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Abstract 

Protein phosphorylation is a crucial posttranslational modification for regulating cellular 

processes in bacteria; however, it has not been extensively studied because of technical 

difficulties in the enrichment of phosphopeptides. We devised an enrichment protocol that 

enabled the identification of >1,000 phosphopeptides from a single bacterial sample. We 

discovered three high-confidence serine and threonine phosphorylation motifs, as well as 29 

other motifs at various levels of confidence, from three distinct bacterial phosphoproteomes. 

We found that the proline-directed and basophilic phosphorylation motifs that are commonly 

enriched in eukaryotes were not observed in bacteria. Unlike eukaryotes, bacteria had a low 

occurrence of both phosphorylation and acetylation within N-terminal phosphopeptides. 

Because infection of host cells by bacterial pathogens is often accompanied by 

kinase-mediated phosphorylation events, the differences in phosphorylation preferences 

between bacteria and eukaryotes revealed by this study could be useful in identifying 

bacterial-specific targets for future therapies. 



 

Introduction 

The phosphorylation of serine, threonine, and tyrosine in proteins is as important for bacteria 

as it is for other living organisms (1). Accumulating evidence suggests that protein 

phosphorylation serves as a fundamental regulatory mechanism in nearly all physiological 

processes in bacteria, especially in key steps of the infection process, such as adhesion to the 

host, perturbation of host signaling cascades, and impairment of host defense mechanisms (2, 

3). Because of the close link between the dysregulation of phosphorylation and various 

human pathologies, phosphorylation mechanisms are expected to be promising targets for 

new drugs able to overcome antibiotic resistance (4, 5). Phosphoproteomic analysis has 

emerged as a promising tool for studying variations in protein phosphorylation in eukaryotic 

cells (6); however, the much lower degree of protein phosphorylation in bacteria (about 80 

times less than that in eukaryotes) has severely hampered progress (7). 

 

In 2007, Macek et al. were the first to evaluate the site-specific bacterial phosphoproteome in 

Bacillus subtilis with strong cation exchange chromatography and titanium dioxide (TiO2) 

enrichment coupled with high-accuracy mass spectrometry to identify phosphopeptides in the 

low-femtomole range (8). This approach has been applied to a number of bacteria, including 

Escherichia coli (9, 10), Lactococcus lactis (11), Halobacterium salinarum (12), and 



pathogenic Klebsiella pneumoniae (13). The method of Macek et al. has become a standard 

procedure in bacterial phosphoproteomics, and on average, around 100 phosphorylation sites 

can be detected in each organism with 10 mg of starting protein under a given growth 

condition. Although the identified phosphorylated residues are better conserved than random 

residues, the phosphorylation sites in published phosphoproteome datasets have extremely 

low overlap, even within the same bacterial species (7, 9, 10). Therefore, the published 

phosphoproteomes are certainly incomplete, and may be missing many low-occupancy sites 

because of the technical limitations of current approaches. 

 

Here, we present a protocol for the highly sensitive enrichment of phosphopeptides, together 

with its application for studying the phosphoproteomes of three distinct bacterial species, E. 

coli, B. subtilis, and K. pneumoniae, with enhanced phosphopeptide identification and 

coverage (14-16). The resulting large-scale bacterial phosphoproteome resource has enabled 

us to uncover various bacterium-specific phosphorylation features, including high-confidence 

phosphorylation motifs and the notably low coincidence of N-terminal acetylation and 

phosphorylation. In addition, neither proline-directed nor eukaryote-type basophilic 

phosphorylation motifs were enriched in bacteria. Given these bacterium-specific 

phosphorylation signatures, bacteria might have alternative kinase-recognition mechanisms 

that could be used as targets for the development of new therapeutic drugs. 



Results 

Design and development of a highly sensitive approach to analyze the bacterial 

phosphoproteome 

The extremely low degree of protein phosphorylation and the presence of many anionic 

biomolecules, such as phospholipids, peptidoglycans, and lipid A, present a substantial 

technical challenge to the analysis of bacterial phosphoproteomes (17-22). To address this, 

we first developed a large-scale aliphatic hydroxy acid–modified metal oxide 

chromatography (HAMMOC) protocol coupled with liquid chromatography with tandem 

mass spectrometry (LC-MS/MS) to accommodate an up to five-fold increase in the amount of 

sample by increasing the amount of TiO2 as well as the tip size. We also examined three 

different methods of pretreating the samples, including ultrafiltration, precipitation with 

acetone, and precipitation with methanol and chloroform. All of these methods increased the 

number of phosphopeptides that we identified compared with that in the absence of 

pretreatment (about 70), and precipitation with methanol and chloroform provided more than 

300 phosphopeptides (Fig. 1A). Some biomolecules derived from E. coli interfered with and 

markedly suppressed the HAMMOC-based enrichment, because the lysate from untreated E. 

coli showed the highest intensity in total ion current (TIC) chromatograms, but the lowest 

number of identified phosphopeptides (fig. S1). 

 



Because precipitation by methanol and chloroform was the most effective of the three 

procedures for removing interfering components, it was used in subsequent experiments. To 

refine the enrichment conditions for bacteria, a series of sample amounts ranging from 500 to 

1,000 µg was evaluated. The number of observed phosphopeptides increased with increasing 

sample size, which was expected given that the maximum capacity of large-scale HAMMOC 

is approximately 800 to 900 µg (Fig. 1B). Accordingly, we suggest that our large-scale 

HAMMOC procedure is applicable to bacterial phosphoproteome analysis without sample 

fractionation (8-10), and the small sample size requirement [20 times less than that required 

for conventional procedures (>10 mg)] is particularly advantageous for clinical purposes. 

 

Characterization of the phosphoproteome map of E. coli as a model gram-negative 

organism 

Our developed strategy yielded the most comprehensive E. coli phosphoproteome to date; a 

total of 1,212 phosphopeptides in 392 phosphoproteins with 1,088 phosphosites (Fig. 2A and 

table S1). After assessing phosphosite localization by site localization probability based on 

the posttranslational modification (PTM) score (23-25) and the Mascot delta score (23-26), 

and by the presence of site-determining ions (27), 766 phosphosites were retained as 

high-confidence sites (table S1). In comparison with previous studies, in which about 150 

phosphopeptides were determined from five growth conditions, we obtained about eight-fold 



more identified phosphopeptides, with a similar distribution of phosphosites; that is, 69.5% 

phosphorylated serine (pSer), 21.8% phosphorylated threonine (pThr), and 7.7% 

phosphorylated tyrosine (pTyr) (table. S1) (9, 10). Furthermore, our results showed large 

overlaps with published E. coli phosphoproteomes at the levels of both phosphopeptide and 

phosphoprotein (Fig. 2, A and B). For example, all of the reported phosphorylated ribosomal 

proteins in previous phosphoproteomes were included in our dataset (Fig. 2C) (9, 10). The 

high overlap between the previously reported E. coli phosphoproteomes and ours supports the 

validity of our developed approach. 

 

In the Ecogene database, about 7% of the genome of E. coli K12 strain is annotated as 

essential genes, and our results suggest that almost 30% of the proteins encoded by essential 

genes were phosphorylated (Fig. 3A), supporting a major role for protein phosphorylation in 

bacteria. Similar to other bacteria, E. coli contained phosphoproteins that are widely localized 

from the cell wall to the cytosol, suggesting that our method has no bias with respect to 

protein localization (Fig. 3B). Based on functional analysis by the bioinformatics resource 

DAVID, protein phosphorylation participates extensively in various cellular functions in E. 

coli, including central carbon metabolism and housekeeping processes, such as DNA 

metabolism, transcription, and translation (Fig. 3B). For example, the phosphoproteins that 

we identified in E. coli were overrepresented in the glycolysis pathway and among ribosomal 



proteins (Fig. 3, C and D). Almost all of the proteins that participate in the glycolysis and 

gluconeogenesis pathways were phosphorylated in E. coli. 

 

We detected some phosphorylated histidine (pHis) and phosphorylated aspartate (pAsp) 

residues, although they were labile under acidic conditions (fig. S2). Among them, pHis15 of 

phosphocarrier protein HPr (PtsH) was previously reported (28), and phosphorylation at this 

site is essential for the enzymatic activity of PtsH. Multidrug resistance protein MdtB, a 

component of the heterotrimeric efflux transporter complex, was phosphorylated on Asp649, 

whereas galactitol-specific phosphotransferase enzyme IIB component protein (GatB), which 

forms part of the phosphotransferase system, was phosphorylated on His30. Protein 

phosphorylation at these sites might modulate the biological functions of the modified 

proteins, especially for MtdB, which forms a tripartite complex with MdtA and MtdC and 

confers resistance to the novobiocin and deoxycholate (29). Indeed, many pSer- or 

pThr-containing phosphoproteins were also observed among phosphotransferases or 

two-component systems that were previously thought to be phosphorylated only on histidine, 

cysteine, or aspartate (fig. S2). 

 

Hansen et al. introduced immunoprecipitation of pTyr-containing proteins to study 

phosphotyrosine proteomics in E. coli in the stationary phase (30). The sequences 



surrounding pTyr in our study varied greatly from those found by Hansen et al., especially in 

the case of regions preceding the pTyr residue (Fig. 3E). These differences might be because 

of differences in sample state or the enrichment approaches used. Consequently, the 

combined results of these two studies provide the most comprehensive bacterial 

phosphotyrosine proteome that is currently available. 

 

Construction of other model bacterial phosphoproteome maps 

Because the phosphorylation content and cellular components among different bacterial 

species are distinct, we also applied our strategy to another gram-negative bacterium, K. 

pneumoniae, as well as to a gram-positive model bacterium, B. subtilis. For B. subtilis, 441 

phosphopeptides were observed in 175 phosphoproteins in 11 LC-MS/MS runs. Among 339 

identified phosphosites, 226 were confidently identified, with a distribution of 74.8% pSer, 

17.7% pThr, and 7.1% pTyr (table S2). On the other hand, for K. pneumoniae, we identified 

663 phosphopeptides containing 559 phosphosites, of which 388 were confidently identified. 

The phosphosite distribution was 72.9% pSer, 13.7% pThr, and 12.9% pTyr in 286 

phosphoproteins (table S3). These phosphorylation events, as expected, were mostly 

associated with central carbon metabolism (Fig. 3C). The large numbers of phosphopeptides 

discovered with our strategy should be helpful in developing a global view of the bacterial 

phosphoproteome and in elucidating the roles of phosphoregulation in bacteria (8, 13). These 



results further confirm the feasibility of our strategy for the broad identification of the 

phosphoproteome by coupling sample pretreatment and a large-scale HAMMOC protocol (8, 

9, 13). 

 

To confirm the validity of our earlier results, we further analyzed the reproducibility of our 

protocol. We found that duplicate sample preparations generated similar numbers (Fig. 1B) 

and that triplicate technical replicates of a given preparation gave a median RSD of 18.2% for 

the peak area of 224 phosphopeptides (table S5). The scatter plots from duplicate LCMS runs 

(fig. S4A) and of the triplicate technical replicates (fig. S4, B to D) showed a similar 

distribution, suggesting that our protocol is reproducible. We found that the removal of some 

interfering biomolecules by protein precipitation improved the identification of 

phosphopeptides; however, the efficiency of this method varied among different species (fig. 

S5A), and the underlying influencing factors are still not clear. Different cell components 

such as the high lipopolysaccharide (LPS) content in gram-negative bacteria, the high 

peptidoglycan content in B. subtilis, and the acidic capsule in K. pneumoniae might all affect 

the efficiency of phosphopeptide enrichment. Therefore, the method of sample pretreatment 

could be further optimized or modified to improve the phosphoproteomic analysis of other 

bacteria. In addition, we noted that the lower coverage of the phosphoproteomes of K. 

pneumoniae and B. subtilis compared with that of E. coli might not be a result of the reduced 



number of LC-MS/MS runs (26 runs in E. coli, 15 runs in K. pneumoniae, and 11 runs in B. 

subtilis), because the cumulative number of unique phosphopeptides had reached saturation 

(fig. S5B), and the total number of unique phosphopeptides in E. coli is much greater than 

that in other two bacteria. Note also that different culture conditions and different nutrients 

may provide an extended coverage of bacterial phosphoproteomic maps (10, 30-32). 

 

Identification of distinct bacterial phosphorylation features 

Because of the large in vivo bacterial phosphoproteome dataset that we obtained, we were 

able to start addressing kinase-substrate preferences. The sequence surrounding the 

phosphorylation site usually plays a critical role in kinase-substrate specificity, so this 

information would be useful for the prediction of phosphorylation sites (33-35) or for 

designing new drugs to target bacterial kinases (4, 36). So far, no high-confidence motif for 

pSer, pThr, or pTyr in bacteria has been reported, although five weak pTyr motifs in E. coli 

O157 and one pThr motif in M. tuberculosis have been identified at lower confidence levels 

(30, 37). Here, we found three previously uncharacterized high-confidence motifs. We also 

found a further 29 weak motifs including pSer, pThr, and pTyr (table S4). 

 

Our results suggest that bacterial phosphorylation motifs are quite distinct from those in 

eukaryotes; for example, the proline-directed motif and the typical eukaryote-type basophilic 



motifs that are usually enriched in eukaryotes were not observed in bacteria with either strong 

or weak confidence (Fig. 4 and table S4). Instead, bacteria have one linear sequence motif 

and position-directed motifs in which the phospho-acceptor residues are near the N terminus 

or C terminus of the protein. Acidic motifs, the common phosphorylation motif in eukaryotes, 

were also found in bacteria at a lower confidence level, suggesting that some phosphorylation 

mechanisms or kinases may be common to both bacteria and eukaryotes. 

 

It is of interest to know whether the suggested position-directed motifs found in this study are 

evolutionarily conserved. Across 11 evolutionarily divergent species, the occurrence of 

phosphorylation in the second amino acid position in the N terminus has gradually decreased 

during evolution, accounting for 6.71, 6.12, and 4.64% of the identified phosphoproteins in B. 

subtilis, E. coli, and K. pneumoniae, respectively, upon normalization to the content of Ser2 

and Thr2 at the proteome level (Fig. 5), whereas the corresponding value in mammals is ~2%. 

In addition, up to 95.8% of the N-terminal phosphopeptides in E. coli and 100% of those in B. 

subtilis and K. pneumoniae were found in proteins whose first methionine was removed 

(tables S1, S2, and S3), suggesting that the phosphorylation preference is position-dependent. 

Moreover, in comparison to that in eukaryotes, the prevalence of the co-occurrence of 

N-terminal phosphorylation and acetylation at the penultimate position was low in bacteria, 

amounting to 0, 7.7, and 8.3% of N-terminal acetylation in N-terminal phosphoproteins in B. 



subtilis, K. pneumoniae, and E. coli, respectively; the sum of N-terminal acetylation together 

with N-terminal phosphorylation accounts for 0.36 and 0.51% of the total phosphoproteins in 

K. pneumoniae and E. coli, respectively (Fig. 5) (12, 38-42). The trend appears to be 

correlated with evolutionary progression, in that there is a large increase in co-occurrence of 

N-terminal phosphorylation and acetylation from 8.3 to more than 75% at the branch point 

between eukaryotes and bacteria (Fig. 5). Also, N-terminal phosphorylation in eukaryotes 

highly favors acidic residues in the antepenultimate position (Asp3 or Glu3), with ~50% or 

greater prevalence in eukaryotes, but only ~12.5% prevalence in E. coli and B. subtilis (Fig. 

5). Furthermore, the N-terminal phosphoproteins that contain Asp3 or Glu3 are all acetylated 

at the N-terminus in eukaryotes, with the only exception being C. elegans (42), which has a 

slightly lower coincidence rate of 96% (fig. S3). In summary, bacteria appear to have distinct 

N-terminal phosphorylation preferences, including a high incidence of N-terminal 

phosphorylation at second amino acid position without the first methionine, a low 

co-occurrence of N-terminal acetylation with N-terminal phosphorylation, and a reduced 

prevalence for Glu3 or Asp3 at N-terminal phosphorylation sites. 

 

Discussion 

We addressed the challenging task of comprehensively determining the site-specific 

phosphoproteome in bacteria. In general, extensive fractionation and labor-intensive 



manipulation are required in the field of bacterial phosphoproteomics; however, our newly 

developed protocol is simpler and has the lowest requirement for sample size; these features 

are advantageous for systematic studies of bacterial phosphoregulation. To determine the 

localizations of the phosphosites, we used the site-determining ion combination (SIDIC) 

approach (27), which is based on the presence of a series of site-determining ions in the 

MS/MS spectra, which showed as high as a 97% overlap of high-confidence phosphosites 

with other probability-based algorithms such as PhosClac (Class I) (23), MaxQuant (Class I) 

(24, 25), and Mascot delta score (≥ 9) (26) in the E. coli dataset (table S1.). Based on the 

phosphoproteome maps derived from these three bacteria, the identified phosphoproteins 

were overrepresented in the glycolysis and gluconeogenesis pathways and among ribosomal 

proteins. In terms of protein synthesis, of the 57 proteins in the 70S ribosome, we found that 

28 were phosphorylated. Phosphorylation of these ribosomal proteins might be involved in 

the control of protein translation through conformational changes, protein-protein interactions, 

or alterations in catalytic activity. For example, the phosphosite pSer35 of the S3 

phosphoprotein, which is located in the mRNA-binding avenue of the 30S subunit, is 

proposed to be involved in intermolecular interactions, whereas pSer119 and pSer122 are 

located in the α-helix of domain II, which may direct mRNA binding (43-45). In the large 

subunit, L19 is involved in intersubunit bridge formation between the small and large 

subunits, which is essential for decoding of mRNA code to protein sequence; therefore, 



phosphorylation may have important roles in the processes of subunit assembly and decoding 

(46, 47). The precise mechanisms of ribosomal regulation remain unclear, but our results 

provide some clues to guide further investigations with genetic or biochemical methods. 

 

The largest bacterial phosphoproteome dataset that could be assembled thus far enabled us to 

identify differences in phosphorylation features, including the characteristics of linear 

sequence and position preference, other than residue conservation, between evolutionary 

domains; although detailed phosphoproteome maps of diverse organisms will be needed to 

fully explore these issues. Accordingly, we can propose two alternative mechanisms of kinase 

specificity based on our findings: the first is the surrounding sequence and the second is 

position-based preference. In addition to exhibiting positional preference, bacteria also 

showed an opposing trend in the co-occurrence of N-terminal acetylation with Glu3 or Asp3 

from that in eukaryotes. This low co-occurrence of N-terminal acetylation may at least in part 

be a result of the lower incidence of N-terminal acetylation in bacteria (48), whereas the 

preference for acidic residues in the antepenultimate position may be a result of differences 

between bacterial and eukaryotic kinases. Although we improved the sensitivity of the 

detection of the bacterial phosphoproteome in this study, it is important to note that further 

improvement in detection sensitivity might uncover other bacterial phosphorylation 

preferences, such as a higher degree of N-terminal acetylation or the presence of a 



proline-directed motif, similar to those observed in eukaryotes. Extensive genetic and 

biochemical experiments will be required to establish in detail the mechanisms of molecular 

regulation, as well as to discover species-specific features that might be applied to the design 

of new therapeutic agents to overcome antibiotic resistance. 

 

Materials and Methods 

Cell culture and lysate preparation 

E. coli strain BW25113, B. subtilis strain 168, and K. pneumoniae strain NTUH-K2044 were 

each grown in LB medium (Nacalai Tesque) with vigorous shaking at 37°C. Cells were 

collected by centrifugation at mid-log phase. Cell pellets were resuspended in ice-cold phase 

transfer surfactant (PTSF) buffer containing 100 mM Tris-Cl (pH 9.0), 12 mM sodium 

deoxycholate (Wako), 12 mM sodium lauroyl sarcosinate (Wako), and phosphatase inhibitor 

cocktail (Sigma) (49, 50). Cells were first heated at 95°C for 5 min to inactivate endogenous 

enzymes, the cell wall and cell membrane were then disrupted by sonication, and cellular 

debris and unbroken cells were removed by centrifugation at 30,140g for 30 min at 4°C. To 

remove interfering cellular components, the cell extract was subjected to methanol and 

chloroform precipitation, acetone precipitation, or ultrafiltration before undergoing digestion 

by trypsin. 

 



Methanol and chloroform precipitation 

To the cell lysate was added four volumes of methanol (Wako), followed by an equal volume 

of chloroform (Wako), with thorough mixing. Three volumes of ultrapure water were then 

added. The sample was mixed well and centrifuged at 12,000g for 5 min. The upper aqueous 

phase was carefully removed, and the white protein precipitate that had formed between the 

upper and lower phases was collected. The precipitate was taken up in three volumes of 

methanol and mixed well. Proteins were precipitated by centrifugation at 12,500g for 5 min, 

and the supernatant was completely removed as described previously (51). 

 

Acetone precipitation 

Cell lysates were thoroughly mixed with 5 volumes of ice-cold acetone (Wako), stored 

overnight at -20°C, and then centrifuged at 12,500g for 5 min. The supernatant was 

completely removed and the pellet was collected for trypsin digestion as described previously 

(52). 

 

Ultrafiltration 

Cell lysates were placed into an Amicon Ultra-15 device (10-kD, Merck Millipore) and 

centrifuged at 5000g at 4°C until the volume of the concentrate reached about 2 ml. Then, 10 



ml of lysis buffer was added and the mixture was centrifuged. This step was repeated five 

times before trypsin digestion was performed (53). 

 

Protein digestion 

Protein crude extracts without pretreatment were directly reduced with 10 mM dithiothreitol 

(DTT, Wako) at 37°C for 30 min and then alkylated with 50 mM iodoacetamide (Wako) at 

37°C in the dark for 30 min. Alkylated proteins were digested with Lys-C (1:50, w/w, Wako) 

for 3 hours followed by overnight digestion with trypsin at 37°C (1:50, w/w, Promega). The 

surfactants were removed by adding organic solvent as described previously (49). Tryptic 

peptides were dissolved in 5% acetonitrile (ACN, Wako) and 0.1% trifluoroacetic acid (TFA, 

Wako) for desalting with a styrene-divinylbenzene copolymer (SDB-XC) solid-phase 

extraction cartridge (Empore, 3M). In the case of pretreated samples, protein extracts were 

dissolved and denatured in 8 M urea (Invitrogen), which was followed by protein reduction 

and alkylation at room temperature. The alkylated protein was digested with Lys-C for 3 

hours and then diluted four times with 50 mM ammonium bicarbonate (Wako) for overnight 

digestion with trypsin at room temperature. The resulting peptide mixture was acidified with 

TFA and desalted with an SDB-XC solid-phase extraction cartridge. 

 

Phosphopeptide enrichment 



Conventional HAMMOC with titanium dioxide (Titansphere, GL Sciences, Cat. 5020-75010) 

was performed with a 10-μl C8-StageTip as described previously (50). For large-scale 

HAMMOC, a homemade 200-μl C8-StageTip was used; due to backpressure, the flow rate 

was ~10 to 30 μl/min. The amount of TiO2 beads was increased to 1.5 mg, and the sample 

amount was increased to 500 μg for the first trial. For stepwise enrichment, the eluent of the 

large-scale HAMMOC was acidified with TFA and desalted with an SDB-XC StageTip, 

which was followed by conventional HAMMOC enrichment. For phosphopeptide elution, the 

sequential elution approach was adapted with both 0.5 and 5% piperidine (Wako). After 

desalting with an SDB-XC StageTip, phosphopeptides were resuspended in 0.5% TFA, 4% 

ACN and then were subjected to nanoscale liquid chromatography (nanoLC)−MS/MS 

analysis. 

 

LC-MS/MS analysis 

The TripleTOF 5600 MS system was coupled with an Ultimate 3000 RSLCnano system 

(Thermo Fisher Scientific) with an HTC-PAL autosampler (CTC Analytics). Peptide 

mixtures were loaded onto a 0.1 mm id× 150 mm long fused-silica capillary column packed 

with C18 material (3 μm, Dr. Maisch GmbH, Amerbuch, Germany). The injection volume for 

peptide samples was 5 μl, and the flow rate was 500 nl/min. The mobile phases consisted of 

solution A of 0.5% acetic acid (Wako) and solution B of 0.5% acetic acid and 80% 



acetonitrile. A three-step linear gradient of 5 to 10% B for 5 min, 10 to 40% B for 60 min, 40 

to 100% B for 5 min, and 100% B for 10 min was used. The MS instrument was operated in 

the positive ion mode, with an ion-spray voltage of 2.3 kV and an interface heater 

temperature of 150°C. Data were acquired from one full MS scan (m/z 300 to 1500) for 250 

ms, which was followed by high-sensitivity MS/MS scans from the top seven most abundant 

precursor ions, each with a 100-ms accumulation time. 

 

Data analysis 

The peak list of each raw MS spectrum was generated as previously described (27). Peptide 

identification was performed by Mascot ver 2.4 (Matrix Science) against a composite 

target-decoy protein sequence database containing 4,316 proteins for E. coli, 5,262 for K. 

pneumoniae, and 4,188 for B. subtilis. The search criteria used in this study were as follows: 

trypsin specificity allowing for up to two missed cleavage events; fixed modification of 

carbamidomethyl (Cys); and variable modifications of oxidation (Met), acetylation (protein 

N-term), and phosphorylation (Ser and Thr), (Tyr), (Asp), and (His). The precursor mass 

tolerance was set at 20 ppm, and the fragment ion tolerance was set at 0.1 Daltons. Data from 

each nanoLC−MS/MS run were searched individually. Peptides were considered identified if 

the Mascot score yielded a confidence limit >95% based on the significance threshold (P < 

0.05) and if at least three successive y- or b-ions with an additional two or more y-, b-, or 



precursor-origin neutral loss ions were observed, based on the error-tolerant peptide sequence 

tag concept (54). These criteria gave a false positive rate of <1% for phosphopeptide 

identification, as evaluated by the target-decoy strategy. For those phosphopeptides identified 

in more than one run, only the phosphopeptides with the highest score were reported. The 

reliability of phosphosite localization was assessed by the site-determining ion combination 

(SIDIC) method (27). To confirm the SIDIC assessment, the site localization probability for 

all E. coli phosphosites was calculated by PhosCalc version 1.2 (23), MaxQuant (24, 25), and 

Mascot delta score (MD-score) (26). Phosphosites with PTM score–based probability by 

PhosCalc or MaxQuant were grouped into Class I (phosphosite probability P > 0.75), Class II 

(0.5 < P ≤ 0.75), and Class III (P ≤ 0.5) (24). Class I phosphosites were accepted 

automatically as unambiguous sites (24). For MD-score, those phosphosites with an 

MD-score of ≥ 9 (99% accuracy) were considered as unambiguous sites. 

 

Motif-X analysis 

All confirmed phosphosites were used as input for Motif-x software to determine motifs for 

these phosphorylated substrates with the proteome as background (55). Parameters for the 

Motif-x analyses were as follows: foreground central residue = S or T or Y (depending on the 

analysis), width = 13, the number of occurrences was 10, and the statistical significance was 

0.00001, unless otherwise stated. 
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Fig. 1. Comparison of phosphopeptide enrichment efficiencies. (A) Samples of E. coli 

were subjected to conventional or large-scale HAMMOC without pretreatment or else were 

pretreated by acetone precipitation, ultrafiltration, or precipitation with methanol and 

chloroform (MeOH/CHCl3) before being subjected to large-scale HAMMOC. Bars represent 

the number of identified phosphopeptides by duplicate LCMS injections from the same 

enriched samples. Tryptic peptides from lysates (500 µg) were used for large-scale 

HAMMOC, whereas 100 µg of sample was used for conventional HAMMOC. (B) Sample 

capacity test of large-scale HAMMOC. The amount of peptide used for the analysis ranged 

from 500 to 1,000 µg, as indicated. Paired bars show the numbers of identified 

phosphopeptides and represent duplicate samples and handling, including protein 

precipitation, trypsin digestion, phosphopeptide enrichment, and LC-MS/MS measurement. 

 



Fig. 2. Overlap of E. coli phosphoproteomes. (A to C) Analysis of the overlap in the 

numbers of (A) phosphopeptides, (B) phosphoproteins, and (C) phosphorylated ribosomal 

proteins identified in E. coli in the current study and those in published E. coli 

phosphoproteomes (9, 10). 

 

Fig. 3. Overview of the E. coli phosphoproteome. (A) The percentage of identified 

phosphoproteins assigned to essential genes according to the Ecogene Database annotation. 

(B) Gene ontology (GO) distribution of identified phosphoproteins with respect to biological 

processes and cellular components with the DAVID Functional Annotation tools. The 

percentages indicate those proteins that belong to distinct categories. (C and D) 

Phosphoproteins participate widely in housekeeping pathways based on the KEGG database, 

including (C) the glycolysis and gluconeogenesis pathways and (D) ribosomal proteins. Blue 

circles in (C) represent phosphoproteins identified in E. coli, K. pneumoniae, or B. subtilis. 

White circles or boxes in (C) and (D) indicate unphosphorylated proteins in distinct pathways. 

The colored boxes in (D) indicate the phosphorylated ribosomal proteins that were observed 

in this study. (E) Frequency distribution analyzed by Sequence Logo Generator 

(http://www.phosphosite.org/) (56) of the general representation of residues surrounding the 

phosphorylated tyrosine residue based on data from a previous study (30) and from the 

current study. 



 

Fig. 4. Statistically significantly enriched phosphorylation motifs of bacterial 

phosphoproteomes obtained by Motif-x analysis. Motif-x software was used to represent 

the N- or C-terminal position, but not any particular amino acid, with the three proteomes as 

background. Three motifs are overrepresented in the large-scale phosphoproteomic maps. (A) 

The linear sequence with lysine (K) at the -1 position relative to serine (S, left) and threonine 

(T, right) is preferred in bacteria. (B) Three position-directed motifs in which a phosphosite 

near the N or C terminus of the protein is statistically significantly enriched. The parameters 

of the Motif-x algorithm were occurrences = 10 and significance = 0.00001. 

 

Fig. 5. Co-occurrence of N-terminal phosphorylation with N-terminal acetylation, and 

analysis of adjacent acidic residues in the antepenultimate position of 11 evolutionarily 

divergent organisms. The phosphoproteomes of evolutionarily divergent organisms were 

collected from the literature and our own datasets (12, 38-42). Bars represent the numbers of 

pSer2- or pThr2-containing proteins divided by the total number of phosphoproteins. The 

white portion of the bar shows the proportion of N-terminal phosphoproteins that underwent 

N-terminal acetylation, whereas the black portion indicates the proportion of N-terminal 

phosphoproteins that were not acetylated. Each bar was normalized by the relative value of 

the Ser2 and Thr2 content in the total proteins of each indicated organism to the Ser2 and Thr2 



content of E. coli. The gray curve represents the number of N-terminal phosphoproteins that 

contain Asp3 or Glu3 as a percentage of the total number of N-terminal phosphoproteins. The 

numbers in parentheses below the x-axis denote the total number of proteins in each organism. 

The phylogenic tree was constructed with an open tool, the Interactive Tree Of Life (iTOL, 

http://itol.embl.de/index.shtml) (56). 

http://itol.embl.de/index.shtml
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