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We discuss a renormalization procedure for random tensor networks, and show that the corre-
sponding renormalization-group flow is given by the Hamiltonian vector flow of the canonical
tensor model, which is a discretized model of quantum gravity. The result is a generalization of
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1. Introduction

Wilson’s renormalization group [1,2] is an essential and pedagogical tool in modern theoretical
physics. Once a renormalization-group flow in a parameter space is given, one can read off the
relevant degrees of freedom at each step of coarse graining through a change of parameters, and
understand the phase structure in principle. Therefore, a renormalization-group flow gives us a
quantitative and qualitative picture of the system concerned. The aim of this paper is to define a
renormalization procedure and derive the corresponding flow equation for random tensor networks,
in particular for those proposed as Feynman-graph expressions [3,4], through the use of the canonical
tensor model (CTM).

First of all, CTM was introduced by one of the authors as a model of quantum gravity by consider-
ing space-time as a dynamical fuzzy space [5–7]. CTM is a tensor model in the canonical formalism,
which has a canonical conjugate pair of rank-three tensors, Mabc, Pabc (a, b, c = 1, 2, . . . , N ), as
dynamical variables. This interpretation of tensorial variables in terms of a fuzzy space is different
from that given by the original tensor models. Historically, tensor models have been introduced as
models of simplicial quantum gravity in dimensions higher than two [8–10]; although the original
tensor models have some drawbacks, tensor models as simplicial quantum gravity are currently in
progress as colored tensor models [11,12] (see Refs. [13–24] for recent developments). In CTM,
N , the cardinality of the rank-three tensors, may be interpreted as the number of “points” form-
ing a space, while physical properties of space-time such as dimensions, locality, etc. must emerge
from the collective dynamics of these “points.” So far, the physics of the small-N CTM is rela-
tively well understood: the classical dynamics of the N = 1 CTM agrees with the minisuperspace
approximation of general relativity in arbitrary dimensions [25]; the exact physical states have been
obtained for N = 2 in the full theory [26,27] and for N = 3 in an S3-symmetric subsector [27];
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intriguingly, physical-state wavefunctions, at least for N = 2, 3, have singularities where symmetries
are enhanced [27]. However, a similar brute-force analysis as above for N > 3 seems technically dif-
ficult because of the huge number of degrees of freedom of the tensorial variables, although in order
to capture, for instance, the emergence of space-time from CTM, the large-N dynamics is supposed
to be important. Thus, for the purpose of handling large-N behaviors of CTM, the present authors
have proposed the conjecture that statistical systems on random networks [3,4] (see also Ref. [28] and
references therein for the dynamics of statistical systems on random networks), or random tensor net-

works, are intimately related to CTM [3]: the phase structure of random tensor networks is equivalent
to what is implied by considering the Hamiltonian vector flow of CTM as the renormalization-group
flow of random tensor networks. This conjecture has been checked qualitatively for N = 2 [3]. In
fact, as more or less desired, random tensor networks turn out to be useful for finding physical states
of CTM with arbitrary N : some series of exact physical states for arbitrary N have been found as
integral expressions based on random tensor networks [27].

In this paper, we prove the fundamental aspect of the above conjecture: we show that the Hamilto-
nian vector flow of CTM can be regarded as a renormalization-group flow of random tensor networks
for general N . Here the key ingredient is that the Lagrange multipliers of the Hamiltonian vector flow
are determined by the dynamics of random tensor networks in the manner given in this paper. This
is in contrast with the previous treatment for N = 2, in which the Lagrange multipliers are given
by a “reasonable” choice [3]. In fact, the previous treatment turns out to have some problems for
general N , as discussed in this paper.

This paper is organized as follows. In Sect. 2, we review CTM and random tensor networks. We
argue our previous proposal [3] on the relation between CTM and random tensor networks, and its
potential problems. In Sect. 3, we propose a renormalization procedure for random tensor networks
based on CTM, and derive the corresponding renormalization-group flow. In Sect. 4, we compare our
new and previous proposals with the actual phase structures of random tensor networks for N = 2, 3.
We find that the new proposal is consistent with the phase structures, while the previous one is not.
In Sect. 5, we discuss the asymptotic behavior of the renormalization-group flow, and clarify the
physical meaning of the renormalization parameter. In Sect. 6, we provide a general theorem that
relates discontinuity of the renormalization-group flow and the phase transitions of the random tensor
networks. Section 7 is devoted to the summary and discussions.

2. Previous proposal and its problems

In this paper, we consider a statistical system [3,4] parameterized by a real symmetric three-index
tensor Pabc (a, b, c = 1, 2, . . . , N ).1 Its partition function is defined by2

Zn(P) =
∫

dφ
(
Pφ3)n

e−nφ2
, (1)

where we have used the following shorthand notation:

∫
dφ ≡

N∏
a=1

∫ ∞

−∞
dφa, Pφ3 ≡ Pabcφaφbφc, φ2 ≡ φaφa. (2)

1 In this paper, the tensor variable of the statistical system is denoted by P for later convenience, instead of
M used in the previous papers [3,4].

2 For later convenience, the normalizations of the partition function and φ are taken differently from those
in the previous papers [3,4]. This does not change the physical properties of the statistical system.
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Fig. 1. A tensor network of n = 10 trivalent vertices.

By using the Wick theorem, the Gaussian integration of φ in (1) can be evaluated by the summation
over the pairwise contractions of all the φ in (Pφ3)n . Then the partition function (1) can be
graphically represented by the summation over all the possible closed networks of n trivalent vertices.
In each such network, every vertex is weighted by Pabc, and the indices are contracted according to
the connection of the network, as in Fig. 1. Therefore, since the pairwise contractions are taken over
all the possible ways, the statistical system represented by (1) can be regarded as random tensor net-
works of n trivalent vertices. In general, such a network may contain disconnected sub-networks, but
the contributions from this probability vanish in the thermodynamic limit n → ∞.3

For example, in N = 2, (1) gives the partition function of the Ising model on random networks
[3,4], if one takes

Pabc =
2∑

i=1

Rai Rbi Rci e
Hσi , (3)

where σi represents the spin degrees of freedom taking σ1 = 1, σ2 = −1, H is a magnetic field, and
R is a two-by-two matrix satisfying

(
RT R

)
i j = eJσiσ j , (4)

with J giving the nearest neighbor coupling of the Ising model. For a ferromagnetic case J > 0,
there exists a real matrix R satisfying (4).

The partition function (1) is obviously invariant under the orthogonal transformation L ∈ O(N ),
which acts on P as

P ′
abc = Laa′ Lbb′ Lcc′ Pa′b′c′, (5)

since the transformation can be absorbed by the redefinition φ′
a = φa′ La′a . In addition, the overall

scale transformation of P ,

P ′
abc = eψ Pabc, (6)

with an arbitrary real number ψ , does not change the properties of the statistical system, since this
merely changes the overall factor of (1). For example, for N = 2, these invariances allow one to
consider a gauge,

P111 = 1, P112 = 0, P122 = x1, P222 = x2, (7)

with real xi .

3 This graphical property can be checked by considering a sort of “grand” partition function Z(P) given by
a formal sum of (1) over n with n-dependent weights, and comparing explicitly the perturbative expansions in
P of Z(P) and those of log Z(P) for N = 1. The former corresponds to the sums of the networks that may
contain disconnected sub-networks, the latter to connected networks only. See Ref. [3] for details.
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Fig. 2. The horizontal and vertical axes represent x1 and x2 of the gauge (7), respectively. The solid lines
describe the phase transition lines of the random tensor networks with N = 2, which can be exactly obtained
in the thermodynamic limit [3]. The arrows describe the Hamiltonian vector flow (21) of CTM withNa = Pabb.

The free energy per vertex in the thermodynamic limit can be defined by

f (P) = − lim
n→∞

log Z2n(P)

2n
, (8)

where we have considered only even numbers of vertices, since an odd number of trivalent vertices
cannot form a closed network. The phase structure of the statistical system can be investigated by
studying the behavior of the free energy (8). For the case of N = 2, the phase transition lines of the
free energy (8) in the gauge (7) are shown by solid lines in Fig. 2 [3,4]. The transitions are first order,
except at the Curie point, (x1, x2) = (0.5, 0), where the first derivatives of f (P) are continuous, but
the second ones are not [3,4] (see also Ref. [28] and references therein for the dynamics of statistical
systems on random networks). In fact, for arbitrary N , the free energy in the thermodynamic limit
can be exactly obtained by applying the Laplace method to evaluate (8) [3,4]. The result is4

f (P) = Minφ f (P, φ) = f
(
P, φ̄

)
, (9)

where

f (P, φ) = φ2 − 1
2 log

[(
Pφ3

)2]
, (10)

4 If P is symmetric under part of the O(N ) transformation (5), the perturbations of the integrand of (1)
around φ = φ̄ contain some zero modes, and the application of the Laplace method will require extra treatment
to integrate over the symmetric directions. However, this integration is obviously finite, and will only generate
corrections of the free energy higher in 1/n, which do not affect the thermodynamic limit. Thus, the exact free
energy in the thermodynamic limit is given by (9) for the whole region of P including symmetric points. Note
that this argument may change, if one takes a double scaling limit accompanied with N → ∞, which, however,
is not considered in this paper.
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and φ̄ is defined so as to minimize f (P, φ) as a function of φ for given P; namely, φ̄ is one of the
solutions to the stationary condition:

∂ f (P, φ)

∂φa

∣∣∣∣
φ=φ̄

= 2φ̄a − 3Pabcφ̄bφ̄c

Pφ̄3
= 0. (11)

The most important implication of the previous paper [3] was that the phase structure of the Ising
model on random networks (more precisely, random tensor networks with N = 2) in Fig. 2 can
be derived from the Hamiltonian vector flow of CTM for N = 2, if one regards the Hamiltonian
vector flow as a renormalization-group flow, as shown in Fig. 2. This is surprising, since CTM was
proposed aiming for quantum gravity, and there exist no apparent reasons for CTM to be related
to statistical systems on random networks. CTM is a totally constrained system with a number of
first-class constraints forming an algebra that resembles the Dirac algebra of the ADM formalism of
general relativity [29,30]. In the classical case, the constraints are given by

Ha = 1
2 Pabc Pbde Mcde, (12)

J[ab] = 1
4 (Pacd Mbcd − Pbcd Macd) , (13)

D = 1
6 Pabc Mabc, (14)

where J and D are the kinematical symmetry generators corresponding to the SO(N ) (5) and the
scale (6) transformations, respectively, and H and J may be called Hamiltonian and momentum
constraints, respectively, in analogy with general relativity [29,30]. Here the bracket for the indices
of J symbolically represents the antisymmetry, J[ab] = −J[ba], and M is the canonical conjugate
variable to P defined by

{
Mabc, Pdef

} = 1

6

∑
σ

δaσ(d)δbσ(e)δcσ( f ),
{

Mabc,Mdef
} = {

Pabc, Pdef
} = 0, (15)

where { , } denotes the Poisson bracket, and the summation over σ runs over all the permutations
of d, e, f to incorporate the symmetric property of the three-index tensors. The constraints form a
first-class-constraint algebra, {H(

ξ1),H(
ξ2)} = 1

6J
([
ξ̃1, ξ̃2

])
,

{J (η),H(ξ)} = 1
6H

(
ηξ

)
, (16){J (

η1),J (
η2)} = 1

6J
([
η1, η2]), (17){D,H(ξ)} = 1

6H(ξ), (18){D,J (η)} = 0, (19)

where H(ξ) = ξaHa , J (η) = η[ab]J[ab], and ξ̃ab = Pabcξc.
The Hamiltonian of CTM is given by an arbitrary linear combination of the constraints as

H = NaHa + N[ab]J[ab] + ND, (20)

where N are the multipliers, which may depend on P in the context of this paper, considering a flow
in the configuration space of P . Then, the Hamiltonian vector flow is given by5

d

ds
Pabc = {H, Pabc}, (21)

5 The direction of the flow is chosen in a manner convenient for later discussions.
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where s is a fictitious parameter along the flow. In the previous paper [3], which compares CTM with
the random tensor networks for N = 2, the multiplier Na is chosen to be

Na = Pabb, (22)

based on the fact that this is the simplest covariant choice. The other multipliers N[ab] and N , related
to the symmetry generators, are chosen so that the Hamiltonian vector flow (21) keeps the gauge
condition (7). Indeed, the flow in Fig. 2 has been drawn with these choices. One can also check that
other covariant choices such as Na = Pabc Pbde Pcde do not change the qualitative nature of the flow
and therefore the coincidence between the phase structure of the random tensor networks and the one
implied by CTM with N = 2.

Though the coincidence is remarkable for N = 2, from further study of generalizing gauge condi-
tions and values of N , we have noticed that there exist some problems in insisting on the coincidence,
as follows:

◦ First of all, no physical reasons have been given for the coincidence. A primary expectation is
that there exists a renormalization-group procedure for statistical systems on random networks,
and the procedure is described by the Hamiltonian of CTM in some manner. However, it is
unclear how one can define a renormalization-group procedure for statistical systems on random
networks, which do not have regular lattice-like structures.

◦ As will be explicitly shown later, in the case of N = 3, the phase transition lines deviate from the
expectation of the Hamiltonian vector flow of CTM. What is worse is that different choices of
Na , such as Pabb or Pabc Pbde Pcde, give qualitatively different Hamiltonian vector flows, which
ruins the predictability of the transition lines from the flow.

◦ In Fig. 2 for N = 2, on the phase transition lines, the flow goes along them, and there exist a few
fixed points of the flow on the transition lines. The fixed point at (0, 1) is a co-dimension-two
fixed point, and the associated phase transition is expected to be of second order rather than
first order, if the flow is rigidly interpreted as a renormalization-group flow and we follow the
standard criterion (see, e.g., Ref. [31]). This is in contradiction to the actual order of the phase
transition. This contradiction is more apparent in the diagram in another gauge in Sect. 4.

The purpose of the present paper is to solve all the above problems, and to show that CTM actually
gives an exact correspondence to random tensor networks. It turns out that Na should not be given
by any “reasonable” choices as above, but should rather be determined dynamically as Na ∼ 〈φa〉,
to be discussed in the following sections. Then, we can show that the Hamiltonian of CTM actually
describes a coarse-graining procedure of random tensor networks, and that the Hamiltonian vector
flow is in perfect agreement with the phase structure irrespective of the values of N .

3. Renormalization procedure and renormalization-group flow

In this subsection, we discuss a renormalization-group procedure of the random tensor networks, and
obtain the corresponding renormalization-group flow.

Let us consider an operator O that applies on Zn(P) as

OZn(P) =
∫

dφ
{
φaHa,

(
Pφ3)n}

e−nφ2
. (23)
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By using (12) and (15), and performing partial integrations with respect to φ, one can derive

OZn(P) =
∫

dφ
{
φaHa,

(
Pφ3)n}

e−nφ2

= 1

2

∫
dφ

{
φa Pabc Pbde Mcde,

(
Pφ3)n}

e−nφ2

= n

2

∫
dφ φa Pabc Pbdeφcφdφe

(
Pφ3)n−1

e−nφ2

= 1

6

∫
dφ Pabcφaφc

[
∂

φb

(
Pφ3)n

]
e−nφ2

= −1

6

∫
dφ

(
Pφ3)n ∂

φb

[
Pabcφaφce−nφ2]

= 1

3

∫
dφ

[
n
(
Pφ3)n+1 − φa Pabb

(
Pφ3)n]

e−nφ2

= n

3

(
n + 1

n

) 3n+3+N
2

Zn+1(P)− 1

3
Pabb〈φa〉n Zn(P), (24)

where 〈φa〉n is an expectation value defined by

〈φa〉n =
∫

dφ φa(Pφ3)ne−nφ2

Zn(P)
, (25)

and the numerical factor in the first term of (24) is due to the rescaling of φ for nφ2 → (n + 1)φ2 in
the exponential.

Here (24) and (25) must be used with caution. If taken literally, since Zn=odd = 0, (24) and (25) do
not seem useful by themselves. The reason for Zn=odd = 0 is that the contributions at φ = ±v with
arbitrary v cancel with each other in the integration of (1). To avoid this cancellation and make (24)
and (25) useful, let us consider a finite small region rφ̄ in the space of φ around one of the solutions
φ̄ that minimize (10). For later convenience, we take the sign of φ̄ so as to satisfy

Pφ̄3 > 0. (26)

This can be taken, because, if Pφ3 = 0, f (P, φ) in (10) diverges and cannot be the minimum, and
f (P, φ) = f (P,−φ). In particular, rφ̄ should not contain the other minimum φ = −φ̄. Then, let us
consider a replacement:

Zn(P) →
∫

rφ̄

dφ (Pφ3)n e−nφ2
. (27)

In the thermodynamic limit n → ∞, the integral (27) is dominated by the region with width 	φ ∼
1/

√
n around φ = φ̄.6 Therefore, the expression (27) approaches e−n f (P) in the thermodynamic

limit, irrespective of even or odd n. Moreover, since the integrand of (27) damps exponentially in
n on the boundary of rφ̄ , the corrections generated by the partial integrations carried out in the
derivation of (24) are exponentially small. Thus, (24) is valid up to exponentially small corrections
in n after the replacement (27). Thus, for large enough n, we can safely use (24) and (25) as if they
are meaningful irrespective of even or odd n.

6 If P is symmetric under part of the SO(N ) transformation (5), extra care will be needed, as discussed in
footnote 4. However, this does not change the following argument in the thermodynamic limit.

7/19

 at L
ibrary of R

esearch R
eactor Institute, K

yoto U
niversity on D

ecem
ber 20, 2015

http://ptep.oxfordjournals.org/
D

ow
nloaded from

 

http://ptep.oxfordjournals.org/


PTEP 2015, 043B09 N. Sasakura and Y. Sato

Taking into account the discussions above, we can put 〈φa〉n → φ̄a and Zn → e−n f (P) in (24) for
n  1. Therefore, in (24), the first term dominates over the second term, and one can safely regard
O as an operator that increases the size n of networks. To regard this operation as a flow in the
space of P rather than a discrete step of increasing n, let us introduce the following operator with a
continuous parameter s:

R(s) = esO. (28)

If we consider n  1, we can well approximate the operationO with the first term of (24) as explained
above, and one obtains

R(s)Zn(P) =
∞∑

m=0

sm

m!
Om Zn(P)

∼
∞∑

m=0

sm(n + m − 1)!

3mm!(n − 1)!
e−(n+m) f (P)+ 3m

2 . (29)

By increasing s, the right-hand side is dominated by larger networks, and diverges at s = s∞, which
is given by

s∞ = 3 exp
(

f (P)− 3
2

)
. (30)

On the other hand, in the thermodynamic limit, the left-hand side of (29) can be computed in a
different manner. In the thermodynamic limit, φa can be replaced with the mean value φ̄a , and the
operator O can be identified with a first-order partial differential operator,

O → OD = φ̄aHa = 1
2 φ̄a Pabc Pbde DP

cde, (31)

where DP
abc is a partial derivative with respect to Pabc with a normalization,

DP
abc Pde f = {

Mabc, Pdef
} = 1

6

∑
σ

δaσ(d)δbσ(e)δcσ( f ). (32)

Here note that φ̄ is a function of P determined through the minimization of (10). Then, the expression
on the left-hand side of (29) is obviously a solution to a first-order partial differential equation:(

∂

∂s
− OD

)
R(s)Zn(P) = 0. (33)

The solution to (33) can be obtained by the method of characteristics and is given by

R(s)Zn(P) = Zn(P(s)), (34)

where P(s) is a solution to a flow equation,

d

ds
Pabc(s) = OD Pabc(s)

= 1

6

(
φ̄d Pdae(s)Pebc(s)+ φ̄d Pdbe(s)Peca(s)+ φ̄d Pdce(s)Peab(s)

)
, (35)

Pabc(s = 0) = Pabc, (36)

where φ̄ must be regarded as a function of P(s) by substituting P with P(s).
Here we summarize what we have obtained from the above discussions. R(s)Zn(P) can be evalu-

ated in two different ways. One is (29), a summation of random tensor networks, the dominant size
of which increases as s increases, while P is unchanged. The other is (34), where P(s) changes with
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PPP

Fig. 3. A diagrammatic representation of the operation {φaHa, Pφ3}.

the flow equation (35), while the size of random networks is unchanged. This means that a change
of the size of networks can be translated into a change of P . Therefore, the flow of P(s) in (35)
can be regarded as a renormalization-group flow of the random tensor networks, where increasing s
corresponds to the infrared direction.

The above derivation of the renormalization-group flow uses the particular form ofH in (12). Since,
in general, there exist various schemes for renormalization procedures for statistical systems, one
would suspect that there would be other possible forms ofH that describe renormalization procedures
for random tensor networks. However, this is unlikely, and the form (12) would be unique and the
simplest. The reason for the uniqueness is that, as outlined in Sect. 2, the algebraic consistency of
H with the O(N ) symmetry, which is actually the symmetry of random tensor networks in the form
(1), requires the unique form (12) under some physically reasonable assumptions [6]. On the other
hand, the reason for it being the simplest can be found by considering the diagrammatic meaning of
the operation φaHa in (23). φaHa acts on a vertex as

{
φaHa, Pφ3} = 1

2φaφb Pabc Pcdeφdφe, (37)

and hence can be regarded as an operator that inserts a vertex on an arbitrary connection in a network
(see Fig. 3). This is obviously the most fundamental operation that increases the number of vertices
of a network.

Here we comment on our new proposal in comparison with the previous one [3]. Our main
claim is that the multiplier should take Na = φa rather than “reasonable” choices such as Na =
Pabb, Pabc Pbed Pcde, etc., taken in the previous proposal. With Na = φa , the Hamiltonian vector
flow is uniquely determined by the dynamics, while “reasonable” choices are ambiguous. Even if
ambiguous, there are no problems in the N = 2 case, since there are no qualitative changes of the
flow among “reasonable” choices, and the phase structure can be uniquely determined from the flow.
However, as will be shown in Sect. 4, this is not true in general for N > 2. In fact, N = 2 is spe-
cial for the following reasons. It is true that φ̄a can well be approximated by ∼ const. Pabb near
the absorbing fixed points in Fig. 2, because all of them can be shown to be gauge-equivalent to
P111 = 1, others = 0. This means that at least an approximate phase structure can be obtained even
by putting Na = Pabb ∼ φ̄a . In addition, what makes the N = 2 case very special is that the phase
transition lines are the fixed points of the Z2 symmetry corresponding to reversing the sign of the
magnetic field of the Ising model on random networks. Therefore, the phase transition lines are pro-
tected by the symmetry, which stabilizes the qualitative properties of the flow under any changes of
Na respecting the symmetry.

Finally, we comment on an equation that can be derived from (24) in the thermodynamic limit. By
putting Zn(P) ∼ e−n f (P) to (9), one can derive

φ̄a Pabc Pbde DP
cde f (P) = −2

3e− f (P)+ 3
2 . (38)
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Fig. 4. The phase transition lines of the random tensor network with N = 2 in the gauge (40) are shown as
solid lines. The horizontal and vertical axes indicate x1 and x2, respectively. The phase transitions are first
order except for the endpoint of a line located around (x1, x2) = (0.2, 1.2). This is the Curie point, which
is gauge-equivalent to (x1, x2) = (0.5, 0) in the gauge (7). The left panel describes the Hamiltonian vector
flow based on our former proposal, Na = Pabb, while the right panel describes it based on our new proposal,
Na = φ̄a . A locus of gauge singularities is located at x1 = 0.635. Gauge singularities are not physical, and the
free energy has no singular behaviors there. Some details are given in Appendix A1.

In fact, one can directly prove (38). By using (9) and (1), the left-hand side of (38) is given by

φ̄a Pabc Pbde DP
cde f (P) = φ̄a Pabc Pbde

(
DP

cdeφ̄g

)∂ f
(
P, φ̄

)
∂φ̄g

− φ̄a Pabc Pbde
φ̄cφ̄d φ̄e

Pφ̄3

= −2

3
Pφ̄3, (39)

where we have used (11). This coincides with the right-hand side of (38), because of the choice (26)
and φ̄2 = 3

2 , which can be obtained by contracting (11) with φ̄a .

4. Comparison

In this section, we will check the proposal of this paper in the cases of N = 2, 3 by comparing them
with the phase structures of the random tensor networks.

Let us first consider the N = 2 case with a gauge,

P111 = 1, P112 = 0.3, P122 = x1, P222 = x2, (40)

as a typical example. The difference from (7) is the gauge-fixing value of P112. One can obtain the
phase structure in the parameter space of (x1, x2) by studying the free energy (9). Alternatively, one
can apply the O(2) and scale transformations, (5) and (6), on P so that the phase structure in the
gauge (7) given in Fig. 2 is transformed to that in the gauge (40). In either way, one can determine
the phase structure in the new gauge, and the result is given in Fig. 4. Here we show the Hamiltonian
vector flows for Na = Pabb, based on the former proposal, and Na = φ̄a , based on our new proposal,
in the left and right panels, respectively.

The rough features of the two flows based on the different proposals seem consistent with the
phase structure: the flows depart from the transition lines, and go into the same absorption fixed
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points. This was the main argument in our previous paper [3]. However, there are some physically
important differences in the details between the left and right panels. In the left panel, on the phase
transition lines, the flow is going along them. Moreover, there exist a few fixed points of the flow on
the transition lines at (x1, x2) ∼ (−0.2, 1), (−0.6, 0.5), (−0.4,−1) in the left panel. If the flow is
strictly interpreted as a renormalization-group flow, the phase transition line on the right-hand side
of the fixed point near (−0.2, 1) is expected not to be of first order, since the points on both sides of
the transition line in its vicinity flow to the same fixed point near (0.1, 0)without any discontinuities.
On the other hand, in the right panel, the flow has discontinuity on the transition lines, except for the
Curie point at the endpoint of the transition line. Thus, the flow based on our former proposal clearly
contradicts the actual order of the phase transitions, while the one based on our new proposal is in
agreement with it, i.e., first order except for the Curie point.

An interesting property of the flow is that it does not vanish even on the Curie point, as can be
seen in the right panel of Fig. 4 and can also be checked numerically. This seems curious, because
the second derivatives of the free energy contain divergences on the point. In a statistical system
on a regular lattice, such divergences originate from an infinite correlation length. Therefore, such
a point will typically become a fixed point of a renormalization-group flow. On the other hand, the
correlation length of the Ising model on random networks is known to be finite even on the Curie point
(see Ref. [28] and references therein for the dynamics of statistical systems on random networks).
This means that, even starting from the Curie point, a renormalization process will asymptotically
bring the system to one with a vanishing correlation length. This implies that the Curie point cannot
be a fixed point of a renormalization-group flow, and this seems correctly reflected in the fact that
our flow does not vanish on the Curie point.

Let us next consider the N = 3 case. There are too many parameters, if this case is treated in full
generality. So let us specifically consider a subspace parameterized by

Paaa = 1, Paab = x1, P123 = x2, (a �= b), (41)

which is invariant under the S3 transformation permuting the index labels 1, 2, 3. Through numerical
study of the free energy (9) (and some analytic considerations as well), one can obtain the phase
structure shown in Fig. 5. In the parameter region indicated, there exist two regions of an S3 symmetric
phase, labeled S, with φ̄1 = φ̄2 = φ̄3. There also exist two distinct non-symmetric phases, labeled
NS1 and NS2. At any point in the two regions, the minimization of the free energy (10) has three
distinct solutions of non-symmetric values, φ̄1 �= φ̄2 = φ̄3, φ̄2 �= φ̄3 = φ̄1, φ̄3 �= φ̄1 = φ̄2, and hence
three distinct phases coexist in these regions. When S3 symmetric subspace (41) is extended to more
general cases, each of NS1 and NS2 becomes the common phase boundary of the three phases.

The flow in the left panel of Fig. 5 is drawn based on our previous proposal Na = Pabb. There,
the flow is not in good agreement with the phase structure, though it seems to capture some rough
features. We tried other possibilities, such as Na = Pabc Pbde Pcde, etc., but the flow depended on the
choices, and no good agreement could be found. On the other hand, in the right panel based on our
new proposal Na = φ̄a , the flow in the symmetric region S is consistent with the phase structure:
the flow departs from the transition lines, and, since it does not vanish on the lines, the order is
expected to be first order. This is in agreement with the property of the free energy except for a point
(x1, x2) = (1/4,−1/8). At this point, the free energy is continuous in the first derivatives, but not in
the second. However, since the flow does not vanish on the point, the correlation length is expected
to be finite. This is similar to the Curie point of the N = 2 case.
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Fig. 5. The phase transition lines of the random tensor network with N = 3 in the subspace (41) are shown as
solid lines. The horizontal and vertical axes indicate x1 and x2, respectively. There exist four regions separated
by the phase transition lines in the indicated parameter region. The phases labeled S have the S3 symmetric mean
values φ̄1 = φ̄2 = φ̄3. There are two other regions, labeled NS1 and NS2, which have non-symmetric mean val-
ues. The phase transitions are first order except for the meeting point of S, NS1, NS2 at (x1, x2) = (1/4,−1/8).
On this point, the free energy is regular in the first derivatives, but not in the second. On the phase transition
line between NS1 and NS2, P is symmetric under an SO(2) transformation [27]. In the left panel, we show
the Hamiltonian vector flow based on our former proposal Na = Pabb, while the right one is based on our new
proposal Na = φ̄a .

In the non-symmetric phases, NS1 and NS2, the mean values are not S3 symmetric. Therefore, the
flow generally has directions departing from the S3 symmetric subspace, and cannot be shown on
the figure. To also check the consistency of the flow in these regions, it would be necessary to extend
the parameter region. This would require one to use a different systematic strategy for a consistency
check to avoid too many parameters. In Sect. 6, we will use another method of consistency checking
by proving a theorem relating the renormalization-group flow and the phase transitions of the random
tensor network.

5. Asymptotic behavior of the flow

In Sect. 3, we argued that O = φaHa provides a renormalization procedure for the random tensor
network. As can be seen from (29) and (34), P(s) diverges in the limit s → s∞ in (30). On the other
hand, in the numerical analysis of Sect. 4, P is kept normalized as (40) or (41) by appropriately
tuning the multiplier N for the scale transformation D (with NabJab as well). As in Figs. 4 and 5,
one can find fixed points of the flows in the limit s̃ → ∞, where s̃ denotes the fictitious parameter
parameterizing the normalized flows. In this section, we will show that these two limits of s and s̃
are physically equivalent.

Let us first show the divergence in s → s∞ more directly. Since φ̄2 = 3
2 from (11),

log Pφ̄3 = − f (P)+ 3
2 . Then, by using (31) and (39), one obtains

d

ds
log Pφ̄3 = 1

3
Pφ̄3, (42)
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where P is meant to be P(s), and hence Pφ̄3 is regarded as a function of s. The solution to (42) is

Pφ̄3 = 1
1

Pφ̄3|s=0
− s

3

, (43)

which indeed diverges at s = 3
Pφ̄3|s=0

= s∞. Since φ̄ is normalized by φ̄2 = 3
2 , the divergence of

(43) can be translated to the divergence of P(s) with a behavior

P(s) ∼ const.

s∞ − s
(44)

or higher order in the case that some components of φ̄ vanish in s → s∞.
Now let us compare the two flows, the unnormalized and normalized ones. For notational simpli-

city, let us denote the three indices of Pabc by one index as Pi . The flow equations in s and s̃ can be
expressed respectively as

d

ds
Pi (s) = φ̄a(P(s)) gai (P(s)), (45)

d

ds̃
P̃i

(
s̃
) = φ̄a

(
P̃

(
s̃
))

gai
(
P̃

(
s̃
)) − N P̃i

(
s̃
)
, (46)

Pi (s = 0) = P̃i
(
s̃ = 0

) = Pi , (47)

where N generally depends on P̃i
(
s̃
)
, and gai (P) are the quadratic polynomial functions of P , which

can be read from (35). The last term of the second equation comes from ND in (20), and is assumed
to be tuned to satisfy a gauge condition normalizing P̃

(
s̃
)
. Here we ignore the SO(N ) generators,

Jab, for simplicity, but it is not difficult to extend the following proof to include them.
The physical properties of the random tensor network do not depend on the overall scale of P . So

let us define the relative values of P(s) and P̃
(
s̃
)

as

Qi (s) = Pi (s)

P0(s)
, Q̃i

(
s̃
) = P̃i

(
s̃
)

P̃0
(
s̃
) , (48)

where P0(s)
(
P̃0

(
s̃
))

is taken from one of Pi (s)
(
resp. P̃i

(
s̃
))

, or a linear combination of them.
From (11), it is obvious that φ̄(P) and φ̄

(
P̃

)
actually depend only on Q and Q̃, respectively. Then,

from (45),

1

P0

d

ds
Qi = 1

P0

d

ds

Pi

P0

= φ̄a(Q) gAI (P)

P2
0

− φ̄a(Q) ga0(P)Pi

P3
0

= φ̄a(Q) (gai (Q)− ga0(Q)Qi ) . (49)

In the same manner,

1

P̃0

d

ds
Q̃i = φ̄a(Q̃)

(
gai (Q̃)− ga0(Q̃)Q̃i

)
. (50)

Note that the last term of (46) does not contribute to the flow equation of Q̃. Since the initial condition
(47) implies Qi (s = 0) = Q̃i (s̃ = 0), and the right-hand sides of (49) and (50) are identical, the
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flow equations, (49) and (50), describe an identical flow with a transformation between the fictitious
parameters:

P0(s)ds = P̃0(s̃)ds̃. (51)

As discussed above, the typical behavior of P0(s) is (44), while P̃0(s̃) is assumed to remain finite
near an absorption fixed point. In such a case, (51) implies

s̃ ∼ −const. log(s∞ − s). (52)

Therefore, the limits of s → s∞ and s̃ → ∞ are physically equivalent. As can be checked easily,
this physical implication does not change, even if we consider the case that P0(s) diverges with an
order higher than (44).

To investigate the physical meaning of the fictitious parameter s̃, let us estimate (29) near s ∼ s∞.
We obtain

∞∑
m=0

sm(n + m − 1)!

3mm!(n − 1)!
e−(n+m) f (P)+ 3m

2 = e−n f (P)

(n − 1)!

∞∑
m=0

(m + 1)(m + 2) · · · (n + m − 1)

(
s

s∞

)m

= const.
dn−1

dsn−1

∞∑
m=0

(
s

s∞

)m+n−1

= const.
dn−1

dsn−1

sn−1

s∞ − s

∼ const. (s∞ − s)−n. (53)

Then the average size of networks can be estimated as

〈n + m〉 ∼ n + s
d

ds
log(s∞ − s)−n ∼ ns∞

s∞ − s
. (54)

Therefore, from (52),

s̃ ∼ const. log (Average size) . (55)

This means that s̃ corresponds to the standard renormalization-group scale parameter often denoted
by log
 in field theory.

6. Discontinuity of the renormalization-group flow and phase transitions

In Sect. 4, we saw that the renormalization-group flow has discontinuity on the first-order phase
transition lines in the examples of the random tensor networks. In this section, we will prove a general
theorem on this aspect.

By using the free energy in the thermodynamic limit (9), the stationary condition (11), and the flow
equation (35), we can prove the following theorem.

Theorem 1. The following three statements are equivalent.

(i) The first derivatives of f (P) are continuous at P .

(ii) φ̄ is continuous at P .

(iii) The renormalization-group flow is continuous at P .
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Proof Let us first prove (i) ⇒ (ii). From (9), the first derivatives of f (P) are given by

DP
abc f (P) = − φ̄aφ̄bφ̄c

Pφ̄3
, (56)

where we have neglected the contributions from the P-dependence of φ̄, since φ̄ satisfies the
stationary condition (11). By contracting a pair of indices in (56), one obtains,

DP
aab f (P) = − φ̄aφ̄aφ̄b

Pφ̄3
= − 3φ̄b

2Pφ̄3
, (57)

where we have used φ̄2 = 3
2 derived from (11). Here note that Pφ̄3 is continuous at any P , because

the free energy f (P) itself in (9) is continuous at any P ,7 and also φ̄2 = 3
2 . Therefore, if (i) holds,

(57) is continuous and hence φ̄ is continuous; (i) ⇒ (ii) has been proven.
The reverse, (ii) ⇒ (i), is obviously true from (56). Therefore, the statements (i) and (ii) are

equivalent: (i) ⇔ (ii).
Next, as for (ii) ⇒ (iii), it is obvious that, if φ̄ is continuous, the renormalization-group flow (3) is

also continuous.
Finally, let us prove (iii)⇒(ii), which will complete the proof of the theorem. To prove this, we will

show that there is a contradiction, if we assume both (iii) and that φ̄ has discontinuity on P .
Let us suppose that there is discontinuity of φ̄ at a point P . Then, from the definition of φ̄, there

exist multiple distinct solutions of φ̄ to (11) that give the same minimum of (10) at P . Let us take
any two of them, φ̄+ and φ̄−. As shown above, Pφ̄3 is continuous at any point, which means

A ≡ P
(
φ̄+)3 = P

(
φ̄−)3

, (58)

where the value is denoted by A for later usage. Here note that A �= 0, since, otherwise, (10) diverges
and cannot be the minimum. Then, since φ̄± both satisfy (11), we obtain

φ̄±
a = 3

2A
Pabcφ̄

±
b φ̄

±
c , (59)

	a = 3

2A
Pabc

(
	b	c + 2	bφ̄

−
c

)
, (60)

where	 = φ̄+ − φ̄−, and (60) has been obtained by considering the difference of the two equations
in (59). Note that 	 �= 0, if there exists a multiplicity of the minimizing solutions.

On the other hand, the assumption (iii) and (35) imply

d

ds
Pabc

∣∣∣∣
φ̄=φ̄+

− d

ds
Pabc

∣∣∣∣
φ̄=φ̄−

∝ 	d Pdae Pebc +	d Pdbe Peca +	d Pdce Peab = 0. (61)

Then, by contracting (61) with three φ̄+ or φ̄−, and using (59), we obtain

Pabc	aφ̄
±
b φ̄

±
c = 0. (62)

Finally, by contracting (60) with 	, we obtain

	2 = 3

2A
Pabc

(
	a	b	c + 2	a	bφ̄

−
c

)

= 3

2A
Pabc	a

(
φ̄+

b φ̄
+
c − φ̄−

b φ̄
−
c

)

= 0, (63)

7 This can be proven by using the fact that f (P) is the minimum of (10), which is a continuous function of
φ and P .
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where we have used (62). This concludes 	 = 0, which contradicts the initial assumption of
the existence of discontinuity of φ̄. Consequently, we have proven the equivalence of (i), (ii),
and (iii). �

By taking contrapositions, a corollary of the theorem is given by:

Corollary 1. The following three statements are equivalent:

(i) P is a first-order phase transition point. (Not all of the first derivatives of f (P) are

continuous.)

(ii) φ̄ is not continuous at P .

(iii) The renormalization-group flow is not continuous at P .

Another corollary of physical interest is:

Corollary 2. If P is a phase transition point higher than first order, the renormalization-group flow

is continuous at the critical point.

The qualitative behavior of the N = 2 renormalization-group flow shown in the right panel of Fig.
4 respects the theorem and corollaries as it should be: Corollary 1 is realized on the phase transition
lines, and Corollary 2 on the Curie point.

7. Summary and discussions

In the previous paper [3], it was found that the phase structure of the Ising model on random networks
(or random tensor networks with N = 2) can be derived from the canonical tensor model (CTM),
if the Hamiltonian vector flow of the N = 2 CTM is regarded as a renormalization-group flow of
the Ising model on random networks. This was a surprise, since CTM had been developed aiming
for a model of quantum gravity in the Hamiltonian formalism [5–7]. Considering the serious lack of
real experiments on quantum gravity, the notion that CTM may link quantum gravity and concrete
statistical systems is encouraging.

The main achievement of the present paper is to have shown that the Hamiltonian vector flow
of CTM with arbitrary N gives a renormalization-group flow of random tensor networks, where
the N = 2 case corresponds to the Ising model on random networks. In the previous paper [3], we
considered the Hamiltonian of CTM, H = NaHa , with “reasonable” choices of Na . Though it was
successful in the N = 2 case, we have shown in this paper that the previous procedure of taking H
does not work successfully for general N , and have argued that the correct one is given by H = φaHa ,
where φa are the integration variables for describing random tensor networks. Here an advantage of
the present procedure is that H is uniquely determined by the dynamics of random tensor networks,
but not by the ambiguous “reasonable” choices of the previous procedure. In fact, applied on random
tensor networks, H = φaHa is an operator that randomly inserts vertices on connecting lines, and
therefore it increases the sizes of tensor networks. This provides an intuitive understanding of the role
of H as a renormalization process. We have performed a detailed analysis of the process, and have
actually derived the Hamiltonian vector flow of CTM as a renormalization-group flow of the random
tensor network. We have also explicitly checked the exact consistency between the flows of CTM
and the phase structures of the random tensor networks for the full parameter region of the N = 2
case and a subregion of the N = 3 case. In the last section, we have proven a theorem that relates the
phase transitions of the random tensor network and discontinuity of the renormalization-group flow.

The renormalization-group flow that we have obtained has discontinuities on the first-order phase
transition lines. However, there is a critical argument on whether a renormalization-group flow has
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discontinuities on a first-order phase transition line (see, e.g., Ref. [32] and references therein). Since
the argument basically assumes a regular lattice-like structure of a system, it would be interesting
to investigate a similar argument for a system with a random network structure. The random tensor
network would give an interesting playground to deepen the idea of the renormalization group in a
wider situation.

Finally, let us comment on possible directions of further study, based on the achievements of the
present paper. One is the classification of the fixed points of the Hamiltonian vector flow. This will
provide the classification of the phases and their transitions of the random tensor network. This would
also be interesting from the viewpoint of quantum gravity. As discussed in Ref. [27], the physical
wavefunctions of CTM may have peaks at the values of P invariant under some symmetries. In
general, on such symmetric values of P , φ̄ may have multiple solutions, and therefore may become
phase transition points. Such interplay between peaks and phase transitions may give interesting
insights into quantum gravity. Another direction would be to pursue possible relations between the
renormalization procedure of the random tensor network and that of the standard field theory. In fact,
the “grand” partition function [3] of the random tensor network can be arranged to take the form of
a partition function of field theory on a lattice by considering an index set labeling lattice points and
taking P so as to respect locality. Then, the Hamiltonian vector flow of CTM may be regarded as a
renormalization-group flow of the standard field theory. It would be highly interesting if CTM were
to make a bridge between quantum gravity and the standard field theory in addition to the random
tensor network.
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Appendix A. Explicit expressions for the constraints

In this appendix, we give the explicit expressions for the constraints (12), (13), (14) in the forms used
in Sect. 4 for N = 2, 3.

A.1. N = 2

In a subspace

P111 = 1, P112 = y, P122 = x1, P222 = x2 (A1)

with fixed y, which contains (40) as a special case, the constraints are given by

(H1,H2)

= 1

6

(
3
(
1 + y2) ∂

∂P111
+ 3

(
1 + x1

)
y

∂

∂P112
+

(
x1 + 2x2

1 + y
(
x2 + 2y

)) ∂

∂x1
+ 3x1

(
x2 + y

) ∂

∂x2
,

3(1 + x1)y
∂

∂P111
+

(
x1 + 2x2

1 + y
(
x2 + 2y

)) ∂

∂P112
+ 3x1

(
x2 + y

) ∂

∂x1
+ 3

(
x2

1 + x2
2

) ∂

∂x2

)
,

(A2)
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J12 ∝ −3y
∂

∂P111
+ (

1 − 2x1
) ∂

∂P112
+ ( − x2 + 2y

) ∂

∂x1
+ 3x1

∂

∂x2
, (A3)

D ∝ ∂

∂P111
+ y

∂

∂P112
+ x1

∂

∂x1
+ x2

∂

∂x2
. (A4)

A Hamiltonian vector flow is generated by (20), and, for a given Na , the multipliers associated
to the kinematical symmetries, N12 and N , can be determined so that the flow stays in the gauge
(A1). Then, since P111 and P112 are kept constant by such a flow, determining such a Hamiltonian
vector flow is actually equivalent to considering H = NaHa , where ∂

∂P111
and ∂

∂P112
are substituted by

solving the linear equations, J12 = D = 0. Here we do not write the explicit resultant expression of
H , since it is rather long, but the procedure itself is elementary. An important issue in the procedure
is that there exist exceptional points characterized by

3y2 + 1 − 2x1 = 0, (A5)

where the set of linear equations, J12 = D = 0, become singular and cannot be solved for
∂

∂P111
, ∂
∂P112

. On these points, N12 and N cannot be chosen so that the gauge be kept. These are
the gauge singularities in Fig. 4, located at x1 = 0.635 for y = 0.3.

A.2. N = 3

The derivation of the Hamiltonian vector flow in the S3 symmetric subspace (41) is similar to the
N = 2 case. A difference is that, in (20), the multiplier associated to Jab must be set at Nab = 0 to
keep the S3 invariance. For Na = φ̄, which is S3 symmetric, one can choose N appropriately to keep
Paaa = 1, and can obtain the Hamiltonian vector flow as

HS3 = (2x1 + x2)φ̄

6

((
1 + 3x1 − 6x2

1 + 2x2
) ∂

x1
+ 6x1

(
1 − x2

) ∂
x2

)
. (A6)

This is used to draw the Hamiltonian vector flow in Fig. 5.
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