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Abstract: This paper addresses the convergence of
simultaneous perturbation stochastic approximation
(SPSA) with a norm-limited update vector. We first
illustrate an unstable solution of the standard SPSA
algorithm and motivate to consider a modified version,
where the norm of the update vector is limited to a cer-
tain value. Next, a result on the almost-sure convergence
is presented by reducing the modified algorithm into
the standard SPSA algorithm and restricting the prob-
ability distribution for the perturbation to a Bernoulli
distribution. Finally, we apply the modified algorithm
to a system identification problem to demonstrate its
performance.
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1 Introduction

The simultaneous perturbation stochastic approxima-
tion (SPSA) [1] is a well-known solution to model-free
optimization problems. The main feature is that, in solv-
ing an optimization problem, the method uses not the
closed-form expression of the objective function but a
small number ofmeasurements of the objective function.
By focusing on the practical utility, it has been exten-
sively studied so far. For instance, to enhance its appli-
cability, the original algorithm is extended to the one-
measurement version [2], the adaptive version [3], the
global version [4], the one-sided version [5], and so on
(see [6] for other variations). Also, it has been applied
to a wide range of engineering problems, e.g., model-free
control [7–9], adaptive control [10–12], image registra-
tion [13–15], neural networks [16–18], and multi-agent
control [19,20].

For the optimization problem minx∈Rn J(x), the stan-
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dard SPSA algorithm [1] is given by

xk+1 = xk + h(xk, rk)

where xk is the candidate of the solution, rk is the
random vector, and h(xk, rk) is the update vector. If
some conditions hold for J , h, rk, and x0, the sequence
x1, x2, . . ., which is generated by the algorithm, con-
verges to a solution to the problem in a stochastic
sense. However, since the SPSA algorithm is a solution
to model-free optimization (i.e., where the closed-form
expression of J is unknown), the conditions for J are
not always checkable in practice. As the result, one has
to use the algorithm without checking the conditions
and often encounters an instability phenomenon. This
instability problem is involved in not only the stan-
dard algorithm but also all the variations including the
aforementioned extensions [2–5].

Throughout our experience in engineering applications
(e.g., in [7]), there are two main reasons for the insta-
bility. First, the update vector h(xk, rk) often becomes
too large to execute the algorithm, which causes numeri-
cal instability. Second, the update vector h(xk, rk) grows
with k → ∞ and eventually diverges. So it is reasonable
to limit the quantity of the update, which motivates us
to introduce the following modified algorithm [7] as an
alternative:

xk+1 = xk + δ(h(xk, rk))

where δ is a saturation function. It has been shown
in [7,21] that the modified version succeeds in some en-
gineering problems, and thus the modified SPSA algo-
rithm must be more practical. Moreover, this modifica-
tion can be used for a variety of SPSA algorithms in-
cluding the aforementioned extensions [2–5].

However, in spite of such usefulness, any theoretical re-
sult has never been provided so far. Although the mod-
ified version will be used without checking convergence
conditions due to the same reason as above, it is quite
important to prove that it solves optimization problems



under reasonable conditions which are (hopefully) simi-
lar to those for the standard SPSA algorithm.

In this paper, we thus analyze the convergence of the
modified algorithm. First, we illustrate an unstable so-
lution and motivate to consider the modified algorithm.
Next, a result on the almost-sure convergence is pre-
sented. The key ideas to prove the convergence are (a)
reducing the algorithm into the standard SPSA algo-
rithm and (b) restricting the probability distribution for
the perturbation to a Bernoulli distribution. Finally, the
modified algorithm is demonstrated by applying to a
system identification problem.

Notation:Let R, R+, and N be the real number
field, the set of positive real numbers, and the set of
non-negative integers. We denote by 0 and 1 the zero
scalar/vector and the vector whose all elements are one.
For the vector x, we use ∥x∥ and sgn(x) to express the
Euclidean norm and the vector obtained by applying
the signum function to each element. For example, for
x = [3 −4 0]⊤, ∥x∥ = 5 and sgn(x) = [1 −1 0]⊤. If x
contains no zero-valued element, we use x(−1) to repre-
sent the elementwise inverse, e.g., x(−1) = [1/4 −1/3]⊤

for x = [4 −3]⊤. We denote by A ⊗ B the Kronecker
product of the matrices A and B. Finally, let P(a)
and E(α) respectively denote the probability and the
expectation for an event a and the random variable α.

2 Simultaneous Perturbation Stochastic Ap-
proximation [1]

In this section, we briefly review the SPSA algorithm [1]
and illustrate its unstable solution.

2.1 Standard SPSA Algorithm

Consider the optimization problem

min
x∈Rn

J(x) (1)

where x ∈ Rn is the parameter to be optimized and
J : Rn → R is the objective function.

A solution is given by the following algorithm:

xk+1 = xk − akg(xk) (2)

where xk ∈ Rn is the solution vector, ak ∈ R+ is the
gain, and g(xk) ∈ Rn is the direction vector defined as

g(xk) :=
J(xk + ckrk)− J(xk − ckrk)

2ck
r
(−1)
k (3)

for a positive number ck ∈ R+ and a random vector rk ∈
(R \ {0})n. This algorithm is called the Simultaneous
perturbation stochastic approximation (SPSA) [1].

The idea of this algorithm is that the expectation of
g(xk) is nearly equal to ∂J

∂x (xk) and thus (2) corresponds
to a stochastic version of the steepest descent. Based on
this fact, the almost-sure convergence to a local solution
has been shown in [1] subject to several conditions.

2.2 Stable and Unstable Solutions

The following example demonstrates the algorithm in
(2).

Example 1 Consider

J(x) := (x− 1)
⊤
(x− 1) (4)

where n = 10. This has the unique stationary point at x =
1, which corresponds to the global minimum point. Fig. 1
shows the time evolution of J(xk)/J(x0) for the algo-
rithm with x0 := [−0.14 −0.58 1.07 −0.41 −0.26 2.44

−1.29 −1.22 −0.87 −0.02]⊤, ak := 0.05/ (k + 200)
0.602

,
ck := 0.01/(k+1)0.101, and a probability distribution for
rk. It turns out that the algorithm solves the minimiza-
tion problem. 2

However, the algorithm does not always solve the prob-
lem in (1).

Example 2 Consider

J(x) :=
(
(x− 1)

⊤
(x− 1)

)3

. (5)

This objective function also has the unique stationary
point at x = 1, which is the global minimum point. Fig. 2
depicts the time evolution of J(xk)/J(x0) for the algo-
rithm under the same condition as in Example 1. Un-
like Example 1, J(xk) does not converge to the minimum
value, which implies that the algorithm could not solve
the problem. 2

As shown in the above examples, the standard SPSA
algorithm does not always give a stable solution, which
motivates us to consider a modified version of the SPSA
algorithm.

3 SPSAwithNorm-limited Update Vector And
Its Convergence

The main reason for the unstable solution is that the
sequence ∥akg(xk)∥ (k = 0, 1, . . .) increases as k → ∞ in
some cases and xk diverges as the result.

A solution to avoid such instability is to limit the amount
of the update, i.e., akg(xk). So we consider the following
algorithm, originally proposed in [7], as an alternative
of (2):

xk+1 = xk − δ (akg(xk)) (6)
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Fig. 1. Time evolution of J(xk)/J(x0) in Example 1.

Fig. 2. Time evolution of J(xk)/J(x0) in Example 2.

where δ : Rn → Rn is given by

δ(θ) :=


sgn(θ1)min(|θ1|, d)
sgn(θ2)min(|θ2|, d)

...

sgn(θn)min(|θn|, d)

 (7)

for θ ∈ Rn, the i-th element θi of θ, and a pre-specified
positive number d ∈ R+. Note here that each element
of the vector δ (akg(xk)) is not greater than d.

For the proposed algorithm, the following result is ob-
tained.

Theorem 1 For the algorithm in (6), suppose that x0 ∈
Rn and d ∈ R+ are given. Let x∗ ∈ Rn be a local solution
to the problem in (1). Then,

lim
k→∞

xk = x∗ w.p.1 (8)

subject to the following assumptions:

(C1) For almost all xk (at each k ≥ K for some K <
∞) and some α0 > 0, J (3)(x) := ∂3J/∂x⊤∂x⊤∂x⊤

exists continuously with individual elements bounded
byα0 for all x in an open neighborhood of xk. Moreover,
there exists an α1 > 0 such that E

(
J(xk ± ckrk)

2
)
≤

α1 for all k ∈ N.

(C2) ∥xk∥ < ∞ for all k ∈ N w.p.1.

(C3) x∗ is an asymptotically stable solution of the dif-
ferential equation

dξ(t)

dt
= −∂J

∂x
(ξ(t)). (9)

(C4) LetD(x∗) be the domain of attraction for the point
x∗, i.e., D(x∗) := {ξ0 ∈ Rn | limt→∞ ξ(t, ξ0) = x∗}
where ξ(t, ξ0) denotes the solution to the differential
equation (9) for ξ(0) = ξ0. Then, there exists a com-
pact set S ⊆ D(x∗) such that xk ∈ S infinitely often
for almost all sample points.

(C5) ak, ck > 0 for all k ∈ N, limk→∞ ak = 0,∑∞
k=0 ak = ∞, limk→∞ ck = 0, and

∑∞
k=0 a

2
k/c

2
k <

∞.

(C6) rki (i = 1, 2, . . . , n) are the i.i.d. random numbers
drawn from the Bernoulli distribution{

P(rki = 1) = 0.5,

P(rki = −1) = 0.5,
(10)

where rki is the i-th element of rk.

Proof: This is a consequence of the following three facts.

(i) Consider the standard SPSA algorithm in (2). As-
sume that ak (k = 0, 1, . . .) are random variables. Then
the solution sequence converges to x∗ w.p.1 subject to
(C1)–(C4), (C6), and

(C5’) ak, ck > 0 for all k ∈ N, limk→∞ ak = 0,
limk→∞ ck = 0, and

∑∞
k=0 a

2
k/c

2
k < ∞. Moreover,∑∞

k=0 ak = ∞ w.p.1.

(ii) The algorithm in (6) is rewritten as

xk+1 = xk − ãkg(xk) (11)

for

ãk :=



2ckd

|J(xk + ckrk)− J(xk − ckrk)|

if |J(xk + ckrk)− J(xk − ckrk)| >
2ckd

ak
,

ak otherwise.

(12)
Equation (11) is in the standard SPSA form in (2).

(iii) Conditions (C1), (C2), and (C5) imply
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(C5”) ãk, ck > 0 for all k ∈ N, limk→∞ ãk = 0,
limk→∞ ck = 0, and

∑∞
k=0 ã

2
k/c

2
k < ∞. Moreover,∑∞

k=0 ãk = ∞ w.p.1.

Fact (i) is a straightforward result from [1] and [22]
(pp. 17, line 1–9) (see Lemma 2 in Appendix A for fur-
ther details), while (ii) and (iii) are nontrivial facts which
have to be proven. So we show (ii) and (iii) in the follow-
ing part.

(ii) Let ∆Jk := J(xk + ckrk) − J(xk − ckrk). Then it

follows from (6), (7), and r
(−1)
k ∈ {−1, 1}n (from (C6))

that

δ (akg(xk)) = δ

(
ak

∆Jk
2ck

r
(−1)
k

)
=min

(
ak

|∆Jk|
2ck

, d

)
sgn

(
∆Jkr

(−1)
k

)
=

 d sgn
(
∆Jkr

(−1)
k

)
if |∆Jk| >

2ckd

ak
,

akg(xk) otherwise.

(13)

Note here that

d sgn
(
∆Jkr

(−1)
k

)
=

2ckd

|∆Jk|
|∆Jk|
2ck

sgn
(
∆Jkr

(−1)
k

)
=

2ckd

|∆Jk|
∆Jk
2ck

sgn
(
r
(−1)
k

)
=

2ckd

|∆Jk|
g(xk) (14)

if |∆Jk| > 2ckd
ak

. From (13) and (14),

δ (akg(xk)) = ãkg(xk). (15)

So we have (ii).

(iii) From (12) and (C5), we have

0 < ãk ≤ ak (16)

for every k ∈ N. This and (C5) imply

lim
k→∞

ãk = 0,
∞∑
k=0

ã2k
c2k

< ∞. (17)

So the first condition of (C5”) holds.

Next, we prove the second condition of (C5”), i.e.,∑∞
k=0 ãk = ∞ w.p.1.

Conditions (C1) and (C2) imply that there exists a γ0 >
0 satisfying ∥∥∥∥∂J∂x (xk)

∥∥∥∥
∞

≤ γ0 w.p.1 (18)

for every k ∈ N.

On the other hand, by using the Taylor expansion, the
triangle inequality, (C1), (C6), and (18), we have

|J(xk + ckrk)− J(xk − ckrk)|

=

∣∣∣∣∣2ck
(
∂J

∂x
(xk)

)⊤

rk

+
c3k
6

(
J (3)(x+

k ) + J (3)(x−
k )

)
rk ⊗ rk ⊗ rk

∣∣∣∣∣
≤ 2ck

∣∣∣∣∣
(
∂J

∂x
(xk)

)⊤

rk

∣∣∣∣∣
+
c3k
6

∣∣∣(J (3)(x+
k ) + J (3)(x−

k )
)
rk ⊗ rk ⊗ rk

∣∣∣
≤ 2cknγ0 +

c3kn
3α3

0

3
w.p.1 (19)

where x+
k and x−

k are some vectors on the line segments
between xk and xk + ckrk and between xk and xk − ckrk,
respectively. It follows that

2ckd

|J(xk + ckrk)− J(xk − ckrk)|
≥ d

(
nγ0 +

c2kn
3α3

0

6

)−1

w.p.1. (20)

Finally, from (12), (16), (20), d > 0, n > 0, γ0 > 0, and
α0 > 0, we have

∞∑
k=0

ãk ≥
∞∑
k=0

2ckd

|J(xk + ckrk)− J(xk − ckrk)|

≥
∞∑
k=0

d

(
nγ0 +

c2kn
3α3

0

6

)−1

w.p.1

=∞ w.p.1, (21)

which completes the proof. 2

Example 3 Consider again J(x) in (5). Now, let us
apply the algorithm in (6) with d := 0.5 and the same
condition as in Example 2.

Fig. 3 illustrates the time evolution of J(xk)/J(x0). Un-
like the standard SPSA algorithm, the SPSA algorithm
achieves the minimization of J(x). 2

In this way, the SPSA algorithm in (6) is more stable and
so can be applicable to a wide range of real problems.
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Fig. 3. Time evolution of J(xk)/J(x0) for the modified SPSA
algorithm.

4 Application to System Identification with
Partially Known Model Structure

In this section, we apply the SPSA algorithm in (6) to a
system identification problem.

Consider the system described by

y(t) = b1y(t− 1) + b2y(t− 2) + b3u(t− 1)y(t− 1)

+b4f(b5u(t− 1)) (22)

where t ∈ N is the discrete time, u(t) ∈ R is the in-
put, y(t) ∈ R is the output, bi ∈ R (i = 1, 2, . . . , 5)
are constants. Moreover, f : R → R is a smooth
function but it is assumed to be unknown. For the
system, we address here the problem of identifying
the parameters bi ∈ R (i = 1, 2, . . . , 5) with the in-
put data û(0), û(1), . . . , û(N) and the output data
ŷ(0), ŷ(1), . . . , ŷ(N), assuming that a blackbox simula-
tor of f is available, that is, the output value of f can
be obtained once an input value is given.

This problem is reduced into the optimization problem
in (1), whose objective function is given by

J(x) :=
N∑
t=0

(ŷ(t)− y(t, û(t), x))
2

(23)

where x := [b1 b2 · · · b5]
⊤ ∈ R5 and y(t, û, x) is the

output at time t of the system (22) for the parameters x
and the input sequence û(0), û(1), . . . , û(N). Note here
that the explicit function form of the gradient of J(x)
cannot be obtained due to the unknown function f , and
so an SPSA method is a suitable solution.

Now, we apply the SPSA algorithm in (6) to this
problem. Suppose that the original parameter is
given by b := [1 −0.5 0.5 1 2]⊤, N = 1000,
and û(0), û(1), . . . , û(1000), ŷ(0), ŷ(1), . . . , ŷ(1000)
are given as Figs. 4 and 5. We set x0 := 0, ak :=

Fig. 4. Input data û(0), û(1), . . . , û(1000) used for identifica-
tion.

Fig. 5. Output data ŷ(0), ŷ(1), . . . , ŷ(1000) used for identifi-
cation.

Fig. 6. Time evolution of J(xk)/J(x0) for the modified SPSA
algorithm.

0.1/(k + 1000)0.602, ck := 0.01/(k + 1)0.101, and
d := 0.01 for the algorithm in (6). Then we exe-
cute the algorithm for t = 0, 1, . . . , 999 and obtain
x1000 = [0.99 −0.48 0.51 1.05 1.96]⊤, which is nearly
equal to the original value of b. Fig. 6 shows the time
evolution of J(xk)/J(x0) and Fig. 7 illustrates the com-
parison of the original system and the identified model
in terms of the output for another input sequence.
These demonstrate that the SPSA algorithm is stable
and solves the above system identification problem.

On the other hand, Fig. 8 depicts the time evolution of
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Fig. 7. Comparison between original system and identified
model.

Fig. 8. Time evolution of J(xk)/J(x0) for the standard SPSA
algorithm.

J(xk)/J(x0) for the standard SPSA algorithm in (2).
This shows that the algorithm is unstable and does not
give any solution to the problem. So it is concluded that
the SPSA algorithm in (6) is a useful tool for system
identification.

5 Conclusion

This paper has addressed the simultaneous perturbation
stochastic approximation with norm-limited update vec-
tor to avoid some unstable solutions unlike the standard
SPSA algorithm. As a theoretical result for the SPSA al-
gorithm, the almost sure convergence has been proven.
Finally, the proposed algorithm has been applied to a
system identification problem with a partially known
model structure.
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Appendix A: Convergence of Standard SPSA Al-
gorithm

As a straightforward consequence of [1] and [22] (pp. 17,
line 1–9), the following convergence result is provided
for the standard SPSA algorithm given by (2) and (3).

Lemma 2 For the standard SPSA algorithm given by
(2) and (3), suppose that x0 ∈ Rn is given and ak
(k = 0, 1, . . .) are random variables. Let x∗ ∈ Rn be a lo-
cal solution to the problem in (1). If (C1)–(C4), (C6)
(given in Theorem 1), and (C5’) hold for the algorithm,
x0, and x∗, then

lim
k→∞

xk = x∗ w.p.1.

Proof: Since it is proven in the same way as [1], we show
here the sketch. If (C1) and (C6) hold, the expectation
of g(xk) is nearly equal to ∂J

∂x (xk), i.e.,

E(g(xk)|xk) =
∂J

∂x
(xk) +O(c2k) (ck → 0).

By using this relation, the standard SPSA algorithm
is reduced into the so-called Robbins-Monro algorithm
[23]. Then (C2)–(C4) and (C5’) imply the convergence
conditions (see [23]) of the Robbins-Monro algorithm.
This completes the proof. 2
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