<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>超精密加工機の動特性の解析と評価に関する研究(全文)</td>
</tr>
<tr>
<td>著者</td>
<td>甲斐 義章</td>
</tr>
<tr>
<td>項目</td>
<td>京都大学</td>
</tr>
<tr>
<td>項目</td>
<td></td>
</tr>
</tbody>
</table>
超精密加工機の動特性の解析と評価に関する研究

2015

甲斐 義章
目次

第 1 章 緒言.. 1

第 2 章 超精密加工機の構成 .. 3
 2.1 緒論 .. 3
 2.2 超精密加工機の要求仕様 .. 3
 2.2.1 超精密加工機の概要と用途 .. 3
 2.2.2 超精密加工に対する要求精度 .. 5
 2.2.3 超精密加工機の高速化 ... 7
 2.2.4 高速加工の例.. 8
 2.3 超精密加工機に必要な機械要素 .. 11
 2.3.1 主軸 .. 11
 2.3.2 業内機構 .. 13
 2.3.3 転がり業内機構 .. 15
 2.3.4 驅動機構 .. 16
 2.3.5 除振装置 .. 18
 2.4 結論 ... 19

第 3 章 超精密加工機の送り業内機構の動剛性評価 .. 20
 3.1 緒論 ... 20
 3.2 超精密加工機の送り駆動系の業内構成 .. 22
 3.3 インパルス加振試験による業内機構の動剛性試験 25
 3.3.1 動剛性試験の試験方法 .. 25
 3.3.2 動剛性試験の結果 .. 27
3.3.3 簡易振動モデルを用いた試験結果の評価 .. 31

3.4 等価静剛性の実験による確認 ... 33
3.4.1 静剛性の試験方法 ... 33
3.4.2 静剛性測定結果 .. 35

3.5 有限要素解析による等価静剛性の確認 .. 37
3.5.1 無限軌道転がり案内の場合 ... 37
3.5.2 有限軌道 V-V 転がり案内の場合 ... 38

3.6 結論 .. 39

第 4 章 転がり案内に発生する抵抗力の実験的解析 ... 40

4.1 緒論 ... 40

4.2 抵抗力の評価方法 .. 41
4.2.1 抵抗力の測定方法 ... 41
4.2.2 モータ駆動力における慣性力の影響 .. 43
4.2.3 長距離移動時のモータ駆動力の変動 .. 46

4.3 無限軌道転がり案内との抵抗力の比較 ... 49

4.4 有限軌道転がり案内の抵抗力について .. 51
4.4.1 微小移動時の抵抗力 ... 51
4.4.2 速度の違いが抵抗力に及ぼす影響 .. 54
4.4.3 潤滑油粘度の違いによる抵抗力への影響 ... 55

4.5 結論 ... 57
第5章 超精密加工機の支持方法の違いが運動精度に与える影響

5.1 緒論

5.2 工作機械の支持方法について

5.2.1 一般的な工作機械の支持方法

5.2.2 超精密加工機に用いられる除振装置

5.2.3 パッシブ型除振装置の性能

5.2.4 高速移動時の除振装置の動き

5.3 打撃加振試験での振動特性の比較

5.3.1 打撃加振試験方法

5.3.2 超精密加工機の打撃加振試験結果

5.4 支持方法と除振能力の関係

5.4.1 除振性能の測定方法

5.4.2 支持方法の違いによる除振性能の測定結果

5.5 有限要素による振動解析

5.6 支持方法の違いが送り駆動系へ与える影響の比較

5.6.1 高加減速移動時の送り駆動系への影響評価方法

5.6.2 除振装置の支持方法の違いによる円弧補間運動への影響

5.7 結論

第6章 結言

謝辞

参考文献
第1章 緒言

光学部品を主に加工対象としてきた超精密加工機は、その光学部品のアプリケーションの進歩に伴い進化し続けている。1970年代から本格的に研究・開発がすすめられた超精密加工機は、特別用途のレンズおよびミラーの加工に使用され、情報家電などの民生部品へとその活用の場を広げていった。特に記憶媒体では磁気ディスク、CD、DVD、Blu-Ray Diskと記憶容量が大きくなるにつれ、主要部品である磁気ヘッド、ピックアップレンズの加工要求精度は飛躍的に高まっていった[1-4]。

それぞれの加工分野において、超精密加工機はその要求に応えるべく、性能を向上させてきた。現在では形状精度0.1μm以内、面粗さ1nmRa以下の加工精度を必要とする光学部品などが、切削もしくは研削で加工されている。

光学部品はその応用範囲が広がるにつれ、より形状が複雑となり、また大型化する傾向にある。液晶ディスプレイに使用される導光板は、大画面化の要求に伴い生産に使用される金型も大きくなっている。また、ヘッドアップディスプレイ(以下HUD)などはディスプレイが数学的に複雑な自由曲面を持つ。これらの光学部品は加工時間が長いため、光学部品の加工では形狀精度だけでなく、理論面粗さに対する要求精度も厳しい。そのため、最終仕上げの切り込み量を小さく抑えることで仕上げ面粗さを向上させている。その結果、加工中に工具の切れ刃が受ける力は非常に小さい。切れ刃が受ける力が小さいことで、工具変形による誤差は無視できるほど小さい。超精密加工で使われる工具(ダイヤモンドなど)と工作物の材料(Niなど)の組み合わせは、切れ刃の運動軌跡がそのまま加工面に転写される。すなわち、工具・工作物間の相対変位が加工面に影響を及ぼし、相対変位は超精密加工機の運動と運動を拘束する構造に支配される。特に一軸の運動に対しては真直度が重要であり、移動体を保持する案内の幾何学的な拘束に依存する。直動案内の真直度を保持する案内は、移動体の運動方向に垂直な方向の誤差であり、加工時にこの誤差が加工面に転写される。また、案内の送り方向の摩擦力は、運動指令に対する応答に影響する。このことから、超精密加工機では主軸および回転テーブルなどの回転運動を支える軸受および移動体を支える直動案内機構において、周期的な位置変動が少なく、摩擦変動が小
さい支持機構が必要である。その結果、摺動部に空気や油などの作動流体を用いた非接触要素を用いることが一般的であった[6][7]。ただし、作動流体は圧力の安定性が精度に影響を与える。特に送り軸の場合、静圧案内が用いられるが、高速運動になると動圧効果の影響も無視できない。

工具・工作物間の相対変位には、動的な振動も影響する。加工テーブルや主軸が運動する時に発生する駆動力の反力は構造体が受ける。この反力は構造体に仕事し、振動エネルギーが蓄積されて、解放される際に工具または工作物が振動する。機械系の振動は様々なモードを持つが、加工においてこれらの振動モードが励起されにくい構造を持っていることが重要である。これは主に加工機の加工運動に起因する問題であるが、これとは別に機械が設置される環境から受ける外乱振動も工具・工作物間変位に影響を与える。このような設置床からの振動に対しては、振動エネルギーを機械側に伝達しないように遮断する必要がある。このため超精密加工機は除振装置を使用している。しかし、先に述べた加工機の運動を考えると、除振装置によって加工機全体が振動しやすくなる。このため除振装置の設計と設置は重要な課題となる[8]-[10]。

本研究では、従来、精度を重視して設計されてきた超精密加工機が、生産性向上のため高速な運動条件で使用される際に発生する問題について扱う。特に、加工面の仕上げ面粗さおよび形状精度の悪化の原因となる動的な現象について、案内面の評価と支持機構の機械構造の解析を行い、超精密加工機の高速・高精度化に対する指針を与えることを目的とする。

本論文の構成は以下の通りである。

第 2 章において超精密加工機に要求される精度および性能を整理し、それを実現するための機械要素について説明する。第 3 章では超精密加工機の案内について、静的ならびに動的な剛性を評価する。評価方法として、加振実験による実験解析と、有限要素法による理論解析を行う。第 4 章では超精密加工機に使用されている送り駆動系の案内面の抵抗特性の実験的解析を行う。第 5 章では機械全体の振動特性を支配している機械の支持について、超精密加工機に使用される除振装置の外乱振動に対する最適配置方法を提案する。第 6 章は以上をまとめた本論文の総括である。
第2章 超精密加工機の構成

2.1 緒論
本章では、超精密加工機に要求される精度を整理し、必要な性能を明らかにする。加工機を構成する要素は、送り案内機構、送り駆動装置、ワークおよび工具などの回転機構である。これらの構成要素に対して、超精密加工に適した機械要素を選択する必要がある。超精密加工においては、工作物にサブナノメートルオーダーの仕上げ面あらさとサブマイクロメートルオーダーの形状精度が要求される。超精密加工のために、加工プロセス全体は、負荷変動を抑制すること、加工中の工作物や工具の温度変化を抑制することなどに注意して工程が設計される。また、加工機自体の運動誤差が加工精度に与える影響が最も決定的であるため、（1）機械要素の特性が加工精度に与える影響、（2）サーボ系が加工精度に与える影響、（3）設置環境と機械構造が加工精度に与える影響を理解しなければならない。特に機械要素はサーボ系にも機械構造にも影響を与える。本章では、超精密加工の使用と用途例を概観しながら、その構成要素について説明する。

本章の構成は、2.2節において超精密加工の概要と加工例について述べる。2.3節では超精密加工機に必要な機械要素について述べる。2.4節は本章の結論である。

2.2 超精密加工機の要求仕様
2.2.1 超精密加工機の概要と用途
超精密加工機は一般的な工作機械と比較して機械構成としての大きな違いはない、被削対象もしくは工具を回転する主軸を有し、それらを平行移動する移動体がベッドと呼ばれる固定部品の上に存在する。移動体は種々の案内機構によって直接移動が支持されている。移動体の駆動には回転運動を直線運動に変換するネジ機構による駆動や、直接直線運動を可能とするリニアモータを用いている。機械構造は、軸対称部品（丸物）加工では旋盤に類する構造、板状や箱状の部品加工ではマシニングセンタ（MC）のような構造が採用される。

一般的な工作機械と超精密加工機が大きく違う点は、位置決めと運動精度である。図2.1は、CNC指令値の最小設定単位についての説明図である。通常のマシニングセンタでは最小設定単位は1〜0.1μmである。これに対して超精密加工機では10nm以下の最小設定単位が必要となる[11-15]。なお、超精密加工機と一般的な工作機械の中間的な最小設定単位を持つ機械は高精密加工機とも呼ぶ[16]。
レンズやミラーなどの光学部品を加工するために開発された超精密加工機は、1970年代の創成期において、送り駆動系の最小設定単位が数十nm程度であった。これは1μm以下のも形状精度と数十nmRaの面粗さの加工に対応するための要求である。加工対象材料はアルミ合金や無酸素銅などの軟質金属であり、ダイヤモンドバイトを用いた切削加工が行われていた。部品そのものに硬さや強度を必要としない光学部品の場合、軟質金属自体もしくは母材に軟質金属をメッキした層を切削して製作される。ダイヤモンド(炭素)は鉄に対して親和性が高いため、被削材としては鉄系の材料をダイヤモンド工具で加工することは少ない。レンズなどの光学部品を大量生産する際に用いられる場合には、金型が超精密加工で製作される。この場合、樹脂の射出成型により製作されるプラスチックレンズと、ガラスの過熱圧縮により製作されるガラスレンズによって金型の製作方法および金型材料が大きく異なる。プラスチックレンズ用金型は基材となるステンレスなどの金型材料に無電解ニッケルをメッキし、メッキ層で切削できる材料をメッキし、メック層を切削加工によって製作する。それに対して、ガラスレンズ成形用金型は、高温および高圧力に耐えるため表面が極めて硬い材料を必要とする。そのため、金型材料にはWC(タングステン・カーバイト)を用いた超硬合金などを使用している。焼結により作られる超硬合金は表面が固く一般的に切削加工では加工が困難である。そのため、超硬合金の超精密加工にはダイヤモンド砥石を用いた研削加工がおこなわれている[17][18]。
2.2.2 超精密加工に対する要求精度

表2.1に，超精密加工機の要求精度を一般工作機械と比較して示す．ポリゴンミラーなど，そのまま光学部品として使用される場合は，光源の波長に伴い加工面の要求面粗さ，形状精度が決まる．例えば，ポリゴンミラーでは平面度などは波長の1/4～1/8を要求される．切削と研削加工では実現できる加工精度が異なり，光学部品の要求精度に対して使いわけられる．切削加工においては，機械の運動誤差がそのまま加工面に転写されるが，超精密加工機の運動精度が向上し，ダイヤモンド工具の切れ刃も高精度で成形できるため，表面粗さ1nmRa以下，形状誤差0.05μm程度の加工が実現可能である．しかし，研削加工では，砥粒配置の不均一さや加工中の砥石形状の変化（摩耗），ふれまわりなどが加工精度に影響する．したがって，切削加工よりも実現する精度は下がる傾向にあるが，加工ノウハウによってnmレベルの精度を維持しているケースもある．例えば，ブルーレイディスクのビックアップレンズなどは，表面粗さ5nmRa以下，形状誤差0.1μm以下の高い加工精度が求られる，研削加工で対応している．

図2.2に超精密加工機での切削加工の加工結果の例を示す．図2.3に超精密加工機での研削加工の加工結果の例を示す．

超精密加工を概観すると，加工サイズが直径数10mm程度の球面もしくは非球面の形状において，旋削による切削加工では表面粗さ1nmRa以下，形状誤差0.05μm以内，研削加工においては表面粗さ5nmRa以下，形状誤差0.1μm以内が求められている[19][20]．

<table>
<thead>
<tr>
<th>Table2.1 Accuracy of ultra-precision machining and general machining</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Usage</td>
</tr>
<tr>
<td>Geometric accuracy</td>
</tr>
<tr>
<td>Surface roughness</td>
</tr>
<tr>
<td>Circularity</td>
</tr>
<tr>
<td>Straightness</td>
</tr>
<tr>
<td>Machine speed</td>
</tr>
</tbody>
</table>

- 5 -
Fig. 2.2 Example of ultra-precision machining by cutting

View of cutting process

Shape of workpiece

Material: Ni-P plating

Fig. 2.3 Example of ultra-precision machining by grinding

View of grinding process

Material: WC
2.2.3 超精密加工機の高速化

図2.4に高精密加工機と超精密加工機との加工対象と要求精度の違いを示す。従来、高精密加工機の加工対象は、精密電子部品用金型やLED関連部品用金型などが主流であった。この分野に必要な部品は、撮像系や映像系の光学部品に比べ、面粗さおよび形状精度ともに要求精度は低かった。一方、超精密加工機の従来の加工対象であった光学部品は、サブナノメートルの面粗さとサブマイクロメートルオーダーの形状精度が要求される。プラスチックレンズを使用したカメラレンズの高画素化により、超精密加工機の高精度化の要求はさらに高くなっている。すなわち、現状の加工精度に対して、面粗さで約1/2、形状精度においても理想形状からの偏差を1/2にすることが要求されている。この要求は、磨き行程の削減による製造トータルの加工時間削減からも要求される。また、このような高精度化だけでなく、新たな部品製造からは高生産性の要求もある。その部品は車載用を代表とした光学部品である。この分野に対応するには、超精密加工機の運動を現状の10～100倍程度、高速化しなければならない[21]。また、各軸の運動の同期制御も要求されるケースがある。

Fig.2.4 Classification of precision machine tools
2.2.4 高速加工の例（高加減速運動を伴う3軸同期加工）

近年、複雑形状加工への要求などから多軸工作機械が多く開発されるようになった。これは、CAD/CAM など周辺技術の向上や計算機の高性能化・低価格化により、複雑な NC プログラムの作成・指令が可能となり、サーボ系も指令値に追従可能になったという背景にある。このため、3 軸が同時に動くような自由曲面加工が行われるようになってきた。このような自由曲面加工では加工パスに多くの変曲点が存在する。変曲点では工作機械の移動体が反転し、移動体の加減速が大きく変化する。このため運動誤差、位置決め誤差が生じやすい。また、移動体の加減速による反力は、機械全体を加振し、振動の原因となる。

ここで、自由曲面加工の例として、回転 1 軸、直線 2 軸を使用した 3 軸同期切削加工の例を示す。図 2.5 に 3 軸同期加工の代表的な例の模式図を示す。本加工例はマイクロレンズアレイ金型を加工する様子を表している。図 2.6 に加工したマイクロレンズアレイ金型を示す。マイクロレンズアレイとは平面もしくは曲面に小さいレンズを複数配置した光学部品を表し、レンズを組み合わせることで、偏光など光の特性を制御するために使用される。

この加工例で使用した超精密加工機は、工作物を回転させるワーク主軸の回転軸を C 軸、工作物を切り込み方向に移動する軸を Z 軸、刃物を回転軸中心まで半径方向に移動する軸を X 軸とする構成である。任意の形状は C 軸に取り付けた工作物を正面旋削加工する際に回転角度に同期して切り込み方向を移動させることで作成する。Z 軸の運動開始角度に合わせて C 軸の角度に同期して往復運動を行う。そのため、Z 軸の移動速度は C 軸の回転速度によって決まる。加工効率を上げるために C 軸回転速度を上げると Z 軸の速度は速くなる。また、C 軸一回転あたりの Z 軸往復回数は形状によっても変わる。マイクロレンズアレイの場合、レンズの数が多くなると Z 軸往復回数が多くなり、高加減速になる。通常の旋削による軸対称非球面加工では、X および Z 軸の送り速度は 1mm/min 程度である。これに対して、3 軸同期加工では、Z 軸の速度は任意形状を加工するため、その 10〜100 倍の速度で移動しなければならない。

![Fig.2.5 Schematic of 3 axes synchronization machining](image-url)
3 軸同期加工の例として、図 2.7 に自由曲面の一例である、コンタクトレンズなどでも使用されているトーリック面を示す。トーリック面では、曲率の違う曲面を組み合わせて非球面形状を構成している。図 2.8 にはナノインプリントに使用する型の例を示す。この例では、深さ 10nm の深い溝を平面に形成している。一般精度の加工において両加工対象ともエンドミルなどの回転工具を使用した加工で形状を製作できる。しかし、光学レンズ用の面粗さが必要な場合、加工方法は非回転工具を使用したシングルポイント切削加工が必要となる[22]。

Fig.2.6 Micro lens array mold die

Fig.2.7 Example of free form : Toric surface
Fig. 2.8 Example of free form: Nano-imprint die pattern
2.3 超精密加工機に必要な機械要素

超精密加工機は、固定側構造物（ベッド）、移動側構造物（コラム、テーブルなど）、送り案内機構、送り駆動機構、工作物（ワーク）および工具の回転機構（主軸など）で構成される。以下、これらの機構にどのような機械要素が用いられるかを説明する。

2.3.1 主軸

主軸は、ワークおよび工具を回転させるための機械要素であり、回転体を支持する軸受と回転力を発生するモータから構成される。

工作機械の回転要素に用いる軸受は、転がり軸受、すべり（動圧）軸受、静圧軸受がある。それぞれの特徴を表2.2にまとめる。一般的な工作機械主軸の軸受には主に転がり軸受が使用される。これは軸受の負荷容量が大きいことや、組み立て際で数～数十μm程度の品質精度を許容しておりやすいことが主な理由である。特に切削力が10kNを超えるような重切削に用いられる一般工作機械では、軸受に予圧を加えて軸受の剛性を保っている。予圧により軸受の変動が抑制し、軸受の定格を通過する際の荷重変動を発生する。これが工作機械の主軸回転時の振動および音の原因となっている。超精密加工では切削力による負荷は小さく、軸受には負荷容量を必要としない。しかし、主軸にサブマイクロメートルレベルの回転精度とナノメートル以下の振動レベルが必要になる。また、主軸剛性もワーク主軸で100N/μm程度（一般工作機械の10分の1程度）は必要である。このような仕様に対応するため、超精密加工機の主軸には、非接続の静圧軸受の採用されてきた。静圧軸受はその作動流体の種類によって、油静圧軸受、水静圧軸受（液体軸受）、および空気静圧軸受（気体軸受）に分類される。作動流体の選定は、負荷と回転体の周速によって決定される。油静圧軸受では、空気静圧軸受に比べ負荷容量が大きいが、作動流体の粘性が高いため、回転方向のせん断抵抗が大きくなり回転負荷も大きくなる。また、粘性抵抗が大きいので高速回転時に作動流体のせん断熱が大きくなる。石油は、静圧力を発生させるコンプレッサの振動を伝達しやすい。したがって、低負荷条件で高速かつ低振動に主軸を回転する必要がある超精密加工機の主軸には空気静圧軸受を採用する場合が多い。

静圧軸受は圧縮空気を供給する絞りの種類によって、その軸受性能が変わり、絞りを、軸受の有限の穴に設ける場合と、ポーラスを形成した多孔体を用いる場合がある。前者を採用した軸受を自成絞り軸受、後者を多孔質絞り軸受と呼ぶ。それぞれ、絞り直下の圧力が高く、負荷容量が大きいため、自成絞り軸受は軸受隙間が大きく設定できるが、多孔絞りでは無数の孔が分布しているため、トータルでの負荷容量は多孔質絞りの方が大きい。このため、低速回転であるが高負荷が必要な場合多孔質軸受、高速回転の場合は自成絞りが採用される。図2.9に自成絞り静圧空気軸受と多孔質絞り空気静圧軸受を備えた主軸を用
いた加工における仕上げ面の違いを示す。この結果はダイヤモンドバイトを用い、主軸に保持した工作物を正面旋削したときの加工表面である。同図(b)では、刃先の円周方向へのピック送りに伴う円輪が観察され、加工現象以外では理想的な加工面になっている。これに対して、同図(a)では、周期的な加工誤差が部分的に観察される。これは自成絞り軸受では、負荷分布に不均一性があるか、もしくは振動的な要素があることが示しており、その原因は作動流体の分布や流れに起因している。

Table 2.2 Comparison of bearing

<table>
<thead>
<tr>
<th>Bearing Type</th>
<th>Load capacity</th>
<th>Friction or Damping</th>
<th>Cause of Vibration</th>
<th>Peripheral device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic air bearing</td>
<td>Air</td>
<td>~500N</td>
<td>Very small</td>
<td>Compressor</td>
</tr>
<tr>
<td>Hydrostatic oil bearing</td>
<td>Oil, Water</td>
<td>~1000N</td>
<td>Small</td>
<td>Hydraulic pump</td>
</tr>
<tr>
<td>Sliding bearing</td>
<td>Oil</td>
<td>~10000N</td>
<td>Large</td>
<td>Co-rotation</td>
</tr>
<tr>
<td>Roller bearing</td>
<td>Roller Ball</td>
<td>~100000N</td>
<td>Small</td>
<td>Rolling roller</td>
</tr>
</tbody>
</table>

(a) Orifice throttling type air bearing (b) Porous throttling type air bearing

Fig.2.9 Comparison of cut surface
2.3.2 案内機構

工作機械において，案内要素は移動構造物の直線運動性能を左右する重要な要素である。特に，加工面の形状精度は，案内の真直度によって決定する。また，移動時の微小変動や振動は，そのまま加工面の面粗さを悪化させる要因となる。直動案内要素の特徴は，軸受要素と同様に，固定側と移動側との間で移動体を支持する要素の違いによって種類が変わっている。表2.3に各案内機構の特徴を示す。

工作機械に使用されているすべり案内は，固定側と移動側の案内面の間に入った微量な油で案内面の金属接触を避け，潤滑性を利用して摩擦を低減している。微量の油のため負荷能力など案内剛性への油の剛性の影響は少ない。そのため，すべり軸受は大きな負荷容量を持っていることを特徴としている。案内面での接触面積が大きいため，摩擦による減衰効果も高い。しかし，接触摩擦が多いことで移動時の摩擦抵抗が大きく，ロストモーションなど摩擦が原因で起きる位置決め誤差が生じやすい。また移動時において，案内面に介在する潤滑油の動圧効果によって，移動体は案内面と垂直方向に力が作用する。これにより，移動体は傾きや，案内面と垂直方向の位置誤差という運動誤差を生じる。

回転機構の軸受として採用した空気静圧は，移動体と固定側の間に圧縮空気の層を形成することで，摩擦のない環境を構築している。そのため，移動体は送り移動の際に滑らか移動する。しかし，作動流体である気体は圧縮性流体のため，案内面の静剛性が小さい。ニューマティックハンマと呼ばれる圧縮性流体が原因となる不安定な発振現象も発生することがある。このようなことから，空気静圧案内では重量と体積のある移動構造物を支持するのは難しい。

油静圧案内は作動流体が液体であるため気体に比べ，案内機構の負荷容量が大きい。また，気体に比べ粘性係数の高い液体を使用することで，粘性減衰も期待できるため，多くの超精密加工機に用いられてきた。しかし，超精密加工機の高速・高精度化に伴い，油静圧案内は，作動流体の動圧効果や油が乱流となることで生じる気泡などが問題となる。静圧案内は流体に一定の圧力をかけて移動体を支持することで，案内面に垂直方向の位置を決定している。しかしこ，移動時のきびしさや気泡の混入は静圧案内面間距離を不安定にし，移動体の姿勢変化や位置誤差に影響を及ぼす[23,27]。移動体の姿勢変化は位置決めに使用される直線スケールに位置の変動として検出される。リニアモータによる直接駆動の場合，この位置変動と送り方向の移動とを分離できないため，送り軸の位置決め精度を悪化させる。これらの問題は従来の超精密加工においては無視できる大きさだったが，加工の要求精度が高精度化することで問題が表面化してきている。従来の超精密加工機に使用されてきた流体による静圧案内は，高速・高精度の要求に対して，その要求に応えられなくなってきている。
<table>
<thead>
<tr>
<th>Guideways</th>
<th>Load capacity</th>
<th>Friction or Damping</th>
<th>Cause of Vibration</th>
<th>Peripheral device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic air</td>
<td>Air</td>
<td>~500N</td>
<td>Very small</td>
<td>Compressor</td>
</tr>
<tr>
<td>guideways</td>
<td>Hydrostatic oil</td>
<td>Oil, Water</td>
<td>~1000N</td>
<td>Compressor + surge tank</td>
</tr>
<tr>
<td>Sliding guideways</td>
<td>Oil</td>
<td>~10000N</td>
<td>Large</td>
<td>Hydraulic pump</td>
</tr>
<tr>
<td>Roller guideways</td>
<td>Roller Ball</td>
<td>~100000N</td>
<td>Small</td>
<td>Rolling roller</td>
</tr>
</tbody>
</table>

Table 2.3 Comparison of guideways
2.3.3 転がり案内機構

転がり案内とは移動物と固定側の間に球や円筒ころの転動体を挟み転がすことで移動物の摩擦を小さくする案内である。超精密加工機に使用される転がり案内機構は、大きく分けて二つある。それは転動体が循環する機構を移動側に持たせることで移動距離が無限である無限軌道転がり案内と、転動体が循環する機構を持たない移動距離に制限のある有限軌道転がり案内である。その特徴を表2.4に示す。無限軌道転がり案内は、走行用レールと転動体の循環機構を持ったブロックを組み合わせて使用する。そのため、設計の自由度が高く、機械への組込みが容易である。超精密加工機だけでなく、産業機械や多くの工作機械に採用されている[30][31]。一方、有限軌道転がり案内は、移動側・固定側とともに部品に転送面を作成する必要があり、転動体の移動距離も制限されるため設計の自由度が低い。また、転送面の製作が難しいため、一部のジグボーラーや超精密加工機など高精度が要求される機械でしか採用されていない。

転がり案内は機械的な接触で移動体を支持するため、案内面に垂直方向の位置は安定している。しかし、接触面にころがり摩擦が存在するため、移動方向に対して反対方向に発生する摩擦力は外乱となる。また、無限軌道転がり案内の場合、移動中に転動体の位置が転送面から循環部へ移動する際、転動体は予圧により転動体が受けている負荷に変動が生じる。これにより、移動体の位置は案内面に対して垂直方向に変動することが知られている。これをウェービングと呼んでいる。このウェービングによる周期的うねりは無限軌道転がり案内を使用した送り軸の真直性を悪化させる。

田中らは転送面をV型として、転動体に細長い円筒形のニードルベアリングを使用した有限軌道V-V転がり案内を開発し、転動体直径のばらつきを高精度に管理することで、ウェービングを抑制している[13]。

<table>
<thead>
<tr>
<th>Rolling element</th>
<th>Load capacity</th>
<th>Waving</th>
<th>Straightness</th>
<th>Productivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endless track guideways</td>
<td>Ball or Roller</td>
<td>〜100kN</td>
<td>0.01〜0.5μm</td>
<td>〜10μm/m</td>
</tr>
</tbody>
</table>

| Limited track guideways (V-V roller guideways) | Roller (Needle) | 〜10kN | 〜0.01μm | 〜0.5μm/m | Difficult |
2.3.4 駆動機構

表 2.5 に超精密加工機に使用される駆動機構の代表例を示す。

ボールネジとサーボモータによる駆動は、サーボモータの回転運動によりネジを回転させ、ナットによって直線運動に変換する機構である。ネジのリードとモータ出力の組み合わせにより送り方向の推力を決定するため、送り駆動機構の設計は自由度が高い。ボールネジは、ネジとナットの間には摩擦力を低減するために転動体としてボールが使用されている。ナットは転動体が循環する機構を有しているので、無限に移動することができる。また、ボールネジを支持するために転がり軸受が使用され、接触する箇所が多く転がり摩擦が多い。また、ネジ軸のねじり共振および振れまわり共振により最高速度やストロークに制限が生じる。ネジ軸の微振動により、送り系の応答性が制限される。

油静圧ネジとサーボモータの組み合わせの場合、ネジとナット間に油を作動流体とした静圧案内を形成している。これにより、ボールネジにおいて欠点であった、送り駆動系の摩擦力を低減する機構である。これにより移動に伴う摩擦力変動や接触部における微小振動などを抑制することができる。しかし、静圧案内部分の構造が複雑であり、設計・製造が難しい。また、ネジとナットの間に油が存在するため、送り系の応答性に影響を及ぼしている。そのため、低速時は外乱が少なく滑らかな移動が実現できるが、高速化には油静圧の問題点である気泡の発生などにより限界がある。

リニアモータ駆動の場合、移動体と固定側では磁力のみが発生しており、駆動機構に伴う接触および摩擦は存在しない。推力はモータの出力で決定するため、設計の自由度は低いが、製造は容易である。ただし、送り方向の剛性はモータのみで支えているため、移動方向の静剛性および動剛性はモータの応答特性に依存する。すなわち、広い周波数領域を制御できなければ、位置制御することが困難である[32][33]。田中らはリニアモータ駆動と案内に有限軌道 V-V 転がり案内を組み合わせることで高い応答性が実現できるとし、ボールネジとサーボモータによる駆動系と比べ、リニアモータ駆動の場合、約 4 倍の高周波まで応答性を改善できるとしている[13][14]。

<table>
<thead>
<tr>
<th>Table 2.5 Comparison of feed drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Ball screw + servo motor</td>
</tr>
<tr>
<td>Hydrostatic oil screw + servo motor</td>
</tr>
<tr>
<td>Linear motor</td>
</tr>
</tbody>
</table>
Fig.2.10 Measured method the movement of the processing point

Fig.2.11 Result of measurement at 1nm step displacement

Fig.2.10 に、超精密加工機において、送り軸移動に対する加工点付近での移動変位を測定した際の測定風景を示す。この超精密加工機は、案内機構に有限軌道 V-V 転がり案内を使用し、駆動装置にリニアモータを使用している。測定は静電容量型の非接触変位計を使用し、主軸の軸方向に移動した際の変位を測定している。図2.11 に横軸に時間、縦軸に移動距離を示した測定結果の図を示す。1nm ステップで並進に往復運動させた際の加工点での変位を示している。測定結果のように加工点において指令値通り 1nm がはっきりと移動できていることが見て取れる。このように案内面を有限軌道 V-V 転がり案内とし、駆動装置にリニアモータを用いることで、現状の要求精度を満たす送り駆動系を構築できる。
2.3.5 除振装置

2.3.1節の主軸装置において、自己が発生する振動によって加工面が影響を受けている例を記載した。このように超精密加工機では、わずかな振動が加工面に影響を及ぼす。振動の原因として、自己で発生する振動のほかに、外部から外乱として流入する振動が存在する。中でも、機械を設置している床は、他の機械の稼働や構内外を走行する車両などの影響を受け振動している。この床の振動を地動外乱振動と呼ぶ。地動外乱振動は床と接している支持装置を通して機械を振動させる。これを抑制するため超精密加工機では支持機構に除振装置を使用している。図2.12に除振装置を使用した超精密加工機を示す。

除振装置には、大きく分けて能動型と受動型の2種類が存在する。能動型は振動を検出し、振動を制御するための駆動装置を持ち、対象物の振動を小さくするように駆動装置を制御する。受動型は、対象物を剛体と考え除振装置の支持剛性との振動系における動特性を利用し、床からの振動を機械へ伝達しにくくする装置である。具体的には除振装置の剛性を低く設定し、機械の支持剛性を下げる。これにより、機械支持系の固有振動数を下げ、固有振動数以上の振動を伝えないようにする。除振装置には減衰性を付加するためにダンパーを追加して使用している。本研究では、この受動型の除振装置を超精密加工機の支持機構として使用する。

Fig.2.12 Vibration isolator
2.4 結論

本章では超精密加工機に要求される仕様を明確にするため、超精密加工に要求される精度を整理した。また、超精密加工で要求される精度を実現するために必要な機械要素について説明した。以下に本章で得られた結論を示す。

(1) 現状の超精密加工機に求められる加工精度は、面粗さ 1nmRa 以下、形状誤差 0.1μmP-V 以下である。加工の高精度要求は続いており、面粗さ 0.5nmRa 以下、形状精度 0.05μmP-V 以下と要求精度は現状の半分程度の誤差にする必要がある。

(2) 超精密加工機には、高速化への要求がある。自由曲面加工に用いられる 3 軸同期加工などでは、従来の旋削加工時の 10〜100 倍の送り速度が必要である。

(3) 超精密加工を実現するには、送り制御には 10nm 以下の最小設定単位が必要である。特に光学部品に特化した加工機では 1nm 以下の最小設定単位が必要である。

(4) 主軸装置には、転動体を使用した転がり軸受では転動体の移動に伴う荷重変動を受けるため、主軸への回転時の外乱力の少ない空気静圧軸受を使用する。空気静圧軸受については、負荷容量、回転数を勘案しワーク軸には多孔質軸受を、小径高回転の主軸には自成絞り軸受を用いている。

(5) 案内機構には、外乱に対する剛性を確保するため 1000N/μm 以上の静剛性を必要とし、安定した剛性を保てる案内として有限軌道 V-V 転がり案内を使用する。

(6) 送り駆動機構には、ボールネジを用いた送り系ではネジ軸の縦振動の影響で制御帯域が制限されるため使用できない。送り機構には 1nm の制御を実現するため、リニアモータ駆動を使用する。

(7) 床からの振動の流入を防ぐため、超精密加工機の支持には除振装置を採用する。除振装置には構造が簡単で安価である受動型の除振装置を使用する。
第3章 超精密加工機の送り案内機構の動剛性評価

3.1 緒論
超精密加工機は、加工結果にナノメートルオーダーの加工面精度が要求されるため、負荷変動と位置変動の少ない移動体の運動が求められている。また、主軸のアンバランスなど自己で発生する微小な力の影響を受けないためには、移動体の案内機構部の静剛性は1000 N/μm程度は必要と考えられる。特に光学部品では加工面に周期的な振動が転写されることが多いことに伴う振動特性も重要となる。要求される特性として、運動に伴い振動源とならないこと、切削力のような周期外乱力や加減速に伴う衝撃力に対抗するための動剛性を兼ね備えることが必要である。この両者の特性を満たすため、適切な案内の選定および開発が行われている。

この要求を満たすために超精密加工機の案内には、空気静圧案内、油静圧案内、ころがり案内が用いられてきた[34-37]。空気静圧案内では案内機構の剛性不足や気体の乱流、油静圧案内では動圧効果や気泡による静圧案内の軸受隙間の変動が問題となる。このため、転がり案内を用いた超精密加工機が提案されてきた。有限軌道 V-V転がり案内は、ナノメートルオーダーの真直性と、高い静剛性を備えている。一方で、無限軌道転がり案内は、転動体が循環するためにテーブルと案内を含めた構造がシンプルになる。このため、工作機械の案内として広く利用されてきたが、ウェービングと呼ばれる転動体の循環に伴う負荷変動、真直度に影響を与えることが問題視されていた。しかし、近年ではボールのサイズを小さくして負荷変動を抑制し、ナノメートルオーダーに近い真直性を備える案内も開発され、実際の工作機械に応用されている。白井らは真直度のウェービングが8nmであると報告している[38]。無限軌道案内は加工機を製作する上でコストメリットがあるが、その動剛性については未知の部分がある。また有限軌道案内についても動剛性を調査した文献は見当たらない。

本研究では同程度の大きさの有限軌道 V-V転がり案内を持つ超精密加工機と無限軌道転がり案内を持つ超精密加工機を比較しながら、案内機構の剛性評価を行う。従来、案内の剛性評価は静的試験と動的試験に基づく研究が行われている[39-46]。しかし、案内単体についてのものが多く、加工機上での評価は少ない。本研究では振動解析結果から簡易振動モデルを作成し、案内機構の等価剛性を同定して、構造の異なる案内の剛性比較を行う。

本章の内容は以下の通りである。3.2節では両者案内機構の構造について説明する。3.3節では加工機移動体のインパルス加振による振動モード解析結果を説明する。また、この結果に基づいた振動モデルを提示する。3.4節では同定された無限軌道転がり案内の等価剛性との比較のため静剛性試験を行い、移動体全体の静剛性とキャリッジ単体での
静剛性を比較する。3.5 節では振動測定から同定した等価静剛性と静剛性の関係を調べる。案内の比較のためにキャリッジ単体の等価剛性をばねで近似し、同定された等価静剛性を用いて有限要素法によるモーダル解析を行う。同様に有限軌道 V-V 転がり案内についても有限要素法によるモーダル解析を行う。実験モーダル解析の結果を簡易振動モデルから同定した等価静剛性を用いた有限要素法によるモーダル解析と比較する。3.6 節は以上をまとめた結論である。
3.2 超精密加工機の送り駆動系の案内構成

有限軌道 V-V 転がり案内の構造を図 3.1 に示す。固定側もしくは移動側の部品に直接 V 型の溝を形成し、相手側の部品は V 型の溝に合う形の凸形状を形成する。この溝および凸側の V 型面が案内面となる。この案内面は手仕上げラップにて極めて面粗さが小さくなるように仕上げられている。この案内面の間に円筒形状の転動体を挟み、転動体が整列して並ぶように保持器（以下リテーナ）を使用している。案内面を転動体が転がることで移動体は少ない摩擦で移動できる。案内面が角度 45°の V 型になっていることで鉛直方向と、水平面の送り方向に直交する方向（横方向）を拘束する。鉛直方向および横方向の静剛性は転動体と案内面の局部変形が大きな影響を与えるため、高い剛性を得るためには多くの転動体で支持する必要がある。また、固定側および移動側の部品が持っている剛性にも案内機構の剛性は影響を受けるため、高い剛性を確保するためには部品単体の剛性が高いことが要求される。

Fig.3.1 Structural of limited track V-V roller guideways
Fig. 3.2 Structural of endless track roller guideways
図3.2に無限軌道転がり案内の構造を示す。無限軌道転がり案内は工作機械の案内として広く利用されており、近年ではナノメートルオーダーの真直性を示すものも存在する。構造は固定側に取り付けられるレールとレール上を移動するブロック（キャリッジ）によって構成される。レールは断面図に示すような溝が作られており、その形状に合わせてキャリッジが作られている。レールの溝の面とキャリッジ側の合わさる面を案内面として、その間に円筒形状の転動体を挟んでいる。本章で使用した無限軌道転がり案内の転動体は、図と同様に円筒形状である。無限軌道転がり案内の転動体は円筒だけでなく、球を使用したものもある。キャリッジには転動体が循環するためのパイプが用意されており、これによって無限軌道を形成している。工作機械の移動体は最低2本のレール上の複数のキャリッジに取り付けられている。本章で使用する試験装置は移動体を支持するためにレール1本につき2個のキャリッジを使用し、合計4個のキャリッジで構成されている。無限軌道転がり案内の剛性は案内を取り付けている部品の剛性に影響を受けるため、機械装置に組み込んだ場合、キャリッジ単体剛性の総和では決定できない場合がある[30][31]。そのため、実際の案内機構剛性を把握することが機械の設計上および製作上重要となる。
3.3 インパルス加振試験による案内機構の動剛性試験

上述の転がり案内に共通した特徴として、荷重方向によって案内剛性が異なることが挙げられる。特に一般的な無限軌道転がり案内では、案内に垂直なラジアル方向と水平方向の負荷能力に差があることが知られている。これは案内および移動体の構造上、方向によって剛性が異なるためである。この特徴は振動特性にも大きな影響を及ぼしていると考えられる。

3.3.1 動剛性試験の試験方法

試験対象は無限軌道転がり案内(Drive A)と有限軌道V-V転がり案内(Drive B)を使用した加工機の送り駆動系とする。表3.1にそれぞれの仕様を示す。機械の構成などは、異なっているが、今回着目する移動体の質量、大きさは同程度のものを使用する。駆動装置も両者ともにリニアモータを使用している。実験では、インパクトハンマを使用したインパルス加振により周波数応答関数を測定する。この周波数応答関数は加振力に対する振動変位で表され、振動変位は加速度計で検出された加速度を2階積分した位置変位を用いている。この単位力あたりの位置変位量は動コンプライアンスと呼ばれている[47]。

図3.3に今回測定に使用した送り駆動系の模式図を示す。加振位置は図3.3に赤く太い矢印で表している。図3.4に実際の実験風景を示す。モード解析では、加振点を固定したインパルス加振による伝達関数測定から得られた動コンプライアンスの大きさと位相をプロットして実験によるモードを確認する。

Table.3.1 Specification of test stand

<table>
<thead>
<tr>
<th>Moving body</th>
<th>Drive A</th>
<th>Drive B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>320kg</td>
<td>280kg</td>
</tr>
<tr>
<td>Size (W×L×H)</td>
<td>500×500×200mm</td>
<td>450×400×150mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guideways</th>
<th>Type</th>
<th>Linear guideways</th>
<th>V-V Roller guideways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling elements</td>
<td>Roller</td>
<td>Needle roller</td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>#30</td>
<td>φ 2.81mm</td>
<td></td>
</tr>
<tr>
<td>Preload</td>
<td>C1</td>
<td>Self-weight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Type</th>
<th>Linear motor</th>
<th>Linear motor</th>
</tr>
</thead>
</table>

- 25 -
Fig. 3.3 Schematic of test stand

Fig. 3.4 Photo of testing
3.3.2 動剛性試験の結果

図3.5に案内面に対して垂直方向に加振した際の伝達関数を示す。また、図3.6にテーブルの水平面で送り方向に対して直交方向(横方向)に加振して得られた周波数応答関数を示す。この周波数応答関数は図3.3中の3軸加速度計①の水平および垂直方向の加速度を測定して得たものである。動コンプライアンスの大きさは、外乱振動に対する移動体の振動し易さを表している。測定の際には振動測定の信頼性を評価する上で、各ピークでのコヒーレンスが1に近いことを確認している。

図3.5および図3.6の周波数応答関数を見ると加振方向に関わらず、200Hz付近および500Hz付近において、有限軌道V-V転がり案内内の動コンプライアンスは無限軌道転がり案内と比較して1/3〜1/10程度である。また、両案内とも案内に対して垂直方向に加振した際の周波数応答関数の方が、動コンプライアンスのピーク値は1/2程度になっている。これは移動体が方向によって振動し易さが異なることを表している。また、今回測定を行った試験対象では有限軌道V-V転がり案内の方が動コンプライアンスを小さく振動し難いことを示している。動コンプライアンスの大きさは減衰の影響が大きいため、有限軌道V-V転がり案内の方が案内に対して垂直方向に加振した際の周波数応答関数の方が移動体のピーク値は1/2程度になっている。これにより、送りが方向によって振動し易さが異なることを示している。また、今回測定を行った試験対象では有限軌道V-V転がり案内の方が案内面で移動体を支持している転動体の数が多いことが原因の一つだと考えられる。

測定結果は案内面の種類に関わらず、垂直方向の動コンプライアンスよりも横方向の動コンプライアンスが高く振動しやすいので、横方向加振に着目し振動モード解析を実施した。モード解析の結果、無限軌道転がり案内の伝達関数にみられるピーク周波数のうち、200Hz以下の周波数の振動モードは案内に関係する形態ではなく機械全体が振動するなど着目している移動体の振動とは異なる振動モードであることがわかった。この伝達関数での20Hz付近のピークは機械全体のロッキング振動モード、50Hz付近のピークは機械全体が水平面で振動するモードであった。

200Hz以上の周波数の振動モードを確認すると、案内の種類に関係なく移動体を剛体とする振動形態が見られた。図3.7にこの振動モード図を示す。この振動モードは、図3.8に示すように、移動体を上部より視認した場合、移動体中心を回転中心として回転するという振動モード(移動体の回転振動モード)である。これは移動体の形状が変形していないことから、移動体を剛体とし移動軸の案内の水平方向剛性をばねとして発生する振動モードであると考えられる。このような振動モードは送り駆動系の位置検出用スケールが必ずしも回転中心にいないため、アベの原理より位置検出に影響を与える振動であると考えられる。
超精密加工機に用いられるスケールの分解能はナノメートルオーダーであるため，10nm/N程度のコンプライアンスであってもスケールの位置によっては振動が検知されることがある．すなわち，この振動モードの発生が送り駆動系の安定性に関して非常に影響があると言える．したがって案内の振動特性は，直接加工面に転写するなどの影響を与えるだけでなく，位置決め性能にも影響を与える可能性がある．

移動体の回転振動モードは，図3.6の周波数応答関数において，無限軌道転がり案内では200Hzに，有限軌道V-V転がり案内では400～500Hzにみられるピークのモードである．このように移動体の大きさがほぼ同じ両者において，同様な振動モードの固有振動数に差があるのは案内機構の横方向静剛性に差があるものと考えられる．この横方向静剛性の差を検証するため，移動体質量と横方向静剛性を使用した振動モデルを用いて，案内の横方向の等価静剛性を同定する．

![Frequency response of vertical direction](image)

Fig.3.5 Frequency response of vertical direction
Fig. 3.6 Frequency response of horizontal direction

Fig. 3.7 Result of test modal analysis (Rotational mode)
Fig. 3.8 Outline of rotational mode
3.3.3 簡易振動モデルを用いた試験結果の評価

前節の振動試験の結果から、回転振動モードを模擬するために、移動体を剛体、案内をばねと考えたモデルを考える。

振動系のモデルを図3.9に示す。この場合、並進する固有振動数と、ヨーイング方向に物体が回転する固有振動数の2自由度系となる。並進モードの運動方程式を式(3-1)に示す。また、回転振動モードの運動方程式を式(3-2)に示す。ここで、移動体質量をM、案内の等価静剛性をK、並進方向の移動量をx、移動体の慣性モーメントをI、回転角度をθ、案内間の距離をlで表す。

Fig.3.9 Vibration model of driven body (Vibrating system with two degree of freedom)
\[
M\ddot{x} + 2Kx = 0 \quad (3-1)
\]
\[
I\ddot{\theta} + \frac{1}{2}I^2K\theta = 0 \quad (3-2)
\]
この場合並進するモードの固有振動数 \(f_z\) を式 (3-3) に示す。移動体の回転振動モードの固有振動数 \(f_\theta\) を式 (3-5) に示す。
\[
f_z = \frac{1}{2\pi} \sqrt{\frac{2K}{M}} \quad (3-3)
\]
\[
K_\theta = \frac{K}{2I} \quad (3-4)
\]
\[
f_\theta = \frac{1}{2\pi} \sqrt{\frac{K_\theta}{I}} \quad (3-5)
\]
無限軌道転がり案内の場合、4 隅にキャリッジが配置されているので、\(K\) はキャリッジ 1 個あたりの剛性の 2 倍となる。また、有限軌道 V-V 転がり案内の場合は、案内面全体にニードルころが分布しているため、横方向総合剛性の 1/2 を考える。本章では回転する振動モードの固有振動数 \(f_\theta\) に着目しているため、図 3.9 に示す振動モデルを使用して、あらかじめ計算された慣性モーメント \(I\) と実験により得られた固有振動数 \(f_\theta\) から移動体を支持している等価静剛性 \(K\) を算出する。表 3.2 に示す振動モードの固有振動数から同定した等価静剛性 \(K\) を示す。この等価静剛性 \(K\) は水平方向支持剛性を示しており、案内の静剛性を表している。今回測定した 2 種類の機械では固有振動数に差が出ていたため、同定された剛性値にも違いがみられる。

<table>
<thead>
<tr>
<th>Table 3.2</th>
<th>Comparison of equivalent stiffness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guideway</td>
<td>Linear guideways</td>
</tr>
<tr>
<td>Calculated inertia (I)</td>
<td>15kg m(^2)</td>
</tr>
<tr>
<td>Measured natural frequency (f_\theta)</td>
<td>228Hz</td>
</tr>
<tr>
<td>Estimated eq. stiffness (K)</td>
<td>380N/(\mu m)</td>
</tr>
</tbody>
</table>

この結果より案内の違いによって剛性が大きく異なっている。これは移動体を支持している転動体の数の違いや移動体自身やキャリッジおよびレールなどの剛性の差によって起きているものと考えられるが、原因は特定できていない。特に剛性の低い無限軌道転がり案内について、静剛性の確認を行う。
3.4 等価静剛性の実験による確認

3.4.1 静剛性の試験方法

前節において, 移動体の回転振動モードの固有振動数を測定し, この固有振動数から案内面の等価静剛性を算出した. この同定された等価静剛性の確認のため, 動特性試験で使用した無限軌道転がり案内で支持された移動体の横方向静剛性を測定した.

図 3.10 にその測定風景を示す. 4 個のキャリッジで支持されている移動体を送り方向とは水平面内で直交した方向（横方向）から測定者が押し, その荷重を荷重計にて測定する. 荷重は押した場合と引いた場合の両方向を測定している. 同時に移動体上にミラーを置き, その移動変位を静電容量型の変位計を用いて測定する. 荷重計および変位計の測定データは A/D 変換され, PC に記録される.

また, キャリッジ 1 個の水平方向静剛性も測定している. 図 3.11 にキャリッジ 1 個の静剛性試験の様子を示す. 移動体の静剛性を測定した際と同様に, キャリッジに与えた荷重は荷重計にて測定し, キャリッジの移動量は静電容量型の変位計にて測定している. また, 図 3.12 にキャリッジ一個での測定の模式図を示す.

Fig.3.10 Experimental setup of table stiffness (All Carriage)
Fig. 3.11 Experimental setup of carriage stiffness

Fig. 3.12 Detail of measurement of stiffness (In the case of 1 carriage)
3.4.2 静剛性測定結果

図3.13に移動体の横方向静剛性を測定した結果を、図3.14にキャリッジ単体の横方向静剛性を測定した結果を示す。両試験ともに超精密加工での加工負荷程度の加重を考慮し、移動体の静剛性試験では±200N程度、キャリッジ単体では±50N程度の荷重で試験を行う。

表3.3に測定結果の一覧を示す。測定した横方向の総合静剛性はキャリッジ単体の静剛性を4倍にした剛性とは一致しない。単体剛性を4倍した値に比べ、約7％程度低下している。これはキャリッジ4個を組み合わせた際に、他のキャリッジの影響を受け平均化されることが移動体の剛性なども関与することで低下したものと考えられる。

多少差異はあるものの、静剛性の測定結果から、打撃加振試験によって得られた固有振動数を用いて同定した等価静剛性は、水平方向の静剛性とある程度一致しているといえる。このことから回転方向の固有振動数を用いて、案内の水平方向静剛性を予測することが可能であると言える。

Fig.3.13 Result of measurement of stiffness (All)
Fig. 3.14 Result of measurement of stiffness (1 Carriage)

Table 3.3 Comparison of stiffness

<table>
<thead>
<tr>
<th></th>
<th>Calculated from natural frequency</th>
<th>Measurement</th>
<th>Ratio of stiffness (Calc./Measure)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1Carriage</td>
<td>190N/μm</td>
<td>220N/μm</td>
<td>0.86</td>
</tr>
<tr>
<td>All</td>
<td>760 N/μm</td>
<td>820 N/μm</td>
<td>0.93</td>
</tr>
</tbody>
</table>
3.5 有限要素解析による等価静剛性の確認

今回振動測定と簡易モデルによって得られた等価静剛性を用いて、有限要素法によるモーダル解析を実施し、実験モーダル解析で得られたモード形状および固有振動数の比較を行い、簡易モデルの妥当性を検証する。解析に用いた有限要素解析ソフトは ANSYS Workbench R14.0 である。

3.5.1 無限軌道転がり案内の場合

試験装置の主要部品であるベッドと移動体の 3D モデルを作成し、使用されている材料相当の材料特性を計算条件として入力する。無限軌道転がり案内のキャリッジ部分に振動測定と簡易モデルによって得られた等価静剛性値と同等のばね要素を付加し、移動体を支持している。解析の条件はキャリッジが4隅にそれぞれ配置されている場合で行う。有限要素法によるモーダル解析では、固有振動数と固有振動モードの二つの結果が導き出される。今回の有限要素法による振動モード解析では減衰を考慮していないため、固有振動モードは各部の相対変位であるモード形態のみを示している。

表 3.4 に実験モーダル解析の結果と有限要素法によるモーダル解析の比較を示す。実験モーダル解析での固有振動数と有限要素法でのモーダル解析の結果がほぼ一致している。また、図 3.15 に有限要素法によるモーダル解析でのモード形状を示す。振動モードについても良く一致している。このことから打撃加振試験による回転方向の固有振動数から求めた等価静剛性を有限要素モデルの一般的な転がり案内の剛性モデルとして使用できると言える。

<table>
<thead>
<tr>
<th>Table 3.4 Comparison of natural frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural frequency</td>
</tr>
<tr>
<td>Measurement</td>
</tr>
<tr>
<td>FEM</td>
</tr>
</tbody>
</table>

Fig.3.15 Result of FEM (218Hz)
3.5.2 有限軌道 V-V 転がり案内の場合

無限軌道転がり案内はキャリッジが簡易モデルの一つのばねと考えやすい。しかし、有限軌道 V-V 転がり案内は案内面全体に転動体が配置されているため、集中したばねとして考えにくい。このような有限軌道 V-V 転がり案内を使用した機械においても同様に簡易モデルが妥当かを有限要素法により検証を行う。

有限軌道 V-V 転がり案内の解析条件は、移動体と固定側のベッド間ばね要素を等分布で配置し計算を行った。ばね要素は簡易モデルで得られた等価静剛性である。表 3.5 に振動測定と有限要素法によって計算された固有振動数の比較を示す。表のように固有振動数は近い値を示した。また、有限要素法での振動モードを図 3.16 に示す。図 3.7 に示した実験モーダル解析にて得られた振動形態と同様の振動形態を示している。

この結果から有限軌道 V-V 転がり案内の機械においても、簡易モデルにより得られた等価水平方向剛性の有限要素モデルを使用して回転方向振動の再現を行うことができる。すなわち、支持点が移動体送り方向に分布している有限軌道 V-V 転がり案内においても、回転方向固有振動数から求めた等価静剛性を FEM に使用できることがわかる。

<table>
<thead>
<tr>
<th>Table 3.5</th>
<th>Comparison of natural frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement</td>
<td>430Hz</td>
</tr>
<tr>
<td>FEM</td>
<td>405Hz</td>
</tr>
</tbody>
</table>

Fig.3.16 Result of FEM (V-V roller guideways 405Hz)
3.6 結論

超精密加工機に用いる有限軌道案内と無限軌道案内の動剛性の比較を行うために、実機に近い可搬能力がほぼ同じテストスタンドを2種類製作し、振動特性の測定を行った。以下に本章で得られた結論を示す。

(1) いずれの案内においても、振動モードは、移動体の回転振動モードが支配的であり、有限軌道 V-V ころがり案内の固有振動数は無限軌道転がり案内の固有振動数の約2倍となった。

(2) 静剛性を比較するために、移動体の回転振動の簡易モデルから案内の等価静剛性を同定した結果、有限軌道 V-V ころがり案内の等価静剛性は無限軌道転がり案内の等価静剛性の約1.6倍であることがわかった。

(3) 無限軌道転がり案内の等価剛性が低い理由を検証するために、キャリッジ1個の場合と移動体に組み込んだ場合の静剛性試験を行った結果、等価静剛性と実験による静剛性はほぼ一致した。

(4) 案内の等価静剛性モデルの妥当性を検討するために、同定された等価静剛性を用いて有限要素解析による固有モード解析を行い、振動測定結果と一致することを確認した。

以上をまとめると、有限軌道 V-V 転がり案内は、無限軌道転がり案内を用いた場合に比べ、固有振動数も高く、動コンプライアンスが低いことがわかった。この理由は、無限軌道転がり案内に比べ、有限軌道転がり案内の方が移動体を支持している転動体が多く、接触点が多く、接触摩擦も多いため、静剛性、動剛性共に高いものと考えられる。
第4章 転がり案内に発生する抵抗力の実験的解析

4.1 緒論
非球面レンズ用金型の加工精度は、光学商品の高性能化に伴い加工精度の向上が求められている。加工精度は面粗さと共に形状精度の正確さを求められている。形状精度には送り駆動系の運動精度が大きく影響を与える。運動精度を悪化させる要因の一つに送り方向の摩擦力がある。このため、超精密加工機は案内要素には摩擦が少ない流体軸受け案内を採用する例が多い。流体軸受けの場合、移動体と固定側の間に流体が介在することで固定側と移動側が直接接触していない。これが移動時の抵抗力を少なくしている。一方、転がり案内は移動体と固定側の間で転動体と機械的な接触で支持されているため、接触面に摩擦が存在する。この摩擦が移動時は抵抗力として外乱となる。送り駆動系にリニアモータを採用した場合、案内にのみ機械的な摩擦が存在するため、この抵抗力が位置決め性能に大きく影響する[48]。

転動体との接触面から受ける送り方向の抵抗力は転がり摩擦力として扱われ、多くの先行研究が行われている。小泉らは円筒ころを平面上で転がしたとき接触面で生じる摩擦力を測定するため、円筒ころに加えた駆動力と円筒ころの回転角の関係を測定し、駆動力と回転角の関係はヒステリシスループを描き、その形状はヘルツの接触面積に応じて変化することを報告した[49]。佐藤らは無限軌道転がり案内の外乱力を測定し、リテーナとグリスが摩擦力と減衰性に与える影響を実験的に調査した[50-52]。これにより転がり案内の移動量と摩擦力の関係が示すヒステリシスループの形状にリテーナとグリスが関係していることを示した。藤田らは、無限軌道直動転がり案内の外乱力をグローバル領域の特性と接触面のマイクロ領域の摩擦特性、および摩擦力に与える速度の影響を別々に観察する方法を提案した[53]。さらに接触面の弾性変形によって変化する成分であるスティック摩擦、接触面のすべり速度によって変化するスリップ摩擦を定義した。これらの研究では、工作機械で一般的に使用される無限軌道転がり案内を対象としている。そのため、高精度な加工を要求される加工機で採用されている有限軌道V-V転がり案内に着目した例はない。

第3章の結果から、有限軌道転がり案内は無限軌道転がり案内に比べ静剛性が高く減衰性も高いことから、接触摩擦が大きい可能性が考えられる。本章では有限軌道V-V転がり案内の移動時における抵抗力を測定し、その特性を調査した。

本章の内容は以下の通りである。4.2節では、抵抗力の測定方法について述べる。4.3節では無限軌道転がり案内と有限軌道V-V転がり案内の移動時の抵抗力の差について述べる。4.4節では測定結果を元に有限軌道転がり案内の抵抗力について述べる。4.5節は以上をまとめた結論である。
4.2 抵抗力の評価方法

4.2.1 抵抗力の測定方法

図 4.1 に試験方法の概念図を示す。図 4.2 に試験対象とした機械の模式図を示す。この模式図は機械の軸構成を示している。表 4.1 に試験対象とした機械の仕様を示す。また、表 4.2 に試験対象として使用した X 軸送り駆動系の概要を示す。試験対象の送り軸はリニアモータで駆動され、移動体は有限軌道 V-V 転がり案内で支持されている。転がり案内の潤滑には油を使用し、適宜案内面に供給されている。移動体の位置は数値制御装置(CNC)で制御されている。送り方向の位置情報は、リニアエンコーダで検出した変位を移動体の位置として用い、CNC にてフィードバック制御されている。

本章では、CNC が移動体の制御に用いている移動体の位置情報および推力に対応する電流値を CNC より採取し PC に取り込むことで移動体の状態を測定する。モータの駆動力は、電流フィードバック値に比例すると考え、推力係数を乗ずることで算出する。また、位置情報を数値微分することで速度、加速度を算出している。

![Fig.4.1 Experimental setup](image)

| Table 4.1 Specification of ultra-precision machine tools used for experiments |
|-----------------------------|--|
| Control axis | X,Y,Z,B,C |
| Slide-way type | V-V roller guide way |
| Drive system | Liner motor driven with core |
| Travel | X axis:450mm,Y axis:100mm,Z axis:150mm |
| Spindle and Table | Work spindle (C-axis) |
| | Tool spindle |
| | Rotary table (B-axis) |
試験時に CNC へ移動距離と移動速度を指令している。図 4.3 に試験時の CNC への指令の例を示す。ステップ移動距離を d, 最大移動距離を d_a, 指令速度を v とする。図のように一定時間速度を維持し停止することを繰り返す。これは送り駆動系では、加減速時に移動誤差が発生することが多いため、加減速時の挙動を把握することが重要となる。図 4.3 の例はステップ移動距離 $d=2$mm, 速度 $v=600$mm/min, 最大移動距離 $d_a=12$mm である。これにより一定距離を移動した後、同じ位置へ戻ってくるときのモータ駆動力を測定する。

Table 4.2 Specification of ultra-precision machine tools used for experiments (X axis)

<table>
<thead>
<tr>
<th>Moving body</th>
<th>Mass</th>
<th>280kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Travel</td>
<td>400mm</td>
</tr>
<tr>
<td>Size (W×L×H)</td>
<td>450×400×150mm</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Guideways</th>
<th>Type</th>
<th>Limited track V-V roller guideways</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling elements</td>
<td>Needle roller</td>
<td></td>
</tr>
<tr>
<td>Roller size</td>
<td>2.81mm diameter</td>
<td></td>
</tr>
<tr>
<td>Lubricating</td>
<td>Oil</td>
<td></td>
</tr>
<tr>
<td>Preload</td>
<td>Self-weight</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Actuator</th>
<th>Type</th>
<th>Linear motor</th>
</tr>
</thead>
</table>

Fig.4.2 Schematic of ultra-precision machine tools used for experiments
4.2.2 モータ駆動力における慣性力の影響

CNC装置から取得したフィードバック電流値を用いて算出されるモータ駆動力 \(F_m \) には移動体の慣性力も含まれている。送り駆動機構にリニアモータを使用しているため、移動に伴い発生する力は慣性力と案内の外乱を含む抵抗力のみである。そこで、有限軌道 V-V 転がり案内の抵抗力 \(F_r \) は、移動体の質量を \(m \), 移動時の加速度を \(a \) として、下記のように定義する。\[F_r = F_m - ma \] (4-1)

図4.4はモータ駆動力の時間推移を示している。移動開始の加速時に大きな力が発生し、すぐに減速して停止している。停止時に徐々にモータ駆動力が少なくなる様子が見て取れる。図4.4にステップ移動距離 \(d=0.01\,\text{mm} \), 速度 \(v=60\,\text{mm}/\text{min} \), 最大移動距離 \(d_a=0.20\,\text{mm} \) の設定でのモータ駆動力を示す。図4.5(a)は位置に対するモータ駆動力を示している。設定速
度が速いため、短い移動距離では加速・減速の加速度の影響を大きく受けている。すなわち、慣性力の影響が大きく案内の抵抗力がわかりにくくなっている。図4.5(b)は式(4・1)のように図4.5(a)のグラフから慣性力を引き算した結果である。慣性力の影響を除去すると移動中と停止時には抵抗力に大きな差があることがわかる。藤田らは停止時に残る力をスティック摩擦と定義した。停止時には、ほぼスタート時の抵抗力になっている。有限軌道転がり案内においては、スティック摩擦がほとんどないことを示している。無限軌道直動転がり案内の場合、このスティック摩擦が大きく、移動の往復運動においてヒステリシスループを形成していた。しかし、本測定結果ではヒステリシスループにはなっていない。全体的にプラス移動方向につれて抵抗力が上がり傾向となっている。この原因を特定するため、次に座標位置による抵抗力の影響を測定する。

Fig.4.4 Time transition of measured driving force
(a) Measured driving force with inertia (F_m)

(b) Measured resistance force (F_r)

Fig. 4.5 Measured driving force for $d=0.01\text{mm}$, $v=60\text{mm/min}$
4.2.3 長距離移動時のモータ駆動力の変動

転がり案内の摩擦を含めた抵抗力の測定では、微小な領域での駆動力から特性を調べている例が多い。しかし、リニアモータの駆動力は姿勢変化による重力の影響や、案内の真直度の影響などによって、場所によって異なる可能性がある。図4.6にステップ移動距離

\[d=1.0 \text{mm} \]

速度 \[v=60\text{mm/min} \]

最大移動距離 \[d_a=100\text{mm} \]でのモータ駆動力を示す。図のように位置によって駆動力が大きく変化している。変化は位置に対して周期的であり、約十数mmの周期で変動している。往復で同一位置変動がみられる。変動には再現性があり、振幅の量は10〜15Nくらいである。位置に再現性があるため、一定な送り速度で移動しても発生すると考え、一定速度でのモータ駆動力の変化も測定した。図4.7は、送り速度 60mm/min一定速度で移動した際のモータ駆動力を測定した結果である。図4.6と同様な駆動力の周期的な変動が測定された。

Fig.4.6 Measured driving force for \(d=1\text{mm} \), \(v=60\text{mm/min} \), \(d_a=100\text{mm} \)

Fig.4.7 Measured driving force for \(d=100\text{mm} \), \(v=60\text{mm/min} \), \(d_a=100\text{mm} \)
転がり案内における周期的な変動として転動体の出入口が原因となるウェービングが良く知られている。ウェービングは転動体間距離の約2倍の長さで発生する。しかし、転動体間距離の2倍には一致していない。また、抵抗力の半分である10～15Nの変動になるとは考えにくい。それ以外に、有限軌道V-V転がり案内の案内面の真直度においても、そのような周期的なうねりは発生するような真直度の周期性は存在しない。

案内の幾何学的な影響などでは、今回の周期的な変動が説明できないことから、案内機構では無く、送り駆動装置に原因があると考えられる。そこで、CNCから取得している電流フィードバック値と実際の荷重の関係を調べるため、荷重計を用いて実際の荷重とCNCから取得している電流フィードバック値を比較した。図4.8に駆動方向10mmおきに荷重計の値が10Nになるように送り方向へ押した際の電流値をプロットしたグラフを示す。電流値は位置により大きく変動している。

一方、この変動がモータ推力と電流値の直線性のずれから生じているのか、電流がオフセットしているのかを確認した。図4.9は各位置における1Nあたりの電流値の直線性を表したものである。直線性の確認には10N～50Nまで荷重を変化させた際の電流値の上昇から算出した値である。1Nあたりの電流値はリニアモータの推力定数に対応する。位置による推力定数の変動は5%以下である。したがって、モータ駆動力が0の時の電流フィードバック値が位置によって周期的に変動していると考えられる。このことから位置による周期的な変動については案内の抵抗力とは無関係である。しかし、機械の姿勢变化による重力の影響や静止摩擦の位置的な差は抵抗力に含まれていると考えられる。微小さな動きに対しては大きな影響を与えないと判断し、これ以降の測定では周期的な電流値の変動から影響を少なくするため、移動距離が短い範囲で検証を行う。
Fig. 4.8 Relationship between position and electric current at the load of 10N

Fig. 4.9 Relationship between position and thrust constant
4.3 無限軌道転がり案内との抵抗力の比較

有限軌道転がり案内は無限軌道転がり案内と比べ、より高精度な位置決めが必要な場合に使用されている。従って、位置決め精度に影響を及ぼす送り軸移動時の抵抗力においても大きな差があるものと考えられる。そこで同一移動条件でのモータ駆動力の違いを測定し比較する。表 4.3 に有限軌道転がり案内と比較した無限軌道転がり案内(Drive A)の仕様を示す。有限軌道転がり案内(Drive B)は本章で使用している試験装置と同一である。

<table>
<thead>
<tr>
<th>Table 4.3 Comparison of specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moving body</td>
</tr>
<tr>
<td>Mass</td>
</tr>
<tr>
<td>Size (W×L×H)</td>
</tr>
<tr>
<td>Guideways</td>
</tr>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Rolling elements</td>
</tr>
<tr>
<td>Size</td>
</tr>
<tr>
<td>Preload</td>
</tr>
<tr>
<td>Lubricant</td>
</tr>
<tr>
<td>Actuator</td>
</tr>
<tr>
<td>Type</td>
</tr>
</tbody>
</table>

無限軌道転がり案内を使用した送り駆動系でのモータ駆動力の測定結果を図 4.10 に示す。移動量 $d=0.1\text{mm}$ を 15mm/min の速度指令で移動し、1秒間停止するという運動を繰り返している。移動開始からモータ駆動力は増加し、移動中はほぼ一定で推移し、停止するとならだらかに駆動力が低下していく。1秒ではモータ駆動力は低下し続けて定常にならないうちに、次の動作に移行している。図 4.11 に有限軌道転がり案内を使用した送り系でのモータ駆動力の時間推移を示す。この測定は、無限軌道転がり案内と同一条件で測定している。

有限軌道転がり案内の場合、加減速時、一定速度移動時、停止時のモータ駆動力がはっきりと識別できる。無限軌道転がり案内で観られた停止直後のモータ駆動力の減少は見られず、停止するとすぐにモータ駆動力は下がり停止中は一定を保っている。このような違いが、微小な位置決め時には大きな影響を及ぼすと考えられる。このモータ駆動力の差は、潤滑油の違いや、案内機構の構造的な差から生じていると考えられる。ここからは有限軌道転がり案内に着目し、移動時の抵抗力の特徴について評価していく。
Fig. 4.10 Measured driving force for $d=0.1\text{mm}, \ v=15\text{m/min}$ (Endless track linear guideways)

Fig. 4.11 Measured driving force for $d=0.1\text{mm}, \ v=15\text{m/min}$ (Limited track V-V roller guideways)
4.4 有限軌道転がり案内の抵抗力について

4.4.1 微小移動時の抵抗力

図4.12にステップ移動距離 $d=0.001\,\text{mm}$、最大移動距離 $d_a=0.020\,\text{mm}$、速度 $v=60\,\text{mm/min}$の設定での抵抗力を示す。1周目を青、2周目を赤で示している。1周目の移動開始直後の抵抗力に差が見られる。移動開始直後の抵抗力は2周目よりも大きい。そのほかの領域では1周目と2周目の差はほとんど見られない。スティック摩擦は非常に小さく、停止時にはほとんど開始時の抵抗力まで低下している。特徴的なのは抵抗力全体のヒステリシスループが見られることがある。反転直後の位置から数回のステップは抵抗力が少ない。岡部らによると抵抗力が飽和するまでの距離はヘルツの接触面の駆動方向長さと等しいとしている[54]。

![Fig.4.12 Measured resistance force for $d=0.001\,\text{mm}$, $v=60\,\text{mm/min}$, $d_a=0.020\,\text{mm}$](image-url)
図 4.13 にステップ移動距離 $d=0.005\text{mm}$、最大移動距離 $d_a=0.10\text{mm}$、速度 $v=60\text{mm/min}$ の設定での抵抗力を示す。ステップ移動距離が 2 倍である本条件においても、移動開始直後は抵抗力が大きい。図 4.12 との違いは反転時に抵抗力の減少の影響が少ないことである。反転した後の 2 ステップ程度、抵抗力の減少が見られる。このことから、抵抗力が飽和するには、10\text{μm} 程度であると考えられる。

ステップ移動距離が図 4.13 の倍である $d=0.010\text{mm}$、最大移動距離 $d_a=0.20\text{mm}$、速度 $v=60\text{mm/min}$ の設定での抵抗力を 4.2 節の図 4.5(b)に示している。移動開始直後は、抵抗力が大きいのは他の条件と変わらないが、この条件では反転時の抵抗力の減少が見られない。上記のように抵抗力の飽和が 10\text{μm} 程度であることから、1 ステップ目で飽和していることがわかる。ステップ移動距離が大きくなり、ヘルツ接触面幅を超えると反転時の抵抗力の減少は見られなくなる。

![Fig.4.13 Measured resistance force for $d=0.005\text{mm}$, $v=60\text{mm/min}$, $d_a=0.020\text{mm}$](image-url)
ここでヘルツの接触理論式[55]より曲率半径 R の円柱が単位長さあたり P の垂直力で平面に押し付けられた際の接触面幅 $2a$ は、平面のヤング率を E_A、平面のポアソン比を ν_A、円柱のヤング率を E_B、円柱のポアソン比を ν_B とすると下記の式であらわされる。

$$2a = 4 \sqrt{\frac{P}{\pi} \left(\frac{1-\nu_A^2}{E_A} + \frac{1-\nu_B^2}{E_B} \right) / (1/R)} \quad (4-2)$$

図 4.15 に、式(4-2)を用い転動体 1 個当たりの荷重に対する接触面幅を表したグラフを示す。このグラフから転動体 1 個当たりの荷重が 10N 以下であれば、接触面幅は 10μm 程度になる。

転動体 1 個当たりの荷重は移動体を支持している転動体の数で決まる。予圧荷重が自重である本対象においては、案内面にあるすべての転動体が有効に支持しているわけではないが、数百個のころが支持していれば、1 個当たりの荷重は 10N 以下となる。すなわち、転動体ごとにかかる荷重に偏りが少なく、非常に多くの転動体で支持されていると考えられる。多くの転動体が接触しているため、接触摩擦が多く、その結果、減衰作用の大きい案内機構となっていると考えられる。

Fig.4.14 Schematic of Hertz contact theory

Fig.4.15 Relationship between contact width and load
4.4.2 速度の違いが抵抗力に及ぼす影響

図4.16(a)にステップ移動距離$d=0.1\text{mm}$、最大移動距離$d_a=1\text{mm}$、指令速度$v=45\text{mm/min}(\text{赤})$、$v=15\text{mm/min}(\text{緑})$、$v=5\text{mm/min}(\text{青})$の設定で測定した抵抗力を示す。図4.16(b)は上記条件での位置による速度変化を表した図である。速度の増加と共に全体の抵抗力は増加しており、抵抗力は速度に依存していることがわかる。停止時の抵抗力が少ないことからスティック摩擦が小さいことがわかっている。移動時には速度に抵抗力が依存していることから、スリップ摩擦のみが作用しているものと推測される。その原因としてスリップ摩擦が速度によって変化する力であるため、潤滑油の粘性抵抗なども原因の一つと考えられる。

![Comparison of measured resistance force on difference velocity](image1)

(a) Comparison of measured resistance force on difference velocity

![Comparison of measured velocity on difference setting velocity](image2)

(b) Comparison of measured velocity on difference setting velocity

Fig.4.16 Comparison of measured resistance force at difference velocity
4.4.3 潤滑油粘度の違いによる抵抗力への影響

前節において、移動中の抵抗力の大きさが速度に依存していることがわかった。速度の増加に伴い抵抗力が増加していることから、速度に比例する潤滑油の粘性抵抗が原因として考えられる。そこで、粘性の違う潤滑油を使用し抵抗力の比較を行った。図4.17に現状使用している潤滑油において、ステップ移動量$d=0.01\text{mm}$、往復距離0から0.2mmの時の抵抗力を設定速度の違いで比較した図を示す。この図では移動距離の0.05から0.1mmを拡大している。設定速度は5mm/minと30mm/minである。図のように移動中の抵抗力は、5mm/minの時の抵抗力に比べ30mm/minの抵抗力が大きくなっている。このように速度が速くなると抵抗力が大きくなる傾向を示している。図4.18は、従来のものより粘度を約1/6にした潤滑油を使用した時の抵抗力の推移である。従来の潤滑油の場合とは異なり、設定速度による抵抗力の差はほとんど見られなくなった。このことから、前節でみられた抵抗力の速度依存性は、潤滑油の粘性抵抗の影響が最も大きいと言える。このため、更なる高精度な位置決めを行うには、粘度の低い潤滑油を使用することが望ましい。

Fig.4.17 Comparison of resistance force on velocity difference
Fig. 4.18 Comparison of resistance force on velocity difference (Low viscosity oil)
4.5 結論

転がり案内の抵抗力に注目し、特に有限軌道 V-V 転がり案内の抵抗力を測定し、評価を行った。以下に本章で得られた結論を示す。

(1) 超精密加工機に用いられている有限軌道 V-V 転がり案内では、移動時に発生する抵抗力が停止時にはほとんど残らない。すなわち、スティック摩擦が極端に少ない。
(2) 移動時の抵抗力はほとんどが速度に依存したスリップ摩擦であると考えられる。
(3) 案内面の転動体接触部におけるヘルツ接触面の駆動方向の幅は無限軌道転がり案内で数十 μm であるのに対し、有限軌道 V-V 転がり案内では数 μm である。ヘルツ接触面積が小さいため、転動体と案内面の弾性変形が小さく、移動体反転時の非線形な特性の領域が小さい。
(4) 有限軌道 V-V 転がり案内ではヘルツ接触幅が数 μm と言うことから、転動体 1 個あたりに加わる荷重は 10N 程度となる。これは多くの転動体で移動体を支えていることであり、このことで案内機構の接触摩擦が高まり、そのため、減衰性が高くなり、無限軌道転がり案内より動剛性がよい原因と考えられる。
(5) 移動時の抵抗力の大きさは、送り速度によって変化する。その一因は潤滑油の粘性抵抗であり、粘性が低い潤滑油の使用により、移動時の抵抗力を減らすことができたことがわかった。抵抗力の速度依存性は位置決め精度に影響を与えるため、低い粘度の潤滑油を使用することが更なる高精度化に望ましい。
第5章 超精密加工機の支持方法の違いが運動精度に与える影響

5.1 緒論

本章では、超精密加工機を設置する際に検討する必要がある機械の支持方法を概観し、超精密加工機に最適な支持方法を検討する。一般的な工作機械の場合、機械の大きさや機械本体の剛性によって支持方法が変化する。移動構造物の位置変化によるベッドの変形が小さいと判断される場合、工作機械は3点支持で設置されることが多い。ベッドが変形しないとすると、理想的な床において機械の位置と姿勢が3点で決定する。大型の工作機械の場合、3点支持の点間距離が長くなり、その間でのベッドの変形が問題となるため、多点で支持するのが一般的である。この場合、各支持点は均等に負荷を受ける必要があるため、調整には時間がかかり設置コストも高くなる。一方、小型の機械においては、設計上、ベッドの変形を抑制して3点支持で支持されることが一般的となっている。

動的な問題を考慮する場合、機械には設置床が振動することによる地動外乱振動と、支持点上にある機械内部の送り軸移動などに伴う直動外乱振動が影響する。また、機械には並進3方向、回転3方向の自由度方向の剛体モードの固有振動が存在する。ここでいう剛体モードとは機械全体を剛体とし支持機構をばねと考えた振動系の固有モードである。すなわち系全体としては剛体振動ではないが、説明の便宜上剛体モードと呼ぶことにする。剛体モードで考えたとき、3点支持では回転モードの等価剛性が弱く、回転方向に振動しやすい。このような剛体モードの中で、床に対して垂直な方向の軸を含む面内の回転モードをロッキングモードと呼んでいる[53]。このロッキングモードの振動（以下ロッキング振動と呼ぶ）は、直動外乱により励起される。またロッキング振動は支持点の数や配置により振動特性が異なってくることが知られている[56-62]。高剛性の支持では3点支持よりも多点支持の方が機械全体の振動を抑制している例がある。また、床上に直接設置される工作機械において、このロッキング振動が送り駆動系の位置決め誤差に影響を及ぼし、工作物・刃物間の相対変位にも影響を与えることが知られている。最終的に加工面への影響が懸念される[53]。

超精密加工機では床振動からの振動絶縁を目的として、機械の支持に静剛性が低い除振装置を用いている[63]。これにより周辺の機械などの振動により床が振動する地動外乱の影響を小さくしている。しかし、直動外乱に対しては支持の剛性が低いと支持の変形が大きくなることを意味し、両方の外乱は二重背反の関係にある。また、高剛性な支持方法と同様に、除振装置においても支持の配置方法によってロッキング振動が影響を受けると考えられる。しかし、多点で支持することで支持剛性が高くなり、除振性能を損なう恐れがある。
本章では超精密加工機に使用される除振装置の配置方法に着目し、除振装置の配置が機械の剛体モードにおよぼす影響を調査し、除振装置の最適支持方法を検討する。また、移動体を高速で移動したときの影響を評価するため、送り軸の運動精度評価で一般的に用いられている円弧補間運動において、指令軌跡からの誤差を測定する。

本章の構成は以下の通りである。まず、5.2 節で工作機械の支持方法について整理し、5.3 節では打撃加振試験による加工機支持ばね系の動特性の測定について述べる。5.4 節で支持方法の違いによる除振能力の差について、5.5 節では有限要素法を用いて振動モードの解析、5.6 節において高加減速移動時の除振装置支持方法の違いによる円弧補間運動誤差への影響についてそれぞれ述べる。5.7 節では本章の結論をまとめる。
5.2 工作機械の支持方法

5.2.1 一般的な工作機械の支持方法

工作機械の支持方法に関しては、いくつかの種類がある。支持機構にはレベル出しのための調整機構が必要となる。一般的に使用される支持方法はネジで高さを調整するジャッキボルト方式である。図5.1(a)にジャッキボルトを示す。本方式の特長は安価である点と、調整がしやすい点である。しかし、ジャッキボルト方式はネジの接触面の制約から大きな負荷には耐えられず、大きな機械では使用できない。また、剛性が低いためロッキング振動しやすい。そこで大型の工作機械では、くさび構造で高さ方向を調整するレベルングブロックが使用される。図5.1(b)にレベルングブロックを示す。レベルングブロックの特徴は、くさび面が広い設置面積を持つため、高荷重に対して剛性が高いことである。接触面積が広いことから、摩擦減衰が期待できる。レベルングブロック方式は、中型から大型の工作機械や振動の影響を極力避けたい研削盤などに広く使用される。

(a) Jackbolt

(b) Leveling blocks

Fig.5.1 Example of machine support parts
5.2.2 超精密加工機に用いられる除振装置

超精密加工機は、一般の工作機械より加工の要求精度が高いため、設置床の振動によって加工結果が影響を受けやすいため、このため図5.2で示すように、超精密加工機には床からの振動を伝えないため、除振装置が用いられる。除振装置には大きく分けて能動（アクティブ）型と受動（パッシブ）型がある。アクティブ型除振装置は、振動を検知するセンサと支持点の高さを調整する駆動装置、および制御装置で構成されている。振動センサで検出されるベッドの振動変位に対して、同一の高さを保つように制御装置は駆動装置を制御する。アクティブ型除振装置には、駆動装置の剛性が高く、高速応答性に優れた圧電素子を使用するものがある。しかし、一般的なアクティブ型除振装置は、空圧もしくは油圧を使用している。機械の高さはシリンダやゴム製のダイヤフラムの圧力を加えることで制御される。アクティブ型除振装置は、常にベッドの振動を監視しフィードバックしているため、不定期な振動や極低周波の床振動に対して、有効に制御することができる。また、ベッド上にある移動体の動きに対してフィードフォワード制御を行うことで、移動体による反力を予測しベッドの振動を抑制することが可能である。一方で、センサ、駆動装置、制御装置とともに高価であるため、システム全体のコストが高い。また、駆動装置の応答特性や、機械系全体の動特性により制御できる周波数に限界があり、目的の除振効果を得られない可能性もある。

図5.2に超精密加工機に使用しているパッシブ型除振装置を示す。パッシブ型除振装置は機械全体を剛体とし除振装置をばねとする振動系の動特性を利用して振動を抑制する。基本的には、支持剛性を低くして系の固有振動数を低く設定し、固有振動数よりも高い床振動を機械に伝達しないようにする。除振装置の剛性を低くするため、一般的にゴム製のバルーンやダイヤフラムを使用した空気ばねを用いる。このため、アクティブ型除振装置に比べて機構が簡単で且つ安価である。パッシブ型除振装置は、振動系の固有振動数の設定が容易である。しかし、除振装置の性能は、振動系の動特性に依存するため、固有振動数以下の極低周波など除振できない周波数域が存在する。また、減衰要素が少ないパッシブ除振装置は、減衰要素が少ないパッシブ除振装置は、減衰要素が少ないパッシブ除振装置は、減衰要素が少ないパッシブ除振装置は、減衰要素が少ないパッシブ除振装置は、減衰要素が少ないパッシブ除振装置は、減衰要素を追加することで振動の持続を抑制している。減衰要素は、空気ばね内部の空気が移動する際のスリーブ効果により減衰を発生させることもあるが、ベッドと床の間に油など粘性の高い流体を入れたダンパーを用いて減衰させるものがある。ダンパーはピストンが移動する際の流体の粘性抵抗により運動エネルギーを熱エネルギーに変換し振動を減衰させている。
そのほかに、パッシブ除振装置の欠点は、支持剛性が低いため支持している機械の移動物の駆動反力を受けると、機械全体が変位しやすいことである。除振装置の固有振動数は、なるべく除振可能な周波数を広くするため、低く設計される。固有振動数を低くするため、除振装置の剛性は低くなる。このことにより、パッシブ型の除振装置を用いた機械では、機械上の移動物の荷重移動に伴い、機械全体が傾くことが問題となる。そのため、質量の大きい移動物が移動するような機械では、機械全体が傾きやすい。この機械全体の傾きが工具・加工物間の相対変位に影響を及ぼす可能性がある。
5.2.3 パッシブ型除振装置の性能

超精密加工機には、構造が簡単でメンテナンス性がよく、安価であるため、パッシブ型の除振装置を採用する例が多い。図5.3に超精密加工機を設置している工場の床と機械上の振動の一例を示す。この例では床は加工機設置用コンクリートで厚く作られており、事務所用や倉庫用の床に比べると振動しにくい。工場床の振動は、空調機やコンプレッサなどからモータの回転に伴う一定周期の振動から影響を受けることが多い。また、床は工場内外の道路を走行する車両や鉄道などの輸送機械からの振動など様々な原因によって振動している。図5.3に示している床の振動の周波数分析結果では、40Hz以下の振動成分が大きい。15Hz以上で床よりも機械上の振動が小さく、これが除振装置の効果である。これに対し、10Hz付近のピークでは床と機械上の振動に差が無く、除振装置で振動を抑制できていない。一般的に10〜20Hzの床振動が発生しているケースが多く、このままでは床振動の影響が問題となる可能性があるため、10Hz付近の振動抑制能力を向上させる必要がある。したがって、更なる高精度加工の要求に対して、10Hz付近での除振性能悪化の要因を特定し対策する必要がある。

![Fig.5.3 Result of measured floor and machine vibration at general condition](image)

Fig.5.3 Result of measured floor and machine vibration at general condition
5.2.4 高速移動時の除振装置の動き

図5.4にパッシブ型除振装置を用いた超精密加工機において、移動体一軸を往復運動させた際の機械下部と床面との相対距離を測定した例を示す。移動質量は約300kg、100mmの移動距離を1000mm/minの送り速度で往復運動したときの結果である。パッシブ型の除振装置は静剛性が低く、移動体の位置の変化に対して、床と機械下面の距離は0.2mm程度に変位している。ばね要素だけでは移動体停止時の衝撃により振動するため減衰器を追加し減衰性を上げている。図中に示した3種類の波形は、減衰性の異なる3種類の減衰器を用いて、移動体の移動に伴う振動の違いを示したものである。その結果、減衰器の減衰性を上げることで、移動体の移動および停止時の振動は抑制できる。この調整では、振動が持続しないよう過減衰に近い状態に調整する。しかし、減衰性をあげても機械の静的な変位量は抑制できていない。このことから、機械の傾きを抑えるには静剛性を上げる必要がある。ただし、静剛性を上げることで除振性能は悪化する。このように床振動に対する除振性能と、機械全体の変形の抑制は二律背反の関係となっている。

Fig.5.4 Displacement between floor and machine’s bed
5.3 打撃加振試験での振動特性の比較

5.3.1 打撃加振試験方法

測定に用いた超精密加工機（メーカ：東芝機械株式会社，型式：ULG-100D(5A)）の仕様を表 5.1 に示す。図 5.5 に全景写真を，図 5.6 および 5.7 に加工機の模式図を示す。

超精密加工機の支持構成が，機械を剛体とし支持剛性をばねとする振動系に与える影響を調査するために，機械の支持点数を変えて加工機全体の振動特性を測定する。機械上を加振点とした打撃加振試験を行うことで，機械全体の固有振動数，固有モード，動コンプライアンスなどの振動特性を測定する。加工機の支持は除振装置の配置を 3 点および 4 点で支持する。これにより支持方法の違いが振動系の動特性に及ぼす影響を調べる。

評価方法は，インパルスハンマによる打撃を入力として，各方向の振動変位を応答とする周波数応答関数を比較する。図 5.6 および 5.7 に示す①を加振点とし，ベッド四隅に加速ピックアップを設置し，その振動変位を応答として周波数応答関数を測定する。この周波数応答関数を使用し，実験振動モード解析を行う。図 5.8 は，3 点支持および 4 点支持での除振装置の位置を示す。図 5.9, 5.10 は，打撃加振試験の試験風景を示す。

Fig.5.5 Image of ultra-precision machine tool for experiment

Table5.1 Specifications for the experiment

<table>
<thead>
<tr>
<th>Control axis</th>
<th>X,Y,Z,B,C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slide-way type</td>
<td>V-V roller guide way</td>
</tr>
<tr>
<td>Drive system</td>
<td>Liner motor driven with core</td>
</tr>
<tr>
<td>Travel</td>
<td>X axis:450mm,Y axis:100mm,Z axis:150mm</td>
</tr>
<tr>
<td>Spindle and Table</td>
<td>Work spindle (C-axis)</td>
</tr>
<tr>
<td></td>
<td>Tool spindle</td>
</tr>
<tr>
<td></td>
<td>Rotary table (B-axis)</td>
</tr>
</tbody>
</table>
Fig. 5.6 Schematic of test stand

Fig. 5.7 Schematic of measured point for acceleration sensor

Fig. 5.8 Placement of isolator (View from bottom surface)
Fig. 5.9 Experiment image of impact test

Fig. 5.10 Mounting point of acceleration sensor
 (Measured point ①)
5.3.2 超精密加工機の打撃加振試験結果

図5.11〜5.14に加振点①を上下方向に加振した際のベッド上部（測定点①〜④）での上下方向（Y方向）振動変位の周波数応答関数を示す。各測定点において、3点支持の方がコンプライアンスは10〜20Hzの範囲で高い。つまり、10〜20Hz付近の周波数では3点支持の方が上下方向に振動し易いと言える。図5.11〜5.18に加振点①を上下方向に加振した際のベッド上部における各測定点でのX方向振動変位の周波数応答関数を示す。測定点①および③では、ほぼ全周波数域で3点支持の方がコンプライアンスは高く、X方向に振動し易いことを示している。測定点②、④では10〜40Hzの周波数域では3点4点共にコンプライアンスが変わらない。機械上の測定点①、③の位置は3点支持の場合に支持点が一つの側である。測定点②、④の側には支持点が二つ存在する。このXY平面とZY平面での支持点数の違いによる支持剛性の違いによって、X方向の周波数応答関数の違いが起きていると考えられる。また、XY平面では支持点が支点となりZ軸周りの回転方向に振動し易いものと考えられる。
Fig. 5.11 FRF of Y direction: impact point ① - measured point ①

Fig. 5.12 FRF of Y direction: impact point ① - measured point ②
Fig.5.13 FRF of Y direction : impact point① - measured point③

Fig.5.14 FRF of Y direction : impact point① - measured point④
Fig. 5.1 FRF of X direction: impact point① - measured point①

Fig. 5.16 FRF of X direction: impact point① - measured point②
Fig. 5.17 FRF of X direction: impact point① - measured point③

Fig. 5.18 FRF of X direction: impact point① - measured point③
図 5.19～5.20 に 3 点支持の測定で得られた周波数応答関数から得られた振動モード図を示す。振動モード図はベッド形状をベッド上面 4 点と下面 4 点の直方体で表している。図 5.19 の振動モード図は 6Hz の固有振動モードを示しており、Z 軸周りに X 方向へ倒れるような振動をしている様子が見られる。この振動モードが Z 軸周りで X 方向に倒れるロッキング振動である。また、図 5.20 に 15Hz の振動モード図を示す。このモードは X 軸周りで Z 方向に振動するロッキング振動である。

周波数応答関数において、特に 3 点と 4 点支持でコンプライアンスの違いがあるのは、測定点①および③の X 方向であった。このことから、Z 軸周りのロッキング振動が 3 点支持と 4 点支持のコンプライアンスの違いに影響を及ぼしていると考えられる。

Fig.5.19 Experimental result of natural vibration mode at 6Hz

Fig.5.20 Experimental result of natural vibration mode at 15Hz
5.4 支持方法と除振能力の関係

5.4.1 除振性能の測定方法

図 5.21 に除振装置をばねとした振動系における除振性能を評価する際の試験風景を示す。床振動に対する除振性能を確認するため、機械設置床と機械上（測定点①）に加速度ピッカップを置き、同時に振動加速度を計測する。床振動の周波数分析結果を基準として、機械上の振動分析結果との比を表したものを振動伝達率と言う。この振動伝達率が除振性能を表し、振動伝達率が低いほど、振動を機械側に伝えないため除振性能が高いと言える。振動伝達率は dB であらわされ、0 dB は床振動と機械上振動が同じであることを意味している。

Fig.5.21 Experimental image of vibration transmissibility
5.4.2 支持方法の違いによる除振性能の測定結果

床振動から機械への振動伝達率を図 5.22～5.25 に示す。図 5.22 は 3 点支持での床縦方向振動に対する機械上 X 方向振動の振動伝達率である。図 5.23 は 4 点支持の場合である。両者を比較すると 5 ～12Hz 付近において 3 点支持の方が振動し易くなっている。

Fig. 5.22 Vibration transmissibility of 3 point support
Reference: floor Z axis, response: measured point ① X axis

Fig. 5.23 Vibration transmissibility of 4 point support
Reference: floor Z axis, response: measured point ① X axis
図 5.24 に 3 点支持での床縦方向振動に対する測定点①縦方向振動の振動伝達率を示す。図 5.25 に 4 点支持での場合を示す。3 点支持の場合、7Hz 付近に固有振動数と思われるピークがある。これに対して、4 点支持の場合 4Hz 付近にピークがある。これにより、3 点支持は振動伝達率が 0dB 以上の領域が広くなっている。これらの結果は 3 点支持よりも 4 点支持の方が 10Hz 付近での除振能力があることを示している。このような差が生じた理由として、ロッキング振動の動剛性の差によって除振性能に差が生じていると考えられる。

![Fig.5.24 Vibration transmissibility of 3 point support](image)

Reference: floor Z axis, response: measured point ① Z axis

![Fig.5.25 Vibration transmissibility of 4 point support](image)

Reference: floor Z axis, response: measured point ① Z axis
図5.26に3点支持と4点支持を測定した際の床縦方向振動の比較を示す。測定結果のように4点支持を測定した際の床振動は20〜25Hzの振動が3点支持を測定した床状態に比べ最大で3倍程度の差がある。しかし、本章において注目していた10Hz付近のロッキング振動モードにおいて、3点支持よりも4点支持の方が除振性能はよいことがわかった。

Fig.5.26 Comparison of 3 points support and 4 point support on floor vibration
有限要素法による振動解析

振動測定を行った機械の有限要素モデルを使用して、有限要素法による振動モード解析を実施した。モデルの支持点に除振台相当のばね定数の仮想ばねを配置して計算している。ベッド上部の移動質量は実験に合わせて調整している。

解析ソフトには ANSYS Workbench R14.0 を用い、固有振動モード解析および周波数応答解析を実施した。

図 5.27, 5.28 に 3 点支持における有限要素解析による固有振動モードを示す。解析結果の図のように、この二つの振動モードは除振装置をばねとする機械全体の剛体モードであることがわかる。4 点支持においても同様に解析を実施し、計算結果を表 5.2 に示す。実験と同様に Z 軸周りで X 方向に回転する固有振動の方が、X 軸周りで Z 方向に回転する固有振動よりも低い。有限要素解析では 3 点支持よりも 4 点支持の方が Z 軸周りで X 方向に回転する固有振動では固有振動数が高くなる。しかし、X 軸周りで Z 軸方向に回転する固有振動の固有振動数は変わらなかった。この結果は実験結果と一致している。実験モード解析の結果は、Z 軸周りと X 軸周りのロッキング振動が重ね合わさっている。実験では各モードの分離が難しいが、有限要素解析では各モードの差がはっきりとわかるため、振動モードがよりわかりやすくなった。このことから低い周波数は Z 軸周りのロッキング振動が支配的であることがあらためてわかった。

Table 5.2 Comparison of natural frequency

<table>
<thead>
<tr>
<th></th>
<th>Around Z axis</th>
<th>Around X axis</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Point support</td>
<td>7 Hz</td>
<td>15 Hz</td>
</tr>
<tr>
<td>4 Point support</td>
<td>9 Hz</td>
<td>15 Hz</td>
</tr>
</tbody>
</table>
Fig. 5.27 FEM’s result of natural vibration mode at 7 Hz

Fig. 5.28 FEM result of natural vibration mode at 15 Hz
次に有限要素解析による周波数応答関数の計算を行った。有限要素モデルの減衰は、一定の減衰であると仮定し計算する。

図 5.29～5.30 に上下方向加振した場合の上下方向振動の周波数応答関数を示す。3 点支持の方が低周波領域においてコンプライアンスが大きく、振動し易いことがわかる。また、支持点が一つの側である応答点 1 の方がコンプライアンスは大きい。

図 5.31～5.32 に上下方向加振に対するベッド上部の X 方向の周波数応答関数を示す。上下方向の伝達関数と同様に 3 点支持の方がコンプライアンスは大きい。また、支持点が 1 つの側である測定点 1 の方が X 方向も振動し易くなっている。

以上の結果は、実験による打撃加振試験の結果と傾向が一致している。これにより、有限要素法を用いた理論的な数値解析からも 3 点支持の方がロッキング振動のモードにおいて振動し易いことがわかる。
Fig. 5.29 FRF of Y direction: impact point ①-measured point ①

Fig. 5.30 FRF of Y direction: impact point ①-measured point ②
Fig. 5.31 FRF of X direction: impact point ① - measured point ②

Fig. 5.32 FRF of X direction: impact point ① - measured point ②
5.6 支持方法の違いが送り駆動系へ与える影響の比較

5.6.1 高加減速移動時の送り駆動系への影響評価方法（円弧補間運動の測定）

工作機械の移動体の運動による問題のひとつは、運動に伴う機械全体の振動である。工作機械は、移動体の加減速運動に伴う慣性力が加振力となり、機械全体が振動する。この振動は機械の支持の違いが振動の仕方に影響を与える。また、機械全体の振動は送り軸の運動誤差に影響を与える。工作機械の移動軌跡評価の代表的な例として、送り駆動系を2軸使用した円弧補間運動が挙げられる。図5.33に円弧補間運動の模式図を示す。円弧補間運動とは直交した2軸の合成送りで円弧軌跡を描くものである。一軸ごとの動きは90度位相をずらした正弦波となる。円弧補間運動では円の大きさと指令速度によって加速度が変化する。円を小さく、指令速度を高速にすることで加速度は上がる。工作機械の運動性能評価にはよく使用される方法であり、円弧補間運動での誤差を測定するための専用測定器も存在する。円弧運動誤差は半径誤差を円周上に拡大することでわかりやすく表示できる。

5.5章までの結果において、除振台の配置を3点から4点にすることで、機械全体のロックイン振動を抑制する効果があることがわかっている。そこで、高加減速移動時の一軸駆動系への影響を評価するため、3点支持と4点支持での円弧補間誤差を測定する。測定方法は、送り駆動系の位置フィードバック用のリニアエンコーダのデータを使用し、指令円弧からの差を誤差として、円状にプロットし評価する。

Fig.5.33 Schematic of circular motion error
5.6.2 除振装置の支持方法の違いによる円弧補間運動への影響

図 5.34～5.40 に円弧補完運動時のスケールの位置データから半径を求め、指令半径を引いた誤差を円周上に拡大しプロットした図を示す。本測定の指令半径は 1mm である。各図ではそれぞれ送り速度が変えてある。図 5.34 に示す 15mm/min の低速移動の場合、3 点支持と 4 点支持では誤差がほとんど変わらない。しかし、速度が速くなるにつれ円形状が崩れてくることがわかる。90mm/min 以上の場合、3 点支持において象限切換え後に振動成分が見られる。振動の周波数は約 10Hz であることから、ロッキング振動が送り駆動系にも影響を及ぼしていると考えられる。また、3 点支持よりも 4 点支持の方がロッキング振動を抑制するため、4 点支持において誤差が少ないと考えられる。

Fig.5.34 Circular motion error at 15mm/min

Fig.5.35 Circular motion error at 30mm/min
Fig. 5.36 Circular motion error at 60mm/min

Fig. 5.37 Circular motion error at 90mm/min

Fig. 5.38 Circular motion error at 120mm/min
Fig. 5.39 Circular motion error at 150mm/min

Fig. 5.40 Circular motion error at 180mm/min
5.7 結論

超精密加工機の設置にパッシブ型の除振装置を使用し、3点支持と4点支持の振動特性を比較することで、超精密加工機に使用する支持方法の検討を行った。以下に本章で得られた結論を示す。

(1) 打撃加振試験による振動特性の確認を行った結果、機械上の振動特性は3点支持よりも4点支持の方が動コンプライアンスが低く、振動しにくいことがわかった。
(2) 動コンプライアンスに差が出たのは10Hz付近の周波数である。実験モード解析により10Hz付近の固有振動モードは、Z軸周りにX方向に倒れるロッキング振動モードが支配的であり、有限要素法による解析結果においても、同様な結果を得られた。
(3) 3点支持と4点支持において、床と機械上の振動伝達率を比較すると10Hz付近では、3点支持よりも4点支持の方が振動しにくいことがわかった。特に縦方向において、10Hz付近の振動伝達特性に差が表れた。このことからロッキング振動モードが除振性能に影響を与えていることがわかった。
(4) 送り軸の運動誤差評価の代表例として、円弧補間運動時の誤差を評価した。その結果、低速時には3点支持と4点支持で誤差はほとんど変わらない。しかし、高速になるにつれて3点支持の方が誤差は大きくなっている。
(5) この円弧補間運動時の誤差は、約10Hzの振動が含まれている。ロッキング振動の周波数とほぼ同じであることから、3点支持の場合、移動体の高加減速運動によりロッキング振動が励起され振動していると考えられる。機械のロッキング振動は送り駆動系にも影響を与え、誤差を生じている。
(6) 除振装置の配置を3点支持から4点支持にすることで、除振性能の改善と高加減速運動時の誤差低減を実現することができる。
第6章 結言

本研究では、超精密加工の要求精度を達成するために問題となる動的な誤差に対し、超精密加工機を構成する機械要素の動的な解析と評価を行った。特に送り軸系と機械の支持系の機械要素に注目した。送り軸では超精密加工機に使用される案内機構の剛性と移動に伴う抵抗力を評価し、機械の支持方法に関しては、除振装置の除振性能の改善と高加減速移動における誤差の低減について、除振装置の配置方法を変えることで改善を行った。以下に本研究で得られた結論を示す。

「超精密加工機の構成について」
(1) 加工の要求精度と送り軸の設定分解能による、一般加工用工作機械と高精密加工機および超精密加工機を分類し整理した。これにより、ナノメートルオーダーの面粗さと形状精度を要求される超精密加工機に必要な機械要素を整った。
(2) 現状の超精密加工機に求められる加工精度は、面粗さ 1nmRa 以下、形状誤差 0.1μmP-V 以下である。加工の高精度要求は続いており、面粗さ 0.5nmRa 以下、形状精度 0.05μmP-V 以下と要求精度は現状の半分程度の誤差にする必要がある。
(3) 超精密加工機には、高速化への要求がある。自由曲面加工に用いられる 3 軸同期加工などでは、従来の旋削加工時の 10〜100 倍の送り速度が必要である。
(4) 超精密加工を実現するには、送り軸制御には 10nm 以下の最小設定単位が必要である。特に光学部品に特化した加工機では 1nm 以下の最小設定単位が必要である。
(5) 要求精度を実現するには、以下の機械要素を使用することが望ましい。工具およびワークの回転用主軸には空気静圧軸受を使用する。主軸外周の周速などを考慮し、静圧絞り方式は多孔質絞りもしくは自成絞りを選択する。送り軸移動体の案内機構には有限軌道 V-V 転がり案内を使用する。送り軸の駆動機構にはリニアモーターを使用する。加工機の支持装置としてパッシブ型の除振装置を使用する。

「超精密加工機の送り案内機構の動剛性評価について」
(6) 超精密加工機に用いられる無限軌道転がり案内と有限軌道 V-V 転がり案内の動剛性を比較するため、可搬能力がほぼ同じテストスタンドを 2 種類使用し、打撃加振による振動特性の測定を行った。また、振動測定結果の確認のため無限軌道転がり案内の静剛性試験を実施し、さらに有限要素解析による確認を実施した。
案内の違いに関わらず、移動体の振動モードは移動体の回転振動モードが支配的であり、このモードの固有振動数は有限軌道V-V転がり案内の方が、無限軌道転がり案内の約2倍であった。

両者の静剛性を比較するため、移動体の回転振動系の簡単モデルから案内機構の等価剛性を同定し、有限軌道転がり案内の等価静剛性は無限軌道転がり案内の約1.6倍であった。

無限軌道転がり案内の等価静剛性が低い理由を検証するため、キャリッジ1個の場合と移動体に組み込んだ場合の静剛性試験を行った。その結果、等価静剛性と実験による静剛性はほぼ一致した。

両者の静剛性を比較するため、同定された等価剛性を用いて有限要素解析による固有モード解析を行い、振動測定結果と一致することを確認した。

以上のことから、有限軌道V-V転がり案内は、無限軌道転がり案内を用いた場合に比べ、固有振動数が高く、動コンプライアンスが低いことがわかった。これは無限軌道転がり案内に比べ、移動体を支持している転動体の数が多いためだと考えられる。このため、転動体1個当たりの負荷が小さくても静剛性は高くなり、接触摩擦が多いため減衰性もよいと考えられる。

「転がり案内に発生する抵抗力の実験的解析について」

転がり案内の進行方向とは逆向きに発生する抵抗力を評価した。特に有限軌道転がり案内を中心に測定した。抵抗力はモータ駆動力から算出した。

測定した有限軌道V-V転がり案内では、移動時に発生する抵抗力が停止時にはほとんど残らない。すなわち、スティック摩擦が極端に少ないことがわたった。移動時の抵抗力は、ほとんどがスリップ摩擦であると考えられる。

反転時の抵抗力の減少領域は無限軌道転がり案内で数十μmであるのに対し、有限軌道V-V転がり案内では数μmである。これは案内面の転動体接触部におけるヘルツ接触幅が小さいため、転動体と案内面の弾性変形が小さく、移動体反転時の非線形特性の領域が小さいと考えられる。

有限軌道V-V転がり案内ではヘルツ接触幅が数μmであるので、転動体1個あたりに加わる荷重は10N程度となる。これは自重が約3000Nであることから、約300個の転動体で移動体を支えているということ意味している。このことから案内機構の接触点摩擦が多いことが、無限軌道転がり案内より動剛性が高い原因と考えられる。

移動時の抵抗力の大きさは、送り速度によって変化する。その一因は潤滑油の粘性抵抗であった。粘性が低い潤滑油の使用により、移動時の抵抗力を減らすことができる
ことがわかった。抵抗力の速度依存性は位置決め精度に影響を与えるため、更に高精度な加工には、低い粘度の潤滑油を使用することが望ましい。

「超精密加工機の支持方法による機械振動への影響について」
(17) パッシブ型の除振装置で支持される超精密加工機の最適な支持方法を3点支持と4点支持を比較することで検討した。打撃加振試験の結果、3点支持よりも4点支持の方が縦方向加振に対する縦方向の動コンプライアンスは低く、振動しにくいことがわかった。特に動コンプライアンスに差が出たのは10Hz付近の周波数である。
(18) 床と機械上の振動伝達率を比較すると、10Hz付近では縦方向において、床よりも機械上の振動が大きい。10Hz付近の振動伝達特性は、3点支持よりも4点支持の方が振動を伝達しにくいことがわかった。
(19) 実験モード解析により10Hz付近の固有振動モードは、機械全体が倒れるロッキング振動モードであり、有限要素法による解析結果においても、同様な結果を得られた。
(20) 送り軸の運動誤差評価の代表例として、円弧補間運動時の誤差を評価した。その結果、低速時には3点支持と4点支持で誤差はほとんど変わらない。しかし、高速になるにつれて3点支持の方が誤差は大きくなっている。
(21) この円弧補間時の誤差は、約10Hzの振動であり、ロッキング振動の周波数とほぼ同じであることから、3点支持の場合移動体の高加減速運転によりロッキング振動が励起され振動していると推測される。
(22) ロッキング振動モードは除振性能および高加減速時の送り系誤差に影響を与えており、パッシブ除振台を支持方法として使用する場合、4点支持にすることで両者とも改善できることがわかった。

以上のように超精密加工機に採用されている機械要素のうち、案内機構である有限軌道V-V転がり案内は、静剛性だけでなく動剛性も高く、移動体移動時の抵抗力は非線形領域が小さいことから超精密加工への適合性を確認した。また、超精密加工機の支持方法について、現状の3点支持から4点支持に変更する改善方法を提示し、除振性能の向上、送り軸移動体の高加減速運動時における送り駆動系への影響の低減を実現した。
謝 辞

本研究を遂行するにあたり、懇切なるご指導を賜りました京都大学大学院工学研究科マイクロエンジニアリング専攻教授 松原厚博士に深甚なる謝意を表します。
本研究を遂行するにあたり、貴重なご助言とご協力を賜りました京都大学大学院工学研究科マイクロエンジニアリング専攻助教 河野大輔博士に深く感謝いたします。
また、貴重なご助言を賜りました京都大学大学院工学研究科マイクロエンジニアリング専攻准教授 茨木創一博士、同技術専門職員 山路伊和夫博士に感謝申し上げます。
さらに松原研究室の皆様には、貴重なご助言とご協力を賜りました。ここに深く感謝の意を表します。
本研究のきっかけと機会を与えていただくとともに、終始にわたって激励とご助言を賜りました東芝機械株式会社技術顧問 田中克敏博士に心より感謝申し上げます。
本研究をともに進めていただき、公私にわたりご助言、ご協力を賜りました東芝機械株式会社ナノ加工システム事業部 福田将彦博士に心より感謝申し上げます。
本研究をまとめるにあたり、ご助言、ご協力を賜りました東芝機械株式会社技術開発本部技師長 藤田純博士に心より感謝いたします。
本研究を遂行するにあたり、貴重なご助言とご協力を賜りました東芝機械株式会社ナノ加工システム事業部 三浦健司氏はじめとする同事業部の皆様には深く感謝いたします。
本研究の遂行を支援していただきました東芝機械株式会社技術開発本部の皆様に深く感謝申し上げます。
本研究の機会を与えていただき、終始にわたり温かい励ましとご協力をいただきました東芝機械株式会社企画本部企画部の皆様に心より感謝申し上げます。
最後に、本研究を遂行するにあたり、このページには書ききれないほどのたくさんの方々に、多大なるご協力を頂きましたことを、改めて深く感謝申し上げます。
参考文献

第1章

[1] 津和秀夫，超精密加工，精密機械 38(445)，141-147，1972-02-05

[3] 森脇 俊道，超精密微細加工の動向，精密工学会学術講演会講演論文集 2009A(0)，51-52，2009

[6] 萩谷 誠，超精密加工機およびその要素技術の今後について，精密工学会誌 75(1)，126-127，2009-01-05

[8] 甲斐 義章，福田将彦，超精密加工機での振動問題とその対策，Journal of the Japan Society of Grinding Engineers 51(3)，141-144，2007-03-01

[9] 田中 克敏，福田 将彦，甲斐 義章，超精密加工機械の振動と精度，機械の研究 61(7)，676-682，2009-07

[10] 野口 保行，アクティブ除振・制振による精密機器の微振動制御技術，精密工学会誌 73(4)，410-413，2007-04-05

第2章

[14] 田中克敏，福田将彦，甲斐義章，鈴木清，植松哲太郎，“精密加工機械の高精度化の研
究 第3報」，砥粒加工学会誌，Vol.51，No.9(2007)，pp.553-558
[16] 河野 大輔，松原 厚，岡田 琢巳，廣岡 孝彦，安田 正志，バッシブ除振台上に設
置した高精密加工機の振動解析，日本機械学会論文集 C編 77(775)，1078-1085，2011.
[18] Katsutoshi TANAKA：Ultra-precision Micro-machining Technologies in the
Industrial Field，JOURNAL OF JAPAN SOCIETY FOR DESIGN ENGNEERING，
[19] 福田将彦，セラミックスなど硬脆材料の超精密・微細研削加工技術 超精密研削加工と
超精密加工機，機械技術，61，7(2013)，39-41
[20] 福田将彦，研削加工 高精度金型の創成一軸対称非球面の超精密研削とその周辺技術一，
機械の研究，60，1(2008)，160-164
[21] 森田 翌也，大型曲面光学素子の超精密加工における高速非接触機上測定手法，砥粒加
工学会誌 58(11)，705-709，2014
[22] 福田 将彦，木村 誠，覚張 勝治，リニアモータ搭載型超精密加工機における高精度
高加速度制御加工への検討，生産加工・工作機械部門講演会 生産と加工に関する学
術講演会 2006(6)，237-238，2006-11-24
[23] 水元 洋，他，静圧案内面を運動縮小機構として利用した超精密位置決めシステムの開
発，精密工学会誌 67(9)，1524-1529，2001-09-05
[24] 由井 明紀，他，リニアモータ駆動・水静圧案内テーブルの開発：テーブルシステムの
設計・開発と静的特性，日本機械学会論文集 C編 75(752)，1128-1134，2009-04-25
[25] 益子 正巳，静圧案内面の基礎研究：第1報，単一ポケットを有するテーブル運動の解
析，日本機械学会論文集 38(307)，663-673，1972-03-25
[26] 益子 正巳，静圧案内面の基礎研究：第2報，単一ポケットに関する実験結果，日本機
械学会論文集 38(316)，3235-3245，1972-12-25
[27] 青木 弘，静圧軸受：これから静圧軸受に取り組む人のために，精密機械 45(532)，
503-511，1979-04-05
[28] 大塚 二郎，他，精密・超精密位置決めの現状と将来予想，精密工学会誌 67(2)，173-178，
2001-02-05
[29] 吉本 成香，直動案内，精密工学会誌 67(2)，198-201，2001-02-05
[30] 厳石 宏，転がり直動案内の高性能化とその応用，精密工学会誌 57(4)，583-588，
1991-04-05
[31] 清水 茂夫，直動ボールガイドシステムの負荷分布と精度・剛性に関する研究，精密工
第3章

[40] 酒井康徳, 他, “インパルス加振による直動ローラ案内キャリッジ転送面とローラの接触状態の推定”, 精密工学会学術講演会講演論文集 2011A(0), 441-442, 2011

[43] 酒井康徳, 他, “直動転がり案内の振動特性に生じる加振力依存性”, 精密工学会誌 80(8), 783-791, 2014

[45] 河野大輔, 松原厚, 小池雄介 [他], 山路伊和夫, 計測融合型加工システムによる工具刃先運動の転写率の測定, 精密工学会誌 75(4), 520-524, 2009

第4章

[51] 徐維臣,他,直動転がり案内の摩擦特性に及ぼす転動体形状の影響,精密工学会学術講演会講演論文集 2011S(0), 217-218, 2011
[52] 稲垣 飛鳥,他,直動転がり案内を用いた位置決め装置への非線形摩擦モデルの適用,精密工学会学術講演会講演論文集 2011A(0), 679-680, 2011

第5章

[58] 河野 大輔, 松原 厚, 剛体マルチボディモデルを用いた高精密加工機の振動評価,精密工学会学術講演会講演論文集 2011A(0), 415-416, 2011
[59] 稲垣 孝洋, 松原 厚, 河野 大輔, 接触剛性が工作機械の支持剛性に与える影響に関する研究,精密工学会学術講演会講演論文集 2011A(0), 413-414, 2011
[60] 西尾 修也, 松原 厚, 河野 大輔, ロッキング振動を考慮した工作機械の支持点配置に関する研究,精密工学会学術講演会講演論文集 2012A(0), 681-682, 2012
[61] 西尾 修也, 河野 大輔, 松原 厚, 山路 伊和夫,構造振動を考慮した工作機械の支
持点配置に関する研究，精密工学会学術講演会講演論文集 2013A(0)，19-20，2013.
[62] 今安 森也，河野 大輔，松原 厚，山路 伊和夫，工作機械の支持剛性を変化させる
方法に関する研究，精密工学会学術講演会講演論文集 2013A(0)，17-18，2013