Substorm simulation: Formation of westward traveling surge

Y. Ebihara¹ and T. Tanaka²

¹Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan, ²International Center for Space Weather Science and Education, Kyushu University, Fukuoka, Japan

Abstract

Auroral substorm expansion is characterized by initial brightening of aurora, followed by a bulge expanding in all directions, and a westward traveling surge (WTS). On the basis of the result obtained by a global magnetohydrodynamic simulation, we propose a scenario for the onset and the subsequent formation of WTS. (1) Near-Earth neutral line releases magnetic tension in the near-Earth plasma sheet to compress plasma and accelerate it earthward. (2) Earthward, perpendicular flow is converted to parallel flow in the near-Earth tail region. (3) Plasma moves earthward parallel to a field line. The plasma pressure is additionally enhanced at off-equator with an expanding slow-mode variation. (4) Flow vorticities coexist near the off-equatorial high-pressure region. Resultant field-aligned current (FAC) is connected to the ionosphere, which may manifest initial brightening. (5) Due to continued earthward flow, the high-plasma pressure region continues to expand to the east and west. (6) The ionospheric conductivity continues to increase in the upward FAC region, and the conductivity gradient becomes steeper. (7) The convergence of the Hall current gives rise to divergent electric field near the steep gradient of the conductivity. (8) Due to the divergent electric field, magnetospheric plasma moves counterclockwise at low altitude (in the Northern Hemisphere). (9) The additional flow vorticity generates a localized upward FAC at low altitudes, which may manifest WTS, and redistributes the ionospheric current and conductivity. Thus, WTS may be maintained in a self-consistent manner, and be a natural consequence of the overflow of the Hall current.

1. Introduction

A sudden brightening of aurora around midnight is a noticeable feature at the beginning of substorm expansion phase. The aurora increases its intensity and expands in all directions [Akasofu, 1964; Akasofu et al., 1965]. A spectacular structure that expands toward the evening is referred to as a westward traveling surge (WTS) [Akasofu, 1963, 1964; Akasofu et al., 1965; Anger et al., 1973; Craven et al., 1989; Elphinstone et al., 1995]. It traverses along the preexisting arc forming a poleward expanding bulge [Akasofu et al., 1965]. According to observations, the WTS has the following characteristics: (1) intense inverted-V precipitation of electrons with energies of nearly ≥10 keV [Rème and Bosqued, 1973; Meng et al., 1978; Shiokawa and Fukunishi, 1991; Fuji et al., 1994; Olsson et al., 1996; Cummer et al., 2000], (2) intense upward field-aligned currents (FACs) on the poleward edge and inside the WTS [Kamide and Akasofu, 1975; Oppegard et al., 1983; Shiokawa and Fukunishi, 1991; Fuji et al., 1994; Marklund et al., 1998; Cummer et al., 2000], (3) a large southward electric field [Baumjohann and Oppegard, 1984, Fuji et al., 1994; Marklund et al., 1998], (4) a large westward electric field [Robinson and Vondrak, 1990], (5) counterclockwise plasma flow at the surge head [Weimer et al., 1994], (6) a downward FAC poleward of the WTS [Fujii et al., 1994; Marklund et al., 1998; Cummer et al., 2000], (7) the surge moves westward after the first contact of the poleward expanding bulge with a poleward boundary arc [Lyons et al., 2013], (8) a presence of proton precipitation in a bulge while an absence of proton precipitation inside the WTS [Akasofu et al., 1969; Fukunishi, 1975; Kadokura et al., 2002], and irregular poleward motion [Rostoker et al., 1987].

The generation of the localized upward FAC is the key to understanding the WTS. Several mechanisms have been proposed for the generation of the upward FAC that manifests the WTS. The Cowling channel model [Böström, 1975] suggests that very localized, intense upward FAC is formed on the western edge of the high-conductance region to satisfy the current continuity in the ionosphere [Baumjohann et al., 1981; Inhester et al., 1981; Baumjohann, 1983]. Kan et al. [1984] suggested the importance of blockages of the Hall current. A partial blockage results in the divergent electric field in the ionosphere. The convection pattern is redistributed in the ionosphere, and electrons are accelerated earthward to carry the intense upward FAC. On the basis of the Cowling channel model [Baumjohann et al., 1981; Inhester et al., 1981; Baumjohann, 1983], a feedback instability model is proposed [Rothwell et al., 1984, 1988].
In the magnetospheric counterpart, the upward FAC associated with the WTS is thought to belong to the current wedge as a diversion of the westward cross-tail current in the near-Earth plasma sheet [e.g., McPherron et al., 1973; Fujii et al., 1994; Birn and Hesse, 1996, 2013; Birn et al., 1999, 2004; Keiling et al., 2009; Yao et al., 2012; Lyons et al., 2013; Kepko et al., 2014, and references therein]. The development of the surge is thought to be a projection of an expansion of the plasma sheet and an intrusion of the plasma sheet boundary layer (PSBL) into the tail lobe [Akasofu et al., 1971; Bythrow and Potemra, 1987]. In this model, shear instability is expected to grow in the PSBL, resulting in the intrusion [Bythrow and Potemra, 1987].

Many previous discussions on the formation of WTS have been based on current continuity in the ionosphere and the ionospheric projection of the FAC from the magnetosphere along a magnetic field line. However, to understand the WTS, we first have to know the generation mechanisms of the FAC in the magnetosphere-ionosphere coupling system. The FAC is attached to the ionosphere by the vorticity or shear motion of plasma, so we have to know the motion of magnetospheric plasma. Second, we have to know the current closure between the ionosphere and the magnetosphere. It is not guaranteed that the current line is always aligned with the magnetic field line. Usually, a current line is diverted from
the magnetic field line due to the perpendicular current as pointed out by Tanaka et al. [2010]. Thus, it is too straightforward to connect the WTS and the westward cross-tail current by a magnetic field line directly. The purpose of this study is an attempt to understand the mechanisms of the WTS in terms of the generation of FAC and current closure by using the global magnetohydrodynamics (MHD) simulation that incorporates magnetosphere-ionosphere coupling.

Ebihara and Tanaka [2015], hereinafter referred to as Paper 1, dealt with rapid intensification of upward FAC at the beginning of the substorm expansion phase (hereinafter, simply referred to as an initial brightening). Based on the global MHD simulation, they explained the initial brightening as follows: (1) Associated with the development of the convection, a near-Earth neutral line [Nishida and Nagayama, 1973; Russell and McPherron, 1973] releases magnetic tension to compress and accelerate plasma earthward. (2) Magnetic tension causes squeezing of plasma toward the inner magnetosphere along a field line [Haerendel, 2010; Tanaka et al., 2010]. (3) The squeezing causes plasma pressure increase and generates slow-mode expansion. (4) The perpendicular bulk flow is converted to the parallel flow in the near-Earth tail region [Birn et al., 2004;
Tanaka et al., 2010]. (5) The plasma pressure further increases at off-equator. (6) Flow vortices are generated around the off-equatorial high-pressure region as a part of transition in the global convection. (7) A positive flow vortex generates the upward FAC that is directly connected to the ionosphere in the center of the Harang discontinuity. This paper focuses on the subsequent process until the formation of WTS.

2. Simulation Setup

In this study, we used the global MHD simulation developed by Tanaka [2015]. This simulation utilizes the grid system based on triangular prisms. First, we divided a spherical surface into 12 pentagons and then each pentagon was divided into 5 triangles, yielding a total of 60 triangles and 32 grid points. This is called Level 1 gridding. We further divided each triangle into 4 triangles to yield a total of 240 triangles and 122 grid points. This is called Level 2 gridding. Level 6 gridding was used in Paper 1, whereas Level 7 gridding was used in this simulation. In Level 7 gridding, the number of triangles was 245,760 and the number of grid points was 122,882 on a spherical surface. The inner boundary of the magnetospheric domain was located at radial distance of 3 Re. We stacked 380 triangular prisms outward from the inner boundary so that the number of grid points was 46,572,278. The grid spacing in the X direction is 0.011, 0.13, and 0.32 Re at 3.0, 7.0, and 20 Re, respectively, at midnight in the equatorial plane. The grid spacing in the Z direction is 0.023, 0.072, and 0.20 Re, respectively.

The number of grids was increased to improve the spatial resolution in comparison with that used in Paper 1. In Paper 1, Level 6 gridding was used.

The magnetosphere is coupled with the ionosphere by the following means. We calculated the parallel component of the current density at the inner boundary of the magnetosphere domain (at 3 Re). We mapped the parallel current, the plasma pressure, and temperature from the inner boundary of the magnetosphere domain to the ionosphere (at 1 Re) along the dipole magnetic field. We assumed that the height-integrated ionospheric conductivity is increased by the following three sources. The first source is associated with the ionization due to the solar extreme ultraviolet radiation. We used a functional form that depends on the solar zenith angle. The second source is associated with precipitation of accelerated particles (likely discrete auroras), which is a function of FAC. The contribution from the downward FAC is assumed to be 10 times lower than that from the upward FAC. The third source is associated with precipitation of scattered particles (likely diffuse auroras), which is assumed to be proportional to the square root of plasma pressure and to the temperature of magnetospheric plasma to the power of 1/4.

The ionospheric current was calculated as

\[
\mathbf{J}_i = \Sigma \mathbf{E}_i = -\left(\begin{array}{cc} \Sigma_{\theta\theta} & \Sigma_{\theta\phi} \\ -\Sigma_{\theta\phi} & \Sigma_{\phi\phi} \end{array} \right) \nabla \Phi_i,
\]

where \(\mathbf{J}_i\) is the ionospheric current density, \(\Sigma\) is the height-integrated conductivity tensor, \(\mathbf{E}_i\) is the ionospheric electric field, and \(\Phi_i\) is the ionospheric electric potential. \(\theta\) and \(\phi\) represent colatitude and longitude.
in the spherical coordinates, respectively. The height-integrated conductivity tensor \(\Sigma \) is described by Ebihara et al. [2014] in detail. After calculating \(\Sigma \), we solved an elliptic partial differential equation to obtain the ionospheric electric potential \(\Phi \) [e.g., Tanaka, 1994]. The ionospheric electric field was mapped to the inner boundary of the magnetosphere domain along the dipole magnetic field. The flow velocity corresponding to the mapped electric field was imposed to the magnetospheric plasma as a boundary condition of the magnetospheric domain of the simulation. Processes taking place in the gap between 1 Re and 3 Re, including Alfvén wave coupling between the ionosphere and the magnetosphere [e.g., Vogt, 2002; Yoshikawa et al., 2011], were not taken into account. However, we believe that, by iterating the above loop many times, the force balance and current continuity condition are fully satisfied in the magnetosphere, and that the inconsistency could be resolved for a timescale being longer than a time step and Alfvén transit time between 1 Re and 3 Re. We focus on phenomena evolving on a timescale of a minute, whereas the time step of the computation is about 0.02 s.

We gave a simple boundary condition to the upstream of the solar wind. First, in order to obtain an almost steady state magnetosphere, we gave the solar wind a density of \(5.0 \text{ cm}^{-3} \), a solar wind speed of \(372 \text{ km/s} \), the \(Y \) component of the interplanetary magnetic field (IMF \(B_Y \)) of \(-2.5 \text{ nT} \), and IMF \(B_Z \) of 4.3 nT. Then we changed IMF \(B_Z \) to \(-3.0 \text{ nT} \). We defined \(t = 0 \) to the moment at which the southward IMF reached \(X = 40 \text{ Re} \). The southward IMF reached the bow shock at the subsolar point at \(t \approx 6 \text{ min} \). The solar wind parameters used in Paper 1 were different from those used in this study, so that the locations of the NENL and the initial brightening are different. However, the underlying mechanism is essentially the same.

Figure 4. Plasma pressure in the \(Y-Z \) plane at \(X = -7 \text{ Re} \) (a) 67.6, (b) 69.5, (c) 71.5, (d) 73.5, (e) 74.5, (f) 76.5 min. The arrow indicates the perpendicular plasma flow in the \(Y-Z \) plane. The points labeled by M2 and M3 are connected to the wake of WTS and the leading edge of the WTS by a current line, respectively. The outer, dotted circle indicates 5 Re. Dusk is to the left.

Journal of Geophysical Research: Space Physics 10.1002/2015JA021697
3. Results

3.1. Ionospheric Signatures of WTS

Figure 1 shows the time sequence of the calculated FAC distribution in the ionosphere together with the calculated AU/AL indices. The results show that the upward FAC (indicated by blue color) started to increase at a geomagnetic latitude of \(\approx 70^\circ\) and a geomagnetic longitude (MLT) of \(\approx 01\ h\) at \(t = 69.5\ min\). This initial intensification of the upward FAC is elongated longitudinally and is quite similar to observations [e.g., Akasofu, 1964]. We call this variation initial brightening, and we call this moment onset of the auroral expansion. At \(t = 73.5\ min\), the upward FAC region expands poleward and westward and exhibits fine structures. This feature may be referred to as the bulge [Akasofu, 1964]. At \(t = 74.5\ min\), an elongated (arc-like) upward FAC continues to move westward. The upward FAC is intensified at the front of the bulge. The structure of the upward FAC may resemble the surge [Akasofu, 1964] or the WTS [Akasofu et al., 1965; Anger et al., 1973; Craven et al., 1989; Elphinstone et al., 1995]. Following Fujii et al. [1994], we calculated the net current \(I_{\text{in}}\) and net Region 1-sense FAC \(I_{\text{R1}}\) along a meridional line at 23 MLT (the leading edge of the WTS) at 74.5 min. The ratio \(I_{\text{N}}/I_{\text{R1}}\) is \(\approx 0.21\), which may be consistent with the observation [Fujii et al., 1994], and may imply that the Region 1-sense FAC is not closed in the meridional plane on the leading edge of the WTS. WTS was not clearly identified in Paper 1 probably due to insufficient resolution of the simulation grid. The calculated AU and AL indices are shown in the top part of Figure 1. The sequence of magnetospheric and ionospheric processes is summarized as follows. The southward IMF arrived at the dayside magnetosheath at \(t = 6\ min\). The DP2 ionospheric convection [Nishida, 1968] started to increase, and the AL index starts to decrease slightly at \(t = 24\ min\). The near-Earth neutral line (NENL) forms at \(t = 56\ min\). The initial brightening (sudden increase in the upward FAC near midnight) takes place at \(t = 69.5\ min\), followed by a rapid decrease in the AL index. The sequence of the aurora taking place...
before the onset is described by Y. Ebihara and T. Tanaka (Substorm simulation: Quiet and N-S arcs preceding auroral breakup, submitted to Journal of Geophysical Research, 2015, referred to as Paper 2).

3.2. Magnetospheric Disturbances

Figure 2 is a summary of the X component of the plasma bulk flow (V_x) and the plasma pressure (P) in the equatorial plane. The results show that an NENL started to form at $X \approx -42 \text{ Re}$ and $t \approx 55 \text{ min}$ (Paper 2). The location of the NENL may be a bit far from that typically observed [e.g., Nishida and Nagayama, 1973; Baker et al., 1996; Nagai et al., 1998; Ieda et al., 1998; Machida et al., 1999; Angelopoulos et al., 1994]. After performing simulations with different solar wind conditions, we found that the location of the NENL depends on the solar wind conditions and their history, but that the location of the NENL does not essentially affect the result presented in this paper. The dependence of the location of the NENL on the solar wind conditions will be described in a separated paper. The formation of the NENL releases magnetic tension that accelerates plasma earthward in the near-Earth plasma sheet. The plasma pressure is enhanced by the squeezing [Haerendel, 2010; Tanaka et al., 2010]. The earthward flow appears to be braked at $X \approx -17 \text{ Re}$ at $t \approx 69.5 \text{ min}$, which is referred to as flow braking. The flow braking results in the compression of the plasma and a further enhancement of the plasma pressure. Consequently, there are two pressure peaks. We call them the inner high-pressure region and the outer high-pressure region. After the onset, the high-speed earthward flow continues, and the region of the high-speed flow expands. This tendency is consistent with the statistical study of Juusola et al. [2011]. The plasma pressure also continues to increase in both the outer and inner high-pressure regions at $t \approx 74.5 \text{ min}$. The evolution of the plasma pressure is described by Tanaka et al. [2010], and the mechanism of the initial brightening is explained by Paper 1 in more detail.

Figure 6. Same as Figure 4 except for the parallel component of the current density (field-aligned current) $J||$. The black contour indicates the plasma pressure of 0.5 nPa.
Figure 3 shows the plasma pressure in the X-Z plane at \(Y = -1.5 \text{Re} \). The results show that the inner high-pressure region is concentrated near the equatorial plane at \(X = -9 \text{Re} \), which probably results from squeezing of the plasma due to tension force. In addition, a high-pressure region is also found at off-equator at \(|Z| \approx 3-4 \text{Re} \) (Figure 3 P1). As described in Paper 1, the off-equatorial high-pressure region probably results from the conversion of the earthward perpendicular flow to parallel flow. The off-equatorial high-pressure region coexists with developing convection flow as if it pulls in and discharges ambient plasma, generating flow vorticities. In addition to the flow vorticities associated with global changes in the magnetospheric convection, the flow vorticities generate a pair of Region 1-sense FAC, causing the initial brightening (Paper 1). Due to the continued earthward flow, the plasma pressure continues to increase at off-equator after the initial brightening.

Figure 4 is a time sequence of the plasma pressure in the Y-Z plane at \(X = -7 \text{Re} \). At \(t = 69.5 \text{ min} \) (onset), the plasma pressure appears to be enhanced at off-equator (Figure 4 P1). The pressure peak (Figure 4 P1) approximately corresponds to the off-equatorial high-pressure region (Figure 3 P1), which is responsible for generating the upward FAC that manifests the initial brightening (Paper 1). After the onset, the high-pressure region expanded westward and eastward. Westward flow is found in the westward portion of the off-equatorial high-pressure region. In Figure 4e (at 74.5 min), two points, labeled by P2 and P3, are marked by squares. These points are connected to the wake of the WTS and the leading edge of the WTS, respectively, by a current line. The region of the westward flow is shown to propagate westward, together with the expansion of the off-equatorial high-pressure region. The pressure distribution is not symmetric about the equatorial plane. The north-south asymmetry probably comes from a magnetic twist under the presence of the \(Y \) component of IMF [e.g., Cowley, 1981; Saita et al., 2011]. The north-south asymmetry disappears when IMF \(\text{By} = 0 \) (data not shown).

From the Ampère and Faraday laws, the generation of FAC is given by

\[
\frac{\partial J_{||}}{\partial t} = -\frac{1}{\mu_0} \langle \nabla \times \nabla \times \vec{E} \rangle_{||},
\]

where \(\vec{E} \) is the electric field. When perturbations start with an initially uniform magnetic field, the following approximation can also be used [Paschmann et al., 2002]:

\[
\frac{\partial J_{||}}{\partial t} = \frac{1}{\mu_0} \vec{B} \cdot \nabla \Omega_{||}.
\]

The parallel vorticity is given by \(\Omega_{||} = \vec{B} \cdot (\nabla \times \vec{V})/\vec{B} \), where \(\vec{B} \) is the magnetic field, and \(\vec{V} \) is the velocity. This equation implies that the upward FAC \((J_{||} < 0) \) is generated when the magnetospheric plasma is forced to rotate clockwise \((\Omega_{||} > 0) \) at high altitude or counterclockwise \((\Omega_{||} < 0) \) at low altitude (when viewed along a field line). Figure 5 is the same as Figure 4 except for the vorticity parallel to the magnetic field. At \(t = 69.5 \text{ min} \) (onset), the off-equatorial high-pressure region (Figure 4 P1) coexists with flow as if it pulls in ambient plasma from high latitude to the off-equatorial high-pressure region and discharges it westward.
and eastward. The configuration, pulling in and discharging ambient plasma, results in flow vortices, in addition to the global changes in the magnetospheric convection. Strong positive vorticity is found near the point P1, which generates upward FAC that manifests the initial brightening. The region of positive vorticity expands westward as time proceeds after the onset.

Figure 6 is the same as Figure 4 except for the FAC $J_{||}$. Negative $J_{||}$ implies current flowing antiparallel to the magnetic field, that is, upward FAC in the Northern Hemisphere. At $t = 69.5$ min (onset), strong upward FAC is found (Figure 6 P1) where the vorticity is strongly positive (Figure 5 P1). The current line extending from this region (Figure 6 P1) is connected to the ionosphere, resulting in a sudden increase in the upward FAC that manifests the initial brightening in the ionosphere (Figure 1). After the onset, the region of the upward FAC expands westward and eastward.

Figure 7 shows plasma pressure, the Y component of the perpendicular flow velocity, parallel vorticity, and FAC at $(X/7.00, 2.35, 3.00)$ Re. This point is labeled by P2 in Figures 4–6. During the period from the onset to $t = 74.5$ min, the plasma pressure, the parallel vorticity, and the upward FAC increase significantly. The flow in the Y direction is almost unchanged during this period (probably due to the center of the shear or vorticity). In order to understand the generation of the vorticity at the point P2 (which is connected to the WTS), we next focus on a point 0.30 Re closer to the equatorial plane, that is, $(−7.00, 2.35, 2.70)$ Re.

Figure 8 is a summary of the pressure, the magnitude of the magnetic field, the Y component of the perpendicular plasma velocity, (d) force densities (inertial force F_I, advection F_A, and plasma pressure force F_P) and (4) force densities (plasma pressure force F_P, magnetic pressure force F_B, and tension force F_T) at $t = 74.5$ min. (e) The dotted line indicates the value taken at $t = 65.5$ min.

$$
\begin{align*}
F_I &= F_A + F_T + F_B + F_P, \\
F_I &= \frac{\rho}{\mu_0} \frac{\partial V}{\partial t} , \\
F_A &= -\rho (V \cdot \nabla) V, \\
F_T &= \frac{1}{\mu_0} (B \cdot \nabla) B, \\
F_B &= -\nabla \left(\frac{B^2}{2\mu_0} \right), \\
F_P &= -\nabla P,
\end{align*}
$$

(4)
where F_I, F_A, F_T, F_B, and F_P are the inertial force, the force associated with advection, the tension force, the magnetic pressure force, and the plasma pressure force, respectively, ρ is the mass density of the plasma, and μ_0 is the magnetic constant. The Lorentz force $F_J \times B$ is a sum of F_T and F_B. The solid line indicates the value at $t = 74.5$ min, while the dotted line indicates the value at $t = 65.5$ min. Before the onset, the total pressure force ($F_P + F_B$) is almost balanced with the tension force (F_T), while after the onset, they are not balanced. Noticeable features can be summarized as follows: (1) The plasma pressure significantly increases (Figure 8 M1). (2) The intensity of the magnetic field decreases because of the diamagnetic effect (Figure 8 M2). (3) Due to the reduction in the magnetic field, the magnetic pressure force (looking duskward) is reduced (Figure 8 M3), whereas the (dawnward) tension force is almost unchanged, or slightly decreased (Figure 8 M4). The enhanced plasma pressure force (looking duskward) dominates the Lorentz force (Figure 8 M5). As a consequence, the inertial force is increased and the plasma is accelerated duskward near midnight. Due to advection, the inertial force increased on the duskside (Figure 8 M6). (4) The Y component of the perpendicular velocity increased at $Y = 2.35$ Re (Figure 8 M7). The duskward flow generates the flow vorticity or shear (Figures 7c and 5 P2), and the upward FAC (Figure 6 P2).

3.3. Vertical Structure of WTS

Figure 9 shows the FAC and the parallel vorticity at radial distances of 3.2 Re and 4.0 Re in the magnetosphere at $t = 74.5$ min. At 3.2 Re, the distribution of the FAC (Figure 9 M1) is almost identical to that found in the ionosphere (Figure 1e). At 4.0 Re, the distribution of the FAC is somewhat different from that found at 3.2 Re and in the ionosphere. The WTS-like distribution is almost absent, and only a bulge-like structure of the upward FAC is identified (Figure 9 M2). In Figure 9b, parallel vorticities are present. At 3.2 Re, positive vorticity is widely distributed. A noticeable feature is that the positive vorticity was reduced and almost absent just inside the WTS (Figure 9 M3). This may imply that localized negative vorticity is overlaid on global positive vorticity at this altitude. The overlaid negative vorticity is not found at 4.0 Re. Figure 9c is a close-up view of Figure 9b. The arrow indicates the inertial current. There is a tendency that the inertial current flows away from the...
center of the negative vorticity in the WTS (Figure 9 M4). The divergence of the inertial current may be suggestive of the (partial) closure of the upward FAC (Figure 9 M1).

We use Figure 10 to show the generation of the FAC and the continuity of the current at low altitude in the magnetosphere. The parallel vorticity $\Omega_{||}$ increases with distance from the WTS (Figure 10 M1) along a field line. According to equation (2), this favors generation of the upward FAC ($\partial J_{||}/\partial t < 0$) at low altitude (Figure 10 M2). The upward FAC ($J_{||} < 0$) is intensified at low altitude (Figure 10 M3). When integrating $\partial J_{||}/\partial t$ with respect to time (Figure 10b), one may notice that the integrated value is larger than $J_{||}$ (Figure 10c). The difference may come from the two reasons. One is that the generated FAC immediately propagates along a field line. The other one is that the Lorentz force immediately adjusts the force imbalance. In Figure 10d, it is shown that the magnitude of the inertial current dominates that of the diamagnetic current. In Figure 10e, $\text{div } J_{||}$ and $\text{div } J_{\perp}$ are shown, where J_{\perp} is the perpendicular current being a sum of the diamagnetic current and the inertial current. At low altitude, $\text{div } J_{||}$ is negative, whereas $\text{div } J_{\perp}$ is positive. These results suggest that the upward FAC generated at low altitude is connected to the inertial current to maintain the current continuity. We note that the sum of $\text{div } J_{||}$ and $\text{div } J_{\perp}$ is not exactly zero because of numerical error in computing $\text{div } J_{||}$ and $\text{div } J_{\perp}$ in the low-beta region.

Figure 11 shows time variations of the force density in the X, Y, and Z components, the parallel vorticity, the parallel current, and the magnitude of the perpendicular current at the radial distance of 3.2 Re. This point is connected to the leading edge of the WTS along a field line at $t = 74.5$ min. Just before the passage of the WTS, the inertial force (black line) in the X and Z components increases, whereas that in the Y component decreases. This may be associated with the westward movement of the region of negative vorticity (Figure 9 M4). The inertial force is almost balanced with the Lorentz force, which is suggestive of the shear Alfvén wave. Since the negative flow vorticity is found at 3.2 Re and is absent at 4.0 Re (Figure 9), the vorticity should be driven at lower altitude by the Lorentz force (Figures 11a–11c). In Figures 11d and 11e, it is clearly shown that the parallel vorticity is minimum and the upward FAC is maximum when the WTS passes through this point. In Figure 11f, the inertial current appears to be intensified just before the passage of the WTS. The intensified inertial current is connected to the upward FAC generated at low altitude (Figure 10e).

3.4. Current Closure in the Ionosphere

Figure 12 shows distributions of the FAC, the ionospheric conductivity, the southward component of the ionospheric electric field, and the plasma pressure in the ionosphere at $t = 74.5$ min. The plasma pressure is mapped from the inner boundary of the simulation domain. The WTS is located poleward of the Harang discontinuity, which is consistent with the observation [Weimer et al., 1994]. We note that the ionospheric...
electric potential is skewed on the leading edge of the WTS. That is, the ionospheric plasma drifting from the polar cap rotates counterclockwise on the leading edge of the WTS (Figure 12 M1). The counterclockwise rotation of the ionospheric plasma flow takes place near the gradient of the Hall conductivity (Figure 12 M2). In Figure 12c, the southward component of the electric field is present. The WTS appears in the southward electric field region (Figure 12 M3), which is consistent with observations [Fujii et al., 1994; Weimer et al., 1994]. The northward electric field (westward plasma flow) is found equatorward of the auroral oval (Figure 12 M4) and is known as subauroral ionization drift (SAID), subauroral electric field, or subauroral polarization stream [Galperin et al., 1973; Spiro et al., 1979; Anderson et al., 1991; Karlsson et al., 1998; Foster and Vo, 2002]. SAID was observed at the same time as the WTS [Fujii et al., 1994; Weimer et al., 1994]. The magnetospheric plasma pressure mapped to the ionosphere is present in Figure 10d. The pressure is high in the equatorward part of the bulge, which may reflect a manifestation of the central plasma sheet [Winningham et al., 1975]. This may also be consistent with observations that showed the equatorward part of the bulge being occupied by the central plasma sheet [Fujii et al., 1994].

Figure 13 shows the divergence of the Hall current J_H, the divergence of Pedersen current J_P, the ratio $R=(\text{div} \ J_H + \text{div} \ J_P)/(\text{div} \ J_H)$, and the divergence of the ionospheric electric field. The intensity of the Hall current is larger in the high-conductivity region (upward FAC region) than in the low-conductivity region, resulting in the gradient in the Hall current. The overflow of the Hall current (div $J_H < 0$) occurs near the leading edge of the WTS (Figure 13 M1). Near the leading edge of the WTS, div J_P is positive with its magnitude being smaller than that of div J_H. This situation, in which div $J_H < 0$, div $J_P > 0$, and the FAC is upward, may correspond to the case of Figure 5b in Fujii et al. [2011]. When the convergence of the Hall current is perfectly connected to the upward FAC, the ratio $|R|$ is equal to 1. The ratio R is calculated to be ~ -0.9 near the leading edge of the WTS (Figure 13 M2). This implies that a large part of the convergence of the Hall current is connected to the upward FAC. It should be emphasized that the convergence of the Hall current is not perfectly connected to the upward FAC. The remnant of the current is connected to the Pedersen current because div $J_P > 0$. The additional Pedersen current is essentially explained in terms of charge accumulation and is a cause of the Cowling channel [e.g., Baumjohann, 1982; Fujii et al., 2011]. The divergence of the ionospheric electric field is positive near the leading edge of the WTS (Figure 13 M3). The above process has already been suggested by Kan et al. [1984] in terms of a partial blockage of the Hall current. The positive divergence of the electric field implies that the ionospheric plasma drift counterclockwise around it (in the Northern Hemisphere). The counterclockwise flow near the leading edge of the WTS is found in Figure 12a (Figure 12 M1) and may be consistent with observations by a low-altitude satellite [Weimer et al., 1994, Figure 11]. In the simulation,
the divergent electric field is mapped to the inner boundary of the magnetosphere, corresponding to counterclockwise rotation of magnetospheric plasma (i.e., negative vorticity) at low altitude. At low altitude in the magnetosphere, the counterclockwise flow (negative vorticity) generates the upward FAC as shown in Figure 10.

3.5. 3-D Current System in the Magnetosphere

Figure 14 is a bird’s-eye view of the three current lines at 74.5 min. Two currents are extending from the leading edge of the WTS (Current line I) and the wake of the WTS (Current line II). Both current lines are found to pass through the westside of the high-pressure region and contact the mantle. Along the current lines, there are at least two regions where \(\mathbf{J} \cdot \mathbf{E} < 0 \) (dynamo): one at the tailward portion of the cusp (i.e., the mantle region or mantle dynamo) and the other in the near-Earth region at off-equator (near-Earth dynamo). The mantle dynamo is well documented by Janhunen et al. [1996], Tanaka [2000, 2007], Siscoe et al. [2000], and Tanaka et al. [2010] for explaining the generation of the Region 1 FAC. The near-Earth dynamo is additionally generated when the plasma pressure is enhanced in the inner magnetosphere (Paper 1) and is also suggested by Birn and Hesse [2005]. It should be noted that (1) the upward FAC extending from WTS is totally diverted from a magnetic field line, and that (2) the current lines hardly traverses the equatorial plane because of the strong perpendicular current (diamagnetic current). In Figure 14, the other current is extending from the downward FAC region equatorward of the WTS. This current line is regarded to as the Region 2-sense current. Some of the Region 2-sense current are connected to the perpendicular current (mostly the diamagnetic current) near the western edge of the high-pressure region. This is consistent with the current continuity condition suggested by Vasyliunas [1984] and is pointed out by Tanaka et al. [2010].

Figure 15 is a schematic drawing of the current line associated with the WTS, based on the result obtained by the MHD simulation. After the onset, the high pressure continues to expand due to continued earthward fast flow in the plasma sheet. The high-pressure region at off-equator pulls in and discharges the ambient plasma, generating the positive vorticity \((\Omega) > 0 \); Vorticity I in the westward and upper portion of the off-equatorial high-pressure region. Vorticity I generates the broad upward FAC that seems to have an important role in causing the primary electric field to flow the ionospheric currents. Because of the gradient of the ionospheric conductivity, the Hall current overflows in the ionosphere, resulting in the positive divergence of the electric field near the leading edge of the WTS in the ionosphere. The positive divergence of the electric field corresponds to counterclockwise rotation of plasma at the lower boundary of the
magnetosphere ($\Omega_2 < 0$; Vorticity II). Vorticity II generates the fine-scale upward FAC, which is thinner than generated by Vorticity I, and may be a manifestation of the WTS. At the leading edge of the WTS, plasma starts to move counterclockwise. The inertial current flows in the radial direction away from the center of Vorticity II. The upward FAC generated at low altitude is, in part, connected to the inertial current. The remnant of the current will be connected to the magnetospheric dynamo. Because the diamagnetic current flows westward in the upper part of the off-equatorial high-pressure region, the current line extending from the WTS is deflected westward from a magnetic field line.

4. Discussion

First, we discuss the relationship between the WTS and the ionospheric convection pattern. The ionospheric plasma appears to flow counterclockwise on the leading edge of the surge (Figure 10 M1). This is consistent with a schematic diagram presented by Weimer et al. [1994, Figure 11] who studied electric and magnetic fields, plasma drifts, and electron precipitation on the leading edge of WTS on the basis of the data from the DE 2 satellite. Marklund et al. [1998], however, argued the existence of the counterclockwise flow. They pointed out that the Weimer et al. [1994] model is inconsistent with the expectation that the upward FAC deposits negative charge (convergent electric field) and generates clockwise flow around it. This will happen if the ionospheric conductivity is almost uniform. When the ionospheric conductivity is highly nonuniform (e.g., a leading edge of WTS), the Hall current is expected to overflow. When the convergence of the Hall current is not fully connected to the FAC, the divergence of the electric field becomes positive to generate the Pedersen current [Kan et al., 1984, 1988; Kan and Kamide, 1985; Fujii et al., 2011]. In our simulation, the positive divergence of the electric field and the counterclockwise flow appear on the leading edge of the WTS (Figure 10 M1) because of this process. The convergence of the Hall current is connected to the FAC and the Pedersen current, but the distribution ratio is uncertain as pointed out by Fujii et al. [2011]. The situation seems not to be so simple because the system is essentially self-consistent. It seems that a surge may be a natural consequence when the strong gradient of the conductivity and the strong primary electric field are present. In the WTS, the strong gradient of the conductivity is probably provided by the initial brightening (Paper 1), and the strong primary electric field is provided by the FACs. More observations are needed to confirm this scenario since Opgenoorth et al. [1983] showed counterclockwise Hall current (clockwise plasma flow) near the leading edge of a surge.

It may be speculated that a surge will not be developed well if the counterclockwise flow is absent in the ionosphere. The counterclockwise flow is generated by the overflow of the Hall current. This implies that sufficient gradient of the Hall conductivity must be provided at the initial brightening to initiate and develop

![Figure 13](image-url)

Figure 13. (a) Divergence of the Hall current J_H, (b) divergence of the Pedersen current J_P, (c) the ratio $R = (\text{div } J_H + \text{div } J_P)/|\text{div } J_H|$, and (d) divergence of the ionospheric electric field. The contour lines indicate the field-aligned current with an interval of 0.05 μA/m².
the WTS. In other words, "ignition" of the aurora (ionospheric conductivity) may be necessary at the onset. It is speculated that the degree of the gradient of the Hall conductivity at onset may determine breakups or pseudobreakups [Akasofu, 1964; Koskinen et al., 1993; Ohtani et al., 1993; Nakamura et al., 1994; Rostoker, 1998]. The MHD simulation results predict that the upward FAC associated with the initial brightening is generated by the high-pressure region at off-equator (Paper 1). If this is the case, the plasma pressure (or scale length of the high-pressure region) will be one of the determining factors for the formation of the WTS. We can also speculate that the surge will not be developed in a sunlit ionosphere in which the electron production rate is completely dominated by solar radiation. This may be one of the reasons why discrete aurorae are suppressed in the sunlit ionosphere [Newell et al., 1996]. A similar situation would occur during storm time because of continued precipitation of electrons and protons into the ionosphere. Hoffman et al. [2010] pointed out the lack of a surge and bulge during storm time substorms.

Downward FAC is observed by satellites just poleward of the WTS [Fujii et al., 1994; Marklund et al., 1998; Cummer et al., 2000]. The downward FAC, referred to as Region 0 current, is thought to be a return current of the upward FAC of the WTS [Marklund et al., 1998]. In our simulation, the Region 0-sense downward FAC is located poleward of the bulge (not on the leading edge of WTS). The current density is ∼1 order of magnitude smaller than the upward FAC of the WTS. If the Region 0 current is a return current of the upward FAC of the WTS, then the Region 0 current will be rapidly intensified when the WTS develops.

Figure 14. Snapshot of the current lines extending from the leading edge of the WTS (current line I) and the wake of the WTS (current line II) at t = 74.5 min. A current line extending from the downward FAC region just equatorward of the WTS (Region 2-sense current) is also drawn. The current line is colored with the value of J·E. The greenish surface is an iso-pressure surface at 0.4 nPa, and the grayish surface is an iso-J·E surface at ∼0.4 × 10⁻¹² W m⁻³. The horizontal plane shows the plasma pressure in the equatorial plane.
However, the Region 0-sense downward FAC remains to exist in the late growth phase and the expansion phase in the simulation. Watanabe and Iijima [1993] found that the Region 0 current appears in the evening sector during the substorm growth phase. The temporal evolution of the Region 0 current and its role in the formation of the WTS remain unclear and to be solved.

5. Conclusions

In this study, MHD simulation results were used to investigate the formation of WTS. Major conclusions can be summarized as follows:

1. After the formation of the near-Earth neutral line (NENL), magnetic tension is released in the near-Earth plasma sheet to compress and accelerate plasma earthward. High-pressure region is formed in the inner magnetosphere. Flow vorticities are generated near the off-equatorial high-pressure region. The resultant field-aligned current (FAC) is connected to the ionosphere, which may manifest the initial brightening.

2. Due to magnetic tension and continued earthward flow, the region of high pressure continues to expand toward east and west forming the configuration of partial ring current. Near-Earth high-pressure region continues to develop at the expanding front of the high-pressure region. The ionospheric conductivity also continues to increase in the upward FAC region. The gradient of the conductivity gives rise to the overfow of the Hall current in the ionosphere. The convergence of the Hall current is largely connected to the FAC at the leading edge of the WTS. The remnant of the current is connected to the Pedersen current, resulting in divergent electric field. Due to the divergent electric field, the magnetospheric plasma moves counterclockwise in the former region (Vorticity I), and the plasma moves counterclockwise in the latter region (Vorticity II) in the Northern Hemisphere. The current line extending from the WTS is connected to the mantle dynamo.

3. The WTS may be associated with the upward FACs generated in two different ways. One is the large-scale upward FAC that generates the primary ionospheric electric field and the primary Hall current. The other one is the fine-scale upward FAC that is generated at low altitude as a consequence of the overfow of the Hall current. The latter FAC manifests the WTS and keeps generating a sharp gradient of the ionospheric conductivity as it moves westward. The ionospheric current is then redistributed. The WTS may be a natural consequence of a steep gradient of the ionospheric conductance and the overfow of the Hall current. It can be said that the WTS is primarily maintained by the near-Earth high-pressure region and the magnetosphere-ionosphere coupling in a self-consistent manner.

Figure 15. Schematic drawing of the relevant processes generating the WTS. \mathbf{J}_\perp denotes the perpendicular current. The upward FAC related to the WTS is generated in two distinct regions. One is associated with the off-equatorial high-pressure region, and the other one is associated with the overfow of the Hall current. The plasma moves clockwise in the former region (Vorticity I), and the plasma moves counterclockwise in the latter region (Vorticity II) in the Northern Hemisphere. The current line extending from the WTS is connected to the mantle dynamo.
Acknowledgments

We thank Takashi Kikuchi, Takeshi Sakanoi, Akimasa Ieda, and Kazuo Shiokawa for fruitful comments and discussion. The computer simulation was performed on the KDK computer system at the Research Institute for Sustainable Humanosphere (RISH), Kyoto University. This study was supported by KAKENHI (grants 24340119, 15H03732, and 15H05815). The simulation data are available upon request.

References

