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A semiquantal wavepacket modeling of electrons in chemical bonding is presented. It is based on the valence-
bond (VB) theory with non-orthogonal floating and breathing spherical Gaussian orbitals, simplified to treat
many electrons by decoupled electron pair approximations (DPA) and core pseudopotentials (CPP). The ex-
tended Hamiltonian formalism offers pictorial interpretation and analysis in the extended phase space of the
wavepacket center and width coordinates. The numerical calculations are demonstrated on the ground state
potential energy surfaces of H2, LiH, and BeH2. For LiH, the perfect-pairing VB (VB-PP) calculation with the
minimal orbitals gives an accurate potential energy curve of comparable quality with a correlated ab initio cal-
culation. The two-electron VB calculation with a CPP underestimates the binding energy but gives qualitatively
correct potential energy curves. For BeH2, the VB-PP with CPP gives reasonably accurate potential energy
surface along both the stretching and bending coordinates. A few versions of DPA are developed and assessed,
aiming toward large scale dynamic simulations. A scaling ansatz is introduced and examined on the bonding
potential energy surfaces. The efficacy of the theory for studying linear and nonlinear electronic polarizations
is also illustrated via an analysis of potential energy surfaces in the extended phase space.

I. INTRODUCTION

A goal of theoretical and computational chemistry is to
develop approaches to the solution of full molecular time-
dependent Schrödinger equations treating both electronic and
nuclear degrees of freedom as dynamical variables. This is ob-
viously too demanding for chemical problems involving both
degrees of freedom in non-trivial manners. A range of ap-
proximations and models are therefore deployed. One end
is represented by high-level ab initio quantum chemical cal-
culations with large scale electron-correlation methods;1,2 the
other is statistical mechanical simulations by molecular dy-
namics (MD), Monte Carlo, and integral-equation methods.3,4

The former are yet too expensive for the direct dynamics sim-
ulations of large systems, while the latter often employ sim-
plified potential functions ignoring electronic structure alter-
ations.

The hybrid of these two ends, the so-called QM/MM strat-
egy, has been a major arena in the last decade.5,6 Nonetheless,
consistent treatment of the boundary between QM (quantum
mechanics) and MM (molecular mechanics) regions has been
the bottleneck both technically and conceptually. Another
growing area is the simulation of real-time electron dynam-
ics by time-dependent Hartree-Fock, time-dependent density
functional, and other methods.7–10 These are naturally more
expensive than their time-independent counterparts.

While qualifying the promise of these state-of-the-art
computations,11 in this work we investigate a different ap-
proach. It is motivated by the recent development of semi-
quantal time-dependent Hartree (SQTDH) theory for chemi-
cal dynamics in condensed phase.12–14 The SQTDH theory de-
scribes the wavefunction as a Hartree product of the squeezed
coherent state Gaussian wavepackets. The structure and dy-
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namics of the wavefunction can be studied in a pictorial man-
ner on a potential surface in an extended phase space formed
by the wavepacket center and width coordinates. This has
been demonstrated for coupled system-bath models12 and hy-
drogen bonding structures.13

As the Hartree approximation implies however, many-
fermion systems were out of the scope of the SQTDH theory.
We therefore attempt in this work to extend it to account for
the antisymmetry of electronic wavefunctions. To this end, we
exploit and combine the ideas of the valence bond (VB) the-
ory, non-orthogonal floating and breathing orbitals, decoupled
electron pair approximation (DPA), and core pseudopotentials
(CPP). It is thus designed to achieve semi-quantitative correct-
ness and applicability to large scale dynamic simulations.

The time-independent electronic part of the present the-
ory is partially related to the FSGO (floating spherical Gaus-
sian orbital) method.15 The main difference is the restricted
Hartree-Fock (RHF) nature of the latter, contrasted with the
VB idea of the former. On the other hand, the dynamic part is
related to the fermion wavepacket MD simulations in nuclear
and plasma physics.16–20 The distinction is in the treatment of
the antisymmetry of the wavefunction and the DPA based on
the VB coupling, reflected in the form of the Pauli potential.
The present work shares the motivation with the eFF (electron
force field) model by Su and Goddard,21 although the formu-
lation and the resultant potential function are different.

In this first report, the basic framework of the theory is
described and numerical applications are examined on the
ground state potential energy surfaces of small molecules such
as H2, LiH, and BeH2. Applications to larger systems and to
dynamic processes will be presented in the forthcoming pub-
lications.

Section II describes the theory for one and two electron sys-
tems, a scaling ansatz, and the CPP and DPA for many elec-
tron systems. Section III presents numerical applications and
discussions. The paper concludes in Sec. IV.
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II. THEORY

A. One electron atoms and molecules

1. Basic framework

For simplicity, we set h̄ = 1 and assume that the coordi-
nates are mass-scaled. The trial wave function22–24 is defined
in the coherent state spherical Gaussian form,

φ(q, t) = Nexp
{
A (t) |q − x (t)|2 + ip (t) · (q − x (t))

}
,

(1)
in which

A (t) =
−1 + 2iρ (t)π (t)

4ρ (t)
2 (2)

and N = (2πρ (t)
2
)−

3
4 is the normalization factor. The time-

dependent parameters x(t) and ρ(t) describe the center and
width of the wavepacket; p(t) and π(t) are seen below to rep-
resent the conjugate momenta of x(t) and ρ(t).

The equations of motion for the parameters are de-
rived from the time-dependent variational theory,25

δ(
∫
Ldt)/δX = 0, where X represents all the parame-

ters, and

L =

〈
φ(t)

∣∣∣∣i ∂∂t − Ĥ
∣∣∣∣φ(t)

〉
(3)

with Ĥ = −(1/2)∂2/∂q2 + V (q). This yields

ẋ = ∂Hext/∂p, ṗ = −∂Hext/∂x
ρ̇ = ∂Hext/∂π, π̇ = −∂Hext/∂ρ,

(4)

in which Hext is given by

Hext =
p2

2
+
π2

2
+

3

8ρ2
+ 〈V 〉 , (5)

where 〈V 〉 is the expectation value of V with respect to |φ〉.
The classical Hamiltonian form of Eq. (4) suggests consid-
eration of the phase space (x, ρ,p, π). The key quantity is
therefore the potential

Vext =
3h̄2

8mρ2
+ 〈V 〉 (6)

in the extended configuration space (x, ρ). Note that h̄ and
the mass m are retrieved in the first term of Eq (6). This term
tends to broaden the wavepacket, with a stronger tendency
when the mass is the lighter, and vanishes in the classical limit
h̄→ 0. The optimal stationary state wavepacket in the ground
state is obtained simply by minimizing Vext.

In Ref 24, the problem of constructing an extended poten-
tial for coupled degrees of freedom has been pointed out. The
Hartree ansatz was examined in Ref. 12 together with the
canonicity condition (Ref. 26) for the extended Hamiltonian
form. It was found to be essentitally equivalent to the QHD-
2 (quantized Hamilton dynamics)27 and QCD (quantized cu-
mulant dynamics)28 theories by assuming decoupling of the

degrees of freedom. In this work, the use of the spherical
Gaussian form evades this problem for the three Cartesian co-
ordinates of a particle. It also obviates the issue concerning
the rotational invariance.

2. Hydrogen-like atoms

The theory is well illustrated on the hydrogen-like atoms.
Hereafter, we apply the atomic unit h̄ = e = me = 1. The
potential for the electron at position q is

VH(q) = −Z/|q|, (7)

where the nucleus with atomic number Z is placed at the
origin. In this work, we treat the nucleus as a classical
point charge (the Born-Oppenheimer approximation). The
wavepacket treatment of nuclei will be treated elsewhere.

The semiquantal extended potential is derived straightfor-
wardly as

V ext
H (x, ρ) =

3

8ρ2
−
√

2

π

Z

ρ
F0(
|x|2

2ρ2
), (8)

in which F0 is the Boys function29 of order 0 defined by

F0(t) =

∫ 1

0

e−ty
2

dy =

√
π

4t
erf(
√
t). (9)

The minimum of V ext
H is found at x = 0 from the sym-

metry. Therefore, V ext
H is a quadratic function of 1/ρ whose

minimum is at

ρ =
3

4Z

√
2

π
(≡ ρ0), (10)

which is 0.940 bohr for Z = 1. The minimum energy is

V ext
H (0, ρ0) = −4Z2

3π
, (11)

which is ca 85 % of the exact 1s energy EH = −Z2/2. The
same result has been found in Ref 30. Here we will extend the
analysis in the following sections to the scaling ansatz and the
calculation of polarizability. A note on the virial theorem is
included in Appendix B.

3. Static polarizability

The polarizability is calculated from the energy change in-
duced by an electric field F , which adds a field-electron inter-
action −F · q to the Hamiltonian. The numerical calculation
is straightforward, and the effect is pictured as a deformation
of the extended potential Vext, as will be demonstrated in Sec.
III D. Fortunately, the analytical solution is available for the
hydrogen-like atoms, which is described below.
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TABLE I: Expectation values of some powers of the electron-nucleus
radial distance r for the ground state hydrogen-like atoms. a ≡ a0/Z
where a0 is the Bohr radius and Z is the atomic number. ρ̃ ≡ ρ/Z
and ρ0 is from Eq. (10).

exact semiquantal using ρ0

〈r〉 3
2
a

√
8
π
ρ̃ 3

2
a

〈r2〉 3a2 3ρ̃2 27π
32
a2

〈r−1〉 a−1
√

2
π
ρ̃−1 8

3π
a−1

〈r−2〉 2a−2 ρ̃−2 32
9π
a−2

Let us assume that a uniform field is applied along the z-
axis. As the static polarizability is defined in the weak field
limit, we expand the Boys function in Eq. (8) around x = 0,

V ext
H (z, ρ;F ) ' 3

8ρ2
−
√

2

π

Z

ρ

(
1− z2

6ρ2

)
− Fz. (12)

Minimizing along z,

V ext
H (z0, ρ;F ) = V ext

H (0, ρ; 0)− 3

2Z

√
π

2
ρ3F 2, (13)

where z0 = (3/Z)
√
π/2ρ3F . The polarizability α is thus

α =
3

Z

√
π

2
ρ30 =

81π2

256Z4
∼ 3.12/Z4, (14)

which is ca 69 % of the value 9/2 from the perturbation
theory31 for the hydrogen atom.

4. Scaling ansatz

The underestimate of the energy for the hydrogen-like
atoms in Eq. (11) stems from the use of the Gaussian function.
This is related to the cusp condition satisfied by the exact 1s
function but not by the Gaussian function.32 Nonetheless, we
may explore scaling properties when the theory is consistent
within the variational subspace.

Table I compares the expectation values of some powers of
the electron-nucleus radial distance r from the exact and the
semiquantal theories for the ground state of the hydrogen-like
atoms. As seen in Eq. (11), the energy is scaled as

ESQ
H =

8

3π
Eexact

H . (15)

This suggests that we introduce a scaling correction factor

γE ≡
3π

8
(16)

for energies computed from the semiquantal theory.

For the length scale, a possible factor is suggested from the
ratio of 〈r〉,

γ′L =
〈r〉exact
〈r〉SQ

= 1. (17)

Another possibility would be to refer to 〈r−1〉,

γ′′L =
〈r−1〉SQ
〈r−1〉exact

=
8

3π
. (18)

Since the arithmetic and geometric means of γ′L and γ′′L give
similar numbers, 0.924 and 0.921, we choose the latter for
simplicity,

γL ≡
√
γ′Lγ

′′
L =

√
8

3π
. (19)

These scaling corrections will be carried over and examined
on chemical bondings in Sec. III.

B. Two electron atoms and molecules

Here we summarize the Heitler-London33 (HL) VB frame-
work. The main purpose is to fix the notations. The HL-VB
wavefunction for two electrons is

ψHL
ab (1, 2) =

1√
2(1 + S2

ab)
(φa(q1)φb(q2)+φb(q1)φa(q2))

× 1√
2

(α(1)β(2)− β(2)α(1)). (20)

As we restrict the numerical calculations to the stationary
wavefunctions in this work, the momentum parameters p and
π in Eq. (1) are nullified and the spatial orbitals φa(q) are
specified by the wavepacket center xa and width ρa. α and β
are the spin functions. Sab is the overlap integral between φa
and φb.

The corresponding electronic energy is given by

EHL
ab =

1

1 + S2
ab

(haa + hbb + 2Sabhab + (aa|bb) + (ab|ab)) ,

(21)
where hab is the one-electron integral consisting of the kinetic
energy and the electron-nuclear potential. (aa|bb) and (ab|ab)
are the two-electron Coulomb and exchange integrals. These
integrals are summarized in Appendix A.

C. Many-electron systems and DPA

As is well-known, the complexity of the non-orthogonal
VB calculation grows rapidly along with the number of elec-
trons. It is thus essential to devise efficient approximations
in order to realize large scale simulations. In this section, we
develop and examine a few versions of DPA. To this end, it
is useful to work on four electron systems for which the VB
treatment is still handy (with 4! = 24 matrix elements).
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In the first approximation, we show that the VB energy can
be simplified to a pairwise form by rearranging the energy
expression and introducing the Mulliken approximation34 to
the integrals. This is further simplified to a form that contains
terms resembling the so-called Pauli potential.16–18 In the third
approximation, the wavefunction is completely decoupled to
a product of the HL-VB pair functions.

1. VB energy for four electrons

The energy of the perfect-pairing VB (VB-PP)
wavefunction35 in which orbital pairs (a, b) and (c, d)
are coupled in the singlet configuration is given by36

EVBPP
ab·cd =

1

∆
(Q+ J2 + J3 + J4), (22)

where

Q =
∑
a

haa +
∑
a<b

(aa|bb) (23)

and Jn (n = 2, 3, 4) represents n-electron exchange integrals.
For example, J2 is given by

J2 ≡ Jab + Jcd − (Jac + Jad + Jbc + Jbd)/2, (24)

where

Jab ≡ 〈abcd|H|bacd〉 = 2habSab + (hcc + hdd)S2
ab

+ (ab|ba) + 2{(ab|cc) + (ab|dd)}Sab + (cc|dd)S2
ab. (25)

The normalization factor is given by

∆ = 1+S2
ab+S

2
cd−(S2

ac+S
2
ad+S2

bc+S
2
bd)/2+S3+S4. (26)

The formulas for the third and fourth-order exchange and
overlap integrals J3, J4, S3, and S4 are rather lengthy, for
which we would refer to Ref. 36.

The two-electron part of Q is the Coulomb interaction be-
tween electron distributions |φa|2 and |φb|2. The calculation
of the pairwise interactions of this sort is already the bottle-
neck in large scale simulations. In this sense, the three- and
four-center integrals such as (ab|cc) and (ab|cd) in Jn (n =
2, 3, 4) will impose additional and higher computational de-
mands. We shall thus seek for approximations to reduce the
energy to simpler forms.

2. DPA-1: integral approximation to the VB energy

In the first approximation, we neglect the higher order terms
J3, J4, S3, and S4 and rewrite J2 in Eq. (22) as

EVBPP
ab·cd ' 1

∆
(Q+ J2)

= Q− 1

∆
[S2

abjab + S2
cdjcd

−(S2
acjac + S2

adjad + S2
bcjbc + S2

bdjbd)/2],

(27)

where

jab ≡ Q− Jab/S2
ab. (28)

This still contains the three-center integrals in Jab. Nonethe-
less, by applying the Mulliken approximation,34

(ab|cd) ' (Sab/2) (Scd/2)

× [(aa|cc) + (aa|dd) + (bb|cc) + (bb|dd)] (29)

we find jab reduces to a pairwise quantity of φa and φb,

jab ' haa + hbb − 2hab/Sab + (aa|bb)− (ab|ba)/S2
ab (30)

The use of Eqs. (27) and (30) will be called DPA-1.

3. Pauli potential form (DPA-2)

We may further approximate the denominator ∆ in Eq. (27)
to decouple into

EDPA2
ab·cd = Q− S2

ab

1 + S2
ab

jab −
S2
cd

1 + S2
cd

jcd +
S2
ac/2

1− S2
ac/2

jac

+
S2
ad/2

1− S2
ad/2

jad +
S2
bc/2

1− S2
bc/2

jbc +
S2
bd/2

1− S2
bd/2

jbd, (31)

which will be called DPA-2. The last four terms have a form
similar to the Pauli potential,16–18 but with the extra factor 1/2
to the overlap integrals. This factor reflects the spin couplings
between the electrons in different pairs; the spins in orbitals
φa and φc may be either parallel or anti-parallel, e.g., αβ ·αβ
or αβ ·βα, in ab ·cd. In contrast, the factor 1/2 is absent in the
previous Pauli potentials, as they are derived from the triplet
(parallel) spin coupling.

4. DPA-3: decoupled product wavefunction

In the third approximation, we decouple the wavefunction
into the product form

ψ(1, 2, 3, 4) ' ψHL
ab (1, 2)ψHL

cd (3, 4). (32)

The energy of this wavefunction consists of the HL-VB en-
ergies of the ab and cd pairs of the form Eq. (21) and the
interaction between them. The latter contains the three- and
four-center integrals. Introducing the Mulliken approximation
and jab of Eq. (30), however, the energy is again reduced to a
pairwise form,

EDPA3
ab·cd = Q− S2

ab

1 + S2
ab

jab −
S2
cd

1 + S2
cd

jcd, (33)

which will be called DPA-3. This coincides with the first three
terms in the right hand side of Eq. (31), although the deriva-
tions are different as we have seen. The energy formulas ap-
pear to suggest that DPA-2 is an intermediate between DPA-1
and DPA-3. This will be examined numerically in Sec. III.
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D. Pseudopotentials for core electrons

We will see in Sec. III that the VB-PP energy of Eq.
(22) gives a good description of the core-valence interaction.
Nonetheless, CPPs will be useful for large scale simulations.

In this work, we employ a CPP of the form

Vcpp(r) = −Z − Zc

r

(
1−Ac exp(−r2/4ρ2c)

)
, (34)

where Zc is the number of core electrons. The parameter
ρc represents the width of the potential. This potential is
Coulombic in the large r region, but its behavior at r = 0 is
singular at Ac = 1; Vcpp(0) vanishes for Ac = 1, but diverges
to ±∞ for Ac > 1 and Ac < 1.

In the calculations in Sec. III, we only use Ac = 1 for
simplicity. This choice follows the previous studies37–39 —
although their functional forms are designed for use with the
plane wave basis—that anticipate cancellation of kinetic and
potential energies in the core region. In this regard, Eq. (34)
with Ac = 1 is distinguished from the ECP (effective core
potential) popular in quantum chemistry.

With Ac = 1, we need one parameter ρc per element.
Nonetheless, considering the dependence ρ0 ∝ Z−1 in Eq.
(10), we may seek a common parameter ρ̃c to scale as ρc =
ρ̃c/Z for elements in a row in the periodic table.

III. NUMERICAL RESULTS AND DISCUSSION

In this work, the energy minimization was carried out by
the Brent’s method40 that does not require derivatives.

A. Hydrogen molecule

The importance of orbital breathing in the covalent bond-
ing of H2 has been known for a long time.41 The effect of
orbital floating was studied with both the VB and the MO-
CI (molecular orbital-configuration interaction) methods, and
was concluded to be minor.30,42,43 Then, presumably due to the
historical prevalence of the MO-CI methods, the orbital float-
ing seems to have been paid less attention in the VB compared
to the MO-CI.44–48 Here, we briefly revisit the problem within
the present framework, aiming to set up a groundwork for the
later sections.

Figure 1 (a) shows the potential energy curves of H2 from
various calculations. It is seen that the energy and length scal-
ings discussed in Sec. II A shift the curve closer to the accu-
rate calculation by Kolos and Wolniewicz.49 The equilibrium
bond length is 1.557 bohr and 1.435 bohr before and after the
scaling, compared to 1.4011 bohr by Kolos-Wolniewicz.

For comparison, the RHF and unrestricted Hartree-Fock
(UHF) calculations are included. The RHF scheme corre-
sponds to the FSGO method.15 We also examined the mixing
of an ionic VB function

1√
2(1 + S2

ab)
(φaφa + φbφb)(αβ − βα)/

√
2. (35)
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FIG. 1: Potential energy curves of hydrogen molecule. (a) Thick
solid: covalent VB with floating and breathing orbitals (SQ-HLVB).
Thick dashed: SQ-HLVB with the energy and length scalings. Thick
dotted: covalent + ionic VB, no-floating but breathing. Thin solid:
Kolos-Wolniewicz. Thin dashed: RHF, floating and breathing. Thin
dotted: UHF, floating and breathing. (b) Thick solid: covalent
only (C), floating (F) and breathing (B). Thick dashed: covalent
only, no-floating (NF) but breathing. Thick dotted: covalent + ionic
(C+I), no-floating but breathing. Thin solid: covalent only, float-
ing but no-breathing (NB). Thin dashed: covalent only, no-floating
and no-breathing. Thin dotted: covalent + ionic, no-floating and no-
breathing.

In this case, the wavepacket centers are fixed at the nuclear po-
sitions, which would be in accord with the idea of the ‘ionic’
function. The mixing coefficients of the covalent and ionic
components are fully optimized. This is thus equivalent to the
full CI in the minimal breathing basis. As seen in the figure,
the mixing of the ionic component lowers the energy particu-
larly in the region of longer internuclear distance.

The effects of orbital floating and breathing and of the ionic
function are compared in Fig. 1 (b). It is seen that both the
orbital floating and the ionic component lower the energy but
do not change much the equilibrium bond length. In contrast,
the orbital breathing notably lowers the energy and shortens
the equilibrium bond length.
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FIG. 2: Potential energy curves of LiH. Thick solid: Four electron
SQ-VBPP. Thick dashed: Two electron SQ-HLVB with CPP of ρc =
0.7 bohr. Thick dotted: Two electron scaled SQ-HLVB with CPP of
ρc = 0.8 bohr. Box marks: MRMP2/cc-pVDZ. Thin dotted: Morse
function from experimental spectroscopic constants.

B. LiH: Assessment of VB-PP and CPP

Figure 2 shows the potential energy curves of LiH from
the four-electron VB-PP and the HL-VB with use of the
CPP. For comparison, the Morse function derived from the
experimental spectroscopic constants50,51 and the MRMP2
(multi-reference second-order Møller-Plesset perturbation)
calculation52 with the cc-pVDZ basis set are included. We
used the program GAMESS53 for the MRMP2 calculation. In
the CASSCF (complete active space self-consistent field) cal-
culation prior to the MRMP2, the 1s core orbital of Li was
frozen and two electrons were distributed in the six valence
orbitals.

As seen in the figure, the VB-PP calculation gives the re-
sult close and parallel to the MRMP2 and the experimental
Morse potentials. This is remarkable for the compactness of
the wavefunction formed by one floating and breathing orbital
per electron. The result also indicates that the present VB-PP
wavefunction is free from the problem in describing the core-
valence interaction pointed out in the FSGO method.54,55

To the VB-PP calculation shown in the figure, we did not
apply the scaling of Sec. II A, but the equilibrium bond length
is already close to the accurate references. This seems to im-
ply that the screening by the 1s core electrons is effective such
that the error due to the lack of wavefunction cusp is masked
for the valence electron, in contrast with the case of H2. (See
also Fig. 3 discussed below.)

In the calculation with CPP, we searched the optimal value
of the parameter ρc with an increment of 0.1 bohr and found
that ρc = 0.7 bohr gives the thick dashed curve in the figure.
In general, the smaller ρc yields the shorter equilibrium bond
length. Therefore, we also examined slightly larger ρc = 0.8
bohr combined with the scaling ansatz discussed in Sec. II A,
as displayed by the thick dotted curve. As seen, these two cal-
culations give similar results that are both reasonably parallel
to the MRMP2 and the experimental Morse potentials. The
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FIG. 3: Wavepacket parameters for LiH. (a) Wavepacket widths.
(b) Wavepacket centers measured from the Li nucleus. Solid: Four
electron SQ-VBPP. Dashed: Two electron SQ-HLVB with CPP of
ρc = 0.7 bohr. In (b), the dotted line denotes the position of the
proton.

underestimate of the binding energy is seemingly due to the
use of CPP.

Figure 3 displays the wavepacket widths (a) and the center
positions (b). The latter are measured from the Li nucleus.
The nearly constant lines in (a) at ρ = 0.25 and 0.50 bohr rep-
resent the Li 1s core electrons in the VB-PP calculation. These
are centered at the Li nucleus as seen in (b). The remaining
two orbitals represent the valence electrons assigned to Li and
H. Both shrink as the atoms approach to each other, indicat-
ing the increase of the kinetic energy associated with the bond
formation. This is in accord with the virial theorem (see also
Sec. III D). In the region of Li-H distance longer than 5 bohr,
the solid and dashed curves for the width of Li valence orbital
start to deviate notably. In the same region, the orbital cen-
ter starts to move from the internuclear region toward the Li
nucleus. The deviation thus comes from the different descrip-
tions of the core-valence interaction. For the H orbital, the
two calculations give similar width in the entire bond length
region, and the orbital center stays close to the proton nucleus.
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FIG. 4: Potential energy curves of BeH2. (a) Along the symmet-
ric stretch of the BeH distance. (b) Along the H-Be-H angle at
r(BeH)=2.566 bohr. Solid: Four electron SQ-VBPP. Dashed: DPA-
1. Dotted: DPA-2. Dash-dotted: DPA-3. Box marks: MRMP2/cc-
pVDZ.

C. BeH2: Assessment of DPAs

Figure 4 shows the potential energy curves of BeH2 along
the Be-H symmetric stretch distance and the H-Be-H bending
angle. The three versions of DPA and VB-PP are compared
against MRMP2. A CPP with ρc = 0.6 bohr is used for the 1s
core of Be. This ρc is related via ρc = ρ̃c/Z to the ρc = 0.8
bohr for Li in the previous section.

As noted before, the underestimate of the binding energy
seems to come from the use of CPP. Similarly to the cases of
H2 and LiH, the scaling prescription improves the results, but
the curves shown in the figure are the unscaled ones.

In Sec. II C, we have noted that the energy formula for
DPA-2 appears to be the intermediate between DPA-1 and
DPA-3. This simple view is, however, not supported by the
results in Fig. 4. The shapes of the potential look similar
between VB-PP and DPA-1 and between DPA-2 and DPA-3.

Regarding the bending potential, VB-PP is closest to the
MRMP2 reference, and DPA-2 comes next. The success of
DPA-2 is presumably due to some cancellation of errors. To
clarify this, we have checked the wavepacket center and width
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FIG. 5: Extended potential Vext(r, ρ) for hydrogen atom. (a) isolated
atom. (b) under electric field F = 0.08 a.u.

parameters, but could not draw a definite conclusion. Further
investigation is needed on this issue, along with the extension
to larger systems.

D. Extended potential surface

Figure 5 shows the deformation of the extended potential
energy surface V ext

H (r, ρ) (Eq. (8) with r = |x|) of a hydro-
gen atom under a uniform static electric field. In Fig. 5 (b)
with F = 0.08 a.u., the minimum energy point is located at
r = 0.293 bohr and ρ = 0.983 bohr, the latter being larger
than the ρ0 = 0.940 bohr of Eq. (10). The energy change
from the isolated atom is computed to be −0.01077 hartree,
which is larger in magnitude than that calculated from the po-
larizability of Eq. (14), −αF 2/2 = −0.00999 hartree. This
reflects the nonlinearity of the polarization under this strong
field.

The extended potential energy surfaces for the electrons
in H2 are displayed in Fig. 6. The position of the electron
wavepacket center x is measured from the center of the two
nuclei and along the H-H bond. Figures 6 (a) and 6 (b) are
calculated at the H-H distance R = 1.4 and 2.5 bohr, com-
pared to the equilibrium bond length R = 1.557 bohr obtained
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FIG. 6: Extended potential Vext(x, ρ) for hydrogen molecule. (a)
The H-H distance R = 1.4 bohr. (b) R = 2.5 bohr.

TABLE II: Results from the SQ-HLVB calculation on hydrogen
molecule. ∆x ≡ R/2 − x is the shift of the wavepacket center
from the nuclei. Lengths in bohr, energy in hartree.

R x ∆x ρ E −〈V 〉/〈T 〉 〈V 〉/2E
1.4 0.600 0.100 0.805 −0.9882 1.91569 1.04603
1.557 0.668 0.111 0.837 −0.9929 2.00002 0.99999
2.5 1.135 0.116 0.971 −0.9303 2.28857 0.88803

in Sec. III A.
The corresponding parameters and energies are listed in Ta-

ble II, together with the quantities pertaining to the virial the-
orem. As the H-H bond is stretched, the wavepacket centers
of the electrons move closer to the nuclear position, and the
wavepacket widths become larger. The virial theorem is sat-
isfied at the equilibrium bond length, as expected for the fully
optimized floating and breathing orbitals. The change of the
virial ratio −〈V 〉/〈T 〉 implies that the raise of the energy in
the shorter bond length is due to the increase of the kinetic
energy, which is connected to the behavior of the wavepacket
width ρ. (See also the discussion around Fig. 3.)

For general many-electron systems, the adiabatic elimina-

tion of uninteresting degrees of freedom will be useful, simi-
larly to that demonstrated for the system-bath models.12 The
dynamic polarization can be studied by the Hamiltonian tra-
jectory on the extended potential surface within the present
framework. These extensive subjects will be treated in sepa-
rate publications.

IV. CONCLUDING REMARKS

A study on the semiquantal wavepacket modeling of elec-
trons in chemical bonding has been presented. In contrast
with the traditional MO picture based on the delocalized
single-particle mean-field approximation, the VB framework
fits well with the localized electron wavepacket ansatz. The
floating and breathing spherical Gaussian orbitals are found to
give the potential energy surfaces of reasonable accuracy with
the minimal number of orbitals. Emerging is thus not simply
the localized orbital picture but the corpuscular picture of the
electrons.

On developing the DPA and CPP, our motivation was pro-
moted by the empirical success of the VSEPR (valence shell
electron pair repulsion) theory.56 Although the VB-PP result
on LiH is encouraging, the examinations of the DPAs and CPP
indicates that further analysis and development are needed for
extension to larger systems. Since the orbitals are inherently
localized in the present framework, we may, for example, in-
clude the higher order terms in the VB energy only for locally
adjacent pairs.

Other directions in which to proceed will be toward dy-
namic simulations and the semiquantal treatment of protons
and other light nuclei. The latter is related to the nuclear-
orbital methods,57–59 which are more elaborate and hence in-
triguing to compare. Work on these extensions will be re-
ported in forthcoming publications.
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Appendix A: Integral formulas

Here we compile the formulas for the energy integrals.
The one-electron integrals consist of the kinetic and electron-
nuclear terms,

hab = Tab + V ne
ab , (36)

where

Tab =
1

4(ρ2a + ρ2b)

(
3− |xa − xb|2

2(ρ2a + ρ2b)

)
Sab (37)
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with the overlap integral

Sab =

(
2ρaρb
ρ2a + ρ2b

) 3
2

exp

(
−|xa − xb|2

4(ρ2a + ρ2b)

)
(38)

and

V ne
ab = 〈φa(q)|

∑
I

− ZI

|q −RI |
|φb(q)〉 =

−
(
ρ2a + ρ2b
πρ2aρ

2
b

) 1
2

Sab

∑
I

ZIF0

(
ρ2a + ρ2b
4ρ2aρ

2
b

|xp −RI |2
)
,

(39)

in which RI and ZI denote the nuclear coordinates and the
atomic numbers. xp is the center of the product φaφb defined
by

xp =
ρ2bxa + ρ2axb

ρ2a + ρ2b
. (40)

The two-electron Coulomb and exchange integrals are calcu-
lated from

(aa|bb) =

(
2

π(ρ2a + ρ2b)

) 1
2

F0

(
|xa − xb|2

2(ρ2a + ρ2b)

)
(41)

and

(ab|ab) =

(
ρ2a + ρ2b
2πρ2aρ

2
b

)
S2
ab. (42)

The above formulas will be sufficient to fix the notations
and to compare with the previous fermion MD methods. For
the three- and four-center two-electron integrals, use of the
general formula60 and the conversion between the Gaussian
exponents and the width parameters ρ is convenient.

Appendix B: Virial theorem for hydrogen-like atoms

For stationary wavefunctions, we may regard the first term
of Eq. (8) as the kinetic energy part, which is denoted by T .
With the variationally optimized x = 0 and ρ = ρ0 of Eq.
(10) for the hydrogen-like atoms in Sec. II A, we find

〈T 〉 =
3

8ρ20
=

4Z2

3π
(43)

and

〈V 〉 = −
√

2

π

Z

ρ0
= −8Z2

3π
. (44)

Therefore, the virial theorem for Coulomb systems

2〈T 〉+ 〈V 〉 = 0 (45)

is satisfied. The virial theorem for H2 is examined in Sec.
III D.
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