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Chapter 1

Introduction

The theme of the thesis is to analyze the convergence and develop some
algorithms for matrix eigenvalue problems from the viewpoint of discrete
integrable systems. Matrix eigenvalue problems are fundamental and im-
portant problems in numerical linear algebra. In the long history of nu-
merical linear algebra, many numerical algorithms with linear and nonlinear
recursion formulae have been developed to solve matrix eigenvalue problems.
On the other hand, integrable systems are unique in the study of nonlinear
dynamical systems in physics since the solutions to integrable systems are
concretely written down. A skillful time-discretization of some integrable
system is called a discrete integrable system. In recent studies, surprisingly,
it has turned out that matrix eigenvalue problems and discrete integrable
systems are in a close connection with each other, though the two subjects
have different backgrounds.

In this chapter, firstly, historical backgrounds of numerical algorithms for
matrix eigenvalue problems and discrete integrable systems are explained by
showing typical examples, respectively. Secondly, the relationship between
matrix eigenvalue problems and discrete integrable systems is described. The
purposes and the outline of the thesis are given in the latter part of this
chapter.

For an m-by-m matrix A ∈ Cm×m, a complex constant λ ∈ C and a
nonzero vector x ∈ Cm which satisfy

Ax = λx (1.1)

are called an eigenvalue and an eigenvector of A, respectively. A pair of an
eigenvalue λ and an eigenvector x is an eigenpair. The standard eigenvalue
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problem of A is the problem of finding the whole or a part of eigenpairs of
A.

The Bernoulli method is developed for computing the solutions of the
greatest absolute value to a given univariate algebraic equation by Bernoulli
[4] in 1730s. The Bernoulli method is applicable to compute the eigenvalue
of the greatest absolute value of a matrix if the characteristic polynomial of
a given matrix is known. Let λ1, λ2, . . . , λm be the eigenvalues of a given
matrix A such that |λ1| > |λ2| > · · · > |λm| > 0. In the Bernoulli method, a
sequence {fn}n=0,1,... is generated by the linear recurrence equation

fn+m + a1fn+m−1 + a2fn+m−2 + · · ·+ am−1fn+1 + amfn = 0, (1.2)

where a1, a2, . . . , am are the coefficients of the characteristic polynomial of A.
Then, it holds that

lim
n→∞

fn+1

fn
= λ1. (1.3)

The Bernoulli method is also applicable to compute the limit of a sequence
{fn}n=0,1,...

An extension of the Bernoulli method is proposed by Aitken [1] in 1920s
for computing all solutions to a univariate algebraic equation by using deter-
minants whose entries are given by {fn}n=0,1,....

The power method is used for computing matrix eigenvalues and eigen-
vectors by using a sequence {fn}n=0,1,... given by

fn = x>Anx, (1.4)

where A is a given matrix with eigenvalues λ1, λ2, . . . , λm and x is an initial
vector. The inner product fn of the vectors x and Anx is called a moment.
Then, it holds that (1.3). In 1950s, the Lanczos algorithm [41] is developed for
reducing matrices to tridiagonal matrices. The characteristic of the Lanczos
algorithm is to use the moments similar to the power method.

The qd algorithm

q
(n+1)
k + e

(n+1)
k−1 = q

(n)
k + e

(n)
k , q

(n+1)
k e

(n+1)
k = q

(n)
k+1e

(n)
k , (1.5)

e
(n)
0 ≡ 0, e(n)m ≡ 0, k = 1, 2, . . . , n = 0, 1, . . . , (1.6)

is proposed for finding poles of rational functions by Rutishauser [51] in 1954.
In the following years, it is shown that the qd algorithm is applicable to
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compute all the eigenvalues of tridiagonal matrices called Jacobi matrices by
Rutishauser [52]. The variables of the qd algorithm are expressed as follows,

q
(n)
k =

H
(n+1)
k H

(n)
k−1

H
(n+1)
k−1 H

(n)
k

, e
(n)
k =

H
(n+1)
k−1 H

(n)
k+1

H
(n+1)
k H

(n)
k

, (1.7)

where H
(n)
k are Hankel determinants defined by

H
(n)
−1 ≡ 0, H

(n)
0 ≡ 1, H

(n)
k := det(fn+i+j−2)1≤i,j≤k. (1.8)

Then, it follows that

lim
n→∞

q
(n)
k = λk, lim

n→∞
e
(n)
k = 0. (1.9)

The LR algorithm based on a matrix decomposition is developed by
Rutishauser [53]. The qd algorithm is equivalent to the LR algorithm for
Jacobi matrices [28]. In 1890s, the determinant identities and the expansion
expressions of Hankel matrices are shown by Hadamard [27], and Henrici
[28, 30] describes the qd algorithm through Hadamard’s techniques. The qd
algorithm is then regarded as an extension of the Bernoulli method. The
power method is also regarded as a specialization of the qd algorithm for
which a different sequence {fn}n=0,1,... is given. The Lanczos method is equiv-
alent to the qd algorithm for which a different sequence {fn}n=0,1,... is given.

The term “integrable systems” is used for nonlinear systems whose solu-
tions can be concretely written down.

One of the most typical integrable systems is the Toda lattice equation
[58]

d

dt
Vk+1 = Vk+1(Jk+1 − Jk),

d

dt
Jk = Vk+1 − Vk,

k = 1, 2, . . . ,m, t ≥ 0, (1.10)

which describes physical phenomena such as chains of particles with nonlinear
interaction and ladder-type LC circuits [60]. The infinite Toda equation, on
the infinite lattice n ∈ Z, possesses an N -soliton solution. The Lax pair of
the infinite Toda equation is given by Flaschka [15] as follows,

Ψk+1 + JkΨk + VkΨk−1 = λΨk, (1.11)

dΨk

dt
= −VkΨk−1. (1.12)

3



The “discrete integrable system” is a skillful time-discretization of an
integrable system. A remarkable property of discrete integrable systems
is that discrete integrable systems have the same structure of solutions as
continuous-time integrable systems. The discrete Toda equation [32, 33, 34]
is given as follows,

q
(n+1)
k + e

(n+1)
k−1 = q

(n)
k + e

(n)
k , q

(n+1)
k e

(n+1)
k = q

(n)
k+1e

(n)
k . (1.13)

Equation (1.13) with boundary conditions e
(n)
0 ≡ 0 and e

(n)
m ≡ 0 for n =

0, 1, . . . is called the discrete finite Toda equation. Hereinafter, the discrete
Toda equation means the discrete finite Toda equation.

In 1993, a surprising fact in the studies of integrable systems and nu-
merical linear algebra is shown that the discrete Toda equation (1.13) is
equivalent to the recursion formulae of the qd algorithm (1.5) [34]. This fact
suggests that eigenvalue problems and discrete integrable systems are in a
close relation with each other.

Some numerical algorithms for computing matrix eigenvalues are designed
based on the similarity transformation of matrices associated with discrete
integrable systems. It is known that such algorithms, called the integrable
algorithms, have high relative accuracy. Such good properties stem from dis-
crete integrable systems. In 2001, the dLV algorithm for computing singular
values of bidiagonal matrices is designed by using the discrete Lotka-Volterra
(dLV) system, which stands for the prey-predator modal in mathematical bi-
ology, by Tsujimoto et al. [63]. By Fukuda et al. [16], the dhLV algorithm
for computing a kind of band matrices with complex eigenvalues is devel-
oped based on the discrete hungry Lotka-Volterra (dhLV) system, which is
a generalization of the dLV system. The dhToda algorithm for comput-
ing eigenvalues of totally nonnegative (TN) matrices of Hessenberg form is
proposed based on the discrete hungry (dh) Toda equation, which is an ex-
tension of the discrete Toda equation by Fukuda et al. [18]. TN matrices are
entry-wise nonnegative matrices whose minors are all nonnegative.

The main purpose of the thesis is to analyze and solve matrix eigenvalue
problems through a sequence {fn}n=0,1,... appearing in discrete integrable
systems.

As is mentioned above, in the history of numerical algorithms, the lin-
ear sequence {fn}n=0,1,... plays a key role in developing numerical algorithms
related with the qd algorithm. Under certain conditions, the recurrence
equations (1.2) hold for the linear sequence {fn}n=0,1,... appearing in discrete
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integrable systems. In fact, the determinant expressions (1.7) and the Hankel

determinants (1.8) indicate that the variables q
(n)
k and e

(n)
k of the qd algo-

rithm are expressed by using the linear sequence {fn}n=0,1,... in (1.2). Thus,
reconsidering the linear sequence {fn}n=0,1,... appearing in discrete integrable
systems is very important in order to investigate discrete integrable systems
and the integrable algorithms deeply.

According to the fact that the Bernoulli methods is used for computing
the limit of a given sequence of numbers, it is expected that the convergence
of a sequence {fn}n=0,1,... could be investigated by means of the discrete
integrable systems. Thus, the asymptotic behavior of a special solution to a
discrete integrable system given by the Fibonacci sequence, which is one of
the most famous and interesting sequences in combinatorics, is discussed in
the thesis.

The convergence of the integrable algorithms has been proved using their
recursion formulae or the explicit expression of determinant solutions only in
the case where a given matrix has distinct and positive eigenvalues [52, 30,
16, 18]. With the developments of computational environment, the analysis
of the convergence of numerical algorithms becomes significant even in the
case of multiple eigenvalues in order to show the robustness of numerical
algorithms for numerical error. However, the proof of the convergence in the
case of multiple eigenvalues has not be completely finished even for the qd
algorithm. The second purpose of the thesis is to analyze the asymptotic be-
havior of the qd algorithm for a tridiagonal matrix with multiple eigenvalues.

In matrix eigenvalue problems, inverse problems which are called inverse
eigenvalue problems are important subjects. One of interesting topics in
inverse eigenvalue problems is to construct a matrix with prescribed eigen-
values. There are several papers on such inverse eigenvalue problems for a
tridiagonal matrix [8, 5, 26]. However, effective approaches have not been yet
found for inverse eigenvalue problems for TN matrices because of the hard re-
striction of TN matrices. According to (1.7), (1.8) and (1.9), the variables of
the qd algorithm are expressed by using the eigenvalues of a given tridiagonal
matrix. The facts suggest that the solutions to discrete integrable systems
might be expressed by using the eigenvalues of the associated matrices. The
third purpose of the thesis is to approach inverse eigenvalue problems by
making use of expressions of the linear sequence {fn}n=0,1,... appearing in
determinant solutions to discrete integrable systems.

The thesis is organized as follows.
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In Chapter 2 [A1], the asymptotic behavior of a special solution to the
discrete Lotka-Volterra system given by some Fibonacci sequences is shown
from the viewpoint that the qd algorithm is an extension of the Bernoulli
method for computing the limit of a sequence of numbers. It is proved that a
special solution to the discrete Lotka-Volterra system given by the Fibonacci
sequence converges to a special constant such as the golden ratio.

In Chapter 3 [A4], the asymptotic behavior of the qd algorithm is dis-
cussed in the case where a tridiagonal matrix with multiple eigenvalues is
given. The convergence rate of the variables of the qd algorithm is estimated.

In Chapter 4 [A2], an inverse eigenvalue problem for tridiagonal matrices
with multiple eigenvalues is considered. A method for constructing a tridi-
agonal matrix with the same eigenvalues, except for multiplicities, as a given
nonsymmetric dense matrix is proposed by using the properties of the qd
algorithm. Some numerical examples are given.

In Chapter 5 [A3], an inverse eigenvalue problem for Hessenberg-type TN
matrices is taken up. A finite-step procedure for constructing Hessenberg-
type TN matrices with prescribed eigenvalues is designed based on the dis-
crete hungry Toda equation. As examples, some TN matrices are constructed
by using the proposed procedure.

In Chapter 6 [A5], an extension of the procedure in Chapter 5 [A3] for
dense TN matrices is proposed. The recursion formula for constructing dense
matrices with prescribed eigenvalues is derived by use of Hankel-like de-
terminants and Hadamard-like polynomials. The initial conditions for the
constructed matrices to be TN are found. The relationships between the
proposed procedure and the numerical algorithms based on the Toda-type
discrete integrable systems are also mentioned.

Chapter 7 is devoted to concluding remarks of the thesis.
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Chapter 2

Some Fibonacci sequences in
the discrete Lotka-Vorterra
system

In Chapter 1, we give an explanation of the relationship among the Bernoulli
method, the qd algorithm and the discrete Toda equation. The Bernoulli
method is applicable to compute the limit of a given sequence of numbers.
Thus, it is interesting to verify that discrete integrable systems could compute
the limit of a sequence. In this chapter, a special solution to the discrete
Lotka-Volterra system, which is one of discrete integrable systems, given by
the famous Fibonacci sequence is discussed.

2.1 The discrete Lotka-Vorterra system

One of the prey-predator dynamics of (2m − 1) species in mathematical
biology is described by the following integrable Lotka-Volterra (LV) system
[66],

dUk(t)

dt
= Uk(t)(Uk+1(t)− Uk−1(t)), k = 1, 2, . . . , 2m− 1, (2.1)

U0(t) ≡ 0, U2m(t) ≡ 0, t ≥ 0,

where Uk(t) denotes the number of the kth species at the continuous time t.
The LV system (2.1) describes that the kth species falls prey to the (k−1)th
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and preys on the (k+ 1)th. In [9], the LV system (2.1) is called the Kac-Van
Moerbeke lattice, and its solution is represented as

U2k−1(t) =
τ̂k(t)τk−1(t)

τk(t)τ̂k−1(t)
, U2k(t) =

τk+1(t)τ̂k−1(t)

τ̂k(t)τk(t)
,

with two kinds of the Hankel determinants

τk(t) :=

∣∣∣∣∣∣∣∣∣
ω0(t) ω1(t) · · · ωk−1(t)
ω1(t) ω2(t) · · · ωk(t)
...

...
. . .

...
ωk−1(t) ωk(t) · · · ω2k−2(t)

∣∣∣∣∣∣∣∣∣ ,

τ̂k(t) :=

∣∣∣∣∣∣∣∣∣
ω1(t) ω2(t) · · · ωk(t)
ω2(t) ω3(t) · · · ωk+1(t)
...

...
. . .

...
ωk(t) ωk+1(t) · · · ω2k−1(t)

∣∣∣∣∣∣∣∣∣ .
The index k of τk(t) and τ̂k(t) denotes the dimension of them. The Hankel
determinant τ̂k(t) differs from τk(t) in that the (1,1) entry is ω1(t) not ω0(t).
The every other entry of τ̂k(t) is also distinct to that of τk(t). A skillful
time-discretization of (2.1) yields

u
(n+1)
k (1 + u

(n+1)
k−1 ) = u

(n)
k (1 + u

(n)
k+1), k = 1, 2, . . . , 2m− 1, (2.2)

u
(n)
0 ≡ 0, u

(n)
2m ≡ 0, n = 0, 1, . . . ,

where u
(n)
k is the number of the kth species at the discrete time n [35, 63].

Here (2.2) is called the discrete Lotka-Volterra (dLV) system. A determinant
solution to (2.2) is shown in [46, 55, 63] as

u
(n)
2k−1 =

Ĥ
(n)
k H

(n+1)
k−1

H
(n)
k Ĥ

(n+1)
k−1

, u
(n)
2k =

H
(n)
k+1Ĥ

(n+1)
k−1

Ĥ
(n)
k H

(n+1)
k

, (2.3)

H
(n)
k :=

∣∣∣∣∣∣∣∣∣∣
f
(n)
0 f

(n)
1 · · · f

(n)
k−1

f
(n)
1 f

(n)
2 · · · f

(n)
k

...
...

. . .
...

f
(n)
k−1 f

(n)
k · · · f

(n)
2k−2

∣∣∣∣∣∣∣∣∣∣
, Ĥ

(n)
k :=

∣∣∣∣∣∣∣∣∣∣
f
(n)
1 f

(n)
2 · · · f

(n)
k

f
(n)
2 f

(n)
3 · · · f

(n)
k+1

...
...

. . .
...

f
(n)
k f

(n)
k+1 · · · f

(n)
2k−1

∣∣∣∣∣∣∣∣∣∣
,

(2.4)

H
(n)
0 ≡ 1, H

(n)
m+1 ≡ 0, Ĥ

(n)
0 ≡ 1. (2.5)
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The Hankel determinants H
(n)
k and Ĥ

(n)
k have a structure similar to τk(t) and

τ̂k(t) on their dimensions and entries. The Hankel determinants H
(n)
k and

Ĥ
(n)
k satisfy

Ĥ
(n)
k H

(n+1)
k−1 = Ĥ

(n)
k−1H

(n+1)
k −H(n)

k Ĥ
(n+1)
k−1 , (2.6)

H
(n)
k+1Ĥ

(n+1)
k−1 = H

(n)
k Ĥ

(n+1)
k − Ĥ(n)

k H
(n+1)
k , (2.7)

which is called Hirota’s bilinear form [35, 38, 46, 62, 63]. This is useful for
proving the determinant solution (2.3). The proof is also derived from the

study of orthogonal polynomials [56]. With respect to the entry f
(n)
j in H

(n)
k

and Ĥ
(n)
k , the time evolution from n to n+1 is given by the recursion formula

f
(n+1)
j = f

(n)
j + f

(n)
j+1, j = 0, 1, . . . , 2m− 2. (2.8)

It is emphasized here that the time evolution from n to n+ 1 of f
(n)
2m−1 is not

given by (2.8). Hirota’s bilinear form plays a key role for getting the formula

concerning the time evolution of f
(n)
2m−1, which is not included in (2.8).

An algorithm for matrix singular values is designed based on the dLV sys-
tem (2.2) [38, 39, 63]. However, in [38, 39, 63], the entry f

(n)
j is not mainly

discussed. In this chapter, by focusing on f
(n)
j , we first consider the determi-

nant solution (2.3) given by the m-step Fibonacci sequences [43] which cover
the well-known Fibonacci, Tribonacci sequences [64] and so on. This study
is mainly twofold. One is to derive a relationship between the Hankel deter-
minants Ĥ

(n)
m and Ĥ

(n+1)
m by considering Hirota’s bilinear form. The second

is to clarify a time evolution from n to n+ 1 of f
(n)
2m−1 through the obtained

relationship between Ĥ
(n)
m and Ĥ

(n+1)
m , and is to prove that if {f (n)

j }j=0,1,...,

for fixed n, is an m-step Fibonacci sequence, then {f (n+1)
j }j=0,1,... is also so.

We next show that, as n → ∞, the dLV variable u
(n)
1 has an interesting

relationship with the ratio of two successive m-step Fibonacci numbers. We
also demonstrate some examples in order to confirm theoretical results nu-
merically.
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2.2 m-step Fibonacci sequence in determinant

solution

The m-step Fibonacci sequence {Fj}j=0,1,... is given by the recursion formula

Fj+m = Fj + Fj+1 + · · ·+ Fj+m−1, j = 0, 1, . . . , (2.9)

for some integer F0, F1, . . . , Fm−1 [43]. The 2-step Fibonacci sequence is well-
known as the basic Fibonacci sequence such that the ratio Fj+1/Fj converges
to the golden ratio τ2 = (

√
5 + 1)/2 as j → ∞ [64]. The 3-step Fibonacci

sequence is also called the Tribonacci sequence. In this section, we show that
f
(n)
j is associated with the m-step Fibonacci sequence.

As is shown in (2.4), the Hankel determinants H
(n)
1 , H

(n)
2 , . . . , H

(n)
m and

Ĥ
(n)
1 , Ĥ

(n)
2 , . . . , Ĥ

(n)
m are composed of f

(n)
0 , f

(n)
1 , . . . , f

(n)
2m−1. The all entries

of H
(n+1)
1 , H

(n+1)
2 , . . . , H

(n+1)
m and Ĥ

(n+1)
1 , Ĥ

(n+1)
2 , . . . , Ĥ

(n+1)
m−1 are also repre-

sented in terms of f
(n)
0 , f

(n)
1 , . . . , f

(n)
2m−1 through (2.8). In other words, the

determinant solution (2.3) is given by f
(n)
0 , f

(n)
1 , . . . , f

(n)
2m−1. Let us assume

here that {f (n)
j }j=0,1,...,2m−1, for fixed n, is an m-step Fibonacci sequence,

namely,

f
(n)
j+m = f

(n)
j + f

(n)
j+1 + · · ·+ f

(n)
j+m−1, j = 0, 1, . . . ,m− 1, (2.10)

for some integer f
(n)
0 , f

(n)
1 , . . . , f

(n)
m−1. Then we give a lemma concerning the

evolution from n to n+1 of the Hankel determinantH
(n)
m with the determinant

dimension m.

Lemma 2.2.1. Let {f (n)
j }j=0,1,...,2m−1, for fixed n, be an m-step Fibonacci

sequence as in (2.10). If m is even, then it holds that

H(n+1)
m = H(n)

m . (2.11)

Otherwise,

H(n+1)
m = 2H(n)

m . (2.12)
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Proof. First, let us discuss the case where m is even. Let m = 2`. Let us
begin with considering the Hankel determinant

H
(n+1)
2` =

∣∣∣∣∣∣∣∣∣∣
f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−1

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`

...
...

. . .
...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−2

∣∣∣∣∣∣∣∣∣∣
, (2.13)

which appears in the left hand side of (2.11). By using (2.8) and (2.10), we

may rewrite the (2`, 1) entry of H
(n+1)
2` as

f
(n+1)
2`−1 = f

(n)
2`−1 + f

(n)
2`

= f
(n)
2`−1 + (f

(n)
0 + f

(n)
1 + · · ·+ f

(n)
2`−1)

= f
(n)
2`−1 + [(f

(n)
0 + f

(n)
1 ) + (f

(n)
2 + f

(n)
3 ) + · · ·+ (f

(n)
2`−2 + f

(n)
2`−1)]

= f
(n)
2`−1 + (f

(n+1)
0 + f

(n+1)
2 + · · ·+ f

(n+1)
2`−2 ).

Similarly, for the (2`, 2), the (2`, 3), . . . , the (2`, 2`) entries of H
(n+1)
2` , it holds

that

f
(n+1)
2`+k−2 = f

(n)
2`+k−2 + (f

(n+1)
k−1 + f

(n+1)
k+1 + · · ·+ f

(n+1)
2`+k−3), k = 2, 3, . . . , 2`.

Thus, H
(n+1)
2` is represented as

H
(n+1)
2` =

`−1∑
j=0

H
(n+1)
2`,2j +

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−2 f

(n+1)
2`−1

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`−1 f

(n+1)
2`

...
...

. . .
...

...

f
(n+1)
2`−2 f

(n+1)
2`−1 · · · f

(n+1)
4`−4 f

(n+1)
4`−3

f
(n)
2`−1 f

(n)
2` · · · f

(n)
4`−3 f

(n)
4`−2

∣∣∣∣∣∣∣∣∣∣∣∣
,

H
(n+1)
2`,2j :=

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−2 f

(n+1)
2`−1

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`−1 f

(n+1)
2`

...
...

. . .
...

...

f
(n+1)
2`−2 f

(n+1)
2`−1 · · · f

(n+1)
4`−4 f

(n+1)
4`−3

f
(n+1)
2j f

(n+1)
2j+1 · · · f

(n+1)
2j+2`−1 f

(n+1)
2j+2`−2

∣∣∣∣∣∣∣∣∣∣∣∣
.
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For every j, the (2j + 1)th row of H
(n+1)
2`,2j is just equal to the 2`th one. So, it

is obvious that H
(n+1)
2`,0 = 0, H

(n+1)
2`,2 = 0, . . . , H

(n+1)
2`,2`−2 = 0, and then, by using

(2.8), we derive

H
(n+1)
2` =

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−2 f

(n+1)
2`−1

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`−1 f

(n+1)
2`

...
...

. . .
...

...

f
(n+1)
2`−2 f

(n+1)
2`−1 · · · f

(n+1)
4`−4 f

(n+1)
4`−3

f
(n)
2`−1 f

(n)
2` · · · f

(n)
4`−3 f

(n)
4`−2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n)
0 + f

(n)
1 f

(n)
1 + f

(n)
2 · · · f

(n)
2`−2 + f

(n)
2`−1 f

(n)
2`−1 + f

(n)
2`

f
(n)
1 + f

(n)
2 f

(n)
2 + f

(n)
3 · · · f

(n)
2`−1 + f

(n)
2` f

(n)
2` + f

(n)
2`+1

...
...

. . .
...

...

f
(n)
2`−2 + f

(n)
2`−1 f

(n)
2`−1 + f

(n)
2` · · · f

(n)
4`−4 + f

(n)
4`−3 f

(n)
4`−3 + f

(n)
4`−2

f
(n)
2`−1 f

(n)
2` · · · f

(n)
4`−3 f

(n)
4`−2

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n)
0 f

(n)
1 · · · f

(n)
2`−2 f

(n)
2`−1

f
(n)
1 f

(n)
2 · · · f

(n)
2`−1 f

(n)
2`

...
...

. . .
...

...

f
(n)
2`−2 f

(n)
2`−1 · · · f

(n)
4`−4 f4`−3

f
(n)
2`−1 f

(n)
2` · · · f

(n)
4`−3 f

(n)
4`−2

∣∣∣∣∣∣∣∣∣∣∣∣
= H

(n)
2` .

Therefore, we have (2.11) if m is even.
Next, let us discuss the case m = 2` + 1 in a way similar to the case

m = 2`. Note that, from (2.8) and (2.10),

f
(n+1)
2`+k−1 = 2f

(n)
2`+k−1 + (f

(n+1)
k−1 + f

(n+1)
k+1 + · · ·+ f

(n+1)
2`+k−3), k = 1, 2, . . . , 2`+ 1.
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Thus, H
(n+1)
2`+1 is rewritten as

H
(n+1)
2`+1 =

`−1∑
j=0

H
(n+1)
2`+1,2j + 2

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−1 f

(n+1)
2`

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

...
...

. . .
...

...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−2 f

(n+1)
4`−1

f
(n)
2` f

(n)
2`+1 · · · f

(n)
4`−1 f

(n)
4`

∣∣∣∣∣∣∣∣∣∣∣∣
,

Ĥ
(n+1)
2`+1,2j :=

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−1 f

(n+1)
2`

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

...
...

. . .
...

...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−2 f

(n+1)
4`−1

f
(n+1)
2j f

(n+1)
2j+1 · · · f

(n+1)
2j+2`−1 f

(n+1)
2j+2`

∣∣∣∣∣∣∣∣∣∣∣∣
.

By taking account that H
(n+1)
2`+1,0 = 0, H

(n+1)
2`+1,2 = 0, . . . , H

(n+1)
2`+1,2`−2 = 0, we

derive

H
(n+1)
2`+1 = 2

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
0 f

(n+1)
1 · · · f

(n+1)
2`−1 f

(n+1)
2`

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

...
...

. . .
...

...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−2 f

(n+1)
4`−1

f
(n)
2` f

(n)
2`+1 · · · f

(n)
4`−1 f

(n)
4`

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.14)

Obviously, from (2.8), the right hand side of (2.14) becomes 2H
(n)
2`+1. There-

fore, we have (2.12) if m is odd.

Lemma 2.2.1 leads to a lemma concerning the evolution from n to n+ 1
of Ĥ

(n)
m with the determinant dimension m.

Lemma 2.2.2. Let {f (n)
j }j=0,1,...,2m−1, for fixed n, be an m-step Fibonacci

sequence as in (2.10). Moreover, let H
(n)
m 6= 0. If m is even, then it holds

that

Ĥ(n+1)
m = Ĥ(n)

m . (2.15)

Otherwise,

Ĥ(n+1)
m = 2Ĥ(n)

m . (2.16)

13



Proof. Eq. (2.7) with k = m becomes

H(n)
m Ĥ(n+1)

m − Ĥ(n)
m H(n+1)

m = 0,

since it holds that H
(n)
m+1 = 0. By combining it with Lemma 2.2.1, we derive

H(n)
m Ĥ(n+1)

m = H(n)
m Ĥ(n)

m ,

if m is even. Otherwise,

H(n)
m Ĥ(n+1)

m = 2H(n)
m Ĥ(n)

m .

Thus, by taking account that H
(n)
m 6= 0, we have (2.15) and (2.16).

Lemma 2.2.2 is useful for observing the time evolution from n to n + 1
of a

(n)
2m−1. So, with the help of Lemma 2.2.2, we have a proposition for the

sequence {f (n+1)
j }j=0,1,...,2m−1.

Proposition 2.2.3 (Akaiwa-Iwasaki [A1]). Let {f (n)
j }j=0,1,...,2m−1, for fixed

n, be an m-step Fibonacci sequence as in (2.10). Moreover, let H
(n)
m 6=

0. Then {f (n+1)
j }j=0,1,...,2m−1 also becomes an m-step Fibonacci sequence,

namely,

f
(n+1)
j+m = f

(n+1)
j + f

(n+1)
j+1 + · · ·+ f

(n+1)
j+m−1, j = 0, 1, . . . ,m− 1. (2.17)

Proof. It is easy to prove (2.17), except for the case where j = m− 1. From
(2.8) and (2.10), we derive, for j = 0, 1, . . . ,m− 2,

f
(n+1)
j+m = f

(n)
j+m + f

(n)
j+m+1

= (f
(n)
j + f

(n)
j+1 + · · ·+ f

(n)
j+m−1) + (f

(n)
j+1 + f

(n)
j+2 + · · ·+ f

(n)
j+m)

= (f
(n)
j + f

(n)
j+1) + (f

(n)
j+1 + f

(n)
j+2) + · · ·+ (f

(n)
j+m−1 + f

(n)
j+m)

= f
(n+1)
j + f

(n+1)
j+1 + · · ·+ f

(n+1)
j+m−1.

This implies that {f (n+1)
j }j=0,1,...,2m−2 is an m-step Fibonacci sequence. Here-

inafter, we show that {f (n+1)
j }j=0,1,...,2m−1, given by adding f

(n+1)
2m−1 to

14



{f (n+1)
j }j=1,2,...,2m−2, is also an m-step Fibonacci sequence, namely, f

(n+1)
2m−1 =

f
(n+1)
m−1 + f

(n+1)
m + · · ·+ f

(n+1)
2m−2 .

First, let us discuss the case where m = 2` in Lemma 2.2.2. The Hankel
determinant Ĥ

(n)
2` in (2.15) is transformed by (2.8) into

Ĥ
(n)
2` =

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n)
1 + f

(n)
2 f

(n)
2 + f

(n)
3 · · · f

(n)
2`−1 + f

(n)
2` f

(n)
2` + f

(n)
2`+1

f
(n)
2 + f

(n)
3 f

(n)
3 + f

(n)
4 · · · f

(n)
2` + f

(n)
2`+1 f

(n)
2`+1 + f

(n)
2`+2

...
...

. . .
...

...

f
(n)
2`−1 + f

(n)
2` f

(n)
2` + f

(n)
2`+1 · · · f

(n)
4`−3 + f

(n)
4`−2 f

(n)
4`−2 + f

(n)
4`−1

f
(n)
2` f

(n)
2`+1 · · · f

(n)
4`−2 f

(n)
4`−1

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`−1 f

(n+1)
2`

f
(n+1)
2 f

(n+1)
3 · · · f

(n+1)
2` f

(n+1)
2`+1

...
...

. . .
...

...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−3 f

(n+1)
4`−2

f
(n)
2` f

(n)
2`+1 · · · f

(n)
4`−2 f

(n)
4`−1

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.18)

Let us add the 1st, the 3rd, . . . , the (2`−1)th one. Then, by using (2.8) and
(2.10), we may rewrite the (2`, 1), the (2`, 2), . . . , the (2`, 2`− 1) entries in
the 2`th row of (2.18) as

f
(n)
2`+j + (f

(n+1)
j+1 + f

(n+1)
j+3 + · · ·+ f

(n+1)
2`+j−1)

= f
(n)
2`+j + [(f

(n)
j+1 + f

(n)
j+2) + (f

(n)
j+3 + f

(n)
j+4) + · · ·+ (f

(n)
2`+j−1 + f

(n)
2`+j)]

= f
(n)
2`+j + f

(n)
2`+j+1

= f
(n+1)
2`+j , j = 0, 1, . . . , 2`− 2.

Simultaneously, the (2`, 2`) entry becomes

f
(n)
4`−1 + f

(n+1)
2` + f

(n+1)
2`+2 + · · ·+ f

(n+1)
4`−2

= [(f
(n)
2`−1 + f

(n)
2` ) + (f

(n)
2`+1 + f

(n)
2`+2) + · · ·+ (f

(n)
4`−3 + f

(n)
4`−2)]

+ (f
(n+1)
2` + f

(n+1)
2`+2 + · · ·+ f

(n+1)
4`−2 )

= (f
(n+1)
2`−1 + f

(n+1)
2`+1 + · · ·+ f

(n+1)
4`−3 ) + (f

(n+1)
2` + f

(n+1)
2`+2 + · · ·+ f

(n+1)
4`−2 )

= f
(n+1)
2`−1 + f

(n+1)
2` + · · ·+ f

(n+1)
4`−2 .
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Thus, it follows that

Ĥ
(n)
2` =

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2`−1 f

(n+1)
2`

f
(n+1)
2 f

(n+1)
3 · · · f

(n+1)
2` f

(n+1)
2`+1

...
...

. . .
...

...

f
(n+1)
2`−1 f

(n+1)
2` · · · f

(n+1)
4`−3 f

(n+1)
4`−2

f
(n+1)
2` f

(n+1)
2`+1 · · · f

(n+1)
4`−2 f

(n+1)
2`−1 + f

(n+1)
2` + · · ·+ f

(n+1)
4`−2

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.19)

Let us recall here that Ĥ
(n+1)
2` = Ĥ

(n)
2` . Therefore, by comparing (2.19) with

Ĥ
(n+1)
2` , we have f

(n+1)
4`−1 = f

(n+1)
2`−1 + f

(n+1)
2` + · · · + f

(n+1)
4`−2 , namely, (2.17) with

j = m− 1 if m is even.
Next, let us discuss the case where m = 2` + 1. Similarly as the case

where m = 2`, by using (2.8) and (2.10), we derive

Ĥ
(n)
2`+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

f
(n+1)
2 f

(n+1)
3 · · · f

(n+1)
2`+1 f

(n+1)
2`+2

...
...

. . .
...

...

f
(n+1)
2` f

(n+1)
2`+1 · · · f

(n+1)
4`−1 f

(n+1)
4`

f
(n+1)
2`+1 f

(n+1)
2`+2 · · · f

(n+1)
4` f

(n+1)
2` + f

(n+1)
2`+1 + · · ·+ f

(n+1)
4`

∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

f
(n+1)
2 f

(n+1)
3 · · · f

(n+1)
2`+1 f

(n+1)
2`+2

...
...

. . .
...

...

f
(n+1)
2` f

(n+1)
2`+1 · · · f

(n+1)
4`−1 f

(n+1)
4`

f
(n)
2` f

(n)
2`+1 · · · f

(n)
4`−1 f

(n)
4`

∣∣∣∣∣∣∣∣∣∣∣∣
. (2.20)

The 2nd term in the right hand side of (2.20) is transformed by (2.8) into

−Ĥ(n)
2`+1. Thus, it follows that

2Ĥ
(n)
2`+1 =

∣∣∣∣∣∣∣∣∣∣∣∣

f
(n+1)
1 f

(n+1)
2 · · · f

(n+1)
2` f

(n+1)
2`+1

f
(n+1)
2 f

(n+1)
3 · · · f

(n+1)
2`+1 f

(n+1)
2`+2

...
...

. . .
...

...

f
(n+1)
2` f

(n+1)
2`+1 · · · f

(n+1)
4`−1 f

(n+1)
4`

f
(n+1)
2`+1 f

(n+1)
2`+2 · · · f

(n+1)
4` f

(n+1)
2` + f

(n+1)
2`+1 + · · ·+ f

(n+1)
4`

∣∣∣∣∣∣∣∣∣∣∣∣
.

(2.21)
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Therefore, by combining (2.21) with Lemma 2.2.2, we have f
(n+1)
4`+1 = f

(n+1)
2` +

f
(n+1)
2`+1 + · · ·+ f

(n+1)
4` , namely, (2.17) with m = 2`+ 1 if m is odd.

For n = 0, 1, . . . , we successively have a main theorem in this section by
induction of Proposition 2.2.3.

Theorem 2.2.4 (Akaiwa-Iwasaki [A1]). Let {f (0)
j }j=0,1,...,2m−1 be an m-step

Fibonacci sequence such that H
(0)
m 6= 0. Then it holds that, for every n,

{f (n)
j }j=0,1,...,2m−1 is also an m-step Fibonacci sequence.

In particular, if {f (0)
j }j=0,1,2,3 is a 2-step Fibonacci sequence in the case

where m = 2, then, by taking account that f
(n)
2 = f

(n)
0 + f

(n)
1 = f

(n+1)
0 and

f
(n)
3 = f

(n)
1 + f

(n)
2 = f

(n+1)
1 , we give the following corollary.

Corollary 2.2.5. Let {f (0)
j }j=0,1,2,3 be a 2-step Fibonacci sequence such that

H
(0)
2 6= 0. Then {f (0)

0 , f
(0)
1 , f

(1)
0 , f

(1)
1 , . . . , f

(n)
0 , f

(n)
1 , . . . } is also a 2-step Fi-

bonacci sequence.

2.3 Convergence to the ratio of two succes-

sive m-step Fibonacci numbers

It is well-known that, in the case where {Fj}j=0,1,... is a 2-step Fibonacci
sequence, Fk+1/Fk, which is the ratio of two successive 2-step Fibonacci
numbers, converges to τ2 = (

√
5 + 1)/2 called the golden ratio, as k → ∞.

The ratio of two successive and sufficiently large 3-step Fibonacci numbers
approaches to the irrational number 1.839286755214161 · · · . According to
[43], in an m-step Fibonacci sequence, the ratio Fk+1/Fk converges to the
constant τm as k → ∞, and τm is equal to one of the real solutions to the
m-degree algebraic equation

xm − xm−1 − · · · − x− 1 = 0. (2.22)

Obviously, 1 < τm < 2. This is because 1 < 1 + (Fk−m+1 + Fk−m+2 + · · · +
Fk−1)/Fk = Fk+1/Fk = 2 − Fk−m/Fk < 2 for every k in the case where
{Fj}j=0,1,... is a positive or negative m-step Fibonacci sequence. Moreover, it
is shown in [6] that the continued fraction

1 +
b |
| 1

+
b |
| 1

+ · · · (2.23)
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becomes the largest solution to the quadratic equation x2−x−b = 0, through
considering an extended 2-step Fibonacci sequence {Fj}j=0,1,... given by the
recursion formula Fj+2 = Fj+1 + bFj. It is proved in [64] that the continued
fraction (2.23) with b = 1 is just equal to the golden ratio τ2. So, the
discussion for the case where b = 1 in [6] properly coincides with that for the
case where m = 2 in [43].

In this section, with the help of Theorem 2.2.4, we show a relationship
of u

(n)
1 with the constant τm = limk→∞ Fk+1/Fk. Let us recall here that

u
(n)
1 = f

(n)
1 /f

(n)
0 . We first derive a proposition for the behavior of f

(n)
0 and

f
(n)
1 as n increases.

Proposition 2.3.1 (Akaiwa-Iwasaki [A1]). Let {f (0)
j }j=0,1,...,2m−1 be a posi-

tive or negative m-step Fibonacci sequence. Moreover, let H
(n)
m 6= 0. Then

both f
(n)
0 and f

(n)
1 have the same sign, and their absolute values become larger

monotonically as n grows larger.

Proof. Let us assume that {f (n)
j }j=0,1,...,2m−1 is a positive m-step Fibonacci

sequence. Then it is obvious from (2.8) that f
(n+1)
0 , f

(n+1)
1 , . . . , f

(n+1)
2m−2 are

positive. As is shown in Proposition 2.2.3, {f (n+1)
j }j=0,1,...,2m−1 is an m-step

Fibonacci sequence. Thus, f
(n+1)
2m−1 = f

(n+1)
m−1 + f

(n+1)
m + · · ·+ f

(n+1)
2m−2 is positive,

and then {f (n+1)
j }j=0,1,...,2m−1 is also a positive sequence. By induction for

n = 0, 1, . . . , it is proved that if {f (0)
j }j=0,1,...,2m−1 is a positive sequence,

then {f (n)
j }j=0,1,...,2m−1, for each n, is also so. Moreover, by using (2.8), we

derive f
(0)
j < f

(0)
j + f

(0)
j+1 = f

(1)
j < f

(1)
j + f

(1)
j+1 = f

(2)
j < · · · for j = 0, 1.

Similarly, if {f (0)
j }j=0,1,...,2m−1 is negative, then {f (n)

j }j=0,1,...,2m−1 is also so

and f
(0)
j > f

(0)
j + f

(0)
j+1 = f

(1)
j > f

(1)
j + f

(1)
j+1 = f

(2)
j > · · · for j = 0, 1.

Under the assumption that H
(0)
k and Ĥ

(0)
k are nonzero constants, we next

give a proposition concerning the nonzero boundedness of H
(n)
k and Ĥ

(n)
k .

Proposition 2.3.2 (Akaiwa-Iwasaki [A1]). Let {f (0)
j }j=0,1,...,2m−1 be an m-

step Fibonacci sequence. Moreover, let H
(0)
k and Ĥ

(0)
k be nonzero constants.

Then, for each n, H
(n)
k and Ĥ

(n)
k are also nonzero constants.

Proof. Let us assume that H
(n)
k and Ĥ

(n)
k are nonzero constant. Let us in-
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troduce new dependent variables

w
(n)
2k−1 :=

Ĥ
(n)
k H

(n)
k−1

H
(n)
k Ĥ

(n)
k−1

, w
(n)
2k :=

H
(n)
k+1Ĥ

(n)
k−1

Ĥ
(n)
k H

(n)
k

.

In [39], it is shown that

2m−1∑
k=1

w
(n+1)
k =

2m−1∑
k=1

w
(n)
k . (2.24)

Under the assumption of the proposition, it holds that
∑2m−1

k=1 w
(n)
k becomes

some constant C. By combining it with (2.24), we derive

2m−1∑
k=1

w
(n+1)
k = C. (2.25)

It is remarkable here that H
(n+1)
1 , Ĥ

(n+1)
1 , H

(n+1)
2 , Ĥ

(n+1)
2 , . . . , H

(n+1)
m−1 , Ĥ

(n+1)
m−1

may be regarded as the polynomials of f
(n)
1 , f

(n)
2 , . . . , f

(n)
2m−1. So, let H

(n+1)
k =

Mk and Ĥ
(n+1)
k = M̂k for k = 1, 2, . . . ,m − 1, where Mk and M̂k are some

constant. From Lemmas 2.2.1 and 2.2.2, there exist some nonzero constant
Mm and M̂m such that H

(n+1)
m = Mm and Ĥ

(n+1)
m = M̂m. Thus,

∑2m−1
k=1 w

(n+1)
k

is represented, in terms of M1,M2, . . . ,Mm and M̂1, M̂2, . . . , M̂m, as

2m−1∑
k=1

w
(n+1)
k =

m−1∑
k=1

(
M̂kMk−1

MkM̂k−1
+
Mk+1M̂k−1

M̂kMk

)
+
M̂mMm−1

MmM̂m−1
. (2.26)

Some denominators and numerators become 0 in the right hand side of (2.26),
if, at least, one of M1,M2, . . . ,Mm−1 and M̂1, M̂2, . . . , M̂m−1 is 0. This con-
tradicts (2.25). Therefore it is concluded that Mk 6= 0 and M̂k 6= 0 for
k = 1, 2, . . . ,m. The proof is completed by induction for n = 0, 1, . . . .

Proposition 2.3.2 implies that the sequence {u(n)1 }n=1,2,... is theoretically
computable without overflow through the evolution from n to n + 1 by the
dLV system (2.2).

By combining Propositions 2.3.1 and 2.3.2 with Theorem 2.2.4, we finally
have a theorem for the asymptotic convergence of u

(n)
1 as n→∞.
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Theorem 2.3.3 (Akaiwa-Iwasaki [A1]). Let {f (0)
j }j=0,1,...,2m−1 be a posi-

tive or negative m-step Fibonacci sequence. Moreover, let H
(0)
k and Ĥ

(0)
k

be nonzero constant. Then the dLV variable u
(n)
1 = f

(n)
1 /f

(n)
0 converges to

τm = limk→∞ Fk+1/Fk as n→∞.

Hereinafter, for m = 2, 3, 4, 5, we numerically confirm Theorem 2.3.3,
namely, the convergence of u

(n)
1 to τm as n → ∞. Numerical examples have

been carried out with a computer with OS: Mac OS 10.6.2, CPU: Intel Core
2 Duo 3.06GHz, RAM: 4GB. We also use Wolfram Mathematica 6.0 with
16-digits precision arithmetic.

Let {f (0)
j }j=0,1,...,2m−1 be set as the positive m-step Fibonacci sequence

such that H
(n)
k 6= 0 and Ĥ

(n)
k 6= 0 for k = 1, 2, . . . ,m. For example, in the case

where m = 2, let f
(0)
0 = 1, f

(0)
1 = 2, f

(0)
2 = 3 and f

(0)
3 = 5. Then H

(0)
1 = 1,

Ĥ
(0)
1 = 2, H

(0)
2 = −1, Ĥ

(0)
2 = 1 and u

(0)
1 = 2, u

(0)
2 = −1/6, u

(0)
3 = −3/5. For

n = 0, 1, . . . , 50, the values of u
(n)
1 are plotted by the mark ◦ in Figure 2.1.

As is shown in Proposition 2.3.2, it is guaranteed that H
(n)
1 6= 0, Ĥ

(n)
1 6= 0,

H
(n)
2 6= 0 and Ĥ

(n)
2 6= 0 for n = 0, 1, . . . , 50, provided that H

(0)
1 6= 0, Ĥ

(0)
1 6= 0,

H
(0)
2 6= 0 and Ĥ

(0)
2 6= 0. So, by using the dLV system (2.2), u

(1)
1 , u

(2)
1 , . . . ,

u
(50)
1 are numerically computable without overflow. Figure 2.1 agrees with

this fact. Figure 2.1 also describes that, as is shown in Theorem 2.3.3, u
(n)
1

converges to some constant as n becomes larger. It is remarkable here that
u
(n)
1 converges even if all of u

(n)
k are not always positive. This asymptotic

behavior differs from that shown in [38, 39, 63] for the case where all of

u
(n)
k are positive. The 1st row of Table 2.1 shows the values of τ2, derived

from solving (2.22), and u
(50)
1 . Table 2.1 tells us that u

(50)
1 coincides with the

golden ratio τ2 in 16-digits precision arithmetic.
Similarly, in the cases where m = 3, 4, 5, the asymptotic convergence of

u
(n)
1 to τ3 = 1.83928675 5214161, τ4 = 1.927561975482925, τ5 = 1.9659482366

45485 are shown in Figure 2.1 and Table 2.1. It is numerically confirmed
from Figure 2.1 and Table 2.1 that Theorem 2.3.3 also holds for m = 3, 4, 5.
Additionally, it is observed that u

(50)
1 tends to 2, as m becomes larger.
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Figure 2.1: A graph of the variable n (x-axis) and the values of u
(n)
1 (y-axis)

in the cases where m = 2, 3, 4, 5. The symbols ©, 4, 5 and � indicate the
cases m = 2, 3, 4 and 5, respectively.

Table 2.1: The real solutions to (2.22) and the values of u
(50)
1 in the case

where m = 2, 3, 4, 5.

m The real solutions to (2.22) The values of u
(50)
1

2 τ2 = 1.618033988749895 −0.6180339887498948 1.618033988749895
3 τ3 = 1.839286755214161 1.839286755214161
4 τ4 = 1.927561975482925 −0.7748041132154339 1.927561975482924
5 τ5 = 1.965948236645485 1.965948236645486
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Chapter 3

Convergence of the qd
algorithm for tridiagonal
matrices with multiple
eigenvalues

It is well-known that the quotient-difference (qd) algorithm is applicable to
compute all the eigenvalues of a tridiagonal matrix. In most papers on the
convergence of the qd algorithm, it is assumed that a tridiagonal matrix has
distinct eigenvalues. Generally, the convergence of numerical algorithms is
proved by using their recursion formula. Thus, it is not easy to analyze
sensitively the convergence of numerical algorithms with respect to the mul-
tiplicity of eigenvalues.

In this chapter, for tridiagonal matrices with multiple eigenvalues, the
convergence and the convergence rate of the qd algorithm are shown by
making use of good properties of the qd algorithm.

3.1 The quotient-difference algorithm

The quotient-difference (qd) algorithm [51], which is one of the most im-
portant algorithms in numerical linear algebra, is originally proposed by
Rutishauser for the purpose of computing eigenvalues of tridiagonal matrices
and zeros of polynomials. The qd algorithm also has several applications to
computing singular values of bidiagonal matrices [11, 47] and the Laplace
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transformations of rational functions [45].
Symmetric dense matrices are transformed into symmetric tridiagonal

matrices by a sequence of Householder transformations without changing
eigenvalues [25]. Eigenvalues of symmetric dense matrices can be thus com-
puted by combining the qd algorithm with Householder transformations. In
finite arithmetic, a variant of the qd algorithm, which is called the differ-
ential qd with shift (dqds) algorithm, generates eigenvalues of tridiagonal
matrices with high relative accuracy [47]. The dqds algorithm is also use-
ful for computing singular values of bidiagonal matrices, which is equivalent
to computing eigenvalues of symmetric tridiagonal matrices [11]. The well-
known Linear Algebra PACKage (LAPACK) [42] thus adopts basic concept
of the qd algorithm in its eigenvalue and singular value solvers.

Similarity transformations for symmetric tridiagonal matrices give tridi-
agonal matrices of the form

T =


u1 1

v1 u2
. . .

. . .
. . . 1
vm−1 um

 . (3.1)

Though symmetric tridiagonal matrices are always nonsymmetrized, the tridi-
agonal matrices T are not always symmetrized. In fact, T cannot be sym-
metrized if they have multiple eigenvalues. In other words, T essentially
contain symmetric tridiagonal matrices. So, in this chapter we focus on the
qd algorithm for the tridiagonal matrices T .

Almost all the articles concerning the qd algorithm deal with the case
where the eigenvalues of T are real and distinct. It is shown in Rutishauser
[52, 54] and Henrici [30] that the variables q

(n)
k and e

(n)
k appearing in the qd al-

gorithm are expressed by using the Hankel determinants, and the asymptotic
behavior q

(n)
k → λk for k = 1, 2, . . . ,m and e

(n)
k → 0 for k = 1, 2, . . . ,m − 1

as n → ∞ is shown where λ1, λ2, . . . , λm denote the eigenvalues of T . The
Hankel determinants associated with rational functions whose poles are of
order two or higher is analyzed by Golomb [24], but the asymptotic behavior
of the qd variables is substantially considered only in the case where T has
real and distinct eigenvalues. In the case where all the eigenvalues of T are
the same, by Ferreira and Parlett [12], the convergence of the LR algorithm,
which can be regarded as a generalization of the qd algorithm, is examined.
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In this chapter, we clarify the asymptotic behavior of the qd variables in the
case where T has any kinds of multiple eigenvalues.

The remainder of this chapter is organized as follows. In Section 3.2, we
describe basic properties of the qd algorithm for the tridiagonal matrices. In
Section 3.3, we derive expressions of the qd variables in terms of the Hankel
determinants in the case where T has multiple eigenvalues, and then in Sec-
tion 3.4, we present the asymptotic expansion of the Hankel determinants.
In Section 3.5, we thus show the asymptotic behavior of the qd variables.

3.2 The qd algorithm for the tridiagonal ma-

trix

In this section, we briefly explain basic properties of the qd algorithm for
computing eigenvalues of the tridiagonal matrix T .

The qd algorithm for T employs the recursion formula{
q
(n+1)
k + e

(n+1)
k−1 = q

(n)
k + e

(n)
k , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

q
(n+1)
k e

(n+1)
k = q

(n)
k+1e

(n)
k , k = 1, 2, . . . ,m− 1, n = 0, 1, . . . ,

(3.2)

under the boundary conditions

e
(n)
0 ≡ 0, e(n)m ≡ 0, n = 0, 1, . . . , (3.3)

and the initial conditions{
q
(0)
k + e

(0)
k−1 = uk, k = 1, 2, . . . ,m,

q
(0)
k e

(0)
k = vk, k = 1, 2, . . . ,m− 1,

(3.4)

where the superscript n denotes the iteration number of the qd recursion
formula (3.2) and the subscript k corresponds to the position of an entry of
T . The qd recursion formula (3.2) leads to the matrix identity

L(n+1)R(n+1) = R(n)L(n), n = 0, 1, . . . , (3.5)

where L(n) and R(n) are the lower and the upper bidiagonal matrices with
the qd variables e

(n)
1 , e

(n)
2 , . . . , e

(n)
m−1 and q

(n)
1 , q

(n)
2 , . . . , q

(n)
m , respectively, given
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as

L(n) :=


1

e
(n)
1 1

. . .
. . .

e
(n)
m−1 1

 , R(n) :=


q
(n)
1 1

q
(n)
2

. . .

. . . 1

q
(n)
m

 . (3.6)

Let us introduce a tridiagonal matrix T (n) with the same form as the tridi-
agonal matrix T as the product L(n)R(n), namely,

T (n) = L(n)R(n)

=


q
(n)
1 1

q
(n)
1 e

(n)
1 q

(n)
2 + e

(n)
1

. . .
. . .

. . . 1

q
(n)
m−1e

(n)
m−1 q

(n)
m + e

(n)
m−1

 . (3.7)

With respect to the evolution from T (n) to T (n+1), we then derive

T (n+1) = R(n)J (n)(R(n))−1, n = 0, 1, . . . , (3.8)

which implies that eigenvalues of T (n) and T (n+1) are equal to each other. In
other words, the similarity transformation from T (n) to T (n+1) can be given
by the qd recursion formula (3.2). The matrices T (n) for n = 1, 2, . . . become
similar to the tridiagonal matrix T if T (0) = T .

Let us introduce a formal power series with respect to z ∈ C,

F (z) := f0 + f1z + f2z
2 + f3z

3 + · · · . (3.9)

Let H
(n)
k be the Hankel determinants associated with F (z) as H

(n)
−1 ≡ 0,

H
(n)
0 ≡ 1 and

H
(n)
k :=

∣∣∣∣∣∣∣∣∣
fn fn+1 · · · fn+k−1
fn+1 fn+2 · · · fn+k
...

...
. . .

...
fn+k−1 fn+k · · · fn+2k−2

∣∣∣∣∣∣∣∣∣ , k = 1, 2, . . . , n = 0, 1, . . . .

(3.10)
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Henrici’s book [30, pp. 594–640] provides several theorems for the qd algo-
rithm from the viewpoint of the formal power series F (z) under the settings

q
(n)
1 = fn+1/fn for n = 0, 1, . . . .

Here, let us consider the case where F (z) is a rational function whose de-
nominator coincides with the characteristic polynomial of T , namely, det(zIm−
T ) where Im denotes the m-dimensional identity matrix. Moreover, let Tk be
the k-by-k principal submatrices of T defined by

Tk =


u1 1

v1 u2
. . .

. . .
. . . 1
vk−1 uk

 , k = 1, 2, . . . ,m (3.11)

whose characteristic polynomials are expanded as

det(zIk − Tk) = zk + a
(k)
1 zk−1 + a

(k)
2 zk−2 + · · ·+ a

(k)
k , k = 1, 2, . . . ,m,

(3.12)

where a
(k)
1 , a

(k)
2 , . . . , a

(k)
k are the constant coefficients. Then it is obvious that

all the coefficients a
(k)
1 , a

(k)
2 , . . . , a

(k)
k are uniquely determined.

Let λ1, λ2, . . . , λm denote eigenvalues of J such that |λ1| ≥ |λ2| ≥ · · · ≥
|λm|. Moreover, let λ̂1, λ̂2, . . . , λ̂N be distinct eigenvalues of J with multi-
plicities m1,m2, . . . ,mN , respectively. Of course, m1 + m2 + · · · + mN = m
and |λ̂1| ≥ |λ̂2| ≥ · · · ≥ |λ̂N |. Then the characteristic polynomial of J is
factorized as

det(zIm − T ) = (z − λ1)(z − λ2) · · · (z − λm), (3.13)

and

det(zIm − T ) = (z − λ̂1)m1(z − λ̂2)m2 · · · (z − λ̂N)mN . (3.14)

The following theorem gives important properties concerning the qd algo-
rithm for the tridiagonal matrix T .

Theorem 3.2.1 (Henrici [30, pp.596–613]). For any T , let us assume that
the sequence {fn}n=0,1,... satisfies a system of linear equations

fn+m + a
(m)
1 fn+m−1 + · · ·+ a

(m)
m−1fn+1 + a(m)

m fn = 0, n = 0, 1, . . . , (3.15)
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where f0, f1, . . . , fm−1 are given by

f0 = 1, fk = −a(k)1 fk−1 − a(k)2 fk−2 − · · · − a(k)k f0, k = 1, 2, . . . ,m− 1.
(3.16)

If H
(n)
k 6= 0 for k = 1, 2, . . . ,m and n = 0, 1, . . . , then the qd variables q

(n)
k

and e
(n)
k in (3.2) with (3.3) and (3.4) are expressed as

q
(n)
k =

H
(n+1)
k H

(n)
k−1

H
(n)
k H

(n+1)
k−1

, k = 1, 2, . . . ,m, n = 0, 1, . . . , (3.17)

e
(n)
k =

H
(n)
k+1H

(n+1)
k−1

H
(n)
k H

(n+1)
k

, k = 0, 1, . . . ,m− 1, n = 0, 1, . . . . (3.18)

For each k such that |λk| > |λk+1| where λm+1 = 0 there exists a constant
Kk 6= 0 independently of n such that, for any ρ satisfying |λk| > ρ > |λk+1|,

H
(n)
k = Kk(λ1λ2 · · ·λk)n

(
1 +O

((
ρ

|λk|

)n))
, (3.19)

as n → ∞. Moreover, it holds that, for each k such that |λk−1| > |λk| >
|λk+1| where λ0 =∞ and λm+1 = 0,

lim
n→∞

q
(n)
k = λk, (3.20)

and, for each k such that |λk| > |λk+1|,

lim
n→∞

e
(n)
k = 0. (3.21)

As an example for the statements of Theorem 3.2.1, let us consider a 3-by-
3 tridiagonal matrix T where λ1 = λ2 6= λ3 and |λ1| = |λ2| > |λ3|. Though

it turns out from Theorem 3.2.1 that limn→∞ q
(n)
3 = λ3 and limn→∞ e

(n)
2 = 0,

it is not clear whether three limits limn→∞ q
(n)
1 , limn→∞ q

(n)
2 and limn→∞ e

(n)
1

exist. Even if limn→∞ q
(n)
1 = q∗1, limn→∞ q

(n)
2 = q∗2 and limn→∞ e

(n)
1 = e∗1, then

it is not shown that T (n) converges to a bidiagonal matrix as n → ∞. This
is because

lim
n→∞

T (n) = lim
n→∞

 q
(n)
1 1 0

q
(n)
1 e

(n)
1 q

(n)
2 + e

(n)
1 1

0 q
(n)
2 e

(n)
2 q

(n)
3 + e

(n)
2

 =

 q∗1 1
q∗1e
∗
1 q∗2 + e∗1

0
1

0 0 λ3

 .

(3.22)
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Golomb [24] showed the asymptotic expansions of the Hankel determinant

H
(n)
m associated with the formal power series F (z) whose poles are of or-

der two or higher. However, the Hankel determinants H
(n)
1 , H

(n)
2 , . . . , H

(n)
m−1

themselves and their asymptotic expansion have not been investigated yet.

3.3 Entries in the Hankel determinants

In this section, we give expressions of entries of the Hankel determinants
H

(n)
k , appearing in the determinant expressions of the qd variables q

(n)
k and

e
(n)
k , in terms of eigenvalues of the tridiagonal matrix T .

The subscript ` of λ` can be uniquely expressed by using two integers
i ∈ {1, 2, . . . , N} and j ∈ {0, 1, . . . ,mi − 1} as

` = m1 +m2 + · · ·+mi−1 + j + 1. (3.23)

For simplicity, let δ` be the differential operator that

δ` :=
1

j!

(
∂

∂λ`

)j
. (3.24)

Then, it follows that

δ`λ
n
` =

(
n

j

)
λ̂n−ji . (3.25)

Let us introduce k-by-m matrices

Λ
(n)
k =


δ1λ

n
1 δ2λ

n
2 · · · δmλ

n
m

δ1λ
n+1
1 δ2λ

n+1
2 · · · δmλ

n+1
m

δ1λ
n+2
1 δ2λ

n+2
2 · · · δmλ

n+2
m

...
...

. . .
...

δ1λ
n+k−1
1 δ2λ

n+k−1
2 · · · δmλ

n+k−1
m

 , (3.26)

k = 1, 2, . . . ,m, n = 0, 1, . . . .

The m-by-m matrix Λ
(0)
m is an extended Vandermonde matrix. The following

lemma describes the expansion of det(Λ
(0)
m ) in terms of λ̂k.
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Lemma 3.3.1 (Golomb [24]). The extended Vandermonde determinant is
expanded as

det(Λ(0)
m ) =

∏
1≤i<j≤N

(λ̂j − λ̂i)mimj > 0. (3.27)

With the help of Lemma 3.3.1, we derive expressions of fn in terms of
λ1, λ2, . . . , λm or λ̂1, λ̂2, . . . , λ̂N .

Theorem 3.3.2 (Akaiwa et al. [A4]). For any T , let us assume that {fn}n=0,1,...

satisfies (3.15) with (3.16). Then fn are expressed as

fn =
m∑
`=1

c`δ`λ
n
` , n = 0, 1, . . . , (3.28)

or

fn =
N∑
i=1

mi−1∑
j=0

ĉ
(i)
j

(
n

j

)
λ̂n−ji , n = 0, 1, . . . , (3.29)

where c1, c2, . . . , cm and ĉ
(1)
0 , ĉ

(1)
1 , . . . , ĉ

(N)
mN−1 are given by

c1
c2
...
cm

 = (Λ(0)
m )−1


f0
f1
...

fm−1

 , (3.30)

ĉ
(i)
j = c`. (3.31)

Proof. By substituting fn in (3.28) into (3.15) and by interchanging the sum-
mations, we can rewrite the left hand side of (3.15) as

m∑
`=1

c`δ`

[
λn`

(
m∑
i=0

a
(m)
i λm−i`

)]
. (3.32)

Since it is obvious from (3.12) and (3.13) that
∑m

i=0 a
(m)
i λm−i` = 0, (3.32)

becomes 0. Thus, fn in (3.28) satisfy (3.15) with (3.16). By combining
(3.25) with (3.28), we immediately have (3.29).

Equation (3.28) leads to Λ
(0)
m (c1, c2, . . . , cm)> = (f0, f1, . . . , fm−1)

>. Since

it turns out from Lemma 3.3.1 that (Λ
(0)
m )−1 exists, c1, c2, . . . , cm are given

by (3.30). From (3.25) and (3.28), we derive (3.31).
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3.4 Expansions of the Hankel determinants

In this section, we give asymptotic expansions of the Hankel determinants
H

(n)
k by examining dominant terms of the Hankel determinants H

(n)
k .

Let us begin with recognizing the Hankel determinants H
(n)
k as determi-

nants of products of matrices. Let us introduce an m-by-m matrix of the
block diagonal form

Ĉ = diag(Ĉ1, Ĉ2, . . . , ĈN), (3.33)

where Ĉ1, Ĉ2, . . . , ĈN are mi-by-mi upper anti-triangular matrices whose en-
tries are ĉ

(i)
j in Theorem 3.3.2,

Ĉi =


ĉ
(i)
0 ĉ

(i)
1 · · · ĉ

(i)
mi−1

ĉ
(i)
1

. .
.

... . .
.

ĉ
(i)
mi−1 0

 , i = 1, 2, . . . , N. (3.34)

Also, for convenience in the following lemmas, let us prepare two integers µk
and νk which satisfy m1 + m2 + · · · + mµk + νk + 1 = k for k = 1, 2, . . . , `.
Of course, if k = ` then µ` and ν` coincide with i and j in (3.23), respec-
tively. Then, by using Theorem 3.3.2, we obtain expressions of the Hankel
determinants H

(n)
k in terms of Λ

(n)
k in (3.26) and Ĉ in (3.33).

Lemma 3.4.1. Let us assume that {fn}n=0,1,... satisfies (3.29). Then, H
(n)
k

are expressed as

H
(n)
k = det(Λ

(n)
k Ĉ(Λ

(0)
k )>), k = 1, 2, . . . ,m, n = 0, 1, . . . . (3.35)

Proof. From Theorem 3.3.2, we can express the (s, t) entry of H
(n)
k as

fn+s+t−2 =
N∑
i=1

mi−1∑
j=0

ĉ
(i)
j

(
n+ s+ t− 2

j

)
λ̂n+s+t−2−ji . (3.36)

Applying a formula for binomial coefficients(
n+ s+ t− 2

j

)
=

j∑
r=0

(
n+ s− 1

j − r

)(
t− 1

r

)
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to (3.36), we derive

fn+s+t−2 =
N∑
i=1

mi−1∑
j=0

j∑
r=0

ĉ
(i)
j

(
n+ s− 1

j − r

)
λ̂
n+s−1−(j−r)
i

(
t− 1

r

)
λ̂t−1−ri . (3.37)

The replacements j − r = j′ and r = r′ in (3.37) lead to

fn+s+t−2 =
N∑
i=1

mi−1∑
j′=0

(
n+ s− 1

j′

)
λ̂n+s−1−j

′

i

(
mi−1−j′∑
r′=0

ĉ
(i)
j′+r′

(
t− 1

r′

)
λ̂t−1−r

′

i

)
.

Since it holds that i = µ`, j
′ = ν` and λ̂i = λ` in the 1st term, and i = µ`+r′ ,

r′ = ν`+r′ and λ̂i = λ`+r′ in the 2nd term, we obtain

fn+s+t−2 =
m∑
`=1

δ`λ
n+s−1
`

(
mi−1−ν`∑
r′=0

ĉ
(ν`)
ν`+r′

δ`+r′λ
t−1
`+r′

)
.

Since δ`λ
n+s−1
` is the (s, `) entry of Λ

(n)
k and

∑mi−1−ν`
r′=0 ĉ

(µ`)
ν`+r′

δ`+r′λ
t−1
`+r′ is the

(`, t) entry of Ĉ(Λ
(0)
k )>, we thus have (3.35).

Let Wk := {(i1, i2, . . . , ik) | 1 ≤ i1 < i2 < · · · < ik ≤ m}. For a =
(i1, i2, . . . , ik) ∈ Wk and b = (j1, j2, . . . , jk) ∈ Wk, let (X)ab denote the sub-
matrix obtained from X by deleting rows and columns except for the i1th,
i2th, . . . , ikth rows and the j1th, j2th, . . . , jkth columns. An generalization
of Cauchy-Binet’s formula [50] enables us to divide H

(n)
k = det(Λ

(n)
k Ĉ(Λ

(0)
k )>)

into sums of determinants.

Lemma 3.4.2. Let us assume that {fn}n=0,1,... satisfies (3.29). Then H
(n)
k

are expressed as

H
(n)
k =

∑
σ∈Wk

det
(

(Λ
(n)
k )αkσ

)
κσ, k = 1, 2, . . . ,m, n = 0, 1, . . . , (3.38)

κσ :=
∑
ω∈Wk

det
(

(Ĉ)σω

)
det
(

(Λ
(0)
k )αkω

)
, (3.39)

where αk := (1, 2, . . . , k) ∈ Wk.

From the definition of Λ
(n)
k in (3.26), it follows that

det((Λ
(n)
k )αkσ ) = δσ(1)δσ(2) · · · δσ(k)(λnσ(1)λnσ(2) · · ·λnσ(k)Vσ), (3.40)
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where σ(i) denotes the ith element of σ and Vσ is defined as

Vσ :=

∣∣∣∣∣∣∣∣∣
1 1 · · · 1

λσ(1) λσ(2) · · · λσ(k)
...

...
. . .

...
λk−1σ(1) λk−1σ(2) · · · λk−1σ(k)

∣∣∣∣∣∣∣∣∣ . (3.41)

Let δj` be the differential operator defined by

δp` :=
1

p!

(
∂

∂λ`

)p
, p = 0, 1, . . . , ν`. (3.42)

The differential operator δ` in (3.24) is equal to the case where p = ν` in
(3.42). Applying Leibniz rule to (3.40), we obtain the following lemma for

expressions of (Λ
(n)
k )αkσ .

Lemma 3.4.3. Let us assume that {fn}n=0,1,... satisfies (3.29). Then det((Λ
(n)
k )αkσ )

are expressed as

det((Λ
(n)
k )αkσ )

=

νσ(1)∑
r1=0

νσ(2)∑
r2=0

· · ·
νσ(k)∑
rk=0

(
k∏
s=1

δ
νσ(s)−rs
σ(s) λnσ(s)

)(
δr1σ(1)δ

r2
σ(2) · · · δ

rk
σ(k)Vσ

)
, (3.43)

k = 1, 2, . . . ,m, n = 0, 1, . . . .

It is here worth noting that the subscript k can be rewritten as

k = Mξ−1 + η,

where ξ := µk + 1, η := νk + 1 and

M0 = 0, Mξ−1 := m1 +m2 + · · ·+mξ−1. (3.44)

Lemmas 3.4.2 and 3.4.3 yield the asymptotic expansions of H
(n)
k as n→∞.

Lemma 3.4.4. The asymptotic expansions as n→∞ of H
(n)
k are given as

H
(n)
k = κβk

Mξ−1∏
i=1

λni

(δmξ−ηi λnk

)η
det
(

(Λ
(0)
k )αkαk

)
(1 +O(n−1)). (3.45)
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Proof. From Lemmas 3.4.2 and 3.4.3, we can regard the Hankel determinants
H

(n)
k as sums of (νσ(1) + νσ(2) + · · ·+ νσ(k)) terms. Each term is divided into

the part involving n and the other. The part involving n in each term is
expressed by using σ = (σ(1), σ(2), . . . , σ(k)) and r = (r1, r2, . . . , rk) as

k∏
s=1

δ
νσ(s)−rs
σ(s) λnσ(s) =

k∏
s=1

(
n

νσ(s) − rs

)
λ
n−σ(s)
σ(s) . (3.46)

The key point for the asymptotic expansions of H
(n)
k as n → ∞ is thus to

find σ and r such that (3.46) becomes the most dominant as n → ∞. By
taking into account that

(
n
k

)
is the kth order polynomial with respect to n,

we observe that (3.46) becomes the most dominant as n → ∞ if σ is given
as 

σ(s) = s, s = 1, 2, . . . ,Mξ−1,

σ(s) ∈ {Mξ−1 + 1,Mξ−1 + 2, . . . ,Mξ − 1,Mξ},
s = Mξ−1 + 1,Mξ−1 + 2, . . . , k,

(3.47)

and r enables us to maximize νσ(s) − rs for every s = 1, 2, . . . , k. From
the definition of Vσ in (3.41), we see that the minimum of r satisfying
δr1σ(1)δ

r2
σ(2) . . . δ

rk
σ(k)Vσ 6= 0 are given as, for i = 1, 2, . . . , k,

ri =

{
ri−1 + 1, λσ(i) = λσ(i−1),

0, λσ(i) 6= λσ(i−1),

where λσ(0) ≡ 0. The choice σ = βk also maximizes νσ(s) with keeping (3.47),
where

βk := (

Mξ−1︷ ︸︸ ︷
1, 2, . . . ,Mξ−1,

η︷ ︸︸ ︷
Mξ − η + 1, . . . ,Mξ − 1,Mξ).

Thus, νσ(s) − rs becomes maximal if r is given by{
ri = νi, i = 1, 2, . . . ,Mξ−1,

rMξ−1+j+1 = j, j = 0, 1, . . . , η − 1.
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Putting the above discussions together, we can express the dominant term
of H

(n)
k as n→∞ asMξ−1∏

s=1

δ0sλ
n
s

(η−1∏
s=0

δ
νγ+s−s
γ+s λnγ+s

)
δν11 δ

ν2
2 · · · δ

νMξ−1

Mξ−1
δ0γδ

1
γ+1 · · · δ

η−1
γ+η−1Vβk ,

where γ := Mξ − η+ 1. Since it holds that νγ+s = (mξ − 1)− (η− 1) + s and

δ
mξ−η
γ+s λγ+s = δ

mξ−η
k λk, it follows that

η−1∏
s=0

δ
νγ+s−s
γ+s λnγ+s =

η−1∏
s=0

δ
mξ−η
k λnk = (δ

mξ−η
k λnk)η.

From δνss = δs for s = 1, 2, . . . ,Mξ and δsγ+s = δMξ−1+s+1 for s = 0, 1, . . . , η−1,
we also derive

δν11 δ
ν2
2 · · · δ

νMξ−1

Mξ−1
δ0γδ

1
γ+1 · · · δ

η−1
γ+η−1 = δ0δ1 · · · δkVαk = det

(
(Λ

(0)
k )αkαk

)
.

Of course, the (νσ(1) + νσ(2) + · · ·+ νσ(k)) terms in the sums in Lemma 3.4.3
contain some nondominant terms. Therefore, by taking into account that
the degrees with respect to n of them have smaller than the dominant terms,
we have (3.45).

Lemma 3.3.1 immediately gives the expansions of the determinants of
(Λ

(0)
k )αkαk .

Lemma 3.4.5. The determinants det(Λ
(0)
k )αkαk are expanded as

det
(

(Λ
(0)
k )αkαk

)
=

[ ∏
1≤i<j≤ξ−1

(
λ̂j − λ̂i

)mimj] ∏
1≤r≤ξ−1

(
λ̂ξ − λ̂r

)mrη
. (3.48)

From (3.33) and (3.34), we also derive the expansions of determinants of
(Ĉ)βkαk .

Lemma 3.4.6. The determinants det((Ĉ)βkαk) are expressed as

det
(

(Ĉ)βkαk

)
= (−1)k−ξ

(
ξ−1∏
i=1

(ĉ
(i)
mi−1)

mi

)
(ĉ

(ξ)
mξ−1)

η. (3.49)
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Proof. From (3.34), it immediately follows that

det(Ĉi) = (−1)mi−1(ĉ
(i)
mi−1)

mi , i = 1, 2, . . . , N. (3.50)

By combining (3.50) with (3.33) and by taking into account that k = m1 +
m2 + · · ·+mξ−1 + η, we obtain

det((Ĉ)βkαk) =

(
t−1∏
i=1

det(Ĉi)

)∣∣∣∣∣∣∣∣∣∣∣

ĉ
(ξ)
mξ−η ĉ

(ξ)
mξ−η+1 · · · ĉ

(ξ)
mξ−1

ĉ
(ξ)
mξ−η+1

. .
.

... . .
.

ĉ
(ξ)
mξ−1 0

∣∣∣∣∣∣∣∣∣∣∣
= (−1)Mξ−1−(ξ−1)+η−1

(
ξ−1∏
i=1

(ĉ
(i)
mi−1)

mi

)
(ĉ

(ξ)
mξ−1)

η.

Consequently, by using Lemmas 3.4.2–3.4.6, we complete the asymp-
totic expansions of the Hankel determinants H

(n)
k in terms of the eigenvalues

λ̂1, λ̂2, . . . , λ̂N .

Theorem 3.4.7 (Akaiwa et al. [A4]). Let us assume that H
(n)
k 6= 0 for

k = 1, 2, . . . ,m and n = 0, 1, . . . . As n→∞, the Hankel determinants H
(n)
k

are expanded as

H
(n)
k = K̂kn

η(mξ−η)(λ̂1λ̂2 · · · λ̂ξ−1)nλ̂
η(n−mξ+η)
ξ (1 +O(n−1)), (3.51)

k = Mξ−1 + 1,Mξ−1 + 2, . . . ,Mξ−1 +mξ − 1.

If k = Mξ, then , for ρ̂ satisfying |λ̂ξ+1| < ρ̂ < |λ̂ξ|, it holds that, as n→∞,

H
(n)
k = K̂k(λ̂

m1
1 λ̂m2

2 · · · λ̂
mξ
ξ )n

(
1 +O

((
ρ̂

|λ̂ξ|

)n))
, (3.52)

where K̂k is a nonzero constant independently of n given as

K̂k :=
1

((mξ − η)!)η
× (−1)k−ξ

(
ξ−1∏
i=1

(ĉ
(i)
mi−1)

mi

)
(ĉ

(t)
mξ−1)

η

×
∏

1≤i<j≤ξ−1

(λ̂j − λ̂i)4mimj
ξ−1∏
i=1

(λ̂ξ − λ̂i)4miη. (3.53)
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Proof. Since it holds that λ̂ξ = λi for i = Mξ − η + 1,Mξ − η + 2, . . . ,Mξ,

the terms with respect to δ
mξ−η
i in (3.45) can be simplified as(

δ
mξ−η
i λnk

)η
=

((
n

mξ − η

)
λ
n−mξ+η
k

)η
=
nη(mξ−η)λ̂

η(n−mξ+η)
ξ

((mξ − η)!)p
(1 +O(n−1)).

By combining it with Lemmas 3.4.2–3.4.4, we obtain (3.51) and (3.52). From

Lemma 3.4.2, it is obvious that κβk = det((Ĉ)βkαk) det((Λ
(0)
k )αkαk). Thus, from

Lemma 3.4.5 and 3.4.6, we see that K̂k = κβk/((mξ − η)!)p becomes (3.53).

Moreover, it follows that K̂k 6= 0 since H
(n)
m 6= 0 leads to ĉ

(i)
mi−1 6= 0.

3.5 Convergence of the qd variables

In this section, by combining expressions of the qd variables q
(n)
k and e

(n)
k using

the Hankel determinants H
(n)
k with expansions of the Hankel determinants

H
(n)
k , we clarify the asymptotic behavior of the qd algorithm as n → ∞ in

the case where the tridiagonal matrix T has multiple eigenvalues.
Theorems 3.2.1 and 3.4.7 give the most important theorem in this chapter,

which shows the convergence of the qd variables q
(n)
k and e

(n)
k as n→∞.

Theorem 3.5.1 (Akaiwa et al. [A4]). Let us assume that H
(n)
k 6= 0 for

k = 1, 2, . . . ,m and n = 0, 1, . . . . Moreover, let |λ̂1| > |λ̂2| > · · · > |λ̂N |.
Then, for k = Mξ−1 + η, it holds that

lim
n→∞

q
(n)
k = λ̂ξ, (3.54)

lim
n→∞

e
(n)
k = 0. (3.55)

Proof. Let k = Mξ−1+1 in Theorem 3.4.7. Then, the convergence as n→∞
of q

(n)
k = H

(n+1)
k H

(n)
k−1/(H

(n)
k H

(n+1)
k−1 ), is given as

lim
n→∞

q
(n)
k = lim

n→∞

(
κkn

(mξ−1)
ξ−1∏
i=1

λ̂
mi(n+1)
i λ̂

n+1−(mξ−1)
ξ

)(
κk−1

ξ−1∏
i=1

λ̂mini

)
(
κkn

(mξ−1)
ξ−1∏
i=1

λ̂mini λ̂
n−(mξ−1)
ξ

)(
κk−1

ξ−1∏
i=1

λ̂
mi(n+1)
i

)
= lim

n→∞
λ̂
n+1−(mξ−1)−n+(mξ−1)
ξ = λ̂ξ.
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We also obtain limn→∞ q
(n)
k = λ̂ξ for k = Mξ−1 + 2,Mξ−1 + 3, . . . ,Mξ.

In a way similar to the case of q
(n)
k , we derive

lim
n→∞

e
(n)
k = lim

n→∞
K̃kn

−2λ̂1 = 0, k = 1, 2, . . . ,m1 − 1,

where K̃k := K̂k−1K̂k+1/(K̂k)
2. For k = m1, it follows that

lim
n→∞

e
(n)
k = lim

n→∞
K̃kn

m1+m2−1λ̂−2m1
1 λ̂

−(m2−1)
2

(
λ̂2

λ̂1

)n

= 0.

The cases where k = Mξ−1 + 1,Mξ−1 + 2, . . . ,Mξ−1 + mξ − 1 and k =
M2,M3, . . . ,MN−1 lead to, respectively,

lim
n→∞

e
(n)
k = lim

n→∞
K̃kn

−2λ̂b1ξ = 0,

lim
n→∞

e
(n)
k = lim

n→∞
K̃kn

b2λ̂b3ξ λ̂
b4
ξ+1

(
λ̂ξ+1

λ̂ξ

)n

= 0,

where b1, b2, b3 and b4 are some constants independent of n.

It is therefore concluded that the qd variables q
(n)
k and e

(n)
k converge to

eigenvalues of the tridiagonal matrix and 0 as n → ∞, respectively, in not
only the case of real distinct eigenvalues but also the case of multiple eigen-
values.
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Chapter 4

Construction of tridiagonal
matrices with multiple
eigenvalues based on the qd
formula

Inverse eigenvalue problems (IEPs) for tridiagonal matrices have been dis-
cussed in several papers. However, there do not exist many papers on IEPs
for tridiagonal matrices with multiple eigenvalues.

In this chapter, as a beachhead for solving IEPs by using discrete in-
tegrable systems and the associated integrable algorithms, a procedure for
constructing tridiagonal matrices with multiple eigenvalues is proposed based
on the qd recursion formula.

4.1 Inverse eigenvalue problems for tridiago-

nal matrices

One of the important problems in linear algebra is to construct matrices
with prescribed eigenvalues. This is an inverse eigenvalue problem which
is classified in Structured Inverse Eigenvalue Problem (SIEP) in [8]. The
main purpose of this chapter is to design a procedure for solving an SIEP
in the case where the constructed matrix has tridiagonal form with multiple
eigenvalues, through reconsidering the quotient-difference (qd) formula. It is
known that the qd formula has the applications to computing a continued
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fraction expansion of power series [31], zeros of polynomial [29], eigenval-
ues of a tridiagonal matrix called a Jacobi matrix [54] and so on. Though
Rutishauser’s book [54] refers to an aspect similar to that in the following
sections, it gives only an anticipated comment without proof in the case of
multiple eigenvalues. There is no observation about numerical examples for
verifying it. The key point for the purpose is to investigate the Hankel de-
terminants appearing in the determinant solution to the qd formula with the
help of the Jordan canonical form. In this chapter, we focus on the unset-
tled case in order to design a procedure for constructing a tridiagonal matrix
with prescribed multiple eigenvalues, based on the qd formula. The reason
why the case with multiple eigenvalues has not been sufficiently discussed is
expected that multiple-precision arithmetic and symbolic computing around
the published year of Rutishauser’s works for the qd formula have not been
sufficiently developed. The qd formula, strictly speaking the differential form
of it, for computing tridiagonal eigenvalues acts with high relative accuracy
in single-precision or double-precision arithmetic [47], while, actually, the qd
formula for constructing a tridiagonal matrix gives rise to not small errors.
Thus, the qd formula serving for constructing a tridiagonal matrix is not so
worth in single-precision or double-precision arithmetic. In recent comput-
ers, it is not difficult to employ not only single or double precision arithmetic
but also arbitrary-precision arithmetic or symbolic computing. In fact, sym-
bolic computation can be performed on scientific computing software such
as Wolfram Mathematica and Maple. Numerical errors frequently occur in
finite-precision arithmetic, so that constructed tridiagonal matrices may not
have prescribed multiple eigenvalues. The procedure developed in this chap-
ter is assumed to be carried out with symbolic computation.

This chapter is organized as follows. In Section 4.2, we first give a short
explanation of some already obtained properties concerning the qd formula.
In Section 4.3, we observe a tridiagonal matrix whose characteristic polyno-
mial is associated with the minimal polynomial of a general matrix through
reconsidering the qd formula. The tridiagonal matrix essentially differs from
the Jacobi matrix in that it is not always symmetrized. We also discuss
the characteristic and the minimal polynomials of a tridiagonal matrix in
Section 4.4. In Section 4.5, we design a procedure for constructing a tridiag-
onal matrix with prescribed multiple eigenvalues, and then demonstrate four
tridiagonal matrices as examples of the procedure.
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4.2 Some properties for the qd recursion for-

mula

In this section, we briefly review two theorems in [30] concerning the qd
formula from the viewpoint of a generating function, the Hankel determinant
and tridiagonal matrices.

Let us introduce Hankel determinants H
(n)
1 , H

(n)
2 , . . . given in terms of a

complex sequence {fn}∞0 given by

H(n)
s :=

∣∣∣∣∣∣∣∣∣
fn fn+1 · · · fn+s−1
fn+1 fn+2 · · · fn+s
...

...
. . .

...
fn+s−1 fn+s · · · fn+2s−2

∣∣∣∣∣∣∣∣∣ ,
s = 1, 2, . . . , n = 0, 1, . . . , (4.1)

where H
(n)
−1 ≡ 0 and H

(n)
0 ≡ 1 for n = 0, 1, . . . . Moreover, let F (z) be a

generating function associated with {fn}∞0 as

F (z) =
∞∑
n=0

fnz
n = f0 + f1z + f2z

2 + · · · . (4.2)

Let us assume that F (z) is a rational function with respect to z with
a pole of order l0 ≥ 0 at infinity and finite poles zk 6= 0 of order lk ≤ 1
for k = 1, 2, . . . , L. The sum of the orders of the finite poles is denoted by
l = l1 + l2 + · · ·+ lL, and F (z) is assumed to satisfy

F (z) = G0(z) +
G(z)

(z − z1)l1(z − z2)l2 · · · (z − zL)lL
, (4.3)

where G(z) is a polynomial of degree at most l, and G0(z) is a polynomial
of degree l0 if l0 > 0, or G0(z) = 0 if l0 = 0. The following theorem gives the
determinant solution to the qd recursion formula{

q
(n+1)
s + e

(n+1)
s−1 = q

(n)
s + e

(n)
s ,

q
(n+1)
s e

(n+1)
s = q

(n)
s+1e

(n)
s , s = 1, 2, . . . , n = 0, 1, . . . .

(4.4)
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Theorem 4.2.1 (Henrici [30, pp. 596, 603, 610]). Let F (z) be expressed as
in (4.3). Then it holds that

H(n)
s = 0, s = l + 1, l + 2, . . . , n = l0 + 1, l0 + 2, . . . . (4.5)

Let us assume that

H(n)
s 6= 0, s = 1, 2, . . . , l, n = 0, 1, . . . . (4.6)

Then the qd formula (4.4) with the initial condition

e
(n)
0 = 0, q

(n)
1 =

fn+1

fn
, n = 0, 1, . . . , (4.7)

admits the determinant solution

q(n)s =
H

(n+1)
s H

(n)
s−1

H
(n)
s H

(n+1)
s−1

, s = 1, 2, . . . , l, n = 0, 1, . . . , (4.8)

e(n)s =
H

(n)
s+1H

(n+1)
s−1

H
(n)
s H

(n+1)
s

, s = 0, 1 . . . , l, n = 0, 1, . . . . (4.9)

From (4.9) with (4.5), it follows that e
(n)
l = 0 for n = 0, 1, . . . . Moreover,

it turns out that q
(n)
s and e

(n)
s for s = l+ 1, l+ 2, . . . and n = 0, 1, . . . are not

given in the same form as (4.8) and (4.9).
Let us introduce s-by-s tridiagonal matrices,

T (n)
s =


q
(n)
1 q

(n)
1 e

(n)
1

1 q
(n)
2 + e

(n)
1

. . .
. . .

. . . q
(n)
s−1e

(n)
s−1

1 q
(n)
s + e

(n)
s−1

 ,

s = 1, 2, . . . , l, n = 0, 1, . . . , (4.10)

of the qd variables q
(n)
s and e

(n)
s . Let Is be the s-by-s identity matrix. Then

we obtain a theorem for the characteristic polynomial of T
(n)
l .

Theorem 4.2.2. ([30, pp. 626, 635]) Let F (z) be expressed as in (4.3). Let

us assume that H
(n)
s satisfies (4.6). For n = 0, 1, . . . , it holds that

det(zIl − T (n)
l ) = (z − z−11 )l1(z − z−12 )l2 · · · (z − z−1L )lL . (4.11)
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4.3 Tridiagonal matrix associated with gen-

eral matrix

In this section, from the viewpoint of the characteristic and the minimal
polynomials, we associate a general M -by-M complex matrix A with the
tridiagonal matrix T

(n)
l .

Let λ1, λ2, . . . , λN be the distinct eigenvalues of A, which are indexed as
|λ1| ≥ |λ2| ≥ · · · ≥ |λN |. It is noted that some of |λ1|, |λ2|, . . . , |λN | may
have the same values in the case where some of λ1, λ2, . . . , λN are negative
eigenvalues or complex eigenvalues. Let Mk be the algebraic multiplicity of
λk, where M = M1 +M2 + · · ·+MN . For the identity matrix IM ∈ RM×M ,
let φA(z) = det(zIM − A) be the characteristic polynomial of A, namely,

φA(z) = (z − λ1)M1(z − λ2)M2 · · · (z − λN)MN . (4.12)

Let us prepare the sequence {fn}∞0 given by

fn = wHAnu, n = 0, 1, . . . , (4.13)

for some nonzero M -dimensional complex vectors u and w, where the super-
script H denotes the Hermitian transpose. Originally, f0, f1, . . . have been
called the Schwarz constants, but today they are usually called the moments
or the Markov parameters [10]. Since the matrix power series

∑∞
n=0(zA)n is

a Neumann series (cf.[44]), F (z) =
∑∞

n=0w
H(zA)nu converges absolutely in

the diskD : |z| < |λ1|−1. Moreover, we derive F (z) = wH(IM−zA)−1u which
implies that F (z) is a rational function with the denominator det(IM−zA) =
zMφA(z−1) as follows,

F (z) =
G̃(z)

(1− λ1z)M1(1− λ2z)M2 · · · (1− λNz)MN
, (4.14)

where G̃(z) is some polynomial with respect to z. It is remarkable that the nu-
merator G̃(z) may have the same factors as the denominator (1−λ1z)M1(1−
λ2z)M2 · · · (1−λNz)MN . In other words, F (z) has the poles λ−11 , λ−12 , . . . , λ−1N
whose orders are less than or equal to M1,M2, . . . ,MN , respectively.

Let us introduce the Jordan canonical form of A in order to investigate the
poles of F (z) with (4.13) even in the case where A has multiple eigenvalues.
LetMk be the geometric multiplicity of λk which indicates the dimension of
eigenspace Ker(A− λkIM). It is noted that Mk is less than or equal to the
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algebraic multiplicity Mk. The matrix A hasMk eigenvectors corresponding
to λk, and then the eigenvectors, denoted by vk,1,vk,2, . . . ,vk,Mk

, satisfy

Avk,j = λkvk,j, j = 1, 2, . . . ,Mk. (4.15)

Hereinafter, for j = 1, 2, . . . ,Mk, let vk,j(1) = vk,j. Moreover, for j =
1, 2, . . . ,Mk, let vk,j(2), vk,j(3), . . . , vk,j(mk,j) be generalized eigenvectors
associated with the eigenvectors vk,j(1), where mk,j is the maximal inte-
ger such that vk,j(1), vk,j(2), . . . , vk,j(mk,j) are linearly independent. Of
course, mk,1 + mk,2 + · · · + mk,Mk

= Mk. The generalized eigenvectors
vk,j(2),vk,j(3), . . . ,vk,j(mk,j) are indexed so that

Avk,j(i) = λkvk,j(i) + vk,j(i− 1),

i = 2, 3, . . . ,mk,j, j = 1, 2, . . . ,Mk. (4.16)

From (4.15) and (4.16), we derive the Jordan canonical form of A as

V −1AV = J (4.17)

with the nonsingular matrix

V = (V1 V2 · · · VN) ∈ CM×M , (4.18)

and the block diagonal matrix

J = diag(J1, J2, . . . , JN) ∈ CM×M , (4.19)

where

Vk = (Vk,1 Vk,2 · · · Vk,Mk
) ∈ CM×Mk , (4.20)

Vk,j = (vk,j(1)vk,j(2) · · · vk,j(mk,j)) ∈ CM×mk,j , (4.21)

Jk = diag(Jk,1, Jk,2, . . . , Jk,Mk
) ∈ CMk×Mk , (4.22)

Jk,j =


λk 1

λk
. . .
. . . 1

λk

 ∈ Cmk,j×mk,j . (4.23)

Without loss of generality, we may assume that mk,1 ≥ mk,2 ≥ · · · ≥ mk,Mk
.

Letmk = max{mk,1,mk,2, . . . ,mk,Mk
}. Sincemk,1 ≥ mk,2 ≥ · · · ≥ mk,Mk

,
it is obvious that mk = mk,1. With the help of the Jordan canonical form of
A as in (4.17), we get a proposition for the sequence {fn}∞0 in (4.13).
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Proposition 4.3.1 (Akaiwa et al. [A2]). Let u be the vector given by a
linear combination of the eigenvectors and the generalized eigenvectors of A,
namely, for some constants κk,j,i,

u =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,ivk,j(i). (4.24)

Moreover, for a vector w, let

ck,i =

Mk∑
j=1

mk,j∑
i′=i

κk,j,i′v
H
k,j(i

′ − i+ 1)w. (4.25)

Then, the sequence {fn}∞0 in (4.13) can be expressed by

fn =
N∑
k=1

mk∑
i=1

(
n

i− 1

)
ck,iλ

n−i+1
k , (4.26)

where the binomial coefficients are 0 if n < i − 1. Also, for some u and w,
it holds that

ck,i 6= 0, i = 1, 2, . . . ,mk, k = 1, 2, . . . , N. (4.27)

Proof. From V −1AV = J in (4.17), it holds that An = V JnV −1. By com-
bining it with (4.13) and (4.24), we derive

fn = wHV JnV −1u

=
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,iw
HV JnV −1vk,j(i). (4.28)

Let ρk,j,i be the column indexed in which vk,j(i) in V . Then it is obvious
that V −1vk,j(i) = ek,j(i) where ek,j(i) denotes a unit vector such that the
ρk,j,ith entry is 1 and the others are 0. Thus, it follows that

fn =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

κk,j,iw
HV Jnek,j(i). (4.29)

Since J is the block diagonal matrix, the matrix Jn and its small blocks
(Jk)

n are also so. It also turns out that (Jk,j)
n is upper triangle. So, it is
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worth noting that Jnek,j(i) becomes the ρk,j,ith column vector of Jn and its
zero-entries are arranged in all rows except for its ρk,j,1th, ρk,j,2th, . . . , ρk,j,ith
rows. The Jordan blocks Jk,j can be decomposed as

Jk,j = λkImk,j + Emk,j , (4.30)

Emk,j =


0 1

0
. . .
. . . 1

0

 ∈ Rmk,j×mk,j . (4.31)

It is emphasized that Emk,j is a nilpotent matrix whose i′th power becomes
the zero-matrix O for i′ ≥ mk,j. Thus, (Jk,j)

n can be expressed as

(Jk,j)
n =

mk,j∑
i′=1

(
n

i′ − 1

)
λn−i

′+1
k Ei′−1

mk,j
, (4.32)

where (Emk,j)
0 = Imk,j . Let us introduce an mk,j-dimensional unit vector

e(i) which is regarded as a part of ek,j(i). Then, by taking account that
Ei′−1
mk,j

e(i) = e(i− i′ + 1) in (4.32), we derive

Jnek,j(i) =
i∑

i′=1

(
n

i′ − 1

)
λn−i

′+1
k ek,j(i− i′ + 1). (4.33)

Since it holds that V ek,j(i − i′ + 1) = vk,j(i − i′ + 1), by combining it with
(4.29) and (4.33), we therefore have

fn =
N∑
k=1

Mk∑
j=1

mk,j∑
i=1

i∑
i′=1

κk,j,iw
Hvk,j(i− i′ + 1)

×
(

n

i′ − 1

)
λn−i

′+1
k . (4.34)
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By writing down two summations, we get

fn =
N∑
k=1

Mk∑
j=1

[
κk,j,1w

Hvk,j(1)

(
n

0

)
λnk

+ κk,j,2

(
wHvk,j(2)

(
n

0

)
λnk +wHvk,j(1)

(
n

1

)
λn−1k

)
+ κk,j,3

(
wHvk,j(3)

(
n

0

)
λnk +wHvk,j(2)

(
n

1

)
λn−1k

+wHvk,j(1)

(
n

2

)
λn−2k

)
+ · · ·

+ κk,j,mk,j

(
wHvk,j(mk,j)

(
n

0

)
λnk

+wHvk,j(mk,j − 1)

(
n

1

)
λn−1k

+ · · ·+wHvk,j(1)

(
n

mk,j − 1

)
λ
n−mk,j+1

k

)]
.

Moreover, by paying our attention to the binomial coefficients, we can rewrite

46



fn as

fn =
N∑
k=1

[(
n

0

)
λnk

Mk∑
j=1

(
κk,j,1w

Hvk,j(1) + κk,j,2w
Hvk,j(2)

+ · · ·+ κk,j,mk,jw
Hvk,j(mk,j)

)
+

(
n

1

)
λn−1k

Mk∑
j=1

(
κk,j,2w

Hvk(j, 1) + κk,j,3w
Hvk(j, 2)

+ · · ·+ κk,j,mk,jw
Hvk,j(mk,j − 1)

)
+ · · ·

+

(
n

mk,j − 1

)
λ
n−mk,j+1

k

Mk∑
j=1

κk,j,mk,jw
Hvk,j(1)

]

=
N∑
k=1

[(
n

0

)
λnk

Mk∑
j=1

mk,j∑
i=1

κk,j,iw
Hvk,j(i− 1 + 1)

+

(
n

1

)
λn−1k

Mk∑
j=1

mk,j∑
i=2

κk,j,iw
Hvk,j(i− 2 + 1)

+ · · ·

+

(
n

mk,j − 1

)
λ
n−mk,j+1

k

×
Mk∑
j=1

mk,j∑
i=mk,j

κk,j,iw
Hvk,j(i−mk,j + 1)

]
.

From mk ≥ mk,j and wHvk,j(i− i′ + 1) = vHk,j(i− i′ + 1)w, it follows that

fn =
N∑
k=1

mk∑
i′=1

( Mk∑
j=1

mk,j∑
i=i′

κk,j,iv
H
k,j(i− i′ + 1)w

)
×
(

n

i′ − 1

)
λn−i

′+1
k . (4.35)

The exchange of i and i′ in (4.35) brings us to (4.25) and (4.26).
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For example, let us consider the case where the constants κk,j,i are all 1.
Then u becomes the sum of all the eigenvectors and generalized eigenvectors.
Moreover, let w = V −Hα in (4.25) where α is an M -dimensional vector with
all the entries 1. Then it holds that κk,j,iv

H
k,j(i

′−i+1)w = e>k,j(i
′−i+1)α = 1.

Thus, it is concluded that ck,i 6= 0. The above discussion suggests that there
exists at least one pair of u and w satisfying (4.27).

Proposition 4.3.1 leads to a theorem concerning the generating function
F (z) with the moments fn = wHAnu.

Theorem 4.3.2 (Akaiwa et al. [A2]). Let F (z) be the generating function
with the moments fn = wHAnu. Then, F (z) converges absolutely in the disk
D : |z| < |λ1|−1, and F (z) is expressed as

F (z) =
N∑
k=1

mk∑
i=1

ck,iz
i−1

(1− λkz)i
. (4.36)

Especially, if λN = 0, then F (z) is expressed as

F (z) =cN,1 + cN,2z + · · ·+ cN,mN z
mN−1

+
N−1∑
k=1

mk∑
i=1

ck,iz
i−1

(1− λkz)i
. (4.37)

Let us assume that (4.27) holds for some u and w. If λN 6= 0, then F (z)
has the finite poles λ−11 , λ−12 , . . . , λ−1N of orders m1,m2, . . . ,mN , respectively,
and the sum of the orders is m = m1 +m2 + · · ·+mN . If λN = 0, then F (z)
has pole of order mN − 1 at infinity and the finite poles λ−11 , λ−12 , . . . , λ−1N−1
of orders m1,m2, . . . ,mN , respectively, and the sum of the orders of all the
finite poles is m−mN .

Proof. By substituting fn in (4.26) into F (z) in (4.2), we get

F (z) =
N∑
k=1

mk∑
i=1

ck,i

( ∞∑
n=0

zn
(

n

i− 1

)
λn−i+1
k

)

=
N∑
k=1

mk∑
i=1

ck,i

( ∞∑
n=i−1

zn
(

n

i− 1

)
λn−i+1
k

)
. (4.38)
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By letting n = n′ + i− 1, we derive

F (z) =
N∑
k=1

mk∑
i=1

ck,iz
i−1
( ∞∑
n′=0

(
n′ + i− 1

i− 1

)
(λkz)n

′
)
. (4.39)

It is noted that, for |z| < 1,

∞∑
n′=0

(
n′ + i− 1

i− 1

)
zn
′
=

1

(1− z)i
. (4.40)

From (4.39) and (4.40), it turns out that F (z) converges absolutely in the disk
D : |z| < |λ1|−1. Simultaneously, we have (4.36) for z ∈ D. It is obvious that
(4.36) with λN = 0 becomes (4.37). Moreover, (4.36) and (4.37) immediately
lead to the latter statement concerning the poles of F (z).

Let ψA(z) be the polynomial with minimal degree such that ψA(A) = O.
Here ψA(z) is called the minimal polynomial of A. Let us recall here that the
maximal dimension of the Jordan blocks Jk,1, Jk,2, . . . , Jk,Mk

corresponding
to λk is mk. So, ψA(z) is expressed as

ψA(z) = (z − λ1)m1(z − λ2)m2 · · · (z − λN)mN . (4.41)

Therefore, we have the main theorem in this section for the relationship
between the minimal polynomial a general matrix A and the characteristic
polynomial of a tridiagonal matrix T

(n)
l .

Theorem 4.3.3 (Akaiwa et al. [A2]). Let F (z) be given by the generating
function with the moments fn = wHAnu. Let us assume that (4.6) and
(4.27) hold for some u and w. If λ1 6= 0, λ2 6= 0, . . . , λN 6= 0, then it holds
that

det(zIm − T (n)
m ) = ψA(z), n = 0, 1, . . . , (4.42)

otherwise,

det(zIm−mN − T
(n)
m−mN ) =

ψA(z)

zmN
, n = 0, 1, . . . . (4.43)

Proof. It is remarkable that three integers L, l, lk and a complex zk associated
with the tridiagonal matrix T

(n)
l in Theorem 4.2.2 are given in terms of three
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integers N,m,mk and a complex λk associated with the general matrix A.
If λN 6= 0, then it follows from the latter statement of Theorem 4.3.2 with
L = N , l = m, l0, l1 = m1, l2 = m2, . . . , lN = mN and zk = λ−1k . So, from
(4.11) and (4.41), we derive (4.42). Similarly, if λN = 0, then L = N − 1,
l = m−mN , l0 = mN − 1, l1 = m1, l2 = m2, . . . , lN−1 = mN−1 and zk = λ−1k .
Thus (4.11) and (4.41) lead to (4.43).

Incidentally, the editors in [54, pp. 444–445] give a simple example with
short comments concerning the minimal polynomial, the Jordan canonical
form of A and the multiple poles of F (z).

4.4 Minimal polynomial of tridiagonal ma-

trix

In this section, with the help of the Jordan canonical form, we clarify the
relationship of the characteristic polynomial with the tridiagonal matrix T

(n)
l

to the minimal polynomial of T
(n)
l .

For simplicity, let us here adopt the following abbreviations for matrices
T

(n)
s ,

Ts =


u1 v1

1 u2
. . .

. . .
. . . vs−1
1 us

 , s = 0, 1, . . . , l, (4.44)

where l = m if λN 6= 0 or l = m − mN if λN = 0. Let p0(z) = 1 and
ps(z) = det(zIs − Ts) for s = 1, 2, . . . , l. Then pl(z) is just the characteristic
polynomial of Tl, namely,

φT (z) = (z − λ1)m1(z − λ2)m2 · · · (z − λL)mL , (4.45)

where L = N if λN 6= 0 or L = N − 1 if λN = 0. The following proposition
gives the Jordan canonical form of the tridiagonal matrix Tl.

Proposition 4.4.1 (Akaiwa et al. [A2]). There exists a nonsingular matrix
P such that

P−1(Tl)
>P = Ĵ , (4.46)

Ĵ = diag(J1,1, J2,1, . . . , JL,1) ∈ Cl×l, (4.47)
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where J1,1, J2,1, . . . , JL,1 are of the same form as (4.23).

Proof. The characteristic polynomials p0(z), p1(z), . . . , pl(z) satisfy
zp0(z) = u1p0(z) + p1(z),

zps(z) = vsps−1(z) + us+1ps(z) + ps+1(z),

s = 1, 2, . . . , l − 1.

(4.48)

This is easily derived from the expansion of det(zIs− Ts) into minors by the
sth row. By taking the 0th, the 1st, . . . , the (mk − 1)th derivatives with
respect to z in (4.48), we get

zDip0(z) + iDi−1p0(z) = u1D
ip0(z) +Dip1(z),

i = 0, 1, . . . ,mk − 1,

zDips(z) + iDi−1ps(z) = vsD
ips−1(z) + us+1D

ips(z) +Dips+1(z),

i = 0, 1, . . . ,mk − 1, s = 1, 2, . . . , l − 1,

(4.49)

where Dips(z) denotes the ith derivative of ps(z) with respect to z. Let
pk,i = (Dip0(λk), D

ip1(λk), . . . , D
ipl−1(λk))

> ∈ Cl. Then, by substituting
z = λk in (4.49) and by taking account that Dipl(λk) = Di(z − λ1)m1(z −
λ2)

m2 · · · (z − λl)ml |z=λk = 0 for i = 0, 1, . . . ,mk − 1, we obtain

λkpk,i + ipk,i−1 = (Tl)
>pk,i, i = 0, 1, . . . ,mk − 1. (4.50)

Moreover, it follows that{
(Tl)

>Pk,0 = λkPk,0,

(Tl)
>Pk,i = λkPk,i + Pk,i−1, i = 1, 2, . . . ,mk − 1,

(4.51)

where Pk,i = (1/i!)pk,i. Thus, by letting P = (P1,0 P1,1 · · · P1,m1−1 |P2,0 P2,1

· · · P2,m2−1 | · · · |PL,0 PL,1 · · · PL,mL−1) ∈ Cl×l, we have (Tl)
>P = P Ĵ .

Here, it remains to prove that P is nonsingular. Of course, Pk,i 6= O since
the (i + 1)th row of Pk,i is Dipi(λk)/i! = 1. Let Wk,i = Ker((Tl)

> − λkIl)i
for i = 1, 2, . . .mk − 1, which indicates the generalized eigenspace of (Tl)

>

corresponding to λk. Then it is obvious from (4.51) that ((Tl)
>−λkIl)Pk,0 =

O and Pk,0 ∈ Wk,1. Equation (4.51) with i = 1 also leads to that ((Tl)
> −

λkIl)
2Pk,1 = O and Pk,1 ∈ Wk,2. Simultaneously, it is observed that Pk,1 /∈
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Wk,1. Let us assume that Pk,1 ∈ Wk,1, namely, (Tl)
>Pk,1 = λkPk,1. Then,

from (4.51), we derive Pk,0 = O, which contradicts with Pk,0 6= O. Thus, it
follows that Pk,1 /∈ Wk,1. Similarly, by induction for i = 2, 3, . . . ,mk − 1 in
Pk,i, we have

Pk,i /∈ Wk,1,Wk,2, . . . ,Wk,i, Pk,i ∈ Wk,i+1, i = 1, 2, . . . ,mk − 1. (4.52)

From (4.52), it turns out that Pk,i for i = 0, 1, . . . ,mk−1 and k = 1, 2, . . . , L
are linearly independent. Therefore, it is concluded that P is nonsingular
and the Jordan canonical form of (Tl)

> is given by (4.46).

Proposition 4.4.1 implies that the minimal polynomial of (Tl)
> becomes

ψT (z) = (z − λ1)m1(z − λ2)m2 · · · (z − λL)mL , (4.53)

which is equal to the characteristic polynomial of Tl in (4.45). If m1 = m2 =
· · · = mL = 1, then it is obvious that Tl is diagonalizable. Otherwise, Tl is not
diagonalizable. This is because multiplicity of roots in minimal polynomial
coincides with maximal size of the Jordan blocks. To sum up, we have a
theorem for the properties of the tridiagonal matrix Tl.

Theorem 4.4.2 (Akaiwa et al. [A2]). The minimal polynomial of Tl is equal
to the characteristic polynomial of Tl. Also, Tl is a diagonalizable tridiagonal
matrix if and only if it has no multiple eigenvalues.

4.5 Procedure for constructing tridiagonal ma-

trix and its examples

In this section, based on the discussions in the previous sections, we first de-
sign a procedure for constructing a tridiagonal matrix with specified multiple
eigenvalues. We next give four kinds of examples for demonstrating that the
designed procedure can provide tridiagonal matrices with multiple eigenval-
ues. Examples have been carried out with a computer with OS: Mac OS X
10.8.5, CPU: Intel Core i7 2 GHz, RAM: 8 GB. We also use the scientific
computing software Wolfram Mathematica 9.0. In every example, all the
entries of u are simply set to 1 and those of w are not artificial. The readers
will realize that the settings of u and w are not so difficult for satisfying
(4.6) and (4.27).
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Let us here consider the relationship of five theorems in the previous
sections. Theorem 4.2.2 shows that the eigenvalues of T

(n)
l in the tridiag-

onal form as (4.10) are equal to the poles of the generating function F (z)
and the multiplicity of the eigenvalues coincide with those of the poles of
F (z). Theorems 4.3.2 and 4.3.3 claim that the minimal polynomial of a gen-
eral matrix A, denoted by ψA(z), is just the denominator of F (z) involving

fn = wHAnu, and it coincides with the characteristic polynomial of T
(n)
l de-

noted by φT (z), except for the factor corresponding to zero-eigenvalues. With
the help of Theorem 4.2.1, we thus realize that the nonzero eigenvalues of
T

(0)
l with the entries involving q

(0)
1 , q

(0)
2 , . . . , q

(0)
l and e

(0)
1 , e

(0)
2 , . . . , e

(0)
l−1 become

roots of the minimal polynomial ψA(z) in the case where q
(0)
1 , q

(0)
2 , . . . , q

(0)
l

and e
(0)
1 , e

(0)
2 , . . . , e

(0)
l−1 are given by the qd formula (4.4) under the initial con-

dition e
(n)
0 = 0 and q

(n)
1 = fn+1/fn with fn = wHAnu. See also Figure 4.1 for

the diagram for getting q
(n)
s and e

(n)
s by the qd formula (4.4). A procedure for

constructing T = T
(0)
l with the same nonzero eigenvalues as A is therefore

as follows.

1: Set l = m if λN 6= 0 and l = m−mN if λN = 0.

2: Choose u and w as in (4.6) and (4.27).

3: Compute fn = wHAnu for n = 0, 1, . . . , 2l − 1.

4: Set e
(n)
0 = 0 for n = 0, 1, . . . , 2l − 3.

5: Compute q
(n)
1 = fn+1/fn for n = 0, 1, . . . , 2l − 2.

6: Repeat (a) and (b) for s = 2, 3, . . . , l.

(a) Compute e
(n)
s−1 = q

(n+1)
s−1 + e

(n+1)
s−2 − q

(n)
s−1 for n = 0, 1, . . . , 2l− 2s+ 1.

(b) Compute q
(n)
s = q

(n+1)
s−1 e

(n+1)
s−1 /e

(n)
s−1 for n = 0, 1, . . . , 2l − 2s.

7: Construct a tridiagonal matrix by arranging q
(0)
1 , q

(0)
2 , . . . , q

(0)
l and e

(0)
1 , e

(0)
2 ,

. . . , e
(0)
l−1.

According to Theorem 4.4.2, the minimal and the characteristic polynomials
of the resulting tridiagonal matrix T are equal to each other. Moreover, T is
diagonalizable if and only if it has no multiple eigenvalues.

It is necessary to control the eigenvalues of A for getting T as a tridiagonal
matrix with prescribed eigenvalues. It is easy to specify the eigenvalues of
diagonal matrices and the Jordan matrices.

First, in the procedure, let us consider the case where

A = diag(2, 2, 2, 1, 1, 1) ∈ R6×6
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q1
(1)

q1
(2)

e0
(0)

e0
(1)

e0
(2)

e0
(2l<4)

e0
(2l<3)

e1
(1)

e1
(2)

e1
(2l<4)

e1
(2l<3)

q2
(2l<4)

q2
(1)

q1
(2l<3)

q1
(2l<2)

f1 / f0 =

f3 / f2 =

f2 / f1 =

f2l<2 / f2l<3 =

f2l<1 / f2l<2 =

0 =

0 =

0 =

0 =

0 =

el<1   
(1)

initial settings
moments fn=wHAnu

= qd variables for constructing T
l

(0)

Figure 4.1: The qd diagram for a tridiagonal matrix construction.

which is a diagonal matrix with two eigenvalues 1 and 2 of multiplicities
3. Obviously, the characteristic and the minimal polynomials are factorized
as (z − 1)3(z − 2)3 and (z − 1)(z − 2), respectively. So, the integers l and
m are immediately determined as l = 2 and m = 6. Moreover, by letting
u = (1, 1, 1, 1, 1, 1)> and w = (1, 1, 1, 1, 1, 1)>, we derive a tridiagonal matrix
as

T =

3

2

1

4

1
3

2

 ∈ R2×2

whose characteristic and minimal polynomials are both factorized as (z −
1)(z−2). The tridiagonal matrix T is diagonalizable matrix with the distinct
eigenvalues 1 and 2.

Next, let us adopt a bidiagonal matrix, which can be regarded as the
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Jordan matrix, with eigenvalues 2 of multiplicity 6 as A, namely,

A =


2 1

2 1
2 1

2 1
2 1

2

 ∈ R6×6,

in the procedure. Since the characteristic polynomial of A are equal to the
minimal one, the integer l and m are determined as l = m = 6. Then the
procedure with u = (1, 1, 1, 1, 1, 1)> and w = (1, 1, 0, 1, 0, 1)> constructs a
tridiagonal matrix, which can not be symmetrized,

T =



11

4

3

16

1
11

12
−4

9

1
10

3
3

1 0 −8

1
29

8
− 1

64

1
11

8


∈ R6×6.

The characteristic and the minimal polynomials of A and T are all the same
polynomial with respect to z, which is factored as (z−2)6. So, the tridiagonal
matrix T is not diagonalizable.

Let us prepare the Jordan matrix

A =



3 1

3 1

3

3 1

3

3

2 1

2


∈ R8×8.
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The matrix A has multiple eigenvalues such as λ1 = 3, λ2 = 3, λ3 = 3,
λ4 = 3, λ5 = 3, λ6 = 3, λ7 = 2, λ8 = 2. It is noted that |λ1| = |λ2| = |λ3| =
|λ4| = |λ5| = |λ6| > |λ7| = |λ8| > 0. The characteristic and the minimal
polynomials of A are factorized as (z − 2)2(z − 3)6 and (z − 2)2(z − 3)3,
respectively. So, let l = 5 and m = 8 in the procedure. Then, the setting u =
(1, 1, 1, 1, 1, 1, 1, 1)> and w = (1, 1, 1, 1, 1, 1, 1, 1)> brings us to a tridiagonal
matrix, which can not be symmetrized,

T =



13

4

1

16

1
17

4
−13

2

1 −11

26

116

169

1
1232

377
− 13

841

1
77

29


∈ R5×5

whose characteristic and minimal polynomials are both factorized as (z −
2)2(z−3)3, which is just equal to the minimal one of A. The tridiagonal ma-
trix T is not a diagonalizable matrix with eigenvalues 2 and 3 of multiplicities
2 and 3, respectively.

Finally, let A be set as the Jordan matrix with complex eigenvalues 2 + i
and 2− i of multiplicities 2 and distinct real eigenvalues 1 and 2, namely,

A =


2 + i 1

2 + i
2− i 1

2− i
2

1

 ∈ C6×6,

in this procedure. By taking account that the characteristic and the minimal
polynomial are equal to each other, the characteristic polynomial of A are
equal to the minimal one, let l = m = 6 in the procedure. Under the setting
u = (1, 1, 1, 1, 1, 1)> and w = (1, 1, 1, 1, 1, 1)>, the resulting matrix T is a
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real tridiagonal matrix, which can not be symmetrized,

T =



13

6
−19

36

1
443

114
−1920

361

1 −363

760
− 209

1600

1
1187

440
−240

121

1
37

66

11

36

1
13

6


∈ R6×6.

The characteristic and the minimal polynomials of A and T are all the same
polynomials with respect to z, which is factored as (z−2+ i)2(z−2− i)2(z−
2)(z − 1). So, the tridiagonal matrix T is not a diagonalizable matrix with
the same complex multiple eigenvalues and real distinct ones as A.
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Chapter 5

A finite-step construction of
Hessenberg-type TN matrices
with prescribed eigenvalues
based on the discrete hungry
Toda equation

Entry-wise nonnegative matrices whose minors are all nonnegative are called
totally nonnegative (TN) matrices. TN matrices appear in many mathemat-
ical branches and applications. However, there is no practical method for
inverse eigenvalue problems (IEPs) for TN matrices because of the difficulty
of satisfying the TN property.

The discrete hungry Toda equation is a kind of extension of the discrete
Toda equation. The numerical algorithm for computing eigenvalues of TN
matrices of Hessenberg form is developed from the discrete hungry Toda
equation.

In this chapter, an IEP for Hessenberg TN matrices is discussed from the
viewpoint of application of the discrete hungry Toda equation to numerical
algorithm. A finite-step procedure for constructing Hessenberg TN matrices
is designed based on the discrete hungry Toda equation.
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5.1 TN matrices and inverse eigenvalue prob-

lems

The real-valued nonnegative inverse eigenvalue problem (RNIEP) is a type
of inverse eigenvalue problems. Chu and Golub’s book [8], which is a fun-
damental reference in the area of inverse eigenvalue problems, notes that
the subjects of RNIEP cover the constructions of an entry-wise nonnegative
matrix A ∈ Rm×m with prescribed real eigenvalues λ1, λ2, . . . , λm. Totally
nonnegative (TN) matrices are nonnegative matrices whose minors are re-
stricted to be all nonnegative. TN matrices appear in various branches of
mathematics, such as stochastic processes, probability and combinatorics
[2, 14, 40, 48]. TN matrices also contain inner totally positive (ITP) matri-
ces and an inverse eigenvalue problem for an ITP matrix has an application
to a vibrating beam in flexure [21]. If eigenvalues are not prescribed, then TN
matrices with banded forms are easily given by preparing TN matrices with
bidiagonal forms and computing their matrix products. Generally speaking,
however, we cannot prescribe eigenvalues for the resulting banded TN matrix
in this method.

The bidiagonal factorization theorem in [7, 13] states that TN matrices
can be decomposed into products of lower and upper bidiagonal TN matrices
with at most one nonzero offdiagonal entry. In this chapter, we consider a
sequence of m-by-m banded matrices with a positive integer M ,

A(n) := L(n)R(n+M−1) · · ·R(n+1)R(n), n = 0, 1, . . . , (5.1)

where L(n) and R(n) are, respectively, lower and upper bidiagonal matrices

L(n) :=


1

E
(n)
1 1

. . .
. . .

E
(n)
m−1 1

 , R(n) :=


Q

(n)
1 1

Q
(n)
2

. . .

. . . 1

Q
(n)
m

 ,

n = 0, 1, . . . . (5.2)

The superscripts and subscripts distinguish matrices and identify entries,
respectively. The banded matrices in {A(n)}n=0,1,... are matrices with the
band width min(M + 2,m + 1). Note that in the case where M ≥ m − 1
these banded matrices are Hessenberg matrices. If the bidiagonal entries of

59



L(n) and R(n) are all positive, then L(n) and R(n) are all TN. According to
Gasca and Micchelli [20], banded matrices given by products of bidiagonal
TN matrices are themselves TN. Though, in fact, L(n) and R(n) differ from the
bidiagonal matrices appearing in the bidiagonal factorization theorem, they
can be decomposed into such bidiagonal matrices. Thus, the banded matrices
in {A(n)}n=0,1,... can be also decomposed using the bidiagonal factorization
theorem.

A sequence of LR transformations,

L(n+1)R(n+M) = R(n)L(n), n = 0, 1, . . . , (5.3)

generates a similarity transformation from A(n) to A(n+1) such that A(n+1) =
R(n)A(n)(R(n))−1. The LR transformations in (5.3) exist even if A(n) is not
TN, and A(n) can be transformed to A(n+1) without changing eigenvalues.
Focusing on the matrix entries in (5.3), we obtain the recursion formula for
the similarity transformation from A(n) to A(n+1),{

Q
(n+M)
k + E

(n+1)
k−1 = Q

(n)
k + E

(n)
k , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

Q
(n+M)
k E

(n+1)
k = Q

(n)
k+1E

(n)
k , k = 1, 2, . . . ,m− 1, n = 0, 1, . . . .

(5.4)

Equation (5.4) is the discrete hungry Toda (dhToda) equation, which is orig-
inally derived from an inverse ultra-discretization of the numbered ball and
box system [61]. The subscript k and superscript n denote the discrete spa-
tial variable and discrete time variable, respectively. The dhToda equation
(5.4) with M = 1 is equal to the discrete-time Toda equation [32, 33, 34],
which is a discrete analogue of the continuous-time Toda equation [57]. The
bidiagonal matrices L(n) and R(n) also appear in the matrix representation,
called the Lax representation, of the dhToda equation (5.4) [61].

The discrete Toda equation, the dhToda equation (5.4) with M = 1,
is equal to the recursion formula of the quotient-difference (qd) algorithm.
The qd algorithm is a well-known algorithm for computing eigenvalues of
tridiagonal matrices, which are often called Jacobi matrices. As n → ∞,
the tridiagonal matrix A(n) with M = 1 converges to an upper bidiagonal
matrix; specifically, the diagonal entries of A(n) with M = 1 converge to the
eigenvalues of A(0) with M = 1. By Fukuda et al. [18], it is shown that
the dhToda equation (5.4) can be applied to compute eigenvalues of A(0)

with arbitrary values of M . The banded TN matrix A(n) tends to an upper
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triangle matrix whose diagonal entries are eigenvalues of A(0) as n → ∞.
Subsequently, an algorithm based on the dhToda equation (5.4) for solving
an eigenvalue problem for the banded TN matrices is designed. A shift
of origin by accelerating the convergence is introduced, and then an error
analysis for it is presented by Fukuda et al. [19, 17].

Henrici’s book [30] briefly comments on the construction of tridiagonal
matrices with prescribed eigenvalues by employing the qd recursion formula.
The relationship between the inverse eigenvalue problem for tridiagonal ma-
trices and the Toda lattice is demonstrated in the book [8] by Chu and Golub.
Several papers deal with the construction of tridiagonal matrices and, apart
from the qd algorithm, a few effective algorithms have been proposed [5, 26].
In Chapter 4 [A2], the case of tridiagonal matrices with multiple eigenvalues
is discussed.

In this chapter, by investigating an inverse eigenvalue problem for banded
TN matrices, we clarify how to construct banded TN matrices with prescribed
eigenvalues. The key point is to examine the evolution not from n to n + 1
via the dhToda equation (5.4) but from k to k + 1 via

E
(n)
k = Q

(n+M)
k −Q(n)

k + E
(n+1)
k−1 , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

Q
(n)
k+1 =

E
(n+1)
k

E
(n)
k

Q
(n+M)
k , k = 1, 2, . . . ,m− 1, n = 0, 1, . . .

(5.5)

which is easily obtained from the dhToda equation (5.4). Hereinafter, we
refer to (5.5) as the dhToda equation, without distinguishing it from (5.4).

The remainder of this chapter is organized as follows. In Section 5.2,
by extending the Hankel determinants appearing in the determinant solu-
tion to the discrete Toda equation, we derive a determinant solution to the
dhToda equation (5.5). In Section 5.3, we present the relationships among ex-
tended Hadamard polynomials, where each extended Hadamard polynomial
is defined by the ratio of an extended Hankel determinant to its associated
polynomial. In Section 5.4, we observe the eigenpairs of banded matrices in
terms of the extended Hadamard polynomials. In Section 5.5, we restrict
the banded matrices to banded TN matrices. In Section 5.6, we present a
finite-step procedure for constructing banded TN matrices with prescribed
eigenvalues, and then we give an example to demonstrate the procedure.
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5.2 The determinant solution to the dhToda

equation

Hankel determinants are useful for analyzing the qd recursion formula [30]. In
this section, we begin by extending the Hankel determinants and considering
their properties. Some readers may find this intuitive, as the dhToda equa-
tion (5.5) is an extension of the qd recursion formula. We will then present
the determinant solution to the dhToda equation (5.5) using the extended
Hankel determinants.

Let us define a sequence of extended Hankel determinants by

τ
(n)
−1 ≡ 0, τ

(n)
0 ≡ 1,

τ
(n)
k :=

∣∣∣∣∣∣∣∣∣
fn fn+M · · · fn+(k−1)M
fn+1 fn+M+1 · · · fn+(k−1)M+1

...
...

. . .
...

fn+k−1 fn+M+k−1 · · · fn+(k−1)(M+1)

∣∣∣∣∣∣∣∣∣ ,
k = 1, 2, . . . ,m+ 1, (5.6)

where {fn}n=0,1,... is an arbitrary sequence. Moreover, let us assume that
k,m, n and M are the same as in the dhToda equation (5.5). The extended
Hankel determinants (5.6) differ from standard Hankel determinants in that
the subscripts in the entries increases by M as the column index increases by
1. Of course, the extended Hankel determinants (5.6) with M = 1 become
standard Hankel determinants. By considering Jacobi’s identity of deter-
minants, we derive the following relationship among the extended Hankel
determinants (5.6).

Lemma 5.2.1. The extended Hankel determinants (5.6) satisfy

τ
(n+M+1)
k τ

(n)
k = τ

(n+1)
k τ

(n+M)
k + τ

(n)
k+1τ

(n+M+1)
k−1 ,

k = 0, 1, . . . ,m, n = 1, 2, . . . . (5.7)

Proof. Let us begin by briefly explaining the Laplace expansion for the deter-
minant of a (2k+2)-by-(2k+2) matrixX. LetX(i1, i2, . . . , ik+1|j1, j2, . . . , jk+1)
denote the (k + 1)-by-(k + 1) submatrix consisting of the intersections of
the i1th, i2th, . . . , ik+1th rows and the j1th, j2th, . . . , jk+1th columns of
X. Moreover, let X̄(i1, i2, . . . , ik+1|j1, j2, . . . , jk+1) be the (k + 1)-by-(k + 1)
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submatrix obtained by deleting the i1th, i2th, . . . , ik+1th rows and the
j1th, j2th, . . . , jk+1th columns from X. Then, for fixed i1, i2, . . . , ik+1 with
1 ≤ i1 < · · · < ik+1 ≤ 2k + 2, it holds that

detX =
∑

1≤j1<j2<···<jk+1≤2k+2

(−1)i1+i2+···+ik+1+j1+j2+···+jk+1

× detX(i1, i2, . . . , ik+1|j1, j2, . . . , jk+1)

× det X̄(i1, i2, . . . , ik+1|j1, j2, . . . , jk+1). (5.8)

Equation (5.8) is called the Laplace expansion of detX.
For the (k+1)-dimensional column vectors e1 := (1, 0, . . . , 0, 0)>, ek+1 :=

(0, 0, . . . , 0, 1)> and fn := (fn, fn+1, . . . , fn+k)
>, let

X :=

(
e1 fn+M · · · fn+(k−1)M fn+kM fn 0 · · · 0 ek+1

e1 0 · · · 0 fn+kM fn fn+M · · · fn+(k−1)M ek+1

)
.

(5.9)

Let us consider the case where i1 = 1, i2 = 2, . . . , ik+1 = k+1 in (5.8). The mi-
nors varnish except in the six cases where {j1, j2, . . . , jk+1} = {1, 2, . . . , k, k+
1}, {2, . . . , k, k+2, 2k+2}, {1, . . . , k, k+2}, {2, . . . , k+1, 2k+2}, {2, 3, . . . , k+
2}, {1, . . . , k, 2k + 2}. Taking these into account, we derive

detX = 2|e1 fn+M · · · fn+(k−1)M fn+kM ||fn fn+M · · · fn+(k−1)M ek+1|
− 2|e1 fn fn+M · · · fn+(k−1)M ||fn+M · · · fn+(k−1)M fn+kM ek+1|
− 2|fn fn+M · · · fn+(k−1)M fn+kM ||e1 fn+M · · · fn+(k−1)M ek+1|.

By applying cofactor expansions, we can rewrite as

detX = 2(τ
(n+M+1)
k τ

(n)
k − τ

(n+1)
k τ

(n+M)
k − τ (n)k+1τ

(n+M+1)
k−1 ), (5.10)

since τ
(n)
k+1 = |fn fn+M · · · fn+kM |.

Moreover, by subtracting the last k+ 1 rows from the corresponding first
k + 1 rows in X, we easily obtain

detX =∣∣∣∣ 0 fn+M · · · fn+(k−1)M 0 0 −fn+M · · · −fn+(k−1)M 0
e1 0 · · · 0 fn+kM fn fn+M · · · fn+(k−1)M ek+1

∣∣∣∣ .
(5.11)

Similarly, it follows from the Laplace expansion for (5.11) that detX = 0.
Thus, by combining this with (5.10), we have (5.7).
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With the help of Lemma 5.2.1, we can obtain the following theorem for
the determinant solution to the dhToda equation (5.5).

Theorem 5.2.2 (Akaiwa et al. [A3]). Let us assume that Q
(n)
1 and E

(n)
0

satisfy the boundary conditions

Q
(n)
1 =

fn+1

fn
, n = 0, 1, . . . , (5.12)

E
(n)
0 = 0, n = 0, 1, . . . . (5.13)

Then, the solution to the dhToda equation (5.5) is expressed by using the
extended Hankel determinants (5.6) as

Q
(n)
k =

τ
(n)
k−1τ

(n+1)
k

τ
(n)
k τ

(n+1)
k−1

, k = 1, 2, . . . ,m, n = 0, 1, . . . , (5.14)

E
(n)
k =

τ
(n)
k+1τ

(n+M)
k−1

τ
(n)
k τ

(n+M)
k

, k = 0, 1, . . . ,m, n = 0, 1, . . . . (5.15)

Moreover, if {fn}n=0,1,... satisfies the linear equations

fn+m + a1fn+m−1 + · · ·+ amfn = 0, n = 0, 1, . . . , (5.16)

with arbitrary constants f0, f1, . . . , fm−1 and a1, a2, . . . , am, then it holds that

E(n)
m = 0, n = 0, 1, . . . . (5.17)

Proof. Since τ
(n)
−1 = 0, τ

(n)
0 = 1, τ

(n)
1 = fn and τ

(n+1)
1 = fn+1, it is obvious that

Q
(n)
1 = τ

(n)
0 τ

(n+1)
1 /(τ

(n)
1 τ

(n+1)
0 ) and E

(n)
0 = τ

(n)
1 τ

(n+M)
−1 /(τ

(n)
0 τ

(n+M)
0 ) satisfy the

boundary conditions (5.12) and (5.13), respectively. The solution to the

dhToda equation (5.5) is easily checked by substituting Q
(n)
k in (5.14) and

E
(n)
k in (5.15) for the dhToda equation (5.5) and by using Lemma 5.2.1.

By taking (5.16) into account and applying elementary transformations of

determinants to the (m+ 1)th row of τ
(n)
m+1, we easily derive

τ
(n)
m+1 = 0, n = 0, 1, . . . . (5.18)

Moreover, by combining (5.18) with (5.15), we have (5.17).

The solution to the original dhToda equation (5.4) has also been pre-
sented with other boundary conditions [61]. It is different from (5.14) and
(5.15), which is the solution to the dhToda equation (5.4) with the boundary
conditions (5.12) and (5.13), in entries of extended Hankel determinants.
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5.3 Extended Hadamard polynomials

The ratio of the Hankel polynomial to the Hankel determinant is often re-
ferred to as the Hadamard determinant [30]. Following Henrici [30], in this
section, we consider extended Hadamard polynomials in terms of the ex-
tended Hankel determinants (5.6) and their associated polynomials. We then
clarify the properties of the extended Hadamard polynomials.

Let us introduce polynomials with respect to z,

%
(n)
−1 (z) ≡ 0, %

(n)
0 (z) ≡ 1,

%
(n)
k (z) :=

∣∣∣∣∣∣∣∣∣∣∣

fn fn+M · · · fn+(k−1)M 1
fn+1 fn+M+1 · · · fn+(k−1)M+1 z
...

...
. . .

...
...

fn+k−1 fn+M+k−1 · · · fn+(k−1)(M+1) zk−1

fn+k fn+M+k · · · fn+(k−1)M+k zk

∣∣∣∣∣∣∣∣∣∣∣
,

k = 1, 2, . . . ,m, (5.19)

as extended Hankel polynomials associated with the extended Hankel de-
terminants. The meanings of k,m, n and M are the same as in (5.6). It

is noted here that the extended Hankel determinant τ
(n)
k is the kth order

leading principal minor of the extended Hankel determinant %
(n)
k (z), whose

degree is k. The extended Hankel polynomial %
(n)
k (z) with M = 1 coincides

with the standard Hankel polynomial. Similarly to Henrici [30], we adopt
the extended Hadamard polynomials as

φ
(n)
−1 (z) ≡ 0, φ

(n)
0 (z) ≡ 1,

φ
(n)
k (z) =

%
(n)
k (z)

τ
(n)
k

, k = 1, 2, . . . ,m. (5.20)

The following two propositions describe a relationship among the extended
Hadamard polynomials.

Proposition 5.3.1 (Akaiwa et al. [A3]). The extended Hadamard polyno-
mials (5.20) satisfy

zφ
(n+1)
k (z) = Q

(n)
k+1φ

(n)
k (z) + φ

(n)
k+1(z), k = 0, 1, . . . ,m− 1. (5.21)
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Proof. This proof is similar to that of Lemma 5.2.1. The vectors e1, ek+1,fn
are the same as in the proof of Lemma 5.2.1. Let us introduce a (k + 1)-
dimensional column vector z = (1, z, . . . , zk)>. Then, by expanding∣∣∣∣ e1 fn fn+M · · · fn+(k−2)M fn+(k−1)M z 0 · · · 0 ek+1

e1 0 0 · · · 0 fn+(k−1)M z fn · · · fn+(k−2)M ek+1

∣∣∣∣
(5.22)

and considering that %
(n)
k =

∣∣fn fn+M · · · fn+(k−1)M z
∣∣, we obtain

τ
(n+1)
k %

(n)
k−1(z)− zτ (n)k %

(n+1)
k−1 (z) + τ

(n+1)
k−1 %

(n)
k (z) = 0. (5.23)

By dividing both sides of (5.23) by τ
(n)
k τ

(n+1)
k−1 , we derive

τ
(n+1)
k τ

(n)
k−1

τ
(n)
k τ

(n+1)
k−1

%
(n)
k−1(z)

τ
(n)
k−1

− z
%
(n+1)
k−1 (z)

τ
(n+1)
k−1

+
%
(n)
k (z)

τ
(n)
k

= 0,

which implies (5.21).

Proposition 5.3.2 (Akaiwa et al. [A3]). The extended Hadamard polyno-
mials (5.20) satisfy

φ
(n)
k (z) = φ

(n+M)
k (z) + E

(n)
k φ

(n+M)
k−1 (z), k = 0, 1, . . . ,m. (5.24)

Proof. Similarly to the proofs of Lemma 5.2.1 and Proposition 5.3.1, by ex-
panding∣∣∣∣ fn fn+M · · · fn+(k−1)M ek+1 0 · · · 0 fn+kM z
fn 0 · · · 0 ek+1 fn+M · · · fn+(k−1)M fn+kM z

∣∣∣∣ ,
(5.25)

we derive

τ
(n)
k %

(n+M)
k (z)− τ (n+M)

k %
(n)
k (z) + τ

(n)
k+1%

(n+M)
k−1 (z) = 0. (5.26)

By dividing both sides of (5.30) by τ
(n)
k τ

(n+M)
k , we obtain

%
(n+M)
k (z)

τ
(n+M)
k

− %
(n)
k (z)

τ
(n)
k

+
τ
(n)
k+1τ

(n+M)
k−1

τ
(n)
k τ

(n+M)
k

%
(n+M)
k−1 (z)

τ
(n+M)
k−1

= 0,

which immediately leads to (5.28).
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5.4 Associated eigenvalue problems

In this section, we observe the eigenvalue problem of A(n) by focusing on the
extended Hadamard polynomials (5.20).

Let us introduce a monic polynomial with respect to z,

p(z) = zm + a1z
m−1 + · · ·+ am−1z + am, (5.27)

where a1, a2, . . . , am are the same constants as in (5.16). The following propo-
sition shows a relationship between an extended Hadamard polynomial in
(5.20) and the monic polynomial p(z).

Proposition 5.4.1 (Akaiwa et al. [A3]). The extended Hadamard polyno-
mials (5.20) satisfy

φ
(n)
k (z) = φ

(n+M)
k (z) + E

(n)
k φ

(n+M)
k−1 (z), k = 0, 1, . . . ,m. (5.28)

Proof. Similarly to the proofs of Lemma 5.2.1 and Proposition 5.3.1, by ex-
panding∣∣∣∣ fn fn+M · · · fn+(k−1)M ek+1 0 · · · 0 fn+kM z
fn 0 · · · 0 ek+1 fn+M · · · fn+(k−1)M fn+kM z

∣∣∣∣ ,
(5.29)

we derive

τ
(n)
k %

(n+M)
k (z)− τ (n+M)

k %
(n)
k (z) + τ

(n)
k+1%

(n+M)
k−1 (z) = 0. (5.30)

By dividing both sides of (5.30) by τ
(n)
k τ

(n+M)
k , we obtain

%
(n+M)
k (z)

τ
(n+M)
k

− %
(n)
k (z)

τ
(n)
k

+
τ
(n)
k+1τ

(n+M)
k−1

τ
(n)
k τ

(n+M)
k

%
(n+M)
k−1 (z)

τ
(n+M)
k−1

= 0,

which immediately leads to (5.28).

In this section, we observe the eigenvalue problem of A(n) by focusing on
the extended Hadamard polynomials (5.20).

Let us introduce a monic polynomial with respect to z,

p(z) = zm + a1z
m−1 + · · ·+ am−1z + am, (5.31)

where a1, a2, . . . , am are the same constants as in (5.16). The following propo-
sition shows the relationship between an extended Hadamard polynomial in
(5.20) and the monic polynomial p(z).
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Proposition 5.4.2 (Akaiwa et al. [A3]). Let us assume that Q
(n)
1 and E

(n)
0

for n = 0, 1, . . . satisfy the boundary conditions in (5.12) and (5.13), respec-

tively. If {fn}n=0,1,... in {φ(n)
m (z)}n=0,1,... satisfies (5.16), then it holds that

φ(n)
m (z) = p(z), n = 0, 1, . . . . (5.32)

Proof. For the extended Hankel determinant %
(n)
m in (5.19), by adding am

times the 1st row, am−1 times the 2nd row, ..., a1 times the mth row to the
(m+ 1)th row, we get

%(n)m (z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fn fn+M · · · fn+(m−1)M 1
fn+1 fn+M+1 · · · fn+(m−1)M+1 z
...

...
. . .

...
...

fn+m−1 fn+M+m−1 · · · fn+(m−1)(M+1) zm−1
m∑
i=0

aifn+m−i

m∑
i=0

aifn+m+M−i · · ·
m∑
i=0

aifn+(m−1)M−i

m∑
i=0

aiz
m−i

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where a0 ≡ 1. Considering (5.16) and (5.31), we realize that the (m + 1, 1),
(m + 1, 2), . . . , (m + 1,m) entries are all 0 and the (m + 1,m + 1) entry is

p(z). Thus, it follows that %
(n)
m (z) = τ

(n)
m p(z). Since φ

(n)
m (z) = %

(n)
m (z)/τ

(n)
m in

(5.20), we therefore obtain (5.32).

Now, let us assume that p(z) has m distinct roots σ1, σ2, . . . , σm, namely,

p(z) = (z − σ1)(z − σ2) · · · (z − σm). (5.33)

Then, from Propositions 5.3.1, 5.4.1 and 5.4.2, we derive the relationships
between the Lax matrices L(n) and R(n) in (5.2) and an m-dimensional vector

Φ
(n)
i :=

(
φ
(n)
0 (σi), φ

(n)
1 (σi), . . . , φ

(n)
m−1(σi)

)>
.

Proposition 5.4.3 (Akaiwa et al. [A3]). Let us assume that Q
(n)
1 and E

(n)
0

for n = 0, 1, . . . satisfy the boundary conditions (5.12) and (5.13), respec-

tively. If {fn}n=0,1,... in {Φ(n)
i (z)}n=0,1,... satisfies (5.16), then it holds that,

for distinct σ1, σ2, . . . , σm in (5.33),

L(n)Φ
(n+M)
i = Φ

(n)
i , i = 1, 2, . . . ,m, n = 0, 1, . . . , (5.34)

R(n)Φ
(n)
i = σiΦ

(n+1)
i , i = 1, 2, . . . ,m, n = 0, 1, . . . . (5.35)
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Proof. Let us recall here that p(σi) = 0. Combining this with Proposition
5.4.2, we see that

φ(n)
m (σi) = 0, i = 1, 2, . . . ,m, n = 0, 1, . . . . (5.36)

Propositions 5.3.1 and 5.4.1 with (6.39) immediately lead to


φ
(n)
0 (σi)

φ
(n)
1 (σi)
...

φ
(n)
m−1(σi)

 =


1

E
(n)
1 1

E
(n)
2 1

. . .
. . .

E
(n)
m−1 1




φ
(n+M)
0 (σi)

φ
(n+M)
1 (σi)

...

φ
(n+M)
m−1 (σi)

 , (5.37)

σi


φ
(n+1)
0 (σi)

φ
(n+1)
1 (σi)

...

φ
(n+1)
m−1 (σi)

 =


Q

(n)
1 1

Q
(n)
2

. . .

. . . 1

Q
(n)
m



φ
(n)
0 (σi)

φ
(n)
1 (σi)
...

φ
(n)
m−1(σi)

 , (5.38)

which are equivalent to (5.34) and (5.35), respectively.

Let λ1, λ2, . . . , λm be constants given in terms of σ1, σ2, . . . , σm by

λ1 = σM1 , λ2 = σM2 , . . . , λm = σMm . (5.39)

Of course, λ1, λ2, . . . , λm are distinct from each other. We thus have an
important theorem for the eigenpairs of the banded matrix A(n) defined by
(5.1).

Theorem 5.4.4 (Akaiwa et al. [A3]). Let us assume that Q
(n)
1 and E

(n)
0

for n = 0, 1, . . . satisfy the boundary conditions (5.12) and (5.13), respec-
tively. Moreover, let σ1, σ2, . . . , σm in (5.33) be distinct. If {fn}n=0,1,... in

{Φ(n)
i (z)}n=0,1,... satisfies (5.16), then, for distinct λ1, λ2, . . . , λm in (5.39),

{λ1,Φ(n)
1 }, {λ2,Φ

(n)
2 }, . . . , {λm,Φ

(n)
m } are eigenpairs of A(n) = L(n)R(n+M−1) · · ·

R(n+1)R(n).
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Proof. From Proposition 5.4.3, it follows that

A(n)Φ
(n)
i = L(n)R(n+M−1) · · ·R(n+1)(R(n)Φ

(n)
i )

= σiL
(n)R(n+M−1) · · · (R(n+1)Φ

(n+1)
i )

= σ2
iL

(n)R(n+M−1) · · · (R(n+2)Φ
(n+2)
i )

...

= σMi (L(n)Φ
(n+M)
i )

= σMi Φ
(n)
i

= λiΦ
(n)
i , i = 1, 2, . . . ,m,

which implies that {λ1,Φ(n)
1 }, {λ2,Φ

(n)
2 }, . . . , {λm,Φ

(n)
m } are eigenpairs of A(n).

Theorem 5.4.4 claims that det(zI −A(n)) = (z− λ1)(z− λ2) · · · (z− λm).

It is obvious that p(z) = φ
(n)
m (z) = (z − σ1)(z − σ2) · · · (z − σm) is not the

characteristic polynomial of A(n) with M 6= 1. It is, however, remarkable
that p(z) = φ

(n)
m (z) yields the roots of the characteristic polynomial of A(n).

Of course, p(z) = φ
(n)
m (z) coincides with the characteristic polynomial of A(n)

if M = 1, that is, A(n) is a tridiagonal matrix.

5.5 The TN property

The sequence {fn}n=0,1,... satisfying (5.16) is uniquely determined by given

values of f0, f1, . . . , fm−1. The dhToda variables Q
(n)
k and E

(n)
k appearing in

the entries of A(n) are similarly uniquely determined. This is because Q
(n)
k

and E
(n)
k are expressed by using the extended Hankel determinants (5.6)

with respect to {fn}n=0,1,.... Setting f0, f1, . . . , fm−1 thus plays a key role
in realizing the TN property of A(n). We first express the extended Hankel
determinants (5.6) in terms of distinct σ1, σ2, . . . , σm, which are shown in
Theorem 5.4.4 to be the M -roots of the eigenvalues of A(n). Next, we clarify
what setting of f0, f1, . . . , fm−1 enables A(n) to have the TN property.

It is worth noting here that {fn}n=0,1,... satisfying (5.16) can be expressed
as

fn = c1σ
n
1 + c2σ

n
2 + · · ·+ cmσ

n
m, n = 0, 1, . . . , (5.40)
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where c1, c2, . . . , cm are constants given by σ1, σ2, . . . , σm and f0, f1, . . . , fm−1.
From (5.40), we derive a proposition for an expansion of the extended Hankel
determinants (5.6) using σ1, σ2, . . . , σm and c1, c2, . . . , cm.

Proposition 5.5.1 (Akaiwa et al. [A3]). If {fn}n=0,1,... satisfies (5.40), then
the extended Hankel determinants (5.6) are expressed as

τ
(n)
k =

∑
1≤i1<i2<···<ik≤m

(ci1ci2 · · · cik)(σi1σi2 · · ·σik)n

×
∏

1≤j<l≤k

(σil − σij)
∏

1≤j<l≤k

(σMil − σ
M
ij

), k = 1, 2, . . . ,m. (5.41)

Proof. By applying (5.40) to the (j+1)th column of τ
(n)
k , denoted by fn+jM =

(fn+jM , fn+jM+1, . . . , fn+jM+k−1)
>, we easily obtain

fn+jM =
m∑
i=1

ciσ
n
i σ

(j)
i ,

where σ
(j)
i := (σjMi , σjM+1

i , . . . , σjM+k−1
i )>. Thus, it follows that

τ
(n)
k =

∣∣fn fn+M · · · fn+(k−1)M
∣∣

=

∣∣∣∣∣
m∑
i1=1

ci1σ
n
i1
σ

(0)
i1

m∑
i2=1

ci2σ
n
i2
σ

(1)
i2
· · ·

m∑
ik=1

cikσ
n
ik
σ

(k−1)
ik

∣∣∣∣∣
=

m∑
i1=1

m∑
i2=1

· · ·
m∑
ik=1

ci1ci2 · · · cik(σi1σi2 · · ·σik)n
∣∣∣σ(0)

i1
σ

(1)
i2
· · · σ

(k−1)
ik

∣∣∣ .
This can be rewritten by reframing the summations as

τ
(n)
k =

∑
1≤i1<i2<···<ik≤m

ci1ci2 · · · cik(σi1σi2 · · ·σik)n

×
k∑

j1=1

k∑
j2=1

· · ·
k∑

jk=1

∣∣∣σ(0)
ij1

σ
(1)
ij2
· · · σ

(k−1)
ijk

∣∣∣ .
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By taking into account that

k∑
j1=1

k∑
j2=1

· · ·
k∑

jk=1

∣∣∣σ(0)
ij1

σ
(1)
ij2
· · · σ

(k−1)
ijk

∣∣∣
=

∣∣∣∣∣
k∑

j1=1

σ
(0)
ij1

k∑
j2=1

σ
(1)
ij2
· · ·

k∑
jk=1

σ
(k−1)
ijk

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣


1 1 · · · 1
σi1 σi2 · · · σik
...

...
...

σk−1i1
σk−1i2

· · · σk−1ik




1 σMi1 · · · σ
(k−1)M
i1

1 σMi2 · · · σ
(k−1)M
i2

...
...

...

1 σMik · · · σ
(k−1)M
ik


∣∣∣∣∣∣∣∣∣∣

=
∏

1≤j<l≤k

(σil − σij)
∏

1≤j<l≤k

(σMil − σ
M
ij

),

we therefore have (5.41).

Let us consider a sufficient condition for A(n) being a TN matrix. From
Proposition 5.5.1, we find τ

(n)
k > 0 if σ1 > σ2 > · · · > σm > 0 and c1 > 0, c2 >

0, . . . , cm > 0. It is obvious from Theorem 5.2.2 that if τ
(n)
k > 0, then Q

(n)
k > 0

and E
(n)
k > 0. Thus, L(n), R(n), R(n+1), . . . , R(n+M−1) are all TN if σ1 > σ2 >

· · · > σm > 0 and c1 > 0, c2 > 0, . . . , cm > 0, since all of their minors are 0, 1,
or some positive constants given in terms of Q

(n)
k and E

(n)
k [2, 48]. According

to Gasca and Micchelli [20, p. 110], if L(n), R(n), R(n+1), . . . , R(n+M−1) are
TN, then their products L(n)R(n)R(n+1) · · · R(n+M−1) = A(n) are so. If σ1 >
σ2 > · · · > σm > 0 in (5.39), then it holds that

λ1 > λ2 > · · · > λm > 0. (5.42)

Thus, we have a theorem for A(n) being a TN matrix.

Theorem 5.5.2 (Akaiwa et al. [A3]). Let us assume that Q
(n)
1 and E

(n)
0

for n = 0, 1, . . . satisfy the boundary conditions (5.12) and (5.13), respec-
tively. Let σ1, σ2, . . . , σm, which are the M th roots of λ1, λ2, . . . , λm, respec-
tively, be distinct positive with σ1 > σ2 > · · · > σm in (5.40). Moreover, let
c1, c2, . . . , cm be positive in (5.40). Then, A(n) = L(n)R(n+M−1) · · ·R(n+1)R(n)

for n = 0, 1, . . . , which are composed of {fn}n=0,1,..., are TN.
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It is emphasized here that σ1, σ2, . . . , σm are not restricted except for
σ1 > σ2 > · · · > σm > 0. In other words, the eigenvalues of A(n) denoted
by λ1, λ2, . . . , λm must only be positive and distinct to each other. Thus,
Theorem 5.5.2 also implies that TN matrices can have any set of distinct
positive eigenvalues.

5.6 A finite-step construction procedure

In this section, we describe how to construct TN matrices with prescribed
eigenvalues by making full use of the dhToda equation (5.5). We also give
an example to demonstrate the resulting procedure.

It is easy to check that the dhToda equation (5.5) can generate A(0) under
the boundary conditions (5.12) and (5.13). Strictly speaking, the boundary
conditions are necessary only for n = 0, 1, . . . , (M + 1)(m− 1) +M − 1 and
not for all n = 0, 1, . . . . According to Theorem 5.5.2, eigenvalues of A(0)

then become λ1 = σM1 , λ2 = σM2 , . . . , λm = σMm if {fn}n=0,1,... in (5.12) is
given in terms of c1, c2, . . . , cm and σ1, σ2, . . . , σm by (5.40). It is noted that
λ1, λ2, . . . , λm do not depend on the values of c1, c2, . . . , cm. To summarize, we
can derive a procedure for constructing the TN matrix A(0) with prescribed
eigenvalues λ1, λ2, . . . , λm, as follows.

1: Select positive integers m and M where m is the matrix size and min{m+
1,M + 2} designates the band width.

2: Specify m distinct positive eigenvalues λ1, λ2, . . . , λm.
3: Set σ1, σ2, . . . , σm as the positive M -roots of λ1, λ2, . . . , λm, respectively.
4: Choose c1, c2, . . . , cm as positive constants.
5: for n = 0 to (M + 1)(m− 1) +M do
6: fn = c1σ

n
1 + c2σ

n
2 + · · ·+ cmσ

n
m

7: end for
8: for n = 0 to (M + 1)(m− 1) +M − 1 do

9: E
(n)
0 = 0 and Q

(n)
1 = fn+1/fn

10: end for
11: for k = 1 to m− 1 do
12: for n = 0 to (M + 1)(m− k − 1) +M do

13: E
(n)
k = Q

(n+M)
k −Q(n)

k + E
(n+1)
k−1

14: end for
15: for n = 0 to (M + 1)(m− k − 1) +M do
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16: Q
(n)
k+1 = E

(n+1)
k Q

(n+M)
k /E

(n)
k

17: end for
18: end for
19: Construct L(0) and R(0), R(1), . . . , R(M−1) as in (5.2).
20: A(0) = L(0)R(M−1) · · ·R(1)R(0)

We observe that the procedure requires O(Mm2) finite arithmetic. More-
over, by using the original dhToda equation (5.4) not (5.5), we can obtain
A(1), A(2), . . . which are similar, but are not equal, to A(0).

We demonstrate the construction of 5-by-5 TN matrices with band width
6. Let m = 5, M = 5, and λ1 = 55 = 3125, λ2 = 45 = 1024, λ3 = 35 = 243,
λ4 = 25 = 32 and λ5 = 15 = 1 in the procedure. The positive constants
σ1, σ2, σ3, σ4 and σ5 are set as σ1 = 1, σ2 = 2, σ3 = 3, σ4 = 4 and σ5 = 5.
Let us recall here that c1, c2, c3, c4 and c5 must be positive. Therefore, let
us consider the two cases where c1 = 1, c2 = 1, c3 = 1, c4 = 1 and c5 = 1,
and c1 = 1, c2 = 2, c3 = 3, c4 = 4 and c5 = 5. Numerical construction were
carried out on a computer with the following specifications: OS: Mac OS X
Ver. 10.9.5, CPU: 2.7 GHz 12-Core Intel Xeon E5, Compiler: C compiler Ver.
clang-600.0.54 with the multiple-precision floating-point arithmetic libraries,
GNU GMP Ver. 6.0.0 [22] and GNU MPFR Ver. 3.1.2 [23]. We used 53-bit,
64-bit and 96-bit precision arithmetic for generating the TN matrix A(0).
The resulting matrices using 53-bit precision arithmetic were

A(0) =


885.000 961.070 442.988 109.221 15.0000
1448.00 1957.38 1222.37 435.067 95.0000

687.288 1082.01 701.610 253.198
290.531 427.490 264.537

56.1535 73.1240

 ,

A(0) =


1367.67 1163.89 481.448 112.174 15.0000
1440.22 1705.04 1049.47 378.985 85.0000

663.777 952.493 596.957 214.141
252.800 349.068 208.832

41.5420 50.7303

 ,

in the cases where c1 = 1, c2 = 1, c3 = 1, c4 = 1 and c5 = 1, and c1 = 1, c2 =
2, c3 = 3, c4 = 4 and c5 = 5, respectively. All of the entries are rounded to
the nearest 6-digit numbers. In 6-digit representations, A(0) using 53-bit pre-
cision arithmetic is equal to A(0) using 64-bit and 96-bit precision arithmetic,
although they are distinct to each other in more than 6-digit representations.
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Table 5.1: The eigenvalues λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 of A(0) that were computed
with 53-bit, 64-bit and 96-bit precision arithmetic under the settings c1 =
1, c2 = 1, c3 = 1, c4 = 1 and c5 = 1, and c1 = 1, c2 = 2, c3 = 3, c4 = 4 and
c5 = 5.

(a) c1 = 1, c2 = 1, c3 = 1, c4 = 1, c5 = 1.

53-bit 64-bit 96-bit

λ̂1 3124.99999999996 3125.00000000000 3125.00000000000

λ̂2 1023.99999999352 1024.00000000000 1024.00000000000

λ̂3 242.999999838420 243.000000000051 243.000000000000

λ̂4 31.9999992918544 32.0000000002290 32.0000000000000

λ̂5 0.99999982866470 1.00000000005619 1.00000000000000

(b) c1 = 1, c2 = 2, c3 = 3, c4 = 4, c5 = 5.

53-bit 64-bit 96-bit

λ̂1 3124.99999999994 3125.00000000000 3125.00000000000

λ̂2 1023.99999998810 1024.00000000000 1024.00000000000

λ̂3 242.999999606751 243.000000000018 243.000000000000

λ̂4 31.9999973784169 32.0000000000423 32.0000000000000

λ̂5 0.99999868220200 0.99999999997805 1.00000000000000

We find that setting c1, c2, c3, c4 and c5 affects the entries of A(0), but not the
eigenvalues of A(0). From the positivity of all the bidiagonal nonzero entries
of L(0), R(0), R(1), R(2), R(3) and R(4), it is easy to check that the above A(0)

matrices are both TN matrices in the procedure for obtaining A(0). Table 5.1
shows the eigenvalues λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 of A(0) that were computed using
the QR algorithm [49] with 1024-bit precision arithmetic and then rounded
to 16-digit numbers. As the number of bits grows larger, λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5
get linearly closer to λ1, λ2, λ3, λ4 and λ5, respectively. In 16-digit represen-
tations, λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 using 96-bit precision arithmetic coincide with
λ1, λ2, λ3, λ4 and λ5, respectively. With respect to the numerical accuracy of
eigenvalues, similar properties are observed in other examples.
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Chapter 6

An extension of totally
nonnegative matrices with
prescribed eigenvalues from
Hessenberg to dense

In Chapter 5 [A3], an inverse eigenvalue problem for Hessenberg TN ma-
trices is discussed. In this chapter, target TN matrices are extended from
Hessenberg matrices to dense ones. The recursion formula for constructing
dense TN matrices is derived as an extension of the discrete hungry Toda
equation. A finite-step construction of dense TN matrices with prescribed
eigenvalues is developed based on a discrete integrable system to be derived.
A relationship between the proposed procedure and the numerical algorithms
based on discrete Toda-type equations is also mentioned.

6.1 Inverse eigenvalue problems for TN ma-

trices

An interesting topic in inverse eigenvalue problems is to construct a ma-
trix with prescribed eigenvalues. Such problem is classified according to the
forms and the properties of a matrix [8]. The real-valued nonnegative in-
verse eigenvalue problem (RNIEP) is a problem to construct an entry-wise
nonnegative matrix with prescribed real eigenvalues. The totally nonnega-
tive inverse eigenvalue problem (TNIEP) is a subclass of RNEIP. A totally
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nonnegative (TN) matrix is an entry-wise nonnegative matrix such that all
of its minors are nonnegative. As is shown in [40, 2, 14, 48], TN matrices
play important roles in several fields, such as stochastic processes, proba-
bility and combinatorics. In [7, 13], it is proved that any TN matrix can
be factorized into products of lower and upper bidiagonal TN matrices with
at most one nonzero off-diagonal entry. In Chapter 5 [A3], it is proposed
to construct Hessenberg-type TN matrices with prescribed eigenvalues. The
proposed algorithm generates a sequence {Ã(n) |n = 0, 1, . . . } of m-by-m
matrices defined by

Ã(n) = L̃(n)R̃(n+M−1)R̃(n+M−2) · · · R̃(n+1)R̃(n), n = 0, 1, . . . , (6.1)

where M̃ is a positive integer and L̃(n) and R̃(n) are lower and upper bidiag-
onal m-by-m matrices defined by

L̃(n) =


1

E
(n)
1 1

. . .
. . .

E
(n)
m−1 1

 , R̃(n) =


Q

(n)
1 1

Q
(n)
2

. . .

. . . 1

Q
(n)
m


(6.2)

for n = 0, 1, . . . , respectively. The entries of L̃(n) and R̃(n) are generated by
recursion formula,

E
(n)
k = Q

(n+M)
k −Q(n)

k + E
(n+1)
k−1 , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

Q
(n)
k+1 = Q

(n+M)
k

E
(n+1)
k

E
(n)
k

, k = 1, 2, . . . ,m− 1, n = 0, 1, . . . ,

(6.3)

under some boundary condition. It is proved in Chapter 5 [A3] that the
eigenvalues of Ã(n) coincides with prescribed eigenvalues. Moreover, the bidi-
agonal entries of Ã(n) are all positive under some boundary condition, so that
all of Ã(n) are TN matrices. The matrices Ã(n) are banded matrices, whose
band widths are 1 + min(m,M+ 1).

The purpose of this chapter is to propose a method for constructing gen-
eral dense matrices, which are constrained to be TN, with prescribed eigen-
values. We consider two positive integers M and N . Let us introduce a
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sequence {A(n) |n = 0, 1, . . . } of m-by-m matrices defined by

A(n) = L(n)R(n), n = 0, 1, . . . , (6.4)

where L(n) and R(n) are lower and upper banded m-by-m matrices defined
by

L(n) = L(n)L(n+M)L(n+2M) · · ·L(n+(N−1)M), n = 0, 1, . . . , (6.5)

R(n) = R(n+(M−1)N) · · ·R(n+2N)R(n+N)R(n), n = 0, 1, . . . , (6.6)

respectively. Here, L(n) and R(n) are lower and upper bidiagonal m-by-m
matrices defined by

L(n) =


1

e
(n)
1 1

. . .
. . .

e
(n)
m−1 1

 , R(n) =


q
(n)
1 1

q
(n)
2

. . .

. . . 1

q
(n)
m

 (6.7)

for n = 0, 1, . . . , respectively. Since the band widths of L(n) and R(n) are
min(m,N + 1) and min(m,M + 1), respectively, the band widths of A(n) are

min(m,N + 1) + min(m,M + 1)− 1 (6.8)

for n = 0, 1, . . . . If N = M = 1, then A(n) are tridiagonal matrices which
called Jacobi matrices. Several algorithms for constructing tridiagonal ma-
trices with prescribed eigenvalues are discussed in [30, 5, 26, 8] and Chapter
4 [A2]. If N = 1, then A(n) are upper banded Hessenberg matrices which are
equivalent to Ã(n). For any N ≥ 1,M ≥ 1, in this chapter, we show how to
construct TN matrices A(n) with prescribed eigenvalues.

The recursion formula (6.3), which is called the discrete hungry Toda
(dhToda) equation, is originated from the study of a box and ball system
[61]. If M = 1, then the dhToda equation reduces to the discrete Toda
(dToda) equation [32, 33, 34]. The dToda equation is equivalent to the well-
known quotient-difference (qd) algorithm for computing eigenvalues of Jacobi
matrices [34]. An application of the dhToda equation is also proposed in [17,
18, 19] for computing eigenvalues of given TN matrices Ã(0). In this chapter,
we derive an extension of the dhToda equation, and develop a method for
constructing TN matrices A(n) with prescribed eigenvalues.
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The remainder of this chapter is organized as follows. In Section 6.2,
we begin with investigating a sequence generated by linear combinations of
powers of prescribed distinct eigenvalues λ1 > 0, λ2 > 0, . . . , λm > 0. In
Section 6.3, we consider an extension of Hankel determinants whose entries
are given by such a sequence, and then clarify the positivity of the extended
Hankel determinants thorough expanding them. In Section 6.4, we intro-
duce an extension of Hadamard polynomials associated with the extended
Hankel determinants, and then derive the recursion formula from the ex-
tended Hadamard polynomials involving the extended Hankel determinants.
In Section 6.5, by making use of the extended Hankel determinants and
the extended Hadamard polynomials, we prove that some of A(n) are TN
matrices with eigenvalues λ1, λ2, . . . , λm. In Section 6.6, we design a finite-
step procedure for constructing dense TN matrices without explicitly using
the extended Hankel determinants and the extended Hadamard polynomials.
Numerical examples are given for demonstrating the proposed procedure.

6.2 Sequence associated with prescribed eigen-

values

In Chapter 5 [A3], a felicitous sequence plays a key role for relating m distinct
positive eigenvalues of m-by-m Hessenberg TN matrices to the dhToda equa-
tion (6.3). The viewpoint of sequences is also useful in the case where the
TN matrix is extended from Hessenberg to dense. Readers will presume that
the number of parameters in a sequence increases according to the extension
of the matrix form. In this section, we consider such a sequence associated
with distinct positive eigenvalues of m-by-m dense TN matrices, denoted by
λ1, λ2, . . . , λm where λ1 > λ2 > · · · > λm, and then clarify relationships of
entries in the sequence.

For positive integers M and N , let us introduce

σ1 := MN
√
λ1, σ2 := MN

√
λ2, . . . , σm := MN

√
λm. (6.9)

The constants σ1, σ2, . . . , σm with N = 1 in (6.9) just coincide with those in
Chapter 5 [A3]. Moreover, let us prepare a sequence {fn(c1, c2, . . . , cm;σ1, σ2,
. . . , σm)}n=0,1,... from the constants σ1, σ2, . . . , σm and arbitrary constants
c1, c2, . . . , cm by

fn = c1σ
n
1 + c2σ

n
2 + · · ·+ cmσ

n
m, n = 0, 1, . . . . (6.10)
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Then, we obtain the following proposition for linear combinations of entries
of the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,....

Proposition 6.2.1 (Akaiwa et al. [A5]). For any c1, c2, . . . , cm, the sequence
{fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... satisfies

fn+mN + a1fn+(m−1)N + a2fn+(m−2)N + · · ·+ am−1fn+N + amfn = 0, (6.11)

n = 0, 1, . . . ,

where a1, a2, . . . , am are constants given through expanding a monic polyno-
mial p(z) = (z − σN1 )(z − σN2 ) · · · (z − σNm) as

p(z) = zm + a1z
m−1 + a2z

m−2 + · · ·+ am−1z + am. (6.12)

Proof. By using (6.10), we can rewrite the left hand side of (6.11) as

n∑
j=0

m∑
i=1

ciσ
n
i

n∑
j=0

aj(σ
N
i )m−j =

m∑
i=1

ciσ
n
i p(σ

N
i ). (6.13)

Thus, by taking into account that p(σNi ) = 0, we have (6.11).

6.3 Extended Hankel determinants and their

positivity

In this section, we consider an extension of Hankel determinants in terms of
the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,..., and then discuss the
positivity of the extended Hankel determinants.

Let us introduce determinants of k-by-k matrices

H
(n)
−1 ≡ 0, H

(n)
0 ≡ 1,

H
(n)
k := det

(
f

(n)
k f

(n+M)
k f

(n+2M)
k · · · f

(n+(k−1)M)
k

)
, (6.14)

k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . ,

where k-dimensional column vectors are defined by

f
(n)
k :=


fn
fn+N
...

fn+(k−1)N

 , k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . . (6.15)
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If N = 1 in (6.14) with (6.15), then H
(n)
k have the same form as the extended

Hankel determinants τ
(n)
k in Chapter 5 [A3]. So, τ

(n)
k can be regarded as a

specialization of H
(n)
k in (6.14). Since it is not necessary to distinguish τ

(n)
k

from H
(n)
k in (6.14) with (6.15), we also call H

(n)
k in (6.14) with (6.15) the

extended Hankel determinants in this chapter. Of course, if M = N = 1
in (6.14) with (6.15), then H

(n)
k are equal to ordinary Hankel determinants.

The extended Hankel determinants H
(n)
k in (6.14) with (6.15) can be also

expressed as

H
(n)
k = det


g
(n)
k

g
(n+N)
k
...

g
(n+(k−1)N)
k

 , k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . , (6.16)

in terms of k-dimensional row vectors

g
(n)
k := (fn, fn+M , fn+2M , . . . , fn+(k−1)N), (6.17)

k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . .

The following proposition gives boundary conditions of the extended Hankel
determinants H

(n)
k associated with the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . ,

σm)}n=0,1,... in (6.14) with (6.15).

Proposition 6.3.1 (Akaiwa et al. [A5]). Let us assume that the extended

Hankel determinants H
(n)
k are given by the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . ,

σm)}n=0,1,... in (6.14) with (6.15) satisfying (6.10). Then, it holds that

H
(n)
m+1 = 0, n = 0, 1, . . . . (6.18)

Proof. Proposition 6.2.1 immediately leads to

g
(n+mN)
k + a1g

(n+(m−1)N)
k + · · ·+ am−1g

(n+N)
k + amg

(n)
k = 0, (6.19)

k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . .

Equation (6.19) implies that the (m + 1) vectors g
(n)
m+1, g

(n+N)
m+1 , . . . , g

(n+mN)
m+1

are linearly dependent. Noting that g
(n)
m+1, g

(n+N)
m+1 , . . . , g

(n+mN)
m+1 are just the

row vectors of H
(n)
m+1, we have (6.18).
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For the purpose of examining the positivity of the extended Hankel de-
terminants H

(n)
k in (6.14) with (6.15), we present the following theorem for

expansions of them.

Theorem 6.3.2 (Akaiwa et al. [A5]). Let Sk := {{s1, s2, . . . , sk} |s1, s2, . . . ,
sk ∈ N , 1 ≤ s1 < s2 < · · · < sk ≤ m} and ξk := {x1, x2, . . . , xk} ∈
Sk. Then, the extended Hankel determinants H

(n)
k associated with the se-

quence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... in (6.14) with (6.15) can be
expressed as

H
(n)
k =

∑
ξk∈Sk

cx1cx2 · · · cxk(σx1σx2 · · ·σxk)nV
(M)
ξk

V
(N)
ξk

, (6.20)

k = 1, 2, . . . ,m, n = 0, 1, . . . ,

where V
(`)
ξk

:=
∏

1≤j<i≤k

(
σ`xi − σ

`
xj

)
for ` = M,N .

Proof. Substituting (6.10) for (6.14) with (6.15), we can rewrite the extended

Hankel determinants H
(n)
k as

H
(n)
k = det

(
Λ

(N)
k D(n)(Λ

(M)
k )>

)
, k = 1, 2, . . . ,m+ 1, n = 0, 1, . . . ,

(6.21)

where Λ
(`)
k and D(n) are respectively k-by-m matrices and m-by-m diagonal

matrices given by

Λ
(`)
k :=


1 1 · · · 1
σ`1 σ`2 · · · σ`m
...

...
. . .

...

σ
(k−1)`
1 σ

(k−1)`
2 · · · σ

(k−1)`
m

 , k = 1, 2, . . . ,m+ 1, (6.22)

D(n) := diag (c1σ
n
1 , c2σ

n
2 , . . . , cmσ

n
m) , n = 0, 1, . . . . (6.23)

For α := {α1, α2, . . . , αk} and β := {β1, β2, . . . , βk}, let (X)αβ denotes the
submatrix obtained from X by deleting all rows and columns except for the
α1th, α2th, . . . , αkth rows and the β1th, β2th, . . . , βkth columns. Then,
Cauchy-Binet formula [37] enable us to transform (6.21) into

H
(n)
k =

∑
ξk∈Sk

det
(

(Λ
(N)
k )κkξk

)
det
(

(D(n)(Λ
(M)
k )>)ξkκk

)
, (6.24)

82



where κk := {1, 2, . . . , k}. Noting that (D(n)(Λ
(M)
k )>)ξkκk = (D(n))ξkκm(Λ

(M)
k )>

and applying Cauchy-Binet formula to det((D(n))ξkκm(Λ
(M)
k )>), we thus obtain

H
(n)
k =

∑
ξk∈Sk

det
(

(Λ
(N)
k )κkξk

)[∑
ηk∈Sk

det
(
(D(n))ξkηk

)
det
(

((Λ
(M)
k )>)ηkκk

)]
.

(6.25)

Since D(n) is a diagonal matrix, it holds that det((D(n))ξkηk) = 0 for ηk 6= ξk.

Moreover, it follows from (6.22) that (Λ
(M)
k )κkηk = V

(M)
ηk and (Λ

(N)
k )κkξk = V

(N)
ξk

.
Therefore, by considering them in (6.25), we have (6.20).

It is obvious from (6.9) that σ1 > σ2 > · · · > σm > 0. Simultaneously,

it follows that V
(M)
ξk

> 0 and V
(N)
ξk

> 0. Consequently, by combining them

with Theorem 6.3.2, we see that H
(n)
k > 0 for k = 1, 2, . . . ,m if ck > 0 for

k = 1, 2, . . . ,m.

6.4 Extended Hadamard polynomials and their

relationships

In this section, we consider the extended Hadamard polynomials associated
with the extended Hankel determinants H

(n)
k , and then clarify relationships

among them with the help of the Jacobi identity and the Plücker relation for
determinants.

As polynomials associated with the extended Hankel determinants H
(n)
k

in (6.14) with (6.15), let us introduce polynomials of order k with respect

to z given by using the column vectors f
(n)
k+1, f

(n+M)
k+1 , . . . , f

(n+(k−1)M)
k+1 and

zk := (1, z, z2, . . . , zk)> as
H

(n)
−1 (z) ≡ 0, H

(n)
0 (z) ≡ 1,

H
(n)
k (z) := det

(
f

(n)
k+1 f

(n+M)
k+1 · · · f

(n+(k−1)M)
k+1 zk

)
,

k = 1, 2, . . . ,m, n = 0, 1, . . . .

(6.26)

Moreover, letH(n)
k (z) be monic polynomials of order k with respect to z given
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as

H(n)
−1 (z) ≡ 0, H(n)

0 (z) ≡ 1,

H(n)
k (z) :=

H
(n)
k (z)

H
(n)
k

, k = 1, 2, . . . ,m, n = 0, 1, . . . . (6.27)

As is shown in Section 6.2, the denominators H
(n)
k in (6.27) associated with

the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... are nonzero if the con-

stants ck, which are composed of entries of H
(n)
k , are positive. The polynomi-

alsH(n)
k (z) with N = 1 are equivalent to the extended Hadamard polynomials

φ
(n)
k appearing in Chapter 5 [A3]. Similarly to the case of the extended Hankel

determinants H
(n)
k in (6.14) with (6.15), we hereinafter call H(n)

k (z) in (6.27)
the extended Hadamard polynomials. The extended Hadamard polynomials
H(n)
k (z) with M = 1 and N = 1 become ordinary Hadamard polynomials.

Reconsidering (6.19), we obtain the following proposition for a relation-

ship of the Hadamard polynomialH(n)
k (z) with p(z) = zm+a1z

m−1+a2z
m−2+

· · ·+ am−1z + am.

Proposition 6.4.1 (Akaiwa et al. [A5]). The Hadamard polynomials

H(n)
k (z) = H

(n)
k (z)/H

(n)
k associated with the sequence {fn(c1, c2, . . . , cm;σ1, σ2,

. . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm > 0 satisfy

H(n)
m (z) = p(z), n = 0, 1, . . . . (6.28)

Proof. By using the row vectors g
(n)
m , g

(n+N)
m , . . . , g

(n+mN)
m , we can rewrite

H
(n)
m (z) in (6.26) as

H(n)
m (z) = det


g
(n)
m 1

g
(n+N)
m z
...

...

g
(n+mN)
m zm

 . (6.29)

Let us add the 1st, 2nd, . . . , mth rows in H
(n)
m (z) multiplied by am, am−1,

. . . , a1, respectively, to the (m + 1)th row. Taking account of (6.19) with
k = m, we can express the (m+ 1)th row as(

m∑
j=0

ajg
(n+(m−j)N)
m

m∑
j=0

ajz
m−j

)
=
(
0m p(z)

)
, (6.30)
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where a0 ≡ 1 and 0m denotes the m-dimensional column zero vector. Re-
placing the (m + 1)th row on the right hand side of (6.29) with (6.30) and

considering (6.16), we thus derive H
(n)
m (z) = H

(n)
m p(z) which immediately

leads to (6.28).

The remainder of this section presents two relationships among the ex-
tended Hadamard polynomials H(n)

k (z). We derive the following proposition
for the evolution of n to n+ 1 with respect to the extended Hadamard poly-
nomials H(n)

k (z).

Proposition 6.4.2 (Akaiwa et al. [A5]). The extended Hadamard polynomi-

als H(n)
k (z) = H

(n)
k (z)/H

(n)
k associated with the sequence {fn(c1, c2, . . . , cm;σ1,

σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm > 0 satisfy

zH(n+N)
k−1 (z) = q

(n)
k H

(n)
k−1(z) +H(n)

k (z),

k = 1, 2, . . . ,m− 1, n = 0, 1, . . . , (6.31)

where q
(n)
k are given by using the extended Hankel determinants H

(n)
k in (6.14)

with (6.15) as

q
(n)
k =

H
(n)
k−1H

(n+N)
k

H
(n)
k H

(n+N)
k−1

, k = 1, 2, . . . ,m, n = 0, 1, . . . . (6.32)

Proof. For the polynomialsH
(n)
k (z), let us consider the Jacobi identity [30, 36]

(see also Chapter 5 [A3])(
H

(n)
k (z)

)κk+1\{i1}

κk+1\{j1}

(
H

(n)
k (z)

)κk+1\{i2}

κk+1\{j2}

=
(
H

(n)
k (z)

)κk+1\{i1}

κk+1\{j2}

(
H

(n)
k (z)

)κk+1\{i2}

κk+1\{j1}
+H

(n)
k (z)

(
H

(n)
k (z)

)κk+1\{i1,i2}

κk+1\{j1,j2}
.

(6.33)

By observing the extended Hankel determinants H
(n)
k in (6.14) with (6.15)
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and the polynomials H
(n)
k (z) in (6.26) with (6.15), we see that(

H
(n)
k (z)

)κk+1\{k+1}

κk+1\{k+1}

= det
(
f

(n)
k f

(n+M)
k · · · f

(n+(k−1)M)
k

)
= H

(n)
k , (6.34)(

H
(n)
k (z)

)κk+1\{1}

κk+1\{k}

= det
(
f

(n+N)
k f

(n+2N)
k · · · f

(n+N+(k−2)M)
k zzk−1

)
= zH

(n+N)
k−1 (z),

(6.35)(
H

(n)
k (z)

)κk+1\{k+1}

κk+1\{k}

= det
(
f

(n)
k f

(n+M)
k · · · f

(n+(k−2)M)
k zk−1

)
= H

(n)
k−1(z), (6.36)(

H
(n)
k (z)

)κk+1\{1}

κk+1\{k+1}

= det
(
f

(n+N)
k f

(n+N+M)
k · · · f

(n+N+(k−1)M)
k

)
= H

(n+N)
k , (6.37)(

H
(n)
k (z)

)κk+1\{1,k+1}

κk+1\{k,k+1}

= det
(
f

(n+N)
k−1 f

(n+N+M)
k−1 · · · f

(n+N+(k−2)M)
k−1

)
= H

(n+N)
k−1 . (6.38)

By letting i1 = k + 1, i2 = 1, j1 = k + 1 and j2 = k in (6.33), we thus derive

z
H

(n+N)
k−1 (z)

H
(n+N)
k−1

=
H

(n)
k−1H

(n+N)
k

H
(n)
k H

(n+N)
k−1

H
(n)
k−1(z)

H
(n)
k−1

+
H

(n)
k (z)

H
(n)
k

. (6.39)

Therefore, by using the extended Hadamard polynomials H(n)
k (z) in (6.27)

and the variables q
(n)
k in (6.32), we can rewrite (6.39) as (6.31).

Similarly, the following proposition gives the evolution from n + M to n
with respect to the extended Hadamard polynomials H(n+M)

k .

Proposition 6.4.3 (Akaiwa et al. [A5]). The extended Hadamard polynomi-

als H(n)
k (z) = H

(n)
k (z)/H

(n)
k associated with the sequence {fn(c1, c2, . . . , cm;σ1,

σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm > 0 satisfy

H(n)
k (z) = H(n+M)

k (z) + e
(n)
k H

(n+M)
k−1 (z),

k = 0, 1, . . . ,m, n = 0, 1, . . . , (6.40)
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where e
(n)
k are given by using the extended Hankel determinants H

(n)
k as

e
(n)
k :=

H
(n)
k+1H

(n+M)
k−1

H
(n)
k H

(n+M)
k

, k = 0, 1, . . . ,m− 1, n = 0, 1, . . . , (6.41)

e(n)m ≡ 0, n = 0, 1, . . . . (6.42)

Proof. Let us introduce a (k + 1)-by-(k + 3) matrix

F :=
(
f

(n+M)
∗,k+1 f

(n+2M)
∗,k+1 · · · f

(n+(k−1)M)
∗,k+1 f

(n+kM)
∗,k+1 f

(n)
∗,k+1 zk ek+1

)
,

(6.43)

where ek+1 denotes the (k+1)-dimensional column unit vector whose (k+1)th
entry is 1. Then, we derive the Plücker relation [30, 36] (see also Chapter 5
[A3]) concerning F ,

det
(

(F )
κk+1

κk+3\{k+2,k+3}

)
det
(

(F )
κk+1

κk+3\{k,k+1}

)
− det

(
(F )

κk+1

κk+3\{k+1,k+3}

)
det
(

(F )
κk+1

κk+3\{k,k+2}

)
+ det

(
(F )

κk+1

κk+3\{k+1,k+2}

)
det
(

(F )
κk+1

κk+3\{k,k+3}

)
= 0. (6.44)

The cofactor expansions or interchanges of columns of determinants enable
us to relate det((F )

κk+1

κk+3\{i,j}) to the extended Hankel determinants H
(n)
k in
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(6.14) with (6.15) or the associated polynomials H
(n)
k (z) in (6.26) as follows,

det
(

(F )
κk+1

κk+3\{k+2,k+3}

)
= (−1)k det

(
f

(n)
k+1 f

(n+M)
k+1 · · · f

(n+kM)
k+1

)
= (−1)kH

(n)
k+1, (6.45)

det
(

(F )
κk+1

κk+3\{k,k+1}

)
= det

(
f

(n+M)
k f

(n+2M)
k · · · f

(n+(k−1)M)
k zk−1

)
= H

(n+M)
k−1 (z),

(6.46)

det
(

(F )
κk+1

κk+3\{k+1,k+3}

)
= det

(
f

(n+M)
k+1 f

(n+2M)
k+1 · · · f

(n+kM)
k+1 zk

)
= H

(n+M)
k (z), (6.47)

det
(

(F )
κk+1

κk+3\{k,k+2}

)
= (−1)k−1 det

(
f

(n)
k f

(n+M)
k · · · f

(n+(k−1)M)
k

)
= (−1)k−1H

(n)
k ,

(6.48)

det
(

(F )
κk+1

κk+3\{k+1,k+2}

)
= det

(
f

(n+M)
k f

(n+2M)
k · · · f

(n+kM)
k

)
= H

(n+M)
k , (6.49)

det
(

(F )
κk+1

κk+3\{k,k+3}

)
= (−1)k−1 det

(
f

(n)
k+1 f

(n+M)
k+1 · · · f

(n+(k−1)M)
k+1 zk

)
= (−1)k−1H

(n)
k (z).

(6.50)

Substituting (6.45)–(6.50) for (6.44) and considering the positivity of the

extended Hankel determinants H
(n)
k in (6.14) with (6.15), we thus obtain

H
(n)
k+1H

(n+M)
k−1

H
(n)
k H

(n+M)
k

H
(n+M)
k−1 (z)

H
(n+M)
k−1

+
H

(n+M)
k (z)

H
(n+M)
k

− H
(n)
k (z)

H
(n)
k

= 0. (6.51)

Equation (6.51) with the extended Hadamard polynomials H(n)
k (z) in (6.27)

and the variables e
(n)
k in (6.41) therefore leads to (6.40) for k = 1, 2, . . . ,m−1.

From Proposition 6.3.1, it also turns out that, for k = m, (6.51) is equivalent
to (6.40) with (6.42).
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6.5 TN dense matrices with prescribed eigen-

values

In this section, we first grasp eigenpairs of dense TN matrices A(n) = L(n)

L(n+M) · · ·L(n+(N−1)M)R(n+(M−1)N)R(n+(M−2)N) · · ·R(n) in terms of the
extended Hadamard polynomialsH(n)

k (z) associated with the sequence {fn(c1,
c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm > 0. We
next derive a key recursion formula for constructing dense TN matrices with
prescribed eigenvalues. Finally, we discuss the case where constructed TN
matrices are restricted to be Hessenberg form.

Let us introduce m-dimensional vectors defined by

h
(n)
i =


H(n)

0 (σNi )

H(n)
1 (σNi )
...

H(n)
m−1(σ

N
i )

 , i = 1, 2, . . . ,m, n = 0, 1, . . . . (6.52)

By using Propositions 6.4.1–6.4.3, we obtain the following proposition for the
TN property of the bidiagonal matrices L(n) and R(n) in (6.7) and their rela-

tionships to the vectors h
(n)
i associated with the sequence {fn(c1, c2, . . . , cm;

σ1, σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm > 0 in (6.52).

Proposition 6.5.1. The bidiagonal matrices L(n) and R(n) in (6.7), involv-

ing e
(n)
k = H

(n)
k+1H

(n+M)
k−1 /(H

(n)
k H

(n+M)
k ) and q

(n)
k = H

(n)
k−1H

(n+N)
k /(H

(n)
k H

(n+N)
k−1 )

associated with the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... are TN

matrices. Moreover, for the associated vectors h
(n)
i ,

R(n)h
(n)
i = σNi h

(n+N)
i , i = 1, 2, . . . ,m, n = 0, 1, . . . , (6.53)

L(n)h
(n+M)
i = h

(n)
i , i = 1, 2, . . . ,m, n = 0, 1, . . . . (6.54)

Proof. As is shown in Section 6.3, the extended Hankel determinants H
(n)
k as-

sociated with the sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... are pos-

itive if c1 > 0, c2 > 0, . . . , cm > 0. Thus, it is obvious that q
(n)
k =

H
(n)
k−1H

(n+N)
k /(H

(n)
k H

(n+N)
k−1 ) and e

(n)
k = H

(n)
k+1H

(n+M)
k−1 /(H

(n)
k H

(n+M)
k ) are also

so. Minors of the bidiagonal matrices L(n) and R(n) are 0, 1 or products
of some of q

(n)
k and e

(n)
k , respectively. Since minors of L(n) and R(n) are

nonnegative if q
(n)
k > 0 and e

(n)
k > 0, it turns out that L(n) and R(n) are TN.
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From Proposition 6.4.1, it follows that

H(n)
m (σNi ) = 0, i = 1, 2, . . . ,m, n = 0, 1, . . . . (6.55)

By letting z = σNi in Proposition 6.4.2 and by considering (6.55), we derive
σNi H

(n+N)
0 (σNi ) = q

(n)
1 H

(n)
0 (σNi ) +H(n)

1 (σNi ),
...

σNi H
(n+N)
m−2 (σNi ) = q

(n)
m−1H

(n)
m−2(σ

N
i ) +H(n)

m−1(σ
N
i ),

σNi H
(n+N)
m−1 (σNi ) = q

(n)
m H(n)

m−1(σ
N
i ).

(6.56)

Thus, by observing (6.56) in terms of R(n) and h
(n)
k , we have (6.53).

Similarly, Proposition 6.4.3 with z = σNi and H(n)
−1 (z) = 0 lead to

H(n)
0 (σNi ) = H(n+M)

0 (σNi ),

H(n)
1 (σNi ) = H(n+M)

1 (σNi ) + e
(n)
1 H

(n+M)
0 (σNi ),

...

H(n)
m−1(σ

N
i ) = H(n+M)

m−1 (σNi ) + e
(n)
m−1H

(n+M)
m−2 (σNi )

(6.57)

whose matrix representation coincides with (6.54).

Proposition 6.5.1 yields the following theorem for the TN property and
eigenpairs of A(n) = L(n)L(n+M) · · ·L(n+(N−1)M)R(n+(M−1)N) · · ·R(n+N)R(n).

Theorem 6.5.2 (Akaiwa et al. [A5]). The matrices A(n) associated with the
sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm >

0 are TN matrices and their eigenpairs are (λi,h
(n)
i ) associated with the se-

quence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm >
0, namely,

A(n)h
(n)
i = λih

(n)
i , i = 1, 2, . . . ,m, n = 0, 1, . . . . (6.58)

Proof. It is shown in [20] that any products of TN matrices are TN. Thus,
by combining Proposition 6.5.2 with it, we see that A(n) are TN under the
assumption c1 > 0, c2 > 0, . . . , cm > 0.
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Equation (6.55) in Proposition 6.5.1 simplifies (R(n+(M−1)N) · · ·R(n+2N)

R(n+N)R(n))h
(n)
i as

R(n+(M−1)N) · · ·R(n+2N)R(n+N)(R(n)h
(n)
i )

= σNi [R(n+(M−1)N) · · ·R(n+2N)R(n+N)(R(n)h
(n+N)
i )]

...

= σ
(M−1)N
i (R(n+(M−1)N)h

(n+(M−1)N)
i )

= σMN
i h

(n+MN)
i . (6.59)

It is obvious from (6.9) that σMN
i = λi. By combining it with (6.59), we

obtain

R(n+(M−1)N)R(n+(M−2)N) · · ·R(n)h
(n)
i = λih

(n+MN)
i . (6.60)

Similarly, it follows from (6.65) that

L(n)L(n+M) · · ·L(n+M(N−2))L(n+M(N−1))h
(n+MN)
i = h

(n)
i . (6.61)

Thus, by taking account that A(n)h
(n)
i = (L(n)L(n+M) · · ·L(n+M(N−2))

L(n+M(N−1)))(R(n+(M−1)N)R(n+2N) · · ·R(n))h
(n)
i and by using (6.59) and (6.61),

we have (6.58).

From Proposition 6.5.2, we also obtain the following theorem concern-
ing L(n) and R(n) in (6.7), which forms A(n) = L(n)L(n+M) · · ·L(n+(N−1)M)

R(n+(M−1)N)R(n+(M−2)N) · · ·R(n), and their entries.

Theorem 6.5.3 (Akaiwa et al. [A5]). For L(n) and R(n) associated with the
sequence {fn(c1, c2, . . . , cm;σ1, σ2, . . . , σm)}n=0,1,... with c1 > 0, c2 > 0, . . . , cm >
0, it holds that

L(n+N)R(n+M) = R(n)L(n), n = 0, 1, . . . . (6.62)

Moreover, q
(n)
k and e

(n)
k , appearing in entries of L(n) and R(n) satisfy

e
(n)
k = q

(n+M)
k − q(n)k + e

(n+N)
k−1 , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

q
(n)
k+1 = q

(n+M)
k

e
(n+N)
k

e
(n)
k

, k = 1, 2, . . . ,m− 1, n = 0, 1, . . . .
(6.63)
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Proof. From Proposition 6.5.1, it follows that

σNi h
(n+N)
i = R(n)L(n)h

(n+M)
i . (6.64)

It is obvious from (6.54) in Proposition 6.5.1 that h
(n+N)
i = L(n+N)h

(n+M+N)
i .

Multiplying both hand sides of it by σNi and by using (6.53) in Proposition

6.5.1, we can rewrite σNi h
(n+N)
i as

σNi h
(n+N)
i = L(n+N)(σNi h

(n+N+M)
i ) = L(n+N)R(n+M)h

(n+M)
i . (6.65)

Thus, from (6.65) and (6.64) we derive (6.62). By observing the equalily in
each entry in (6.64), we also have (6.63).

Theorem 6.5.3 enables us to give similarity transformations of TN matri-
ces A(n)L(n) = L(n+M) · · ·L(n+(N−1)M)R(n+(M−1)N)R(n+(M−2)N) · · ·R(n) under
evolutions with respect to n.

Proposition 6.5.4 (Akaiwa et al. [A5]). For the sequence {A(n)}n=0,1,...

associated with the sequences {L(n)}n=0,1,..., {R(n)}n=0,1,... satisfying (6.62), it
holds that

A(n+N) = R(n)A(n)(R(n))−1, n = 0, 1, . . . , (6.66)

and

A(n+M) = (L(n))−1A(n)L(n), n = 0, 1, . . . . (6.67)

Proof. Applying (6.62) in Theorem 6.5.2 to R(n)L(n)L(n+M) · · ·L(n+(N−2)M)

L(n+(N−1)M) repeatedly, we derive

R(n)L(n)L(n+M) · · ·L(n+(N−1)M)

= (R(n)L(n))L(n+M) · · ·L(n+(N−2)M)L(n+(N−1)M)

= L(n+N)(R(n+M)L(n+M)) · · ·L(n+(N−2)M)L(n+(N−1)M)

= L(n+N)L(n+M+N)R(n+2M) · · ·L(n+(N−2)M)L(n+(N−1)M)

...

= L(n+N)L(n+M+N)L(n+2M+N) · · · (R(n+(N−1)M)L(n+(N−1)M))

= L(n+N)L(n+M+N)L(n+2M+N) · · ·L(n+(N−1)M+N)R(n+MN)

= L(n+N)L(n+M+N) · · ·L(n+(N−1)M+N)R(n+MN), n = 0, 1, . . . . (6.68)
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Equation (6.68) gives the evolution from n to n+N of A(n),

R(n)A(n) = A(n+N)R(n), n = 0, 1, . . . . (6.69)

Since detR(n) = q
(n)
1 q

(n)
2 · · · q

(n)
m ≥ 0, the inverse matrices (R(n))−1 exist.

Thus, by combining it with (6.69) we have (6.66).
Similarly to (6.68), it follows that

R(n+(M−1)N)R(n+(M−2)N) · · ·R(n)L(n)

= L(n+MN)R(n+M)R(n+2M) · · ·R(n+NM). (6.70)

Equation (6.70) generates the evolution from n to n+M of A(n),

A(n)L(n) = L(n)A(n+M), n = 0, 1, . . . . (6.71)

Thus, by noting detL(n) = 1, we have (6.67).

The remainder of this section describes some restrictions on two integers
M and N . If M ≡ 0 modulo N in the recursion formula (6.63), then the
recursion formula (6.63) is essentially equivalent to the dhToda equation

(6.3). This is easily checked by replacing q
(Nn)
k and e

(Nn)
k with Q

(n)
k and E

(n)
k

in the recursion formula (6.63), respectively. The recursion formula (6.63)
with N = 1 also simply becomes the dhToda equation (6.3). Moreover, if

M = N in the recursion formula (6.63), then by replacing q
(Nn)
k and e

(Nn)
k

with q̂
(n)
k and ê

(n)
k , respectively, we can rewrite the recursion formula as

ê
(n)
k = q̂

(n+1)
k − q̂(n)k + ê

(n+1)
k−1 , k = 1, 2, . . . ,m, n = 0, 1, . . . ,

q̂
(n)
k+1 = q̂

(n+1)
k

ê
(n+1)
k

ê
(n)
k

, k = 1, 2, . . . ,m− 1, n = 0, 1, . . . ,
(6.72)

which is just the famous discrete Toda equation. Of course, the discrete
Toda equation (6.72) is a specialization of the dhToda equation (6.3). Thus,
we can regard the recurrence formula (6.63) as an extension of the dhToda
equation (6.3). The matrix structure of A(n) with special M and N are shown
in the following proposition.

The multiple dqd algorithm for computing the eigenvalues of dense TN
matrices A(n) is proposed by Yamamoto and Fukaya [65]. It is emphasized
that the recursion formula of the multiple dqd algorithm is not equivalent to
the extended dhToda equation (6.63). The recursion formula of the multiple
dqd algorithm coincides with the extended dhToda equation (6.63) only in
the case where M = N = 1, namely, A(n) = L(n)R(n).
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Proposition 6.5.5 (Akaiwa et al. [A5]). Let L(n,j) and R(n,j) be truncated
matrices of L(n)L(n+M) · · ·L(n+(N−1)M) in (6.5) and R(n+(M−1)N)R(n+(M−2)N)

· · ·R(n) in (6.6), namely,

L(n,j) := L(n)L(n+M)L(n+2M) · · ·L(n+(j−1)M), j = 1, 2, . . . , N, (6.73)

R(n,j) := R(n+(j−1)N) · · ·R(n+2N)R(n+N)R(n), j = 1, 2, . . . ,M. (6.74)

Moreover, let M and N be integers such that M = MN and N = NN ,
respectively. Then A(n) with M and N satisfying M ≡ 0(modN) can be
expressed as

A(n) =
(
L(n)R(n,M)

)N
, n = 0, 1, . . . . (6.75)

It also holds that

A(Nn) = (A(n))N . (6.76)

If N ≡ 0(modM), then it holds that

A(n) =
(
L(n,N )R(n)

)M
, n = 0, 1, . . . , (6.77)

A(Mn) = (A(n))M . (6.78)

Proof. For some positive integer j, let us asuume that(
L(n)R(n,M)

)j
= L(n,j)R(n,jM). (6.79)

Considering that L(n,1) = L(n), we can easily check that (6.79) with j = 1
holds. Multiplying the both hand sides of (6.79) by L(n)R(n,M), we derive(

L(n)R(n,M)
)j+1

= L(n,j)R(n,jM)L(n)R(n,M). (6.80)

Similarly to (6.68) and (6.70) in the proof of Proposition 6.5.4, with the help
of (6.62) in Theorem 6.5.3, we obtain

R(n,jM)L(n) = L(n+jM)R(n+M,jM). (6.81)

From (6.80) and (6.81), it follows that(
L(n)R(n,M)

)j+1
= L(n,j)L(n+jM)R(n+M,jM)R(n,M). (6.82)
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Taking into account that L(n,j)L(n+jM) = L(n,j+1) and R(n+M,jM)R(n,M) =
R(n,(j+1)M) in (6.82), we thus obtain(

L(n)R(n,M)
)j+1

= L(n,j+1)R(n,(j+1)M). (6.83)

By induction for j = 1, 2, . . . , we conclude that (6.79) holds for j = 1, 2, . . . , N .
Since the right hand side of (6.79) with j = N becomes just A(n), we therefore
have (6.75).

Let q
(Nn)
k = Q

(n)
k and e

(Nn)
k = E

(n)
k for n = 0, 1, . . . . If M ≡ 0(modN),

then it holds that L(Nn)R(Nn,M) = A(n). Thus, by combining it with (6.75),
we obtain (6.76) if M ≡ 0(modN). Similarly, we also have (6.77) and (6.78).

6.6 A finite-step construction of TN dense

matrices

In this section, we present a procedure for constructing of dense TN matrices
with finite computation cost. In Theorem 6.5.2, we show that the dense
TN matrices A(n), which are products of bidiagonal TN matrices L(n) and
R(n), have the eigenvalues λ1, λ2, . . . , λm if the initial values e

(n)
0 = 0 and

q
(n)
1 = fn+N/fn are given by a sequence {fn} satisfying (6.10) with positive

constants σ1, σ2, . . . , σm and c1, c2, . . . , cm. In Theorem 6.5.3, we proved a
relationship concerning the evolution with respect to n in the product of
L(n) and R(n). The relationship gives the recursion formula (6.63), which

is referred to as the extended dhToda equation, with respect to q
(n)
k and

e
(n)
k . Thus, dense TN matrices A(n) with prescribed eigenvalues λ1, λ2, . . . , λm

are constructed by using the extended dhToda equation (6.63) with initial

values e
(n)
0 and q

(n)
1 given by positive constants in (6.10). The procedure is

as follows.

1: Specify the matrix size m.
2: Specify a positive integer M , which indicates the upper band width.
3: Specify a positive integer N , which indicates the lower band width.
4: Prescribe eigenvalues λ1, λ2, . . . , λm such that λ1 > λ2 > · · · > λm > 0.
5: Choose c1, c2, . . . , cm as positive constants.
6: Compute σi = MN

√
λi for i = 1, 2, . . . ,m.

7: for n = 0 to (M +N)(m− 1) +MN do
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8: fn = c1σ
n
1 + c2σ

n
2 + · · ·+ cmσ

n
m

9: end for
10: for n = 0 to (M +N)(m− 1) + (N − 1)M do

11: e
(n)
0 = 0

12: end for
13: for n = 0 to (M +N)(m− 1) + (M − 1)N do

14: q
(n)
1 = fn+N/fn

15: end for
16: for n = 0 to (M +N)(m− 1) + (N − 1)M −N do

17: e
(n)
1 = q

(n+M)
1 − q(n)1

18: end for
19: for k = 1 to m− 2 do
20: for n = 0 to (M +N)(m− k − 1) + (M − 1)N do

21: q
(n)
k+1 = q

(n+M)
k e

(n+N)
k /e

(n)
k

22: end for
23: for n = 0 to (M +N)(m− k − 1) + (N − 1)M do

24: e
(n)
k+1 = q

(n+M)
k+1 − q(n)k+1 + e

(n+N)
k

25: end for
26: end for
27: for n = 0 to (M − 1)N do

28: q
(n)
m = q

(n+M)
m−1 e

(n+N)
m−1 /e

(n)
m−1

29: end for
30: for n = 0 to M − 1 do

31: Compute R(Nn) =


q
(Nn)
1 1

q
(Nn)
2

. . .

. . . 1

q
(Nn)
m


32: end for
33: for n = 0 to N − 1 do

34: Compute L(Mn) =


1

e
(Mn)
1 1

. . .
. . .

e
(Mn)
m−1 1


35: end for
36: A(0) = L(0)L(M) · · ·L((N−1)M)R((M−1)N) · · ·R(N)R(0).
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This finite-step procedure needs the computational cost O((M +N)m2).
We give a numerical example of construction of 5-by-5 dense TN matrix.

Let us set parameters M = 4, N = 3 and m = 5. Moreover, let us prescribe
the eigenvalues λ1 = 5, λ2 = 4, λ3 = 3, λ4 = 2 and λ5 = 1 and choose
parameters σ1 = 12

√
5, σ2 = 12

√
4, σ3 = 12

√
3, σ4 = 12

√
2 and σ5 = 12

√
1 = 1, and

c1 = c2 = · · · = c5 = 1. Numerical construction was carried out on a com-
puter, OS: Mac OS X (ver. 10.10.2), CPU: Intel Core i7 2.7 GHz, Compiler:
GNU C Compiler (ver. clang-600.0.56). We employed multi precision float-
ing point libraries, GNU GMP Library [22] (ver. 13.0.0) and GNU MPFR
Library [23] (ver. 6.2.0).

The resulting matrix

A(0) =


3.000000 8.010292 9.460189 5.063102 1
0.2431408 2.618892 7.867681 9.599262 5.131875

0.005522672 0.1703295 2.856828 8.698981 10.29791
0.00002480504 0.002333276 0.1093556 3.125130 9.520207

0 0.000004689172 0.0006481098 0.05348237 3.399150


was computed by using 53-bit, 64-bit and 96-bit precision arithmetic. The
entries of A(0) are written in 6-digit representation. Note that all the case
of 53-bit, 64-bit and 96-bit precision arithmetic resulted in the same 6-digit
representation.

Table 6.3 shows the computed eigenvalues λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 of A(n) by
using the QR algorithm [49] with 1024-bit precision arithmetic for 53-bit, 64-
bit and 96-bit precision arithmetic, respectively. The computed eigenvalues
are rounded in 15-digit numbers. Table 6.3 implies that the computed eigen-
values λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 get linearly closer to the prescribed eigenvalues
λ1, λ2, λ3, λ4 and λ5 as the number of bits become larger.

Tables 6.1 and 6.2 show entries q
(n)
k and e

(n)
k of R(n) and L(n) which com-

pose the resulting A(0), respectively.
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Table 6.1: The computed entries q
(3n)
1 , q

(3n)
2 , . . . , q

(3n)
5 of R(3n) for n =

0, 1, 2, 3.
k = 1 k = 2 k = 3 k = 4 k = 5

q
(0)
k 1.282969 1.185928 1.242699 1.299143 1.347404

q
(3)
k 1.306709 1.182876 1.233479 1.292734 1.342877

q
(6)
k 1.328202 1.183186 1.223977 1.285887 1.338142

q
(9)
k 1.347294 1.186712 1.214453 1.278552 1.333179

Table 6.2: The computed entries e
(4n)
1 , e

(4n)
2 , e

(4n)
3 and e

(4n)
4 of L(4n) for n =

0, 1, 2.

k = 1 k = 2 k = 3 k = 4

e
(0)
k 3.116606× 10−2 2.480502× 10−2 1.369851× 10−2 5.824590× 10−3

e
(4)
k 2.706313× 10−2 2.645286× 10−2 1.473892× 10−2 6.172281× 10−3

e
(8)
k 2.281775× 10−2 2.773123× 10−2 1.593554× 10−2 6.565911× 10−3

Table 6.3: The eigenvalues λ̂1, λ̂2, λ̂3, λ̂4 and λ̂5 of A(0) that were computed
with 53-bit, 64-bit and 96-bit precision arithmetic under setting c1 = c2 =
· · · = c5 = 1.

53bit 64bit 96bit

λ̂1 5.00000010393680 5.00000000008894 5.00000000000000

λ̂2 4.00000089084733 4.00000000074033 4.00000000000000

λ̂3 3.00000095209525 3.00000000076930 3.00000000000000

λ̂4 2.00000016636331 2.00000000013204 2.00000000000000

λ̂5 1.00000000287182 1.00000000000235 1.00000000000000
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Chapter 7

Concluding remarks

Each chapter of the thesis is summarized as follows.
In Chapter 2 [A1], it is shown that a sequence {f (n)

j }j=0,1,...,2m−1, ap-
pearing in the determinant solution to the discrete Lotka-Volterra (dLV)

system, becomes an m-step Fibonacci sequence if {f (0)
j }j=0,1,...,2m−1 is an m-

step Fibonacci sequence and H
(0)
k 6= 0, Ĥ

(0)
k 6= 0 for k = 1, 2, . . . ,m where

n indicates a discrete-time variable. It is also proved that, as n → ∞, one
of special solutions to the dLV system converges to the special constant that
is the ratio of two successive m-step Fibonacci numbers. In the case where
m = 2, 3, 4, 5, the convergence of the special solutions to the constants is
demonstrated through numerical examples.

In Chapter 3 [A4], the asymptotic convergence of the quotient-difference
(qd) algorithm for tridiagonal matrices with multiple eigenvalues is clarified
from the viewpoint of the determinant expressions of the qd variables. First,
the expressions of entries of the Hankel determinants in terms of eigenvalues
are given in Theorem 3.3.2 where the Hankel determinants have the same
form as in the case where eigenvalues of tridiagonal matrices are real and
distinct. Next, in Theorem 3.4.7, the asymptotic expansions of the Hankel
determinants are presented in terms of multiple eigenvalues of tridiagonal
matrices. Finally, in Theorem 3.5.1, it is proved that the qd variables q

(n)
k

and e
(n)
k converge to eigenvalues of tridiagonal matrices and 0 as n → ∞,

respectively, independently of multiplicity of eigenvalues.
By Ferreira and Parlett [12], the convergence of the LR algorithm, which

is a generalization of the qd algorithm, for tridiagonal matrices is shown in
the case where eigenvalues are all the same. The result in Chapter 3 [A4] is
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considered to be obtained by restricting a special case of the LR algorithm.
In Chapter 4 [A2], it is clarified that the qd recursion formula is appli-

cable to construct tridiagonal matrices with prescribed multiple eigenvalues.
First, the denominator of the generating function associated with the se-
quence given from two suitable vectors and the powers of a general matrix
A is presented through considering the Jordan canonical form of A. Accord-
ingly, it is observed that the minimal polynomial of A coincides with the
characteristic polynomial of a tridiagonal matrix T , denoted by φT (z), or the
polynomial zmLφT (z) for the multiplicity mL of the zero-eigenvalues of A.
Next, by taking account of the Jordan canonical form of T , it is shown that
the characteristic and the minimal polynomials of T are equal to each other.
Finally, a procedure for constructing tridiagonal matrices with prescribed
multiple eigenvalues is proposed, and then four examples for the resulting
procedure are given.

In Chapter 5 [A3], based on the integrable discrete hungry Toda (dhToda)
equation, an inverse eigenvalue problem for Hessenberg-type banded totally
nonnegative (TN) matrices which can be expressed by products of several
bidiagonal TN matrices is discussed. The determinant solution to the dhToda
equation with certain boundary conditions is firstly presented in Theorem
5.2.2. Next, in Theorem 5.4.4, the eigenpairs of banded matrices associ-
ated with the dhToda equation are clarified. In Theorem 5.5.2, it is proved
that, under a restriction of boundary conditions in the dhToda equation, the
banded matrices become TN with arbitrary prescribed eigenvalues. It is also
shown from Theorem 5.5.2 that TN matrices can have any distinct positive
eigenvalues. Finally, a finite-step construction with O(Mm2) of the banded
TN matrices is designed in Section 5.6 where M and m denote the upper
band width and the matrix size, respectively.

In Chapter 6 [A5], based on an extension of the dhToda equation, a finite-
step construction of dense TN matrices given as products of bidiagonal TN
matrices A(n) is developed. First, in Section 6.2, a sequence determined by
arbitrary parameters and prescribed eigenvalues λ1, λ2, . . . , λm is given, and a
polynomial in terms of parameters corresponding to λ1, λ2, . . . , λm is defined.
Next, in Section 6.3, the extended Hankel determinants are introduced, and
their positivity is discussed by expanding the extended Hankel determinants.
In Section 6.4, the extended Hadamard polynomials given by the extended
Hankel determinants and associated polynomials are defined. The recurrence
relation of the extended Hadamard polynomials and expressions of entries of
bidiagonal TN matrices which compose dense TN matrices are derived. In
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Section 6.5, it is shown that the eigenpairs of A(n) are λ1, λ2, . . . , λm and vec-
tors whose elements are the Hadamard polynomials. The extended dhToda
equation is given from the relationship of the bidiagonal matrices. Finally, a
finite-step procedure with O((M +N)m2) for constructing dense TN matri-
ces is proposed based on the extended dhToda equation in Section 6.6 where
M , N and m denote the upper band width, the lower band width and the
matrix size, respectively. Numerical construction of a dense TN matrix A(0)

through the proposed procedure is also given.
In the thesis, through the linear sequence {fn}n=0,1,... appearing in dis-

crete integrable systems and the integrable algorithms, the analysis of the
integrable algorithms and a new application of discrete integrable systems
are discussed. Especially, discrete integrable systems enable us to solve an
inverse eigenvalue problem for TN matrices that has been considered to be
difficult. Few studies for the eigenvalue and inverse eigenvalue solvers have
been published, although TN matrices appear in many fields, such as oscil-
lation in mechanical systems, stochastic processes in mathematical biology,
statistical computing, computer-aided geometric design [14, 20, 40]. An in-
verse eigenvalue problem for a symmetric pentadiagonal inner totally positive
(ITP) matrix, which is decomposed as products of bidiagonal matrices, has
practical applications to a vibrating beam in flexure [21]. It is expected that
a symmetric pentadiagonal ITP matrix could be constructed through using
the construction procedure, since ITP matrices are included in a subclass
of TN matrices. Moreover, it might be said that numerical algorithms for
inverse eigenvalue problems based on discrete integrable systems are novel
and meaningful.

Approaches to inverse eigenvalue problems for not only TN matrices but
also other structured matrices by using discrete integrable systems should
be the most important works in the future. The proposed procedure could
be more widely applicable to such problems. It is necessary to estimate
the numerical error of the procedure for solving inverse eigevalue problems
to improve the numerical stability and investigate suitable implementation.
One of the other future work is to investigate the asymptotic behavior of the
integrable algorithms. The key point might be that the recursion formula
of the qd algorithm is equivalent to the discrete Toda equation. It is also
expected to be able to analyze the convergence of the integrable algorithms
such as the dhToda algorithm and the dhLV algorithm [18], in the case where
target matrices are extended from TN matrices to matrices with multiple
eigenvalues.
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(1892) in J. Math. Pures Appl. 8 (1992) 101–186.

[28] P. Henrici, The quotient difference algorithm, Nat. Bur. Standards Appl.
Math. Ser. 49 (1958) 23–46.

[29] P. Henrici, B.O. Watkins, Finding zeros of a polynomial by the Q-D
algorithm, Commut. ACM 8 (1965) 570–574.

[30] P. Henrici, Applied and Computational Complex Analysis, Vol. 1., John
Wiley, New York, 1974.

[31] P. Henrici, Applied and Computational Complex Analysis, Vol. 2, John
Wiley, New York, 1977.

[32] R. Hirota, Nonlinear partial difference equation. II. Discrete-Time Toda
equation, J. Phys. Soc. Japan 46 (1977) 2074–2078.

[33] R. Hirota, Discrete two-dimensional Toda molecure equation, J. Phys.
Soc. Japan 56 (1987) 4285–4288.

[34] R. Hirota, S. Tsujimoto, T. Imai, Difference scheme of soliton equation,
in: Future directions of nonlinear dynamics in physical and biological
systems, P. L. Christiansen, J. C. Eilbeck and R. D. Parmentier eds.,
Plenum, New York (1993) 7–15.

[35] R. Hirota, S. Tsujimoto, Conserved quantities of a class of nonlinear
difference-difference equations, J. Phys. Soc. Jpn 64 (1995) 3125–3127.

105



[36] R. Hirota, The Direct Method in Soliton Theory, Cambridge University
Press, 2004.

[37] L. Hogben, Handbook of Linear Algebra, 2nd Edition, CRC Press, 2014.

[38] M. Iwasaki, Y. Nakamura, On the convergence of a solution of the dis-
crete Lotka-Volterra system, Inverse Problems 18 (2002) 1569–1578.

[39] M. Iwasaki, Y. Nakamura, An application of the discrete Lotka-Volterra
system with variable step-size to singular value computation, Inverse
Problems 20 (2004) 553–563.

[40] S. Karlin, Total Positivity, Vol. 1., Stanford Univ. Press, CA, 1968.

[41] C. Lanczos, An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators, J. Res. Natl. Bur. Stand.
45 (1950) 255–281.

[42] LAPACK, http://www.netlib.org/lapack/

[43] P.A. Martin, The Galois group of xn− xn−1− · · · − x− 1, J. Pure Appl.
Algebra 190 (2004) 213–223.

[44] C.D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM,
Philadelphia, 2000.

[45] Y. Nakamura, Calculating Laplace transformation in terms of the Toda
molecule, SIAM J. Sci. Comput. 20 (1998) 306–317.

[46] Y. Ohta, R. Hirota, S. Tsujimo, T. Imai, Casorati and discrete gram type
determinant representations of solutions to the discrete KP hierarchy,
J. Phys. Soc. Jpn. 62 (1993) 1872–1886.

[47] B.N. Parlett, The new qd algorithms, Acta Numerica 4 (1995) 459–491.

[48] A. Pinkus, Totally Positive Matrices, Cambridge University Press, New
York, 2009.

[49] W.H. Press, W.T. Vetterling, S.A. Teukolsky, B.P. Flannery, Numeri-
cal Recipes in C, 2nd edition, Cambridge University Press, Cambridge,
England, 1992.

106



[50] R. Riaza, Cyclic matrices of weighted digraphs, Discrete Appl. Math.
160 (2012) 280–290.

[51] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Z. Angew.
Math. Phys. 5 (1954) 233–251.

[52] H. Rutishauser, Bestimmung der Eigenwerte und Eigenvektoren einer
Matrix mit Hilfe des Quotienten-Differenzen-Algorithmus, Z. Angew.
Math. Phys. 6 (1955) 387–401.

[53] H. Rutishauser, Solution of eigenvalue problems with the LR-
transformation, Nat. Bur. Standards Appl. Math. Ser. 49 (1958) 47-81.

[54] H. Rutishauser, Lectures on Numerical Mathematics, Birkhäuser,
Boston, 1990.

[55] V.P. Spiridonov, S. Tsujimoto, A.S. Zhedanov, Integrable discrete time
chains for the Frobenius-Stickelberger-Thiele polynomials, Commun.
Math. Phys. 272 (2007) 139–165.

[56] V. Spiridonov, A. Zhedanov, Discrete-time Volterra chain and classical
orthogonal polynomials, J. Phys. A: Math. Gen. 30 (1997) 8727–8737.

[57] W.W. Symes, The QR algorithm and scattering doe the finite nonperi-
odic Toda laticce, Physica D 4 (1982) 275–280.

[58] M. Toda, Vibration of a chain with nonlinear interaction, J. Phys. Soc.
Japan 22 (1967), 431–436.

[59] M. Toda, Nonlinear Waves and Solitons, Kluwer Academic Publishers
Group, Dordrecht; SCIPRESS, Tokyo, 1989.

[60] M. Toda, Theory of Nonlinear Lattices. Second Edition, Springer-Verlag,
Berlin, 1989.

[61] T. Tokihiro, A. Nagai, J. Satsuma, Proof of solitonical nature of box
and ball system by the means of inverse ultra-discretization, Inverse
Problems 15 (1999) 1639–1662.

[62] S. Tsujimoto, R. Hirota, Ultradiscrete KdV equation, J. Phys. Soc. Jpn.
67 (1998) 1809–1810.

107



[63] S. Tsujimoto, Y. Nakamura, M. Iwasaki, The discrete Lotka-Volterra
system computes singular values, Inverse Problems 17 (2001) 53–58.

[64] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section – The-
ory and Applications –, Dover, New York, 2008.

[65] Y. Yamamoto, T. Fukaya, Differential qd algorithm for totally nonneg-
ative band matrices: convergence properties and error analysis, JSIAM
Letters 1 (2009) 56–59.

[66] S. Yamazaki, On the system of non-linear differential equations ẏk =
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