahn–Banach smooth in X . See [Harmand et al. 1993] and references
therein for more on this topic.

Lemma 2.2. For approximately unital Banach algebras A which are Hahn–Banach
smooth in A1, and therefore for M -approximately unital Banach algebras, and
' 2 A� with norm 1, the following are equivalent:

(i) ' is a state on A (that is, extends to a state on A1).

(ii) '.et /! 1 for every cai .et / for A.

(iii) '.et /! 1 for some cai .et / for A.

(iv) '.e/ D 1 whenever e 2 A�� is a weak* limit point of a cai for A (that is,
whenever e is a mixed identity of norm 1 for A��).
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Proof. Clearly (ii) implies (iii). If ' 2 Ball.A�/, write Q' for its canonical weak*
continuous extension to A��. If .et / is a cai for A with weak* limit point e and
'.et /! 1, then Q'.e/D 1. It follows that Q'jA1 is a state on A1. So (iii) implies (i).
To see that (i) implies (iv), suppose that A is Hahn–Banach smooth in A1, and that
' is a norm 1 functional on A that extends to a state  on A1. If .et / is a cai for A
with weak* limit point e, then also Q'jACCe is a norm-1 functional extending ' so
that Q'jACCe D  , and for some subnet,

'.e/D lim
t
'.et�/D Q'.e/D  .1/D 1:

We leave the remaining implication as an exercise. �
Under certain conditions on an approximately unital Banach algebra A, we shall

see in Corollary 2.8 that S.A1/ is the convex hull of the trivial character �0 and
the set of states on A1 extending states of A, and that the weak* closure of S.A/
equals f'jA W ' 2 S.A1/g.

The numerical range W.a/ (or WA.a/) of a 2 A, if A is an approximately unital
Banach algebra, will be defined to be f'.a/ W ' 2 S.A/g. If A is Hahn–Banach
smooth in A1 then it follows from Lemma 2.2 that S.A/ is convex, and hence so
is W.a/. We shall see in Corollary 2.8 that under the condition mentioned in the
last paragraph, we have WA.a/D convf0;WA.a/g DWA1.a/.

The following is related to results from [Smith and Ward 1979] or [Harmand
et al. 1993, Section V.3] or [Arias and Rosenthal 2000; Davidson and Power 1986].

Lemma 2.3. If A is an approximately unital Banach algebra, if A1 is the uni-
tization above, and if e is a weak* limit of a cai (resp. bai in FA) for A then
k1� 2ek.A1/�� � 1 if and only if there is a cai (resp. bai in FA) .ei / with weak*
limit e and lim supi k1� 2eikA1 � 1.

Proof. One direction follows from Alaoglu’s theorem. Suppose k1� 2ek.A1/�� � 1
and there is a net .xt / which is a cai (resp. bai in FA) for A with xt ! e weak*.
Then 1� 2xt ! 1� 2e weak* in .A1/��. By Lemma 1.1, for any n 2 N, there
exists a tn such that for every t � tn,

inf
˚
k1� 2yk W y 2 convfxj W j � tg

	
< 1C

1

2n
:

For every t � tn, choose such a ynt 2 convfxj W j � tg with k1�2ynt k<1C1=n. If t
does not dominate tn, define ynt D y

n
tn

. So for all t , we have k1� 2ynt k< 1C 1=n.
Writing .n; t/ as i , we may view .ynt / as a net .ei / indexed by i , with k1�2ynt k!1.
Given � > 0 and a1; : : : ; am 2 A, there exists a t1 such that kxtak � akk< � and
kakxt�akk<� for all t � t1 and all kD 1; : : : ; m. Hence the same assertion is true
with xt replaced by ynt . Thus .ynt /D .ei / is a bai forAwith the desired property. �

We recall from the introduction that if A is an approximately unital Banach
algebra which is an M -ideal in the particular unitization A1 above, then A is an
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M -approximately unital Banach algebra. Any unital Banach algebra is an M -
approximately unital Banach algebra (here A1 D A). By [Harmand et al. 1993,
Proposition I.1.17(b)], examples of M -approximately unital Banach algebras in-
clude any Banach algebra that is anM -ideal in its bidual, and which is approximately
unital (or whose bidual has an identity). Several examples of such are given in
[loc. cit.], for example, the compact operators on `p for 1 < p <1. We also recall
that the property of being an M -ideal in its bidual is inherited by subspaces, and
hence by subalgebras. Not every Banach algebra with a cai is M -approximately
unital. By [loc. cit., Proposition II.3.5], L1.R/ with convolution multiplication
cannot be an M -ideal in any proper superspace.

We just said that any unital Banach algebra A is M -approximately unital; hence,
any finite dimensional unital Banach algebra is Arens regular and M -approximately
unital (if one wishes to avoid the redundancy of AD A1 in the discussion below,
take the direct sum of A with any Arens regular M -approximately unital Banach
algebra, such as c0). Thus any kind of bad behavior occurring in finite-dimensional
unital Banach algebras (resp. unital Banach algebras) will appear in the class of
Arens regular M -approximately unital Banach algebras (resp. M -approximately
unital Banach algebras). This will have the consequence that several aspects of the
Blecher–Read papers will not generalize, for instance, conclusions involving “near
positivity”. This can also be seen in the examples scattered through our paper, for
instance, Examples 3.13–3.16 below.

Suppose that .et / is a cai for a Banach algebra A with weak* limit point e 2A��.
Then left multiplication by e (in the second Arens product) is a contractive projection
from .A1/�� onto the ideal A?? of .A1/�� (note that .A1/�� D A?? C C1 D

A??CC.1� e/). Thus by the theory of M -ideals [loc. cit.], A is an M -ideal in
A1 if and only if left multiplication by e is an M -projection.

Lemma 2.4. A nonunital approximately unital Banach algebra A is M -approxi-
mately unital if and only if for all x 2 A��, we have

k1� xk.A1/�� Dmaxfke� xkA�� ; 1g:

Here e is a mixed identity for A�� of norm 1. If these conditions hold then there is a
unique mixed identity for A�� of norm 1, it belongs in 1

2
FA�� , and

k1� �k D 1 () ke� �k � 1; � 2 A��:

Proof. By the statement immediately above the lemma, and by the theory of M -
ideals [Harmand et al. 1993], A is anM -ideal in A1 if and only if left multiplication
by e is an M -projection, that is, if and only if

k�C�1k.A1/�� Dmax
˚
k�C�ekA�� ; j�jk1� ek

	
; � 2 A��; � 2 C:
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If this holds then setting �D 1 and �D 0 shows that k1� ek � 1. However, by the
Neumann lemma we cannot have k1� ek< 1. Thus k1� ek D 1 if these hold. The
statement is tautological if �D 0, so we may assume the contrary. Dividing by j�j
and setting x D��=j�j, one sees that A is M -approximately unital if and only if

k1� xk.A1/�� Dmaxfke� xkA�� ; 1g; x 2 A��:

In particular, k1� 2ek.A1/�� Dmaxfkek; 1g D 1. The final assertion is now clear
too. The uniqueness of the mixed identity follows from the next result. �

Remark. Indeed if B is any unitization of a nonunital approximately unital Banach
algebra A, and if A is an M -ideal in B , then the first few lines of the last proof,
with A1 replaced by B , show that B D A1, the multiplier unitization of A.

Thus A is M -approximately unital if and only if k1�xk.A1/�� Dke�xkA�� for
all x 2A��, unless the last quantity is less than 1, in which case k1�xk.A1/�� D 1.

We will show later that for M -approximately unital Banach algebras, there is a
cai .et / for A with k1� 2etkA1 � 1 for all t .

Lemma 2.5. Let A be a closed ideal, and also an M -ideal, in a unital Banach
algebra B . If e and f are two weak* limit points in A�� of two cai for A, then
e D f . Thus A�� has a unique mixed identity of norm 1. In particular, if A is
M -approximately unital then A�� has a unique mixed identity of norm 1.

Proof. As in the discussion above Lemma 2.4, left multiplications by e or f , in the
second Arens product, are contractive projections onto the ideal A?? of .A1/��.
So these maps equal the M -projection [Harmand et al. 1993], and hence are equal.
So e D f . Thus every cai for A converges weak* to e, so that A�� has a unique
mixed identity. �

If A is an approximately unital Banach algebra, but A�� has no identity then
we define rA�� D A

�� \ r.A1/�� . If A is an approximately unital Banach algebra
then FA�� and rA�� are weak* closed. Indeed the FA�� case of this is obvious. By
[Magajna 2009], r.A1/�� is weak* closed, hence so is rA�� D A��\ r.A1/�� .

Remark. Note that if A�� has a mixed identity of norm 1 then we can define
states of A�� to be norm-1 functionals ' with '.e/D 1 for all mixed identities e
of A�� of norm 1. Then one could define rA�� to be the elements x 2 A�� with
Re '.x/� 0 for all such states of A��. This coincides with the definition of rA��
above the remark if A is M -approximately unital. Indeed such states ' on A��

extend to states '.e � / of .A1/��. Conversely if A is an M -approximately unital
Banach algebra, then given a state ' of .A1/��, we have

1Dk'kDk' �ekCk' �.1�e/k� j'.e/jCj'.1�e/j �'.1/D 1D'.e/C'.1�e/:
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It follows from this that k'ek D j'.e/j D '.e/. Hence if � 2 Ball.A��/ then

j'.�/j D j'e.�/j � k'ek D '.e/;

so that the restriction of ' to A�� is either zero or is a positive multiple of a state
on A��. Thus for M -approximately unital Banach algebras, the two notions of rA��
under discussion coincide.

LetQ.A/ be the quasistate space ofA, namelyQ.A/Dft' W t 2 Œ0; 1�; ' 2S.A/g.
Similarly, Qe.A/D ft' W t 2 Œ0; 1�; ' 2 Se.A/g. We set

reA D fx 2 A W Re'.x/� 0 for all ' 2 Se.A/g;

ceA� D f' 2 A
�
W Re'.x/� 0 for all x 2 reAg:

Note that rA � reA since Se.A/� S.A/.

Lemma 2.6. Let A be a nonunital Banach algebra with a cai e.

(1) Then 0 is in the weak* closure of Se.A/. Hence 0 is in the weak* closure of
S.A/. Thus Q.A/ is a subset of the weak* closure of S.A/, and similarly
Qe.A/� Se.A/

w�.

(2) The weak* closure of Se.A/ is contained in ceA�\Ball.A�/. It is also contained
in S.A1/jA, and both of the latter two sets are subsets of cA� \Ball.A�/.

Proof. (1) For every t , there exists s.t/ � t such that kes.t/ � etk � 1=2 (or
else taking the limit over s > t , we get the contradiction k1 � etk < 1, which
is impossible by the Neumann lemma, or since the trivial character �0 is con-
tractive). Take a norm-1  t 2 A� such that  t .es.t/ � et / D kes.t/ � etk. Let
ˆt .x/D  t ..es.t/� et /x/=kes.t/� etk. Then ˆt 2 Se.A/ because it has norm 1
and lims ˆt .es/ D 1. One has limt ˆt .x/ D 0 for all x 2 A. To see this, given
� > 0, choose t0 such that ketx� xk< � for all t � t0. For such t , we have

j t ..es.t/� et /x/j

kes.t/� etk
� 2k tkk.es.t/� et /xk< 4�:

Thus ˆt ! 0 weak*. The rest is obvious.

(2) The first assertion is clear by the definitions and since ceA� \Ball.A�/ is weak*
closed. Similarly, that the weak* closure is contained in S.A1/jA follows since
Se.A/� S.A/ as we saw above, and because S.A1/ and hence S.A1/jA, are weak*
closed. We leave the rest as an exercise using rA � reA. �

We will say that an approximately unital Banach algebra A is scaled (resp. e-
scaled) if every f in cA� (resp. in ceA�) is a nonnegative multiple of a state, that is,
if and only if cA� D RCS.A/ (resp. ceA� D RCSe.A/), equivalently, if and only if
cA�\Ball.A�/DQ.A/ (resp. ceA�\Ball.A�/DQe.A/). Examples of scaled Banach
algebras include M -approximately unital Banach algebras (see Proposition 6.2)
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and L1.R/ with convolution product. One can show that L1.R/ is not e-scaled if e
is the usual cai (see the remark after Lemma 2.1 and Example 3.16).

Lemma 2.7. Let A be an approximately unital Banach algebra.

(1) Suppose that eD .et / is a cai for A. Then Qe.A/ is weak* closed in A� if and
only if A is e-scaled. If these hold then Qe.A/ is a weak* compact convex set
in Ball.A�/, and Se.A/ is weak* dense in Qe.A/.

(2) If S.A/ or Q.A/ is convex then Q.A/ is weak* closed in A� if and only if A is
scaled.

Proof. (1) By the bipolar theorem, ceA� DRCse.a/
w� . So RCSe.A/ is weak* closed

if and only if ceA� D RCSe.A/, that is, if and only if A is e-scaled. By the Krein–
Smulian theorem this happens if and only if Ball.RCSe.A// D Qe.A/ is weak*
closed. The weak* density assertion follows from Lemma 2.6.

(2) This follows by a similar argument to (1) if Q.A/ is convex (and this is implied
by S.A/ being convex). �

Corollary 2.8. If A is a nonunital approximately unital Banach algebra, then the
following are equivalent:

(i) A is scaled.

(ii) S.A1/ is the convex hull of the trivial character �0 and the set of states on A1

extending states of A.

(iii) Q.A/D f'jA W ' 2 S.A1/g.

(iv) Q.A/ is convex and weak* compact.

If these hold then Q.A/D S.A/w�, and the numerical range satisfies

WA.a/D convf0;WA.a/g DWA1.a/; a 2 A:

Proof. (i)) (ii): Clearly the convex hull in (ii) is a subset of S.A1/. Conversely, if
' 2 S.A1/ then 'jA is real positive, so that by (i) we have 'jA D t for t 2 .0; 1�
and  2 S.A/. Then ' D t y C .1� t /�0, where y is the state extending  .

(ii)) (iii): We leave this as an exercise.

(iii)) (iv): Suppose that .'t / is a net in S.A1/ whose restrictions to A converge
weak* to  2 A�. A subnet .'t�/ converges weak* to ' 2 S.A1/, and  D 'jA,
clearly. This gives the weak* compactness in (iv), and the convexity is easier.

(iv)) (i): This follows from (2) of the previous lemma.
Assume that these hold. Since S.A/�Q.A/, that Q.A/D S.A/w� is now clear

from the fact from Lemma 2.6 that Q.A/� S.A/w�. Since A is nonunital, we have
0 2 WA1.a/. Clearly WA.a/ � WA1.a/, so that convf0;WA.a/g � WA1.a/. The
converse inclusion follows easily from the above, so convf0;WA.a/g D WA1.a/.
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Also, clearlyWA.a/�WA1.a/, and the converse inclusion follows since S.A1/jAD
Q.A/D S.A/

w�. �

Remark. (1) Thus if S.A/D Se.A/ for some cai e of A, then A is scaled if and
only if Q.A/ is weak* closed.

(2) In particular, if A is unital then conditions (i) and (iv) in the previous result
are automatically true. Indeed S.A/ is weak* closed, and hence Q.A/ is too,
and the rest follows from Lemma 2.7. Item (i) also follows from the proof of
[Magajna 2009, Theorem 2.2].

Theorem 2.9. Let eD .en/ be a sequential cai for a Banach algebra A. If Qe.A/

is weak* closed, then A possesses a sequential cai in reA. Moreover, for every a 2A
with inffRe'.a/ W ' 2 Se.A/g > �1, there is a sequential cai .fn/ in reA such that
fnC a 2 r

e
A for all n.

Proof. We first state a general fact about compact spaces K. If .fn/ is a bounded
sequence in C.K;R/ such that limn fn.x/ exists for every x 2K and is nonnegative,
then for every � > 0, there is a function f 2 convffng such that f � �� on K.
Indeed if this were not true, then convffng and C.K/C would be disjoint. By
a Hahn–Banach separation argument and the Riesz–Markov theorem, there is a
probability measure m such that supn

R
K fn dm < 0. This is a contradiction since

limn
R
K fn dm� 0 by Lebesgue’s dominated convergence theorem.

SetK to be the weak* closure of Se.A/ inA� (so thatKDQe.A/ by Lemma 2.6),
and let fn.'/DRe'.en/ for ' 2K. Since limn Re'.en/� 0 for all ' 2Qe.A/, we
can apply the previous paragraph to find an x2convfeng such that inf'2K '.x/>��.
Similarly, choose y1 2 convfeng such that inf'2K '.xC �y1/ > ��=2. Continue
in this way, choosing yn 2 convfeng such that

inf
'2K

'

�
xC �

nX
kD1

21�kyk

�
> ��=2n:

Set uD
P1
kD1 2

�kyk 2 convfeng, and zDxC2�u. This is in reA, and kz�xk<2�.
Choose a subsequence .ekn/ of .en/ such that

keknen� enkCkenekn � enk< 2
�n:

For each m 2 N, apply the last paragraph to .ekn/n�m, with � replaced by 2�m, to
find xm; um 2 convfekn W n�mg with zm D xmC 21�mum 2 reA. Then

kxmem� emkCkemxm� emk< 2
�m:

From this it is easy to see that .xm/ is a cai for A. It is also easy to see now that
e0m D .1=kzmk/zm is a bai (hence also a cai) for A in reA.
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The case for the “moreover” is similar. Suppose that

inffRe'.a/ W ' 2 Se.A/g> �1:

We may assume the infimum is negative, and choose t > 1 so that the infimum is
still greater than �1 with a replaced by ta. We now begin to follow the argument
in previous paragraphs, with the same K, but starting from a cai .e0n/ in reA. Since
limn Re'.taCe0n/� 0 for all ' 2Qe.A/, we can apply the above to find an element
x 2 convfe0ng � reA such that inf'2K '.taC x/ > ��. Continue as above to find
u 2 convfe0ng � reA so that z D taC x C 2�u is in reA, with kz � x � tak < 2�.
For each m 2 N, there exists such xm; um 2 reA so that zm D taC xmC 21�mum
is in reA, with kzm � xm � tak � 21�m, and such that .xm/ is a cai for A. Note
that zm � ta 2 reA, and hence fm D .1=kzm � tak/.zm � ta/ 2 reA. Also .fm/ is
a bai (hence a cai) for A in reA. There exists an N such that t=kzm� tak > 1 for
m � N . Thus fmC a 2 reA for m � N , since this is a convex combination of fm
and fmC ta=kzm� tak D zm=kzm� tak. �
Corollary 2.10. Let eD .en/ be a sequential cai for a Banach algebra A. Assume
that S.A/D Se.A/ (which is the case, for example, if A is Hahn–Banach smooth).
If Q.A/ is weak* closed, then A possesses a sequential cai in rA. Moreover, for
every a 2A with inffRe'.a/ W ' 2 S.A/g>�1, there is a sequential cai .fn/ in rA
such that fn � �a for all n. If , in addition, A has a sequential cai in FA then the
sequential cai .fn/ in the last line can also be chosen to be in FA.

Proof. By the last result, A has a sequential cai in rA satisfying the first two
assertions. Suppose that A has a sequential cai, .e0n/ say, in FA. One then follows
the last paragraph of the last proof. Now xm; um 2 FA. Define fm as before, but
the desired cai is

kxmC 2
1�mumk

1C 21�m
fm;

which is easy to see is a convex combination of xm and um, and hence is in FA.
Moreover a tiny modification of the argument above shows that the sum of this cai
and a is in rA for m large enough. �
Remark. Under the conditions of Corollary 2.10, and if A has a sequential approx-
imate identity in 1

2
FA (resp. FA), then a slight variant of the last proof shows that

for any a 2 A with inffRe'.a/ W ' 2 S.A/g> �1, there is a sequential bai .fn/ in
1
2
FA (resp. FA) such that fn ��a for all n. By Corollary 3.9 (and the remark after

it) below, if A has a sequential bai in rA then A does have a sequential bai in FA.

We also remark that Corollary 3.4 of [Blecher 2015] generalizes the first assertion
of Corollary 2.10 above to nonsequential cais.

Proposition 2.11. If A is a scaled approximately unital Banach algebra then the
weak* closure of rA is rA�� .
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Proof. It is easy to see from the definitions that rA � rA�� . Clearly rıA D cA� , so the
result will follow from the bipolar theorem if we can show that

.cA�/
ı
D rA�� D r.A1/�� \A

��:

Since rA � rA�� , it is clear that .rA��/ı � cA� . If ' 2 cA� then ' D t for t > 0,
 2 S.A/. Then  extends to a state y on A1, and to a weak* continuous state �
on .A1/��. If � 2 rA�� , we have

Re �. /D Re �. y /D Re �.�/� 0:

That is, ' 2 .rA��/ı. Then .rA��/ı D cA� , and hence by the bipolar theorem,
.cA�/

ı D rA�� . �

We remark that if an approximately unital Banach algebra A is scaled then any
mixed identity e for A�� of norm 1 is lower semicontinuous on Q.A/. For if
't ! ' weak* and 't .e/ D k'tk � r for all t , then k'k D '.e/ � r . A similar
assertion holds in the e-scaled case.

3. Positivity and roots in Banach algebras

Proposition 3.1. If B is a closed subalgebra of a nonunital Banach algebra A,
and if A and B have a common cai, then B1 � A1 isometrically and unitally,
S.B1/D ffjB1 W f 2 S.A

1/g, and FB D B \FA and rB D B \ rA. Moreover, in
this case, if A is M -approximately unital then so is B .

Proof. We leave the first part of this as an exercise. The last assertion follows using
[Harmand et al. 1993, Proposition I.1.16], since in this case multiplying by e leaves
.B1/? invariant inside .A1/��. �

Remark. Similarly, in the situation of Proposition 3.1 we have reB D B \ r
e
A if e is

the common cai.

Proposition 3.2. Suppose that J is a closed approximately unital ideal in an ap-
proximately unital Banach algebra A, and that J is also an M -ideal in A. Then:

(1) FJ D J \FA and rJ D J \ rA, and states on J extend to states on A.

(2) If J is nonunital then J 1 � A1 isometrically and unitally, and

S.J 1/D ffjJ 1 W f 2 S.A
1/g:

(3) If A is M -approximately unital, then so is J .

(4) If eD .ei / is a cai of A, then there is a cai hD .hj / of J such that 'jJ 2Qh.J /

whenever ' 2 Se.A/.
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Proof. (2) For a 2 J and � 2 C, we have

kaC�1kA1 D sup
˚
kaxC�xkA W x 2 Ball.A/

	
� kaC�1kJ 1 :

Let f be a mixed identity of J �� of norm 1, which is the limit of a cai .fi /. For
every x 2 Ball.A/, one has

kaxC�xkA Dmax
˚
kfaxC�f xk; k�.1�f /xk

	
:

Setting aD 0 temporarily, we see that k�.1�f /xk � j�j � kaC�1kJ 1 . For any
a 2 J , we have fax D ax and axC�f x D w� limi afixC�fix, so that

kfaxC�f xk � lim inf
i
kafixC�fixk � kaC�1kJ 1 :

Thus kaC�1kA1 D kaC�1kJ 1 .

(1) If J is nonunital then by (2) and the Hahn–Banach theorem, we have S.J 1/D
ffjJ 1 W f 2 S.A

1/g, and so states on J extend to states on A. If J is unital, an
extension of states is given by ' 7!'.1J � /. It also is clear from (1) that FJ DJ\FA
in the nonunital case, and we leave the unital case as an exercise (using the fact that
multiplication by the identity of J is an M -projection). The identity rJ D J \ rA
is handled similarly. Indeed, clearly J \ rA � rJ since states on J extend to states
on A1. We leave the converse inclusion as an exercise (for example, it follows from
FJ D J \FA � J \ rA, and Proposition 3.5 below).

(3) We can assume J is nonunital. It follows from [Harmand et al. 1993, Proposi-
tion 1.17(b)] that if J is an M -ideal in A, and A is an M -ideal in A1, then J is an
M -ideal in A1. By the same result, J is an M -ideal in J 1.

(4) Let e denote a weak* limit point in A�� of .ei /. Let .gk/ be any cai for J , with
weak* limit point g in J??. Then .hj /D .gkei / (indexed first by i and then j ) is
a cai for J . Then hD ge is a weak* limit point of .hj /. We have .1�g/e D e�h.
Since left multiplication by g is the M -projection of A�� onto J??, as we have
seen several times above, one has ke� hk � 1. Let ' 2 Se.A/ be given. We claim
that if '.h/D 0 then 'jJ D 0; and if '.h/¤ 0 then '.h � /='.h/ is a state on J 1.
Note that if '.h/¤ 0 then

1D'.e/D'.h/C'..1�g/e/�j'.h/jCj'..1�g/e/j�k'.g � /kCk'..1�g/ � /k;

which equals 1 due to the L-decomposition in A�. Thus we must have '.h/� 0.
Let aC�1 2 Ball.J 1/ be given. Then for any unimodular scalar 
 , one has

k
.haC�h/C e� hkA�� Dmax
˚
khaC�hk; ke� hk

	
� 1:

Therefore, ˇ̌
'.
.haC�h/C e� h/

ˇ̌
D
ˇ̌

'.haC�h/C 1�'.h/

ˇ̌
� 1
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for all such 
 . So for some such 
 ,

j'.haC�h/jC 1�'.h/D '.
.haC�h/C e� h/� 1;

so that j'.haC�h/j � '.h/. �

Proposition 3.3 (Esterle). If A is a unital Banach algebra then FA is closed under
(principal) t-th powers for any t 2 Œ0; 1�. Thus if A is an approximately unital
Banach algebra then FA and RCFA are closed under t -th powers for any t 2 .0; 1�.

Proof. This is in [Esterle 1978, Proposition 2.4] (see also [Blecher and Read 2011,
Proposition 2.3]), but for convenience we repeat the construction. If k1� xk � 1,
define

xt D

1X
kD0

� t
k

�
.�1/k.1� x/k; t > 0:

For k � 1, the sign of
�
t
k

�
.�1/k is always negative, and

P1
kD1

�
t
k

�
.�1/k D �1.

It follows that the series for xt above is a norm-limit of polynomials in x with
no constant term. Also, 1 � xt D

P1
kD1

�
t
k

�
.�1/k.1 � x/k , which is a convex

combination in Ball.A1/. So xt 2 FA.
Using the Cauchy product formula in Banach algebras in a standard way, one

deduces that .x1=n/n D x for any positive integer n. �

From [Esterle 1978, Proposition 2.4], if x 2FA then we also have .xt /r Dxtr for
t 2 Œ0; 1� and any real r , and that if axn! a, where a 2 A and .xn/ is a sequence
with kxn� 1k< 1, then axtn! a with n for all real t .

If A is a unital Banach algebra then we define the F-transform to be F.x/ D

x.1Cx/�1D 1� .1Cx/�1 for x 2 rA. Then F.x/ 2 ba.x/. The inverse transform
takes y to y.1�y/�1.

Lemma 3.4. If A is an approximately unital Banach algebra then F.rA/� FA.

Proof. This is because by a result of Stampfli and Williams [1968, Lemma 1],

k1� x.1C x/�1k D k.1C x/�1k � d�1 � 1;

where d is the distance from �1 to the numerical range of x. �

If A is also an operator algebra then we have shown elsewhere [Blecher and
Read 2014, Lemma 2.5] that the range of the F-transform is exactly the set of strict
contractions in 1

2
FA.

Proposition 3.5. If A is an approximately unital Banach algebra then RCFA D rA.

Proof. As in [Blecher and Read 2013a, Theorem 3.3], it follows that if x 2 rA then
x D limt!0C.1=t/tx.1C tx/

�1. By Lemma 3.4, tx.1C tx/�1 2 FA. So RCFA is
dense in rA. �
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In the following results we will use the fact that if A is an approximately unital
Banach algebra, then the “regular representation” A!B.A/ is isometric. Thus we
can view an accretive x 2A and its principal roots as operators in B.A/. These are
sectorial of angle �=2, and so we can use the theory of roots (fractional powers)
from, e.g., [Haase 2006, Section 3.1] or [Li et al. 2003; Sz.-Nagy et al. 2010].
Basic properties of such (principal) powers include: xsxt D xsCt , .cx/t D ctxt

for positive scalars c; s; t , and t! xt is continuous. See also, for example, [Yosida
1965, Chapter IX, Section 11], [Blecher 2015], [Blecher and Read 2014, Lemma
1.1(1)] or [Esterle 1978, p. 64]. Also xt D limt!0C.xC �1/

t for t > 0, and the
latter can be taken to be with respect to the usual Riesz functional calculus (see
[Haase 2006, Proposition 3.1.9]). Principal n-th roots of accretive elements are
unique for any positive integer n (see [Li et al. 2003]).

Remark. It is easy to see from the last fact that the definitions of xt given in [Haase
2006] and [Li et al. 2003, Theorem 1.2] coincide. A similar argument shows that if
x 2FA then the definitions of xt given in [Haase 2006] and Proposition 3.3 coincide,
if t > 0. Indeed for the latter we may assume that 0 < t � 1 and work in B.A/
as above (and we may assume A unital). Then the two definitions of yt coincide
if y D .1=.1C �//.xC �I /, since both equal the t-th power of y as given by the
Riesz functional calculus. However

P1
kD0

�
t
k

�
.�1/k.1�y/k converges uniformly

to
P1
kD0

�
t
k

�
.�1/k.1� x/k , as �! 0C, since the norm of the difference of these

two series is dominated by
1X
kD1

� t
k

�
.�1/k

�
1

1C�
� 1

�
k.1� x/kk �

�

1C�
! 0:

See [Blecher 2015] for more details concerning the last remark, and also for a
better estimate in the next result in the operator algebra case.

Lemma 3.6. Let A be an approximately unital Banach algebra. If kxk � 1 and
x 2 rA, then

kx1=mk �
2m2

.m� 1/�
sin
�
�

m

�
�

2m

m� 1

for m� 2. More generally,

kx˛k �
2 sin.˛�/
�˛.1�˛/

kxk˛

if 0 < ˛ < 1 and x 2 rA. If A is also an operator algebra then one may remove the
2s in these estimates.

Proof. This follows from the well-known A. V. Balakrishnan representation of
powers,

x˛ D
sin.˛�/
�

Z 1
0

t˛�1.t C x/�1x dt
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(see, e.g., [Haase 2006]). We use the simple fact that k.t C x/�1k � 1=t for
accretive x and t > 0, and so

k.t C x/�1xk D



�1C x

t

��1x
t




D 


F�x
t

�


� 2;
and is even less than or equal to 1 in the operator algebra case by the observation
after Lemma 3.4. Then the norm of x˛ is dominated by

2 sin.˛�/
�

�Z 1

0

t˛�1 � 1 dt C

Z 1
1

t˛�1
1

t
dt

�
D
2 sin.˛�/
�˛.1�˛/

:

The rest is clear from this. �

We will sometimes use the fact from [Li et al. 2003, Corollary 1.3] that the n-th
root function is continuous on rA.

Lemma 3.7. There is a nonnegative sequence .cn/ in c0 such that for any unital
Banach algebra A, and x 2 FA or x 2 Ball.A/\ rA, we have kx1=nx�xk � cn for
all n 2 N.

Proof. We follow the proof of [Blecher and Read 2013a, Theorem 3.1], taking
RD 3 there. This is based on the Banach algebra construction from [Li et al. 2003],
so it will be valid in the present generality. There an estimate kx1=nx� xk �Dcn
is given, for a nonnegative sequence .cn/ in c0. We need to know that D does not
depend on A or x. This follows if k�.�1� x/�1k is bounded independently of
A or x on the curve � there. On the piece of the curve �2, this follows by using
[Stampfli and Williams 1968, Lemma 1] that k.�1� x/�1k � d�1, where d is the
distance from � to W.x/. On the other part of � , we have �D tei� for 0� t �R,
and for a fixed � with �=2 < j� j < � . However, by the same result of Stampfli
and Williams, k.�1�x/�1k � d�1 if �¤ 0, where d is the distance from � to the
y-axis. Thus the quantity will be bounded since j�j=d D csc.� ��=2/. �

The following (essentially from [Macaev and Palant 1962]) is a related result:

Lemma 3.8. Let A be a unital Banach algebra. If ˛ 2 .0; 1/ then there exists a
constantK such that if a; b 2 rA, and abD ba, then k.a˛�b˛/ck�Kk.a�b/ck˛

for any c 2 Ball.A/.

Proof. By the Balakrishnan representation in the proof of Lemma 3.6, if c 2Ball.A/,
we have

.a˛ � b˛/c D
sin.˛�/
�

Z 1
0

t˛�1
�
.t C a/�1a� .t C b/�1b

�
c dt:

By the inequality k.t C x/�1k � 1=t for accretive x, we have

�.t C a/�1a� .t C b/�1b�c

D 

.t C a/�1.t C b/�1.a� b/tc

� 1
t
k.a� b/ck;
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and so as in the proof of Lemma 3.6,


R1
0 t˛�1

�
.t Ca/�1a� .t C b/�1b

�
c dt



 is
dominated by

4

Z ı

0

t˛�1 dt C

Z 1
ı

t˛�2 dtk.a� b/ck D
4

˛
ı˛C

ı˛�1

1�˛
k.a� b/ck

for any ı > 0. We may now set ı D k.a� b/ck to obtain our inequality. �
Corollary 3.9. An approximately unital Banach algebra with a left bai (resp. right
bai, bai) in rA has a left bai (resp. right bai, bai) in FA.

Proof. If .et / is a left bai in rA, let bt D F.et / 2 FA. If a 2 A then

b
1=n
t aD b

1=n
t .a� eta/C .b

1=n
t et � et /aC eta:

The first term here converges to 0 with t since .b1=nt / is in FA, and hence is bounded.
Similarly, the middle term can be seen to converge to 0 with n by rewriting it as
.b
1=n
t bt � bt /.1C et /a. Working in A1 and applying Lemma 3.7, we have

k.b
1=n
t bt � bt /.1C et /ak � cnk1C etkkak �Kcn! 0

for a constant K independent of t . The third term converges to a with t . So .b1=nt /

is a left bai. Similarly in the right and two-sided cases. �
Remark. If the bai in the last result is sequential, then so is the one constructed
in FA.

Corollary 3.10. If A is an approximately unital Banach algebra then rA is closed
under n-th roots for any positive integer n.

Proof. From the proof of Proposition 3.5, we know that if x 2 rA, then x D
limt!0C.1=t/tx.1 C tx/

�1 and tx.1 C tx/�1 2 FA. Thus by [Li et al. 2003,
Corollary 1.3], we have that xr D limt!0C 1=t

r.tx.1C tx/�1/r for 0 < r < 1. By
Proposition 3.3, the latter powers are in RCFA, so that xr 2 RCFA D rA. �
Proposition 3.11. If A is an approximately unital Banach algebra and x 2 rA then
ba.x/D ba.F.x//, and so xAD F.x/A.

Proof. This follows from the elementary spectral theory of unital Banach algebras,
applied in A1. Below we compute the spectrum in ba.x/1. Since 0 … Sp.1Cx/, we
have .1C x/�1 2 ba.1; x/, so that F.x/ 2 ba.x/. Any character of ba.x/1 applied
to F.x/ gives a number of the form z D w.1Cw/�1 in the open unit disk, and in
fact also inside the circle jz� 1

2
j �

1
2

if Re.w/� 0. Since 1 … Sp.F.x//, we have
.1�F.x//�1 2 ba.1;F.x//, so that x D�F.x/.1�F.x//�1 2 ba.F.x//. The rest
is clear. �
Lemma 3.12. If p is an idempotent in a unital Banach algebra A then p 2 FA if
and only if p 2 rA. If p is an idempotent in A�� for an approximately unital Banach
algebra A then p 2 FA�� if and only if p 2 rA�� .
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Proof. The first follows from the well-known Lumer–Phillips characterization of
accretiveness in terms of kexp.�tp/k�1 for all t >0 (see, e.g., [Bonsall and Duncan
1971, Theorem 6, p. 30]). If p is idempotent then exp.�tp/D 1� .1� e�t /p, and
if this is contractive for all t > 0 then k1�pk � 1. For the second, work in .A1/��

and use facts above. �

However, one cannot say that the idempotents in the last result are also in 1
2
FA,

as is the case for operator algebras. The following examples illustrate this, and
other “bad behavior” not seen in the class of operator algebras.

Example 3.13. Let `14 be identified with the l1-semigroup algebra of the abelian
semigroup f1; a; b; cg with relations making a; b; c idempotent, and ab D ac D
bcD c. Then pD 1�a; qD 1�b 2FAn 12FA� rA. For such p, set xD 1

2
p 2 1

2
FA,

and notice that x1=n D 2�1=np which is not always in 1
2
FA (if it were, then we get

the contradiction that its limit p is in 1
2
FA). So we see that 1

2
FA is not closed under

n-th roots. We also see that if x 2 1
2
FA then xA need not have a left cai (even if

A is commutative). It does have a left bai of norm at most 2, and indeed a left bai
in FA by Corollary 3.18.

In this example, pqDp
1
2 q

1
2 D 1�a�bCc … rA (as can be seen by considering

states f .˛aCˇbC 
cC �1/D 
zC �C ˛Cˇ for jzj � 1). So x1=2y1=2 need
not be in rA even if x; y 2 1

2
FA. This shows that the main results about roots in

[Bearden et al. 2014] fail in more general M -approximately unital Arens regular
Banach algebras. Note too that if J1DpA and J2D qA, then J1\J2DCd D dA,
where d D pq, but dA has no identity or bai in rA. This shows that, unlike in the
operator algebra case, finite intersections of extremely nice closed ideals need not
be “nice” in the sense of the theory developed in this paper. See, however, Section 8
for a context in which finite intersections will behave well.

Example 3.14. In the Banach algebra AD l1.Z2/ with convolution multiplication,
we know that p D

�
1
2
; 1
2

�
is a contractive idempotent in 1

2
FA with numerical range

B
�
1
2
; 1
2

�
. The states in this example are the functionals .a; b/ 7! aCbz for jzj � 1.

All of the principal n-th roots of p obviously have the same numerical range. So the
numerical range of p1=n does not “converge” to the x-axis. Thus we cannot expect
statements in the Blecher–Read papers involving “near positivity” to generalize
(unless A is a Hermitian Banach *-algebra satisfying the conditions in the latter part
of [Li et al. 2003], in which case the numerical ranges of x1=n do “converge” to the
x-axis if x is accretive). Note also in this example that p is not an M -projection in
A. Thus we cannot expect support projections to be associated with M -projections
in general. In this example, it is easy to see that x D .a; b/ 2 rA if and only if
jbj �Re a, whereas x 2 1

2
FA if and only if jbj2�jbj �Re a�jaj2. In this example,

the Cayley transform does not take rA into the set of contractions, so that x.1Cx/�1

need not be in 1
2
FA.
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This example also serves to show that if B is an approximately unital closed
ideal in a commutative finite-dimensional approximately unital Banach algebra,
then rB and FB need not be related to rA and FA, unlike the setting of operator
algebras (where there is a very strong relationship between these, even in the case
that B is a subalgebra). Indeed let B D C.1; 1/ inside the last example. Then we
have 1B D

�
1
2
; 1
2

�
, and rB D f.a; a/ W Re a � 0g and FB D

˚
.a; a/ W a 2 B

�
1
2
; 1
2

�	
.

For a state ' on an operator algebra A and x 2 FA, it is the case that '.s.x//D 0
if and only if '.x/D 0 if and only if ' 2 ba.x/?. Here s.x/ is the support projection
of x from [Blecher and Read 2011]. In Example 3.14, if xD

�
1
2
; i
2

�
and '..a; b//D

aCib then x 2Ker' but x2 and s.x/D 1 are not in Ker'. Thus much of the theory
of “strictly real positive” elements from [loc. cit.] and its sequels breaks down.

A slight variant of this example is the same algebra, but with norm jjj.a; b/jjj D
jajC 2jbj. Here J D C

�
1
2
; 1
2

�
is an ideal equal to xA for x 2 FA, but this ideal has

no cai.

Example 3.15. The unital Banach algebra l1.N/, with convolution product, is
easily seen to be equal to ba.x/ where x D 1C 1

2
Ee2 2 FA. However l1.N/ is not

Arens regular; thus its second dual is not commutative in either one of the Arens
products [Palmer 1994, §1.4.9]. Thus ba.x/�� need not be commutative if x 2 FA.
In this example, it is easy to compute FA and rA. C. A. Bearden has verified that in
this example, unlike the operator algebra case [Bearden et al. 2014], .x1=n/ need
not increase in the “real positive ordering” with n for x 2 1

2
FA.

Example 3.16. The approximately unital Banach algebra A D L1.R/ with con-
volution product has multiplier unitization A1 D A˚1 C. This can be seen from
Wendel’s result that the measure algebra M.R/ embeds canonically in B.L1.R//
isometrically [Dales 2000], so that L1.R/1 can be identified with L1.R/CCı0,
where ı0 is the point mass at 0. Thus S.A/ corresponds to the set of f 2 L1.R/
of norm 1. It follows immediately that FA D rA D .0/ in this case. This algebra
is not Arens regular. Note that any norm-1 functional on L1.R/ extends to a state
on L1.R/1 clearly. However, there are many norm-1 functions g 2 L1.R/ with
1 ¤ limt!0C

R
R
get for the usual positive cai e D .et / of L1.R/ (the one in the

remark after Lemma 2.1), for example, if g takes only negative values. This shows
that Lemma 2.2 fails for more general Banach algebras. For this same cai e, we
remark that Se.A/ corresponds to the set of f 2 Ball.L1.R// for which the mean
value of f at 0 (this mean value is the limit with n of the (integral) average of f
over the interval of width 1=n centered at 0) exists and equals 1. From this it is
easy to see that reA D .0/ and ceA� D A

�.

Because of the above examples and the considerations mentioned after Lemma 2.3
above, the following result cannot be improved, even for M -approximately unital
Arens regular Banach algebras:
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Proposition 3.17. If x 2 rA then ba.x/ has a bai in FA, and hence any weak* limit
point of this bai is a mixed identity residing in FA�� . Indeed .x1=n/ is a bai for
ba.x/ in rA, and .F.x/1=n/ is a bai for ba.x/ in FA.

Proof. Note that x1=nx! x by Lemma 3.7. That .x1=n/ is bounded follows from
Lemma 3.6. Thus .x1=n/ is a bai for ba.x/ in rA.

In the case that x 2 FA, we have .x1=n/ is in FA (using Proposition 3.3). We
remark that the proof of [Blecher and Read 2011, Lemma 2.1] (see also [Blecher
et al. 2008]) displays a different, and often useful, bai in FA. In the general case,
note that if x 2 rA then ba.x/D ba.F.x// by Proposition 3.11, and so .F.x/1=n/ is
a bai for ba.x/. �

For an approximately unital Banach algebra A and x 2 rA, by Proposition 3.11
we have ba.x/ D ba.F.x// and xA D F.x/A. If A is not Arens regular then
Example 3.15 shows that ba.x/ need not be Arens regular if x 2 FA. (However, it
is Arens semiregular as is any commutative Banach algebra [Palmer 1994].) Thus
ba.x/�� need not be commutative. We write s.x/ for the weak* Banach limit of
.x1=n/ in A��. That is s.x/.f / D LIMn f .x

1=n/ for f 2 A�, where LIM is a
Banach limit. It is easy to see that xs.x/D s.x/xD x, by applying these to f 2A�.
Hence s.x/ is a mixed identity of ba.x/�� and is idempotent. By the Hahn–Banach
theorem, it is easy to see that s.x/ 2 conv.fx1=n W n 2 Ng/

w�
. By Corollary 3.10

and Lemma 3.12, and the fact below Lemma 2.5 that FA�� is weak* closed, we see
that s.x/ resides in FA�� . If ba.x/ is Arens regular then s.x/ will be the identity
of ba.x/��. Therefore in this case, or more generally if ba.x/�� has a unique left
identity in the second Arens product, s.x/ is also the weak* limit of .F.x/1=n/.
Indeed in this case we can set s.x/ to be the weak* limit of any bai for ba.x/. This
is the case, for example, if ba.x/ is M -approximately unital (that is, if it is an
M -ideal in ba.x/1), by Lemma 2.5.

Remark. Note that if x2 rA then ba.x/ isM-approximately unital ifA isM-approx-
imately unital and ba.x/1 � A1 isometrically (by the argument in Proposition 3.1).
It is claimed in [Smith 1979] that the support projection of an M -ideal in a com-
mutative Banach algebra is central. We did not follow this proof (and its author
confirmed that at present there seemed to him to be a gap), but this would imply
that if ba.x/ is M -approximately unital then s.x/ is central in ba.x/��, and thus is
actually a (unique) two-sided identity for ba.x/��.

We call s.x/ above a support idempotent of x, or a (left) support idempotent
of xA (or a (right) support idempotent of Ax). The reason for this name is the
following result.

Corollary 3.18. If A is an approximately unital Banach algebra, and x 2 rA then
xA has a left bai in FA and x 2xAD s.x/A��\A and .xA/??D s.x/A��. (These
products are with respect to the second Arens product.)
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Proof. Indeed if J D xA then J D F.x/A by Proposition 3.5. So we may assume
that x 2 FA. Since xA contains x ba.x/, which in turn contains (actually, is equal
to) ba.x/, it contains x and x1=n. So .x1=n/ is a left bai in FA for xA. We have
s.x/2J??, and J??� s.x/A���J??, since J?? is a right ideal inA��. Hence
J?? D s.x/A��, so that J D s.x/A��\A. �

As in [Blecher and Read 2011, Lemma 2.10] we have:

Corollary 3.19. If A is an approximately unital Banach algebra, and x; y 2 rA,
then xA � yA if and only if s.y/s.x/ D s.x/. In this case, xA D A if and only
if s.x/ is a left identity for A��. (These products are with respect to the second
Arens product.)

Proof. This is essentially just as in the proof of Lemma 2.10 (and Corollary 2.6)
of [loc. cit.]. For example, if xA � yA then, since x 2 xA, we have s.y/x D x.
Hence s.y/zD z for all z 2 ba.x/, and so s.y/s.x/D s.x/, since as we said earlier
s.x/ 2 ba.x/w�. �

As in [loc. cit., Corollary 2.7] we have:

Corollary 3.20. Suppose that A is a closed approximately unital subalgebra of
an approximately unital Banach algebra B , and that rA � rB . If x 2 rA, then the
support projection of x computed in A�� is the same, via the canonical embedding
A�� Š A?? � B��, as the support projection of x computed in B��.

We recall that x is pseudo-invertible in A if there exists y 2 A with xyx D x.
The following result (and several of its corollaries below) should be compared with
the C �-algebraic version of the result due to Harte and Mbekhta [1992; 1993], and
to the earlier version of the result in the operator algebra case (see particularly
[Blecher and Read 2011, Section 3; 2014, Subsection 2.4]).

Theorem 3.21. Let A be an approximately unital Banach algebra A, and x 2 rA.
The following are equivalent:

(i) s.x/ 2 A.

(ii) xA is closed.

(iii) Ax is closed.

(iv) x is pseudo-invertible in A.

(v) x is invertible in ba.x/.

Moreover, these conditions imply that

(vi) 0 is isolated in, or absent from, SpA.x/.

Finally, if ba.x/ is semisimple then (i)–(vi) are equivalent.
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Proof. We recall that .x1=m/m2N is a bai for ba.x/, by Proposition 3.17, and it has
weak* limit point s.x/ 2 ba.x/?? � A��.

(ii)) (i): Suppose xA is closed. Then

x1=2 2 ba.x/� x ba.x/� xAD xA;

so x1=2D xy for some y 2A. Thus if z D x1=2y 2A then x D x1=2xy D xz, and
so a D az for every a 2 ba.x/. Now s.x/z D z since x1=2 2 ba.x/, for example.
On the other hand, s.x/z D s.x/ since x1=nz D x1=n so that

.s.x/z/.f /Df s.x/.z/DLIMn f .x
1=nz/DLIMn f .x

1=n/Ds.x/.f /; f 2A�:

Thus s.x/D z 2 A. (Of course, in this case x1=n! s.x/ in norm.)

(i)) (iv): Recall s.x/ is a left identity of ba.x/�� in the second Arens product,
and if (i) holds, it is an identity, and ba.x/ is unital. This implies, by the Neumann
lemma, that x is invertible in ba.x/, and hence that x is pseudo-invertible in A.

(iv)) (ii): Item (iv) implies that xAD xyA is closed since xy is idempotent.

That (iii) is equivalent to the others follows from (ii) and the symmetry in (i) or
(iv). That (v) is equivalent to (i) is now obvious from the above.

For the equivalences with (vi), by the definition of spectrum, and because of
the form of (v), we may assume A is unital. That (iv) implies (vi) may be proved
similarly to the analogous argument in [Blecher and Read 2011, Theorem 3.2], but
replacing B.H/ and B.K/ with B.A/ and B.xA/. We can assume that 02 SpA.x/,
so that x is not invertible. Then xA¤ A, for if xAD A then s.x/ is a left identity
for A. It is also a right identity since if .et / is a cai for A then s.x/et D et ! s.x/.
Then the inverse of x in ba.x/ is an inverse in A, contradicting the fact that x is
not invertible in A1. It may be simpler to prove the equivalent fact that 0 is isolated
in the spectrum of x1=2. By the argument in [loc. cit., Theorem 3.2] it is enough to
prove that 0 is isolated in the spectrum of L in B.A/, where L is left multiplication
by x1=2. We note that

x1=2A� xA� eA� x1=2A;

where e D x1=2y D s.x/ and y is the pseudo-inverse of x. So these subspaces
coincide; call this space K. It follows that K is an invariant subspace for L, indeed
R D LjK is continuous, surjective and one-to-one (since x1=2x1=2a D 0 implies
that x1=2a D 0, since x1=2 is a limit of polynomials in x with no constant term).
Thus 0… SpB.K/.R/; hence RCzIK is invertible for z in a small disk centered at 0.
Since AD eA˚.1�e/A, it is easy to argue that LCzIAD .LCzI /e˚z.1�e/ is
invertible in B.A/ for such z if z¤ 0. So 0 is isolated in the spectrum of L in B.A/.

The last assertion follows just as in [loc. cit., Theorem 3.2]. �
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Remark. We have been informed by Matthias Neufang that he and M. Mbekhta
have also generalized the analogous result from [Blecher and Read 2011; 2013b],
or a variant of it, to the class of Banach algebras that are ideals in their bidual.

The next result is an analogue of [Blecher and Read 2011, Theorem 2.12]:

Proposition 3.22. If A is an approximately unital Banach algebra, a subalgebra
of a unital Banach algebra B with rA � rB , and x 2 rA, then x is invertible in B if
and only if 1B 2 A and x is invertible in A, and if and only if ba.x/ contains 1B ;
and in this case s.x/D 1B .

Proof. It is clear by the Neumann lemma that if ba.x/ contains 1B then x is
invertible in ba.x/, and hence in A. Conversely, if x is invertible in B (or in A) then
by the equivalences (i)–(iv) proved in the last theorem, we have s.x/2B , and this is
the identity of ba.x/. If xyD 1B , then 1B D xyD s.x/xyD s.x/2 ba.x/�A. �

Corollary 3.23. Let A be an approximately unital Banach algebra. A closed right
ideal J of A is of the form xA for some x 2 rA if and only if J D qA for an
idempotent q 2 FA.

Proof. If xA is closed for a nonzero x 2 rA then by Theorem 3.21, q D s.x/ 2 FA.
Hence it is easy to see that xAD qA. The other direction is trivial. �

Corollary 3.24. If a nonunital approximately unital Banach algebra A contains a
nonzero x 2 rA with xA closed, then A contains a nontrivial idempotent in FA.

Proof. By the above, xAD qA for a nontrivial idempotent q in FA. �

Corollary 3.25. If an approximately unital Banach algebra A has no left identity,
then xA¤ A for all x 2 rA.

Remark. If A is a Banach algebra such that 1
2
FA is closed under n-th roots then

one may also generalize other parts of the theory in [Blecher and Read 2011]. For
example, in this case, if x 2 FA then the support projection s.x/ is a bicontractive
projection, and ba.x/ has a cai in 1

2
FA.

4. One-sided ideals and hereditary subalgebras

At the outset it should be said there seems to be no completely satisfactory theory
of hereditary subalgebras. This can already be seen in finite-dimensional unital
examples where one may have pAD qA for projections p; q 2 FA, but no good
relation between pAp and qAq. For example, one could take the opposite algebra
to the one in Example 4.3. Another example arises when one considers various
mixed identities in the second dual A��, with the second Arens product, inside
.A1/��. In this section we will investigate what initial parts of the theory do work.
We shall see that things work considerably better if A is separable.
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We define an inner ideal in A to be a closed subalgebra D with DAD �D. To
see what kinds of results one might hope for, note that in the unital example in the
last paragraph, given an idempotent p 2A, the right ideal J D pA contains a unital
inner ideal DD pAp of A. Conversely, if DD pAp then J DDAD pA is a right
ideal with a left identity.

In nonunital examples things become more complicated. One may define a
hereditary subalgebra to be an inner idealD of A which has a bai. This then induces
a right ideal J DDA with a left bai, and a left ideal K D AD with a right bai. We
shall call these the induced one-sided ideals. We have JK D J \K DD just as in
[Blecher et al. 2008, Corollary 2.6]. However, unlike the previous paragraph, without
further conditions one cannot in general obtain a hereditary subalgebra from a right
ideal with a left bai. The following example illustrates some of what can go wrong.

Example 4.1. One of the main results in [Blecher et al. 2008] is that if J is a closed
right ideal with a left cai in an operator algebra A, then there exists an associated
hereditary subalgebraD ofA, in particular, a closed approximately unital subalgebra
D � J with J D DA. This is false without further conditions in more general
Banach algebras. Indeed, suppose that J D A is a separable Banach algebra with
a sequential left cai, but no commuting bounded left approximate identity. See
[Dixon 1978] for such an example. By way of contradiction, suppose that there is a
closed subalgebra D � J with a bai, such that J DDA. By [Sinclair 1978], D has
a commuting bounded approximate identity, and this will be a commuting bounded
left approximate identity for J , a contradiction.

This example also shows that if J is a closed right ideal with a left cai, we cannot
rechoose another left cai .et / with eset ! es with t for all s. This is critical in the
operator algebra theory in, e.g., [Blecher et al. 2008, Section 2].

In order to obtain a working theory, we now impose the condition that the bais
considered are in rA. Thus we define a right F-ideal (resp. left F-ideal) in an
approximately unital Banach algebra A to be a closed right (resp. left) ideal with a
left (resp. right) bai in FA (or equivalently, by Corollary 3.9, in rA). Henceforth in
this section, by a hereditary subalgebra (HSA) of A we will mean an inner ideal D
with a two-sided bai in FA (or equivalently, by Corollary 3.9, in rA). Perhaps these
should be called F-HSAs to avoid confusion with the notation in [Blecher et al.
2008; Blecher and Read 2011] where one uses cais instead of bais, but for brevity
we shall use the shorter term. Also it is shown in [Blecher 2015] that in an operator
algebra A these two notions coincide, and that right F-ideals in A are just the
r-ideals of [Blecher et al. 2008] (and similarly in the left case).

Note that an HSA D induces a pair of right and left F-ideals J D DA and
K DAD. As we pointed out a few paragraphs back, it is not clear that the converse
holds, namely that every right F-ideal comes from an HSA in this way. In fact, the
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main results of this section are, firstly, that if A is separable then this is true, and
indeed all HSAs and F-ideals are of the form in the next lemma. Secondly, we shall
prove (see Corollaries 4.6 and 4.11) that if A is not necessarily separable then the
HSAs and F-ideals in A are just the closures of increasing unions of ones of the
form in this lemma:

Lemma 4.2. If A is an approximately unital Banach algebra, and z 2 FA, set
J D zA, D D zAz, and K D Az. Then D is an HSA in A and J and K are the
induced right and left F-ideals mentioned above.

Proof. By Cohen factorization, D DD4 � JK � J \K, and if x 2 J \K then
x D limn z1=nxz1=n 2 D. So z 2 D D JK D J \K. Also J D pA�� \A by
Corollary 3.18, and D D pA��p\A is an HSA in A, and K D A��p\A, where
pD s.z/. To see this, note that pzDzDzp, so thatK�A��p\A. If a2A��p\A,
then az1=n has weak* limit point ap D a. Hence a convex combination converges
in norm, so that a 2K, and then K DA��p\A. A similar argument works for D.
Finally, DAD J , since zA�DA� J , and similarly AD DK. �

Remark. (1) In general D and K are determined by the particular z used above,
and not by J alone.

(2) We note that if z 2FA then with the notation in the last proof, K??DA��pw�

andD??DpA��pw�. (The weak* closure here is not necessary if A is Arens
regular.) Indeed K?? �A��pw�. Also p 2 ba.z/?? �D?? �K??, so that
A��p �K??. Thus K?? DA��pw�. It is well known that J CK is closed,
which implies, as in the proof of [Blecher and Zarikian 2006, Lemma 5.29],
that .J \K/? D J?CK?, so that D?? D J??\K?? D pA��pw�.

Example 4.3. The following example illustrates some other issues that arise for left
ideals in general Banach algebras, which obstruct following the r-ideal and hereditary
subalgebra theory of operator algebras [Blecher et al. 2008; Blecher and Read 2011].
First, for E � FA, it may be that EA has no left cai. Even if E has two elements
this may fail, and, in this case, EA may not even equal aA for any a 2 A. Thus, in
general, the class of right F-ideals in noncommutative algebras is not closed under
either finite sums or finite intersections (see Example 3.13). Also, it need not be the
case thatEAE has a bai ifE�FA. A simple three-dimensional example illustrating
all of these points is the set of lower triangular 2� 2 matrices with its norm as an
operator on `12 (see [Smith and Ward 1978, Example 4.1]), and E D fE11˙E21g.

Theorem 4.4. Suppose that J is a right F-ideal in an approximately unital Ba-
nach algebra A. For every compact subset K � J , there exists z 2 J \ FA with
K � zJ � zA.

Proof. We may assume that A is unital, and follow the idea in the proof of Cohen’s
factorization theorem (see, e.g., [Pedersen 1998, Theorem 4.1] or [Dales 2000]).
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For any f1; f2; : : : 2 J \FA, define znD
Pn
kD1 2

�kfkC2
�n 2 J CC1. We have

k1� znk D





 nX
kD1

2�k.1�fk/





� nX
kD1

2�k D 1� 2�n;

and so by the Neumann lemma, z�1n 2 J CC1 and kz�1n k � 2
n.

Let .et / be a left cai for J in FA, set z0 D 1, and choose � > 0. For each x 2K,
we have limt k.1�et /z

�1
n xkD 0. Thus by the Arzelà–Ascoli theorem, and passing

repeatedly to subnets, we can inductively choose a subsequence .fn/ of .et /, and
use these to inductively define zn by the formula above, so that

max
x2K



.1�fnC1/z�1n x


� 2�n�; n� 0:

Set z D
P1
kD1 2

�kfk 2 conv.en/� J \FA. If x 2K, set xn D z�1n x. Then

kxnC1�xnkDkz
�1
nC1.zn�znC1/z

�1
n xkDk2�n�1z�1nC1.1�fnC1/z

�1
n xk� 2�n�:

Hence w D limn xn exists and zw D x. Note also that

kxn� xk �

nX
kD1

kxk � xk�1k � 2�;

so that kw� xk � 2� if one wishes for that (so that kwk � kxkC �). �
Remark. In the case of operator algebras, or in the commutative case considered
in Section 7, one can choose the z in the last result in conv.K/, ifK is, for example,
a finite set in J \FA. If A is noncommutative, this fails as we saw in Example 4.3.

Corollary 4.5. Let A be an approximately unital Banach algebra. The closed right
ideals with a countable left bai in rA are precisely the “principal right ideals” zA
for some z 2 FA. Every separable right F-ideal is of this form.

Proof. The one direction is easy since .z1=n/ is a left bai for zA (see the proof of
Corollary 3.18). Conversely, if .en/ is a countable left bai in rA for right ideal J ,
set K D f1=neng and apply Theorem 4.4.

For the last assertion, if fdng is a countable dense set in a right F-ideal J , apply
Theorem 4.4, with K D fdn=.nkdnk/g. There exists z 2 J \ FA with K � zA.
Hence J � zA� J . �
Corollary 4.6. The right F-ideals in an approximately unital Banach algebra A
are precisely the closures of increasing unions of closed right F-ideals of the form
zA for some z 2 FA.

Proof. Suppose that J is an arbitrary right F-ideal in A. Let � > 0 be given (this is
not needed for the proof but will be useful elsewhere). Let E be the left bai in FA
considered as a set, and let ƒ be the set of finite subsets of E ordered by inclusion.
Define zG D x if G D fxg for x 2E. For any two element set G D fx1; x2g in ƒ,
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one can apply Theorem 4.4 to obtain an element zG 2 FA with GA � zGA, and,
moreover, such that xk D zGwk with kwk � xkk< � for each k, if one wishes for
that. For any three element set G D fx1; x2; x3g in ƒ, we can similarly choose
zG 2 FA with zHA� zGA for all proper subsets H of G (and with the “moreover”
above too). Proceeding in this way, we can inductively choose for any n element
set G in ƒ an element zG 2 FA with zHA � zGA for all proper subsets H of G
(and, moreover, such that each such zH can be written as zGw for some w with
kw � zHk < �, if one wishes for that). Thus .zGA/ is increasing (as sets) with
G 2ƒ, and

S
G2ƒ zGAD J .

Conversely, suppose that ƒ is a directed set and that J D
S
t Jt , where .Jt /t2ƒ

is an increasing net of subspaces ofA, and Jt D ztA for zt 2FA. Thus if t1� t2 then
Jt1 � Jt2 , so that s.zt2/zt1 D zt1 . Hence s.zt /x! x with t for all x 2 J . Thus a
weak* limit point p of .s.zt //t2ƒ acts as a left identity for J , and hence is a left iden-
tity for J??. Thus J??DpA��. Since this left identity p is in the weak* closure of
the convex set FA\J , the usual argument (see, e.g., p. 81 of [Blecher and Le Merdy
2004]) shows that J has a left bai in FA\J . So J is a right F-ideal in A. �

Remark. (1) Note that .z1=nG / in the last proof is a left bai for the right ideal J
there. This net is indexed by n 2 N and G 2 ƒ. To see this, suppose x 2 J is
given, and that kzG1a� xk< �, where a 2 A. If G1 �G then zG1 2 zGA. By the
proof of Corollary 4.6, we can choose w with zG1 D zGw and kwk � 3. Choose N
such that cn < �=3 for n �N , where cn is as in Lemma 3.7. Then by that result,
kz
1=n
G zG1 � zG1k D kz

1=n
G zGw� zGwk � 3cn < �. Thus

kz
1=n
G x�xk�kz

1=n
G x�z

1=n
G zG1akCkz

1=n
G zG1a�zG1akCkzG1a�xk<.3Ckak/�

for all G containing G1, and n�N . So .z1=nG / is a left bai for J .

(2) If .zG/G2ƒ is as above, it is tempting to define D D
S
G2ƒ zGAzG . However,

we do not see that this can be adjusted to make it an HSA.

In the operator algebra case, most of the following result and its proof were first
in the preprint [Blecher and Read 2013b] (which, as we said on the first page, has
now morphed into several papers). We thank Charles Read for discussions on that
result in May 2013, and thank Garth Dales and Tomek Kania for conversations in
the same period on algebraically finitely generated ideals in Banach algebras, and in
particular, for drawing our attention to the results in [Sinclair and Tullo 1974] (these
will not be used in the present proof below, but were used in an earlier version).
We say that a right module Z over A is algebraically countably generated (resp.
algebraically finitely generated) over A if there exists a countable (resp. finite) set
fxkg in Z such that every z 2 Z may be written as a finite sum

Pn
kD1 xkak for

some ak 2 A.
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Corollary 4.7. LetA be an approximately unital Banach algebra. A right F-ideal J
in A is algebraically countably generated as a right module over A if and only if
J D qA for an idempotent q 2 FA. This is also equivalent to J being algebraically
countably generated as a right module over A1.

Proof. Let J be a right F-ideal which is algebraically countably generated over A
by elements x1; x2; : : : in A. We can assume that kxkk! 0, and so fxk W k 2 Ng

is compact. By Theorem 4.4, there exists z 2 J such that fxkg � zA. Thus
xkA� zA

2 D zA for all k, and so J � zA� J , and J D zA. By Corollary 3.23,
J D qA for an idempotent q 2 FA.

If J is algebraically countably generated over A1 then by the above J D qA1.
Clearly q 2 A, and so J D fx 2 A W qx D xg D qA. �

Lemma 4.8. Let A be an approximately unital Banach algebra, with a closed
subalgebra D. If D has a bai from FA, then for every compact subset K �D, there
is x 2D\FA such that K � xDx � xAx.

Proof. This can be done by adapting the proof of Theorem 4.4 as follows. We can
inductively choose a subsequence .fn/ of the bai .en/ with

max
x2K

�
k.1�fnC1/z

�1
n xkCkxz�1n .1�fnC1/k

�
� 2�2n�

for each n. Choose z as before. If x 2K, set xn D z�1n xz�1n 2D. Then

kxnC1� xnk � k.z
�1
nC1x� z

�1
n x/z�1nC1kCkz

�1
n .xz�1nC1� xz

�1
n /k;

which is dominated by 2nC1kz�1nC1x � z
�1
n xk C 2nkxz�1nC1 � xz

�1
n k. Again we

have kz�1nC1x � z
�1
n xk � 2�2n�, and similarly kxz�1nC1 � xz

�1
n k � 2

�2n�. So
kxnC1 � xnk � .2

1�n C 2�n/� < �=2n�2. Thus w D limn xn exists in D, and
zwz D limn znxnzn D x as desired. We also have kw� xk � 2� as before, if we
wish for this. �

Remark. The above, and the next couple of results, are closely related to the results
of Sinclair [1978], Esterle, and others on the Cohen factorization method, which
also shows there is a commuting cai or bai under certain hypotheses. However the
result above does not follow from Sinclair’s results, and the latter do not directly
connect to “positivity” in our sense.

Applying Lemma 4.8 to a suitable scaling of a countable bai in FA, as in the
proof of Corollary 4.5, we obtain:

Theorem 4.9. Let A be an approximately unital Banach algebra, and let D be an
inner ideal in A. Then D has a countable bai from FA (or equivalently, from rA) if
and only if there exists an element z 2D\FA with D D zAz. Thus such D has a
countable commuting bai from FA. Any separable inner ideal in A with a bai from
rA is of this form.
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The following is an Aarnes–Kadison-type theorem for Banach algebras. For
another result of this type, see [Sinclair 1978].

Corollary 4.10. If A is a subalgebra of a unital Banach algebra B , and we set
rA D A\ rB , then the following are equivalent:

(i) A has a sequential (commuting) bai from rA.

(ii) There exists an x 2 rA with AD xAx.

(iii) There exists an x 2 rA with AD xAD Ax.

(iv) There exists an x 2 rA with s.x/, a mixed identity for A��.

Any separable Banach algebra with a bai from rA satisfies all of the above, as
does any M -approximately unital Banach algebra which is separable or has a
countable bai.

This is clear from earlier results. Indeed the last theorem gives the equivalence
of (i) and (ii) above and the separability assertion, and that (ii) implies (iii) follows
from Lemma 4.2, for example. Also (iii) implies (i) by considering .x1=n/, and (iii)
is equivalent to (iv) by Corollary 3.19. Again, rA can be replaced by FA D A\FB
throughout this result, or in any of the items (i) to (iv).

As a consequence of the last results, if D is an HSA in an approximately unital
Banach algebra A, and if D has a countable bai from FA, then D is of the form
in Lemma 4.2. We leave it to the reader to check that doing an “HSA variant” of
the proof of Corollary 4.6, using Lemma 4.8 and mixed identities rather than left
identities, yields:

Corollary 4.11. The HSAs in an approximately unital Banach algebraA are exactly
the closures of increasing unions of HSAs of the form zAz for z 2 FA.

Proof. We just sketch the more difficult direction of this since this is so close to
the proof of Corollary 4.6. Indeed we proceed as in the proof of Corollary 4.6,
taking E to be the bai .et /. Define ƒ and zG 2 D \ FA for G 2 ƒ as before,
but using Lemma 4.8. Note that each et is in some zGAzG , which in turn is
contained in the closed inner ideal D0 D

S
G2ƒ zGAzG . Since for x 2D, we have

x D limt etxet 2D
0 �D, the result is now clear. �

Remark. As in the remark after Corollary 4.6, if one takes care with the choice of
the z in the last corollary, the n-th roots of these z can be a bai for the HSA.

5. Better cai for M -approximately unital algebras

In this section we consider the better behaved class of M -approximately unital
Banach algebras. We will use the fact that M -ideals in Banach spaces are strongly
proximinal. (Actually the only “proximinality-type” condition we use here is “the
strongly proximinal at 1 property” mentioned in the introduction.)
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Lemma 5.1. Let X be a Banach space, and suppose that J is an M -ideal in X ,
and x 2X; y 2 J , and � > 0, with kx�yk<d.x; J /C�. Then there exists a z 2 J
with ky � zk< 3� and kx� zk D d.x; J /.

Proof. This follows from the proof of [Harmand et al. 1993, Proposition II.1.1]. �

Theorem 5.2. Let A be an M -approximately unital Banach algebra. Then FA is
weak* dense in FA�� , and rA is weak* dense in rA�� . Thus A has a cai in 1

2
FA.

Proof. This is easy if A is unital, so we will focus on the nonunital case. Suppose
that � 2A�� with k1��k � 1. Suppose that .xt / is a bounded net in A with weak*
limit � in A��, so that 1� xt ! 1� � weak* in .A1/��. By Lemma 1.1, for any
n 2 N, there exists a tn such that for every t � tn,

inf
˚
k1�yk W y 2 convfxj W j � tg

	
< 1C

1

2n
:

For every t � tn, choose such a ynt 2 convfxj W j � tg with k1�ynt k<1C1=n. If t
does not dominate tn, define ynt D y

n
tn

. So for all t , we have k1�ynt k< 1C 1=n.
Writing .n; t/ as i , we may view .ynt / as a net indexed by i , with k1� ynt k ! 1.
Given � > 0 and ' 2A�, there exists a t1 such that j'.xt /��.'/j< � for all t � t1.
Hence j'.ynt /� �.'/j � � for all t � t1 and all n. Thus ynt ! � weak* with t . By
Lemma 5.1, since d.1; A/D 1, we can choose wnt 2A with kwnt �y

n
t k< 3=n and

k1�wnt k D 1. Clearly wnt ! � weak*.
That rA is weak* dense in rA�� follows from this, and the idea in Proposition 3.5.

We omit the details, since this also follows from Propositions 2.11 and 6.2.
Next, let e be the identity of A��. By Lemma 2.4, we have that e 2 1

2
FA�� .

Suppose that .zt / is a net in 1
2
FA with weak* limit e in A��. Standard arguments

(see, e.g., [Dales 2000, Proposition 2.9.16]) show that convex combinations wt of
the zt have the property that awt and wta converge weakly to a for all a 2A. The
usual argument (see, e.g., the proof of [Blecher et al. 2008, Theorem 6.1]) shows
that further convex combinations are a cai in 1

2
FA. �

Remark. For the first statements of Theorem 5.2, we do not need the full strength
of the “M -approximately unital” condition, just strong proximinality at 1. For
the existence of a cai in 1

2
FA, the argument only uses strong proximinality at 1

and k1� 2ek � 1. Similarly, the existence of a bai in FA will follow from strong
proximinality at 1 and k1� ek � 1.

Applied to operator algebras, the latter gives short proofs of a recent theorem
of Read [2011] (see also [Blecher 2013]), as well as [Blecher and Read 2011,
Lemma 8.1; 2013a, Theorem 3.3]. (We remark though that the proof of Read’s
theorem in [Blecher 2013] does contain useful extra information that does not seem
to follow from the methods of the present paper, as is pointed out, for example, in
Remark 2 after Theorem 2.1 in [Blecher and Read 2014].) Several other results



REAL POSITIVITY AND APPROXIMATE IDENTITIES IN BANACH ALGEBRAS 35

from [Blecher and Read 2011] now follow from the last result, and with otherwise
unchanged proofs, for M -approximately unital Banach algebras. For example:

Corollary 5.3 (cf. [Blecher and Read 2011, Corollary 1.5; Smith and Ward 1979,
Theorem 2.8]). If J is a closed two-sided ideal in a unital Arens regular Banach
algebra A, and if J is M -approximately unital, and if the support projection of J
in A�� is central there, then J has a cai .et / with k1� 2etk � 1 for all t , which is
also quasicentral (that is, eta� aet ! 0 for all a 2 A).

Corollary 5.4 (cf. [Blecher and Read 2011, Corollary 1.6]). Let A be an M -
approximately unital Banach algebra. Then A has a countable bai .fn/ if and
only if A has a countable cai in 1

2
FA. This is also equivalent (by Theorem 4.9) to

AD xAx for some x 2 FA.

Remark. We can also use the results in this section to develop a slightly different
approach to hereditary subalgebras than the one taken in Section 4. For example,
the following is a generalization of the phenomenon in the first example in [Blecher
et al. 2008, Section 2], which can be interpreted as saying that for any contractive
projection p in the multiplier algebra M.A/, pAp is an HSA in the sense of that
paper. Suppose that A is an M -approximately unital Banach algebra, and that p is
an idempotent in M.A/ with k1�2pk � 1. For simplicity, suppose that A is Arens
regular. Define DD pAp. Note that D is an inner ideal in A. We claim that D has
a bai in 1

2
FD . To see this, note that by the usual arguments, D?? D pA��p. By

Theorem 5.2, there is a net w� in 1
2
FA with w�! p weak*. Set d� D pw�p; then

d� 2
1
2
FD , and d�! p weak*. By the usual arguments, convex combinations of

the d� give a cai for D in 1
2
FD . It is easy to see that DAD pA and AD DAp are

the induced one-sided ideals, and .d�/ is a one-sided cai for these.

6. Banach algebras and order theory

As we said earlier, rA and reA are closed cones in A, but are not proper in general
(and hence are what are sometimes called wedges). By the argument at the start
of Section 2 in [Blecher and Read 2014], cA D RCFA is a proper cone. These
cones naturally induce orderings: we write a � b (resp. a �e b) if b� a 2 rA (resp.
b�a2 reA). These are preorderings, but are not in general antisymmetric. Because of
this, some aspects of the classical theory of ordered linear spaces will not generalize.
Certainly many books on ordered linear spaces assume that their cones are proper.
However, other books (such as [Asimow and Ellis 1980] or [Jameson 1970]) do
not make this assumption in large segments of the text, and it turns out that the
ensuing theory interacts in a remarkable way with our recent notion of positivity, as
we point out in this section and in [Blecher and Read 2014; 2013a]. For example,
in the ordered space theory, the cone dD fx 2X W x � 0g in an ordered space X is
said to be generating if X D d� d. This is sometimes called positively generating
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or directed or conormal. If it is not generating, one often looks at the subspace
d� d. In this language, we shall see next that rA and cA D RCFA are generating
cones if A is M -approximately unital, or has a sequential cai and satisfies some
further conditions of the type met in Section 2. We first discuss the order theory of
M -approximately unital algebras.

Theorem 6.1. Let A be an M -approximately unital Banach algebra. Any x 2 A
with kxk< 1 may be written as x D a� b with a; b 2 rA and kak< 1 and kbk< 1.
In fact, one may choose such a; b to also be in 1

2
FA.

Proof. Assume that kxkD 1. Since FA�� D eCBall.A��/ by Lemma 2.4, xD ���
for �; � 2 1

2
FA�� . We may assume that A is nonunital (the unital case follows from

the last line with A�� replaced by A). By [Blecher and Read 2011, Lemma 8.1], we
deduce that x is in the weak closure of the convex set 1

2
FA�

1
2
FA. Therefore it is in

the norm closure, so given �>0, there exists a0; b02 12FA with kx�.a0�b0/k<�=2.
Similarly, there exists a1; b1 2 12FA with kx � .a0� b0/� �=2.a1� b1/k< �=22.
Continuing in this manner, one produces sequences .ak/; .bk/ in 1

2
FA. Setting

a0 D
P1
kD1.1=2

k/ak and b0 D
P1
kD1.1=2

k/bk , which are in 1
2
FA since the latter

is a closed convex set, we have x D .a0� b0/C �.a0� b0/. Let aD a0C �a0 and
b D b0C �b

0. By convexity, .1=.1C �//a 2 1
2
FA and .1=.1C �//b 2 1

2
FA.

If kxk < 1, choose � > 0 with kxk.1C �/ < 1. Then x=kxk D a� b as above,
so that x D kxka�kxkb. We have

kxkaD
�
kxk.1C �/

�
�

�
1

1C�
a
�
2 Œ0; 1/ � 1

2
FA �

1
2
FA;

and similarly kxkb 2 1
2
FA. �

Remark. (1) If A isM -approximately unital then can every x 2Ball.A/ be written
as x D a� b with a; b 2 rA\Ball.A/? As we said above, this is true if A is unital.
We are particularly interested in this question when A is an operator algebra (or
uniform algebra). We can show that in general x 2 Ball.A/ cannot be written as
x D a � b with a; b 2 1

2
FA. To see this let A be the set of functions in the disk

algebra vanishing at �1, an approximately unital function algebra. Let W be the
closed connected set obtained from the unit disk by removing the “slice” consisting
of all complex numbers with negative real part and argument in a small open interval
containing � . By the Riemann mapping theorem, it is easy to see that there is a
conformal map h of the disk onto W taking �1 to 0, so that h 2 Ball.A/. By way
of contradiction, suppose that hD a� b with a; b 2 1

2
FA. We use the geometry of

circles in the plane: if z; w2B
�
1
2
; 1
2

�
with jz�wjD1 then zCwD1. It follows that

aCbD 1 on a nontrivial arc of the unit circle, and hence everywhere (by [Hoffman
1962, p. 52]). However, a.�1/C b.�1/D 0, which is the desired contradiction.
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(2) Applying Theorem 6.1 to ix for x 2 A, one gets a similar decomposition
x D a � b with the “imaginary parts” of a and b positive. One might ask if, as
is suggested by the C �-algebra case, one may write for each �, any x 2 A with
kxk< 1 as a1� a2C i.a3� a4/ for ak with numerical range in a thin horizontal
“cigar” of height less than � centered on the line segment Œ0; 1� in the x-axis. In fact
this is false, as one can see in the case that A is the set of upper triangular 2� 2
matrices with constant diagonal entries.

A bounded R-linear ' WA!R (resp. C-linear ' WA!C) is called real positive if
'.rA/� Œ0;1/ (resp. Re'.rA/� 0). The set of real positive functionals on A is the
real dual cone, and we write it as cR

A� . Similarly, the “real version” of ceA� will be writ-
ten as ce;RA� . By the usual trick, for any R-linear ' WA!R, there is a unique C-linear
Q' WA!C with Re Q'D', and clearly ' is real positive if and only if Q' is real positive.

Proposition 6.2. Let A be an M-approximately unital Banach algebra. An R-linear
f W A ! R (resp. C-linear f W A ! C) is real positive if and only if f is a
nonnegative multiple of the real part of a state (resp. nonnegative multiple of a
state). Thus M -approximately unital algebras are scaled Banach algebras.

Proof. The one direction is obvious. For the other, by the observation above the
proposition, we can assume that f W A! C is C-linear and real positive. If A
is unital then the result follows from the proof of [Magajna 2009, Theorem 2.2].
Otherwise by Proposition 3.2(4) applied to the inclusion A� A1, we see that the
condition in Corollary 2.8(iii) holds. So A is scaled by Corollary 2.8. (We remark
that we had a different proof in an earlier draft.) �

We now turn to other classes of algebras (although we will obtain another couple
of results for M -approximately unital algebras later in this section in parts (2) of
Corollaries 6.7 and 6.8).

The following is a variant and simplification of [Blecher and Read 2013b,
Lemma 2.7 and Corollary 2.9] and [Blecher and Read 2013a, Corollary 3.6].

Proposition 6.3. Let A be an scaled approximately unital Banach algebra. Then
the real dual cone cR

A� equals ft Re. / W 2S.A/; t 2 Œ0;1/g. The prepolar of cR
A� ,

which equals its real predual cone, is rA, and the polar of cR
A� , which equals its real

dual cone, is rA�� .

Proof. It follows as in Proposition 6.2 that

cR
A� D

˚
t Re. / W  2 S.A/; t 2 Œ0;1/

	
:

The prepolar of cR
A� , which equals its real predual cone, is rA by the bipolar theorem.

We proved in Proposition 2.11 that rA is weak* dense in rA�� . This together with
the bipolar theorem gives the last assertion. �

The following is a “Kaplansky density” result for rA�� :
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Proposition 6.4. Let A be an approximately unital Banach algebra such that rA
is weak* dense in rA�� (as we saw in Proposition 2.11 was the case for scaled
approximately unital algebras). Then the set of contractions in rA is weak* dense
in the set of contractions in rA�� . If , in addition, there exists a mixed identity of
norm 1 in rA�� , then A has a cai in rA.

Proof. We use a standard kind of bipolar argument from the theory of ordered
spaces. If E and F are closed sets in a TVS with E compact, then ECF is closed.
By this principle, and by Alaoglu’s theorem, Ball.A�/C cA� is weak* closed. Its
prepolar (resp. polar) certainly is contained in Ball.A/\rA (resp. Ball.A��/\rA��).
This uses the fact that

.cA�/
ı
D rııA D rA

w�
D rA��

by the bipolar theorem. However, if a 2 Ball.A/ \ rA and f 2 Ball.A�/ and
g 2 cA� , then Re.f .a/Cg.a//��1C0D�1. So the prepolar of Ball.A�/C cA�

is Ball.A/\ rA, and similarly its polar is Ball.A��/\ rA�� . Thus Ball.A/\ rA is
weak* dense in Ball.A��/\ rA�� by the bipolar theorem. The last assertion clearly
follows from this and Lemma 2.1. �

The condition in the next result that A�� is unital is a bit restrictive (it holds, for
example, if A is Arens regular and approximately unital), but the result illustrates
some of what one might like to be true in more general situations:

Theorem 6.5. Let A be a Banach algebra such that A�� is unital, and suppose
that e is a cai for A. Then reA � rA�� if and only if reA D rA. Suppose that the latter
is true, and that Qe.A/ is weak* closed. Then A is scaled, S.A/D Se.A/, and A
has a cai in rA. Also in this case, A D rA � rA. Indeed, any x 2 A with kxk < 1
may be written as x D a� b for a; b 2 rA\Ball.A/.

Proof. If f 2 S.A/ then by viewing A1 D ACCe, we may extend f to a state
Of of A��. If x 2 reA � rA�� then Ref .x/ D Re Of .x/ � 0. Thus reA � rA, and

so these sets are equal. We also see that cA� D ceA� . If Qe.A/ is weak* closed
then A is e-scaled by Lemma 2.7, so that f D tg for some g 2 Se.A/ and for
some t which must equal 1. It follows that S.A/ D Se.A/. Hence A is scaled,
so that the weak* closure of rA\Ball.A/ is rA�� \Ball.A��/ by Proposition 6.4.
Since the latter contains an identity, A has a cai in rA by the observation after that
result. The assertion concerning kxk< 1 follows by a slight variant of the proof of
Theorem 6.1. �

In fact it is not too hard to see, as we shall show in another paper, that if A�� is
unital (or if it has a unique mixed identity), and A has a cai in rA then A has a cai
in FA (and the latter cai can be chosen to be sequential if the first cai is sequential).
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We now attempt to prove parts of the last theorem, and some other order theoretic
results, in the case that A�� is not unital. We will mostly be using the class of
states Se.A/ with respect to a fixed cai e, and the matching cones reA and ceA� , as
opposed to S.A/ and its matching cones. The reason for this is that we will want
norm additivity

kc1'1C � � �C cn'nk D c1C � � �C cn; 'k 2 S.A/; ck � 0:

In many interesting examples, S.A/ satisfies this additivity property (for example,
if A is Hahn–Banach smooth, by Lemma 2.2), and in this case almost all the rest
of the results in this section will be true for the S.A/ variants, and with all the
subscripts and superscripts and every hyphenated e dropped.

Lemma 6.6. Suppose that e D .et / is a fixed cai for a Banach algebra A, and
suppose that Qe.A/ is weak* closed in A�.

(1) The cones ceA� and ce;RA� are additive (that is, the norm on the dual space of A is
additive on these cones).

(2) If .'t / is an increasing net in ce;RA� which is bounded in norm, then the net
converges in norm, and its limit is the least upper bound of the net.

Proof. (1) If  D c' for ' 2 Se.A/ and c � 0, then

k k D ck'k D lim
t
 .et /:

Indeed, for an appropriate mixed identity e of A�� of norm 1, we have k'kD he; 'i
for all ' 2 ce;RA� . It follows that the norm on B.A;R/ is additive on ce;RA� . The complex
scalar case is similar.

(2) It follows from (1) and [Asimow and Ellis 1980, Proposition 3.2, Chapter 2]. �

We recall that the positive part of the open unit ball of a C �-algebra is a directed
set. The following is a Banach algebra version of this:

Corollary 6.7. (1) Let e be a cai for a Banach algebra A, and suppose thatQe.A/

is weak* closed in A�. Then the open unit ball of A is a directed set with
respect to the �e ordering. That is, if x; y 2 A with kxk; kyk< 1, then there
exists z 2 A with kzk< 1 and z 2 reA, and also x �e z and y �e z.

(2) If A is an M -approximately unital Banach algebra, then given x; y 2 A with
kxk; kyk< 1, a majorant z can be chosen as in (1), but also with z 2 1

2
FA.

Proof. (1) By Lemma 6.6(1) together with [Asimow and Ellis 1980, Corollary 3.6,
Chapter 2], for any x; y 2 A with kxk< 1 and kyk< 1, there exists a w 2 A with
kwk< 1 and w� x;w�y 2 reA. By the last assertion of Theorem 2.9 (setting the
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a there to be �tw for some appropriate t > 1), we have w �e z for some z 2 reA
with kzk< 1. So

�z �e �w �e x �e w �e z:

Similarly, y “lies between” z and �z, from which it is easy to see that z is in reA.

(2) This is similar to (1), but uses the fact that S.A/D Se.A/ by Lemma 2.2, so
every e can be dropped. We also use the following principle twice in place of the
cited results in the proof above: if kzk < 1 then by Theorem 6.1 we may write
z D a� b for a; b 2 1

2
FA, and then �b � z � a. �

For a C �-algebra B , a natural ordering on the positive part of the open unit ball
of B turns the latter into a net which is a positive cai for B (see [Pedersen 1979]). A
similar result holds for operator algebras [Blecher and Read 2014, Proposition 2.6].
We are not sure if there is an analogue of this for the classes of algebras in the
last result.

Corollary 6.8. (1) Let e be a cai for a Banach algebra A, and suppose thatQe.A/

is weak* closed in A�. For all x 2 A, there exists an element z 2 A with z in
reA and �z �e x �e z. Thus x D a� b, where a; b 2 reA. Moreover, if kxk< 1
then z; a; b can all be chosen in Ball.A/.

(2) If A is an M -approximately unital Banach algebra, then given x 2 A with
kxk< 1, an element z can be chosen satisfying the inequalities in (1), but also
with z 2 1

2
FA.

Proof. Apply Corollary 6.7 to x and�x. Clearly, aD.zCx/=2 and bD.z�x/=2. �
In the language of [Messerschmidt 2015], item (1) implies that the associated

preorder on A is approximately 1-absolutely conormal, and from the theory of
ordered Banach spaces in that reference, this is equivalent to B.A;R/ being “abso-
lutely monotone”. That is, with respect to the natural induced ordering on B.A;R/,
if � � ' �  then k'k � k k.

Corollary 6.9. Let e be a cai for a Banach algebra A, and suppose that Qe.A/ is
weak* closed in A�. If f � g � h in B.A;R/ in the natural ceA�-ordering, then
kgk � kf kCkhk.

Proof. This follows from Corollary 6.8 by [Batty and Robinson 1984, Theo-
rem 1.1.4]. �
Corollary 6.10. If A is an approximately unital Banach algebra then the last four
results are true with all the subscripts and superscripts and every hyphenated e

dropped if also S.A/D Se.A/ for the cai e appearing in those results (which holds,
for example, if A is Hahn–Banach smooth in A1).

Proof. Indeed, in the Hahn–Banach smooth case, S.A/ D Se.A/ by Lemma 2.2,
and if the latter holds then all e may be dropped. �
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In the part of Corollary 6.10 dealing with Corollary 6.7(1), and with Corollary 6.8
in the kxk<1 case, one may often get the majorants z appearing in those corollaries
to also be in FA (and even get a sequential cai for A in FA consisting of such
majorants z). We will discuss this in another paper, but briefly this follows from the
ideas in Corollary 2.10 and the paragraphs after that, and the idea in the paragraph
after Theorem 6.5.

Remark. (1) Above we saw that under various hypotheses, a Banach algebra A
had a cai in rA, and the latter was a generating cone, that is AD rA� rA. Con-
versely, we shall see in Corollary 7.6 that if A is commutative, approximately
unital, and AD rA� rA, then A has a bai in FA.

(2) It is probably never true for an approximately unital operator algebra A that
B.A;R/ D cR

A� � cR
A� . Indeed, in the case A D C, the latter space has real

dimension 1. However, the complex span of the (usual) states of an approxi-
mately unital operator algebra A is A� (the complex dual space). Indeed, by a
result of Moore [1971] (see also [Asimow and Ellis 1972]), the complex span
of the states of any unital Banach algebra A is A�. In the approximately unital
Banach algebra case, at least if A is scaled, the same fact follows by using a
Hahn–Banach extension and Corollary 2.8(iii).

(3) Every element x 2 1
2
FA need not achieve its norm at a state, even in M2

(consider x D .I CE12/=2, for example).

(4) We thank Miek Messerschmidt for calling our attention to the result in [Batty
and Robinson 1984] used in Corollary 6.9. Previously we had a cruder in-
equality in that result.

(5) Note that A is not usually “order-cofinal” in A1, in the sense of the ordered
space literature, even for A any C �-algebra with no countable cai (and hence
no strictly real positive element).

7. Ideals in commutative Banach algebras

Throughout this section, A will be a commutative approximately unital Banach
algebra. We will use ideas from [Blecher et al. 2008; Blecher and Read 2011;
2013a] (see [Esterle 1978; Kaniuth et al. 2010] for some other Banach algebra
variants of some of these ideas). In the following statement, the “respectively”s are
placed correctly, despite first impressions.

Theorem 7.1. Let A be a commutative approximately unital Banach algebra. The
closed ideals in A with a bai in rA (resp. FA) are precisely the ideals of the form EA
for some subset E � FA (resp. E � rA). They are also the closures of increasing
unions of ideals of the form xA for x 2 FA (resp. x 2 rA).



42 DAVID P. BLECHER AND NARUTAKA OZAWA

Proof. Suppose that E � rA, and we will prove that EA has a bai in FA. We may
assume that E � FA since EAD F.E/A, as may be seen using Proposition 3.11.
We will first suppose that E has two elements, and here we will include a separate
argument if A is Arens regular since the computations are interesting. Then we will
discuss the case where E has n elements, and then the general case.

If x; y 2 rA then xA and yA are ideals with bais in FA by Corollary 3.18.
Their support idempotents s.x/ and s.y/ are in FA�� . Indeed if J D xA then by
Corollary 3.18, we have J?? D s.x/A��, and J D s.x/A�� \ A. (In the non-
Arens regular case we are using the second Arens product here.) In the rest of this
paragraph, we assume that A is Arens regular. Set

s.x; y/D s.x/C s.y/� s.x/s.y/D 1� .1� s.x//.1� s.y//;

where s.x; y/ is an idempotent dominating both s.x/ and s.y/ in the sense that
s.x; y/s.x/D s.x/ and s.x; y/s.y/D s.y/. If f is another idempotent dominating
both s.x/ and s.y/ then f s.x; y/D s.x; y/, so that s.x; y/ is the “supremum” of
s.x/ and s.y/ in this ordering. Then notice that k.1�x1=n/.1�y1=m/k�1, and also

.1� s.x//.1� s.y//

D k1� s.x; y/k � 1:
Notice too that xACyA has a bai in FA with terms of form

x1=nCy1=m� x1=ny1=m D 1� .1� x1=n/.1�y1=m/;

which has bound 2. A double weak* limit point of this bai from FA\EA is s.x; y/.
So as usual xACyAD fa 2 A W s.x; y/aD ag.

In the non-Arens regular case we use the second Arens product below. We show
that xACyAD ..xCy/=2/AD aA, where aD .xCy/=2 2 FA. By the proof of
[Blecher and Read 2011, Lemma 2.1], we know that .1�1=n

Pn
kD1.1�a/

k/2 FA
is a bai for ba.a/, and for aA. Write x D 1 � z; y D 1 � w for contractions
z; w 2 A1, and let b D .zCw/=2. Then aD 1� b. Let r be a weak* limit point
of the bai above, which is a mixed identity for ba.a/��. Then ra D a, so that
.1�r/bD .1�r/. Note that sD 1�r is a contractive idempotent, and is an identity
for s.A1/��s. Since the identity in a Banach algebra is an extreme point, and since
.szCsw/=2D s, we deduce that szD zsD s. Similarly swDwsD s. Thus rxDx,
so that x 2 rA��\AD aA (as in Corollary 3.18). This works similarly for y, and
thus xACyA D ..xCy/=2/A. Thus if x; y 2 FA then the support idempotent
s..xCy/=2/ for a can be taken to be a “support idempotent” for xACyA.

A very similar argument works for three elements x; y; z2FA, using, for example,
the fact that k.1� x1=n/.1� y1=n/.1� z1=n/k � 1. Indeed, a similar argument
works for any finite collectionGDfx1; : : : ; xmg 2FA. We haveGAD xGA, where

xG D
1
m
.x1C � � �C xm/ 2 FA\EA:
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Let us write s.G/ for s..1=m/.x1C� � �Cxm//. Then s.G/ is the support idempotent
of GA, and s.G/A�� D .GA/??, and thus GAD s.G/A��\A. This has a bai in
FA\EA, namely .1�Œ.1�x1=n1 / � � � .1�x

1=n
m /�/, or .1�Œ.1�x1=n11 / � � �.1�x

1=nm
m /�/.

If E is a subset of FA, let J DEA, and letƒ be the collection of finite subsets G
of E ordered by inclusion. Writing ƒ as a net .Gi /i2ƒ, we have

J DEAD
[
i2ƒ

GiAD
[
i2ƒ

xGiA;

where xGi 2 FA\EA. To see that J has a bai in FA, as in [Palmer 1994, Theorem
5.1.2(a)], it is enough to show that given G 2ƒ and � > 0, there exists a 2 FA\J
with kax � xk < � for all x 2 G. However, this is clear since, as we saw above,
GA has a bai in FA.

Conversely, suppose that J is an ideal in A with a bai .xt / in rA. Then
J D

P
t xtADEA, where E D fF.xt /g � FA by Proposition 3.11. The remaining

results are clear from what we have proved. �

Remark. (1) See [Lau and Ülger 2014] for a recent characterization of ideals
with bais.

(2) We saw in Example 4.3 that several of the methods used in the last proof fail
for noncommutative algebras. First, it is not true there that if x; y 2 FA then
xACyAD ..xCy/=2/A. Also xACyA may have no left cai. Also, it need
not be the case that EAE has a bai if E � FA.

If E is any subset of FA and J DEA, and if sD sE is a weak* limit point of any
bai in FA for J , then we call s a support idempotent for J . Note that sA�� D J??

as usual, and so J D sA��\A.

Remark. Suppose that I is a directed set, and that fEi W i 2 I g is a family of
subsets of FA with Ei � Ej if i � j . Then

P
i EiA D EA, where E D

S
i Ei .

Moreover, if si is a support idempotent for EiA, and if si has weak* limit point s0

in A�� then we claim that s0 is a support idempotent for J DEA. Indeed, clearly
s0 2 .J \FA/

??, since each si resides here. Conversely, if x 2 Ei then sjx D x
if j � i , so that s0x D x. Thus six ! x in norm for all x 2 J , so that s0x D x
for all x 2 J . Hence s0x D x for all x 2 J??. Therefore s0 is idempotent, and
J?? � s0A��, and so J?? D s0A��. As usual, J D s0A�� \A. This concludes
the proof of the claim. If .xt / is a net in J \FA with weak* limit s0 then we leave
it as an exercise that one can choose a net of convex combinations of the xt , which
is a bai for J in FA with weak* limit s0. In particular, if .Gi /i2ƒ is as in the proof
of Theorem 7.1, then the net si D s.Gi / has a weak* limit point which is a support
projection for J DEA.
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Let us define an F-ideal to be an ideal of the kind characterized in Theorem 7.1,
namely a closed ideal in A with a bai in rA.

Theorem 7.2. Let A be a commutative approximately unital Banach algebra. Any
separable F-ideal in A is of the form xA for x 2 FA. Also, the closure of the sum of
a countable set of ideals xkA for xk 2 FA, equals zA, where z D

P1
kD1.1=2

k/xk .

Proof. The first assertion follows from the matching result Corollary 4.5, or from the
second assertion as in [Blecher and Read 2011, Theorem 2.16]. For the second asser-
tion, let xk; z be as in the statement. Inductively one can prove that xk 2 zA, which
is what is needed. One begins by setting x D x1 and yD

P1
kD2.1=2

k�1/xk 2FA.
Then zD .xCy/=2, and the third paragraph of the proof of Theorem 7.1 shows that
x D x1 2 zA, and y 2 zA. One then repeats the argument to show all xk 2 zA. �

As in Section 4, we obtain again that, for example:

Corollary 7.3. Let A be a commutative M -approximately unital Banach algebra.
Then A has a countable cai if and only if there exists x 2 FA with A D xA (or
equivalently, if and only if s.x/ is the unique mixed identity of A�� of norm 1).

With this in hand, one can generalize some part of the theory of left ideals and
cais in [Blecher et al. 2008; Blecher and Read 2011; 2013a] to the class of ideals
in the last theorem, in the commutative case. This class is not closed under finite
intersections. In fact, this fails rather badly (see Example 3.13). One may define an
F-open idempotent in A�� to be an idempotent p 2 A�� for which there exists a
net .xt / in FA (or equivalently, as we shall see, in rA) with xt D pxt ! p weak*.
Thus a left identity for the second Arens product in A�� is F-open if and only if it
is in the weak* closure of FA. See [Akemann 1970; Pedersen 1979] for the notion
of open projection in a C �-algebra.

Lemma 7.4. If A is a commutative approximately unital Banach algebra then the
F-open idempotents in A�� are precisely the support idempotents for F-ideals.

Proof. If p is an F-open idempotent then it follows that p 2 FA�� , and that J DEA
is an F-ideal, where E D fxtg (using Theorem 7.1). Also px D x if x 2 J , and
p 2 J??. So pA�� D J??, from which it is easy to see that p is a support
idempotent of J .

The converse is obvious by the definition of support idempotent above, and the
fact that EAD sEA��\A. �

Corollary 7.5. If A is a commutative approximately unital Banach algebra, and
E � rA, then the closed subalgebra generated by E has a bai in FA.

Proof. In Theorem 7.1 we constructed a bai in FA for EA, and this bai is clearly in
the closed subalgebra generated by E, and is a bai for that subalgebra. �
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If A is any approximately unital commutative Banach algebra, define AH DFAA.
This is an ideal of the type in Theorem 7.1, and is the largest such (by that result).

If A is an operator algebra, it is proved in [Blecher and Read 2013a] that
AD rA� rA if and only if A has a cai. In our setting we at least have:

Corollary 7.6. If A is a commutative approximately unital Banach algebra which
is generated by rA as a Banach algebra (and certainly if AD rA� rA), then A has
a bai in FA.

Proof. This follows from Corollary 7.5 because A is generated by rA in this case,
and hence is generated by FA since rA D RCFA. �

Conversely, if A is M -approximately unital or has a sequential cai satisfying
certain conditions discussed in Section 6, then we saw in Section 6 that AD rA�rA.
Indeed, we saw in the M -approximately unital case in Theorem 6.1 that

AD RC.FA�FA/� rA� rA � A:

We do not know if it is always true if, as in the operator algebra case, for
any approximately unital commutative Banach algebra we have AH D rA� rA D

RC.FA�FA/.

8. M -ideals which are ideals

We now turn to an interesting class of closed approximately unital ideals in a general
approximately unital Banach algebra that generalizes the class of approximately
unital closed two-sided ideals in operator algebras. (Unfortunately, we see no way
yet to apply the theory in [Blecher and Zarikian 2006] to generalize the results in
this section to one-sided ideals.) The study of this class was initiated in [Smith and
Ward 1978; 1979; Smith 1979]. We will use basic ideas from these papers (see also
Werner’s theory of inner ideals in the sense of [Harmand et al. 1993, Section V.3]).

First, let A be a unital Banach algebra. We define an M -ideal ideal in A
to be a subspace J of A which is an M -ideal in A, such that if P is the M -
projection then z D P1 is central in A�� (the latter is automatic, for example, if
A is commutative and Arens regular). Actually it suffices in all the arguments
below that simply za D az for a 2 A, but for convenience we will stick to the
“central” hypothesis. By [Smith and Ward 1978, Proposition 3.1], z is a hermitian
projection of norm 1 (or 0). It is then a consequence of Sinclair’s theorem on
hermitians [Sinclair 1971] that z is accretive, indeed W.z/ � Œ0; 1�. The proof
of [Smith and Ward 1978, Proposition 3.4] shows that .1 � z/J?? D .0/ (it is
shown there that zJ??z � J??D J1 in the notation there, and that .1�z/J � J2,
but clearly zJ � J1 so that .1� z/J � .J � J1/\ J2 � J1 \ J2 D .0/). It also
shows that z.I � P /A�� D 0, so that P is simply left multiplication by z, and
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J??D zA��. Since the latter is an ideal, J D J??\A is an ideal in A. Moreover,
J is approximately unital since z is a mixed identity for J?? of norm 1. We call
z the support projection of J , and write it as sJ . The correspondence J 7! sJ is
bijective on the class of M -ideal ideals.

Proposition 8.1. An M -ideal ideal J in a unital Banach algebra A is M -approxi-
mately unital, indeed J has a cai in 1

2
FA. Also J is a two-sided F-ideal in A, and

J DEAD AE for some subset E 2 J \FA.

Proof. By Proposition 3.2, J is M -approximately unital, so by Theorem 5.2 it has
a cai in 1

2
FJ D J \

1
2
FA. (The latter equality follows from Proposition 3.2 applied

in A1.) Thus J is a two-sided F-ideal. We also deduce from Proposition 3.2 that
J 1Š J CC1A. Hence J DEADAE for some E � J \FA; for example, take E
to be the cai above. �

The converse of the last result fails. Indeed even in a commutative algebra, not
every ideal EA for a subset E 2 FA, is an M -ideal ideal, nor need have a cai in
1
2
FA (see Example 3.14).
Suppose that J1 and J2 are M -ideal ideals in A, and that P1; P2 are the corre-

spondingM -projections onA�� with zkDPk1 central inA��. As in Corollary 3.19,
J1 � J2 if and only if z2z1D z1, and the latter equals z1z2. So the correspondence
J 7! sJ is an order embedding with respect to the usual ordering of projections
in A��. Then by facts above, P1P2.1/DP1.z2/D z1z2, and this is central in A��.
Similarly, .P1CP2�P1P2/1D z1C z2� z1z2, and this is central in A��. Hence
J1\J2 and J1CJ2 are M -ideal ideals in A.

To describe the matching fact about “joins” of an infinite family of ideals, we
introduce some notation. Set N to be A��. We will use the fact that N contains a
commutative von Neumann algebra. We recall that the centralizer Z.X/ of a dual
Banach space X is a weak* closed subalgebra of B.X/, and it is densely spanned in
the norm topology by its contractive projections, which are the M -projections (see,
e.g., [Harmand et al. 1993] and [Blecher and Zarikian 2006, Section 7.1]). It is also
a commutative W �-algebra in the weak* topology from B.X/. By [Harmand et al.
1993, Theorem V.2.1]), the map � W Z.N/! N taking T 2 Z.N/ to T .1/ is an
isometric homomorphism, and it is weak* continuous by the definition of the weak*
topology on B.N/ and hence on Z.N/. Therefore by the Krein–Smulian theorem,
the range of � is weak* closed, and � is a weak* homeomorphism onto its range.
Thus Z.N/ is identifiable with a weak* closed subalgebra � of N , which is a com-
mutative W �-algebra, via the map T 7! T .1/. All computations can be done inside
this commutative von Neumann algebra. Indeed the ordering of support projections
z1; z2, and their “meet” and “join”, which we met a couple of paragraphs above, are
simply the standard operations z1 � z2; z1_z2; z1^z2 with projections, computed
in the W �-algebra �. Of course, we are specifically interested in the weak* closed
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subalgebra consisting of elements in � that commute with A. The projections in
this subalgebra densely span a commutative von Neumann algebra inside �.

Lemma 8.2. The closure of the span of a family fJi W i 2 I g of M -ideal ideals in a
unital Banach algebra A is an M -ideal ideal in A.

Proof. Let fPi W i 2 I g be the corresponding family of M -projections on A�� with
zi D Pi1 central in A��. Let ƒ be the collection of finite subsets of I ordered by
inclusion. For F 2 ƒ, let JF D

P
i2F Ji ; by the above, this will be an M -ideal

ideal in A whose support projection sJF corresponds to PF .1/, where PF is the
M -projection for JF . Next suppose that .PF / has weak* limit P in Z.N/; by the
theory of M -projections, P is the M -projection corresponding to the M -ideal J DP
i Ji D

P
F 2ƒ JF . We have P.1/D z is the weak* limit of the .zi /; this is a con-

tractive hermitian projection in the ideal J??. For �2N , we have z�2J?? so that

z�D P.z�/D lim
i
Pi .z�/D lim

i
ziz�D lim

i
zi�D lim

i
�zi D �z:

Thus z is central in N , and so J is an M -ideal ideal with support projection z, and
z is the supremum _izi in �. �

Next assume that A is an approximately unital Banach algebra. We define an
M -ideal ideal in A to be a subspace J of A which is an M -ideal in A1 such that
z D P1 is central in A�� (or, as we said above, simply that za D az for a 2 A,
which will then allow an M -approximately unital A to always be an M -ideal ideal
in itself). We may then apply the theory in the last several paragraphs to A1; thus
N D .A1/�� there. Set �0 to be the weak* closure in � of the span of those
projections that happen to be in A��. This is also a commutative W �-algebra.

Theorem 8.3. If A is an approximately unital Banach algebra then the class of
M -ideal ideals in A forms a lattice; indeed, the intersection of a finite number, or
the closure of the sum of any collection, ofM -ideal ideals is again anM -ideal ideal.
The correspondence between M -ideal ideals J in A and their support projections
sJ in �0 � A�� is bijective and preserves order, and preserves finite meets and
arbitrary joins . That is, sJ1\J2 D sJ1sJ2 for M -ideal ideals J1; J2 in A; and if
fJi W i 2 I g is any collection of M -ideal ideals in A and J is the closure of their
span, then sJ is the supremum in �0 � A�� of fsJi W i 2 I g.

Proof. This result is essentially a summary of some facts above with these facts
applied to A1 instead of A, and with N D .A1/��. �

Clearly any M -ideal ideal in A is Hahn–Banach smooth in A1 [Harmand et al.
1993], and hence in A.

If J is an M -ideal ideal then we call sJ above a central open projection in A��.
Clearly such open projections p are weak* limits of nets xt 2 1

2
FA with pxt D
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xtpD xt . However, not every projection in A�� which is such a weak* limit is the
support idempotent of an M -ideal ideal (again, see Example 3.14). Nonetheless we
expect to generalize more of the theory in [Blecher et al. 2008; Blecher and Read
2011; 2013a] of open projections and r-ideals to this setting. For a start, it is now
clear that suprema of any collection, and infima of finite collections, of central open
projections are central open projections. If A is an M -approximately unital Banach
algebra then the mixed identity e for A�� of norm 1 is a central open projection.

Proposition 8.4. If A is an approximately unital Banach algebra then any central
open projection is lower semicontinuous on Q.A/.

Proof. If A is unital then this result is in [Smith and Ward 1979], and we use this
below. Let 't ! ' weak* in Q.A/, and suppose that 't .p/ � r for all t . Write
't D ct t for  t 2S.A/, and let y t 2S.A1/ be a state extending  t . By replacing
by a subnet, we can assume that ct ! s 2 Œ0; 1�. A further subnet y t� converges to
� 2 S.A1/ weak*. Thus ' D s�jA, since

't� .a/D ct� t� .a/D ct�
y t� .a/! s�.a/; a 2 A:

By the result from [loc. cit.] mentioned above,

�.p/� lim inf
�
y t� .p/D lim inf

�
 t� .p/:

Hence
'.p/D s�.p/� lim inf

�
s t� .p/D lim inf

�
ct� t� .p/� r;

as desired. �

Given a central open projection p 2 A��, we set Fp D f' 2Q.A/ W '.p/D 0g.

Theorem 8.5. Suppose thatA is a scaled approximately unital Banach algebra, and
p is a central open projection in A��, and J DpA��\A is the corresponding ideal.
Then Fp DQ.A/\ J?, and this is a weak* closed face of Q.A/. Moreover, the
assignment‚ taking p 7!Fp (resp. J 7!Fp) from the set of central open projections
(resp.M -ideal ideals of A) into the set of weak* closed faces ofQ.A/, is one-to-one
and is a (reverse) order embedding. Moreover, “suprema” (that is, joins of arbitrary
families) are taken by ‚ to intersections of the corresponding faces.

Proof. If J DpA��\A and ' 2Q.A/\J? then ' 2Fp since p2J??. Conversely,
if ' 2 Fp has norm 1 then we have

1D k'k D k' �pkCk' � .1�p/k � j'.1�p/j D 1:

Thus ' �p D 0, and so ' 2Q.A/\J?.
If ' 2 Fp and ' D t 1C .1� t / 2 for  1;  2 2Q.A/ and t 2 Œ0; 1�, then it is

clear that  1;  2 2 Fp. So Fp is a face of Q.A/. Since Fp D Q.A/\ J?, it is
weak* closed.
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Write F 1p D f' 2 S.A
1/ W '.p/D 0g. Suppose that 't ! ' 2Q.A/ weak*, with

't 2 Fp and ' ¤ 0. Suppose that 't D ct t with  t 2 S.A/. We may assume that
 t 2 S.A

1/, and then  t 2 F 1p . By [Smith and Ward 1978; 1979], F 1p is weak*
closed, so we have a weak* convergent subnet 't� !  2 F 1p . A further subnet
of the ct� converges to c 2 Œ0; 1� say. In fact, c ¤ 0 or else 't� has a norm null
subnet, so that ' D 0. Now it is clear that c jA D ' 2 Fp . So Fp is weak* closed.

If we have two central open projections p1�p2 then wDp2�p1 is a hermitian
projection in .A1/��, so that as we said above W.z/� Œ0; 1�. Thus it is clear that
'.p1/� '.p2/ for states ' 2 S.A/. Hence Fp2 � Fp1 .

Conversely, suppose that Fp2 � Fp1 . If ' 2 F 1p2 and ' is nonzero on A then,
since it is real positive on A, it will be a positive multiple of a state  on A. We
have  2Fp2 �Fp1 , so that ' 2F 1p1 . That is, F 1p2 �F

1
p1

. We are now in the setting
of [Smith and Ward 1978; 1979], from where we see that these are split faces of
S.A1/ and are weak* closed. Let N1 �N2 be the complementary split faces. We
may view p1; p2 as affine lower semicontinuous functions f1; f2 on S.A1/. As
in those references, we have fk D 0 on F 1pk , and fk D 1 on Nk . From this and
the theory of split faces [Alfsen 1971, Section II.6], it is easy to see that f1 � f2.
That is, '.p2�p1/� 0 for all ' 2 S.A1/. By [Magajna 2009], this is also true if
' 2 S..A1/��/, and hence if ' 2 S.�/. Therefore p1 � p2 in �, so that indeed
p1 � p2 in the usual ordering of projections in A��.

The last assertion follows from the identity

Q.A/\

�X
i

Ji

�?
D

\
i

.Q.A/\J?i /: �

Note that the support projection s.x/ … � in general if x 2 FA. This can be
overcome by restricting to the class where this is true — but unfortunately this class
seems often only to be interesting ifA is commutative. Thus ifA is an approximately
unital Banach algebra, write F0A for the set of x 2 FA such that multiplying on
the left by s.x/ in the second Arens product is an M -projection on N D .A1/��,
and s.x/ is commutes with A1 (again the latter is automatic if A is commutative
and Arens regular). (Note that if A is M -approximately unital then multiplying
on the left by s.x/ is an M -projection on A�� if and only if it is an M -projection
on .A1/��.) Define an m-ideal in A to be an ideal of form EA for a subset E � F0A.
If A is also a commutative operator algebra then the m-ideals in A are exactly the
closed ideals with a cai, by the characterization of r-ideals in [Blecher and Read
2011] (see also [Effros and Ruan 1990]), since in this case F0A D FA.

Proposition 8.6. If A is an approximately unital Banach algebra then any m-ideal
in A is an M -ideal ideal in A.
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Proof. Suppose that x 2 F0A. Setting Jx D xA � s.x/A�� \A, we have J??x D

s.x/A�� D s.x/N , as in the proof of Corollary 3.18. So Jx D s.x/A��\A is an
M -ideal ideal. Then EAD

P
x2E xA is also an M -ideal ideal by Theorem 8.3. �

The above class is perhaps also a context to which there is a natural generalization
of some of the results in [Blecher et al. 2008; Blecher and Read 2011; 2013a; Hay
2007] related to noncommutative peak interpolation, and noncommutative peak and
p-sets (see [Blecher 2013] for a short survey of this topic). However, one should
not expect the ensuing theory to be particularly useful for noncommutative algebras
since the projections in this section are all “central”.

Indeed it is unlikely that one could generalize to general Banach algebras the
main noncommutative peak interpolation results surveyed in [Blecher 2013], or
see [Hay 2007; Blecher et al. 2008; Blecher and Read 2013a; 2014]. However, we
end with one nice noncommutative peak interpolation result concerning M -ideal
ideals in general Banach algebras, which can also be viewed as a “noncommutative
Tietze theorem”. In particular, it also solves a problem that arose at the time of
[Blecher and Read 2013a], and was mentioned in [Blecher and Read 2013b], namely
whether rA=J D qJ .rA/ when J is an approximately unital ideal in an operator
algebra A, and qJ W A! A=J is the quotient map. In [Blecher and Read 2011],
it was shown that FA=J D qJ .FA/, and it is easy to see that qJ .rA/ � rA=J . In
fact a much more general fact is true. The main new ingredient needed is [Chui
et al. 1977, Theorem 3.1]. Their proof of this result, while remarkable and deep,
clearly contains misstatements. However, we were able to confirm that (a small
modification of) their proof works at least in the case of unital Banach algebras.
For the reader’s interest, we will give a rather different, and more direct, proof of
their full result.

Let .X; e/ be a pair consisting of a Banach space X and an element e 2X such
that kek � 1. Let

Se.X/D
˚
' 2X� W k'kD 1D'.e/

	
and W.x/DW e

X .x/Df'.x/ W' 2Se.X/g

denote respectively the state space and the numerical range of x 2X , relative to e.
Of course, these are empty if kek< 1. Below we write B.�; r/ for the closed disk
centered at � of radius r . The following formula in the Banach algebra case is
attributed to Williams in [Bonsall and Duncan 1973], and it may be proved by a
tiny modification of the proof at the end of page 1 there.

Lemma 8.7 (Williams formula). For every x 2X , one has

W.x/D
\
�2C

B.�; kx��ek/:

In particular, W e
X .x/DW

e
X��.x/ for every x 2X .
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Theorem 8.8 (Chui, Smith, Smith, and Ward). Let .X; e/ be as above. Suppose
that J is an M -ideal in X and x 2 X is such that W Q.e/

X=J
.Q.x/// has nonempty

interior, whereQWX!X=J is the quotient map. Then there exists y 2 J such that

kx�ykX D kQ.x/kX=J and W e
X .x�y/DW

Q.e/

X=J
.Q.x//:

Proof. For a bounded convex subset C � C, ˛ 2 C , and � > 0, we define

N.C; ˛; �/D f˛C .1C �/.
 �˛/ W 
 2 C g:

It is an exercise to show that the N.C; ˛; �/ are open convex neighborhoods of C
if ˛ 2 int.C /, and they shrink as � decreases.

Let x 2X be given, and fix ˛ 2 int.W Q.e/

X=J
.Q.x///. Then j˛j<kQ.x/k. Now

N.W
Q.e/

X=J
.Q.x//; ˛; 1/

is an open neighborhood of the compact subset W Q.e/

X=J
.Q.x//. By Lemma 8.7, the

latter equals
T
�2CB.�;kQ.x��e/kX=J /, and so we can find 0D�0;�1; : : : ;�n2C,

and ı > 0, such that\
i

B
�
�i ; kQ.x��ie/kX=J C ı

�
�N

�
W
Q.e/

X=J
.Q.x//; ˛; 1

�
:

Let z0 D P.x�˛e/ 2 J?? and � 2 C. Since P is an M -projection,

kx� z0��ek DmaxfkP..˛��/e/k; k.I �P /.x��eCy/kg; y 2 J;

which is dominated by

max
˚
j��˛j; kQ.x��e/kX=J

	
D kQ.x��e/kX=J

since ˛ 2
T
�2CB.�; kQ.x � �e/kX=J /. Thus kx � z0 � �iek < ri for each i ,

where ri D kQ.x��ie/kX=J C ı. Hence by Lemma 1.1, there exists y0 2 J such
that kx�y0��iek< ri for all i . Indeed using that lemma similarly to some other
proofs in our paper, if x0 2X and z 2 J?? are such that kzC x0kX�� < r , and if
fyig is a net in J which converges to z weak*, one can find a net fy0j g of convex
combinations of the yj such that y0j ! z and ky0j C x

0kX < r . One can iterate this
procedure and obtain the same conclusion for any finite sequence x01; : : : ; x

0
m 2X

such that kzC x0ikX�� < ri for all i D 1; : : : ; m.
It follows that x0 D x�y0 satisfies kx0k< kQ.x/kX=J C ı, and

j'.x0/��i j D j'.x�y0��ie/j � kQ.x��ie/kX=J C ı; ' 2 Se.X/:

This implies

WX .x0/�
\
i

B
�
�i ; kQ.x��ie/kX=J C ı

�
�N

�
W
Q.e/

X=J
.Q.x//; ˛; 1

�
:
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Now we iterate the above process, controlling the increments. If � > 0, let N.�/
denote the set of those x0 2 xCJ �X such that

kx0kX � kQ.x/kX=J C
�

1��

�
kQ.x/kX=J � j˛j

�
;

and such that WX .x0/ � N.W
Q.e/

X=J
.Q.x//; ˛; �/. Note that x0 2 N.1/ (the first

condition in the definition of N.1/ we treat as being vacuous).

Claim. For any nD 0; 1; 2; : : : and xn 2N.2�n/, there is xnC1 2N.2�.nC1// such
that kxnC1� xnk � 3 � 2�nkQ.x/k when n� 1.

Before we prove the claim, we finish the proof of the theorem. Note that if n� 1
then kxnk � 2kQ.x/kX=J by the first clause in the definition of N.�/. It follows
from this and the inequality in the claim that the norm-limit v D lim xn exists in
xCJ . It satisfies kvk � kQ.x/kX=J by the first clause in the definition of N.2�n/,
and WX .v/�WX=J .Q.x// since by the second clause in that definition,

'.v/D lim'.xn/ 2
\
n

N
�
W
Q.e/

X=J
.Q.x//; ˛; 2�n

�
DWX=J .Q.x//; ' 2 Se.X/:

That WX=J .Q.x//�WX .v/ is an easy exercise. This completes the proof of the
theorem.

To prove the claim, let z D 2�nP.xn�˛e/ 2 J??. Using the first clause in the
definition of xn 2N.2�n/, we have

kzk � 2�n.kxnkC j˛j/ < 3 � 2
�n
kQ.x/k:

Also, P.xn � z/ D .1 � 2�n/xn C 2
�n˛, so by an argument similar to the M -

projection argument in the second paragraph of the proof, we have

kxn� zk �max
˚
.1� 2�n/kxnkC 2

�n
j˛j; kQ.x/kX=J

	
:

The latter equals kQ.x/kX=J , using the first clause in the definition of xn 2N.2�n/.
Suppose that '1 2 Se.X��/ with '1 ıP D '1. There exists 
 2W Q.e/

X=J
.Q.x//

such that '1.xn/D ˛C .1C 2�n/.
 �˛/, by the second clause in the definition of
xn 2N.2

�n/. Hence, one has

'1.xn� z/D ˛C .1� 2
�n/.'1.xn/�˛/D ˛C .1� 2

�2n/.
 �˛/;

and the latter is in W Q.e/

X=J
.Q.x// since it is a convex combination of ˛ and 
 .

Next, suppose that '2 2 Se.X��/ with '2 ıP D 0. Then '2 induces a “state” on
.X=J /�� ŠX��=J??, so that

'2.xn� z/D '2.xn/ 2W
Q.e/

.X=J /��
.Q.x//DW

Q.e/

X=J
.Q.x//:

Thus W e
X��.xn � z/ � W

Q.e/

X=J
.Q.x//, since any ' 2 Se.X��/ is a convex com-

bination of '1 D ' ı P and '2 D ' ı .I � P / as above. Here we are using the
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L-projection argument we have seen several times, relying on

1D '.e/D '1.e/C'2.e/� k'1kCk'2k D 1:

By the Williams formula (Lemma 8.7),\
�2C

B
�
�; kxn� z��ekX��

�
DW e

X��.xn� z/�W
Q.e/

X=J
.Q.x//:

Let ı D 2�.nC1/. By the argument at the start of the proof, one can choose a finite
sequence �1; : : : ; �m 2 C such that\

i

B
�
�i ; kxn� z��iek

�
�N

�
W
Q.e/

X=J
.Q.x//; ˛; ı

�
:

Choose ri > kxn � z � �iek with
T
i B.�i ; ri / � N.W

Q.e/

X=J
.Q.x//; ˛; ı/. By

the argument using Lemma 1.1 in the second paragraph of the proof, we can
replace z in these inequalities by an element in J . Thus there exists y 2 J such
that kyk< 3 � 2�nkQ.x/k,

kxn�yk � kQ.x/kX=J C
ı

1� ı
.kQ.x/kX=J � j˛j/;

and

W.xn�y/�
\
i

B
�
�i ; kxn�y��iek

�
�

\
i

B.�i ; ri /�N
�
W
Q.e/

X=J
.Q.x//; ˛; ı

�
:

Hence xnC1 D xn�y 2N.ı/, which completes the proof of the claim. �

We next deal with the exceptional case when W Q.e/

X=J
.Q.x/// has empty interior,

which by convexity happens exactly when it is a line segment or point.

Corollary 8.9. Suppose that J is an M -ideal ideal (or simply an ideal which is an
M -ideal) in a unital Banach algebra A. Let x 2 A=J with K DWA=J .x/. Then

(1) IfK is a point, then there exists a2Awith kakDkxk and withWA.a/DWA=J .x/.

(2) If K DWA=J .x/ is a nontrivial line segment then (1) is true “within epsilon”.
More precisely, in this case, let yK be any thin triangle with K as one of the
sides (so contained in a thin rectangle with side K). Then there exists a 2 A
with kak D kxk and with K �WA.a/� yK.

Proof. IfK is a point, then x is a scalar multiple of 1, so this case is obvious. For (2),
if K is a nontrivial line segment, choose � within a small distance � of the midpoint
of the line. Then replace A by BDA˚1C, replace J by I DJ˚.0/, and consider
.x; �/ 2 B=I . It is easy to see that WB=I ..x; �// is the convex hull yK of K and �.
By Theorem 8.8 there exists .a; �/ 2B with WB..a; �//D yK. If � is small enough,
we also have kak D kxk (since then j�j is dominated by the maximum of the
moduli of two numbers in the numerical range, which is dominated by kxk � kak).
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However, similarly WB..a; �// is the convex hull of WA.a/ and �, which makes
the rest of the proof of (2) an easy exercise in the geometry of triangles. �

We remark that in a previous version of our paper, the last result (and Theorem 8.8
in the unital Banach algebra case) was stated as a claim , not as a theorem. Thus it is
referred to in [Blecher and Read 2014] as “the Claim at the end of” the present paper.

We can now answer the open question referred to above Theorem 8.8.

Corollary 8.10. If A is an approximately unital Banach algebra, and if J is an
M -ideal ideal in A, then rA=J D qJ .rA/. In particular, rA=J D qJ .rA/ for ap-
proximately unital closed two-sided ideals J in any (not necessarily approximately
unital) operator algebra A.

Proof. First suppose that A is unital. We leave it as an exercise that qJ .rA/� rA=J .
The converse inclusion follows from Theorem 8.8 and Corollary 8.9 (in the line situa-
tion take the triangle above and/or to the right ofK). Next suppose thatA is a nonuni-
tal approximately unital Banach algebra, and thatA=J is also nonunital. Then by the
last paragraph of A.4.3 in [Blecher and Le Merdy 2004], the inclusion A=J �A1=J
induces an isometric isomorphism A1=J Š .A=J /1. The result then follows by
applying the unital case to the canonical map fromA1 onto .A=J /1. IfA=J is unital
then one can reduce to the previous case where it is not, by considering the ideal
J˚1K inA˚1B , whereK is an approximately unital ideal in (e.g., a commutative
C �-algebra) B such that B=J is not unital. For this latter trick, one needs to know
that rA˚1B D f.x; y/2A˚1B W x 2 rA; y 2 rBg for approximately unital Banach
algebras, but this is an easy exercise (and a similar relation holds for FA˚1B ).

Finally, suppose that A is any nonunital operator algebra and J is an approxi-
mately unital closed ideal in A. Then J is an M -ideal in A1 by [Effros and Ruan
1990]. Also, by the uniqueness of the unitization of an operator algebra mentioned
in the introduction, we have A1=J Š .A=J /1 completely isometrically if A=J is
nonunital (see also [Blecher and Read 2014, Lemma 4.11]). Then the result follows
again by applying the unital case to the canonical map fromA1 onto .A=J /1. IfA=J
is unital, we can reduce to the case where it is not by the trick in the last paragraph. �

By the assertion about the norms in Theorem 8.8 and Corollary 8.9, we can
lift elements in rA=J to elements in rA, keeping the same norm, in the situations
considered in the corollary.

As we said, these results may be viewed as noncommutative peak interpolation
or noncommutative Tietze theorems. For in the case that A is a uniform algebra on
a compact Hausdorff set �, the M -ideals J are well known to be the closed ideals
with a cai, and are exactly the functions in A vanishing on some p-set E �� (see
[Smith 1979] and [Harmand et al. 1993, Theorem V.4.2]). Then qJ is identifiable
with the restriction map f 7! fjE , and A=J Š ffjE W f 2 Ag � C.E/. The lifting
result in Theorems 8.8 and 8.9 in this case say that if f 2 A with f .E/� C for a
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compact convex set C in the plane, then there exists a function g 2A which agrees
with f on E, which has norm kgk� D kfjEkE , and which has range g.�/� C
(or g.�/� yK if conv.f .E// is a line segment K, where yK is a thin triangle given
in advance, one of whose sides is K).

9. Banach algebras without cai

If A is a Banach algebra without a cai, or without any kind of bai, we briefly
indicate here how to obtain nearly all the results from Sections 3, 4, and 7. We give
more details in a forthcoming conference proceedings survey article [Blecher 2015];
however, the interested reader will have no trouble reconstructing this independently
from the discussion below. Namely, if B is any unital Banach algebra containing
A, for example, any unitization of A, one can define FBA D fa 2 A W k1B � ak � 1g

and rBA to be the set of a 2 A whose numerical range in B is contained in the right
half-plane. Also one can define FA (resp. rA) to be the union of the FBA (resp. rBA )
over all B as above. Unfortunately it is not clear to us that FA and rA are always
convex, which is needed in Sections 4 and 7 (indeed we often need them closed
too there). Of course, FA and rA are convex and closed if there is an “extremal”
unitization B of A such that FBA D FA (resp. rBA D rA). This is the case with B
equal to the multiplier unitization if A is approximately unital, or more generally if
the left regular representation embeds A isometrically in B.A/.

Most of the results in Sections 3, 4, and 7 of our paper then work without
the approximately unital hypothesis if FBA and rBA are used. In particular, we
mention the results 3.3–3.6, 3.9–3.11, 3.17–3.19, 3.21, 3.23–3.25, and all lemmas,
theorems, and corollaries in Sections 4 and 7 not concerning M -approximately
unital algebras. Every one of the statements of these results is still correct if one
drops the approximately unital hypothesis, but uses FBA and rBA in place of FA
and rA. Indeed the results just mentioned in Section 3 (and also the first lemma
in Section 4) are also correct for general Banach algebras if one uses FA or rA as
defined in the last paragraph (the other results in Sections 4 and 7 would seem to
need FA and rA (as defined in the last paragraph) being closed and convex).

Some of the results asserted in the last paragraph are obvious from the unital case
of the result, and some follow by the obvious modification of the given proof of the
result. However, in some of these results, one also needs to know that EADEB ,
where B is a unitization of A and E is a subset of FBA or rBA . This follows from the
following fact: if x 2 rA as defined in the last paragraph then

x 2 xAD ba.x/AD xB

for any unitization B of A. Indeed this is clear since by Cohen factorization,
x 2 ba.x/D ba.x/2 � xA. We also need to know that the F-transform, and n-th
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roots, are independent of the particular unitization used, but this is easy to see using
the fact that all unitization norms are equivalent.
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