
On the Complexity of Finding a Largest Common

Subtree of Bounded Degree

Tatsuya Akutsua,∗, Takeyuki Tamuraa, Avraham A. Melkmanb, Atsuhiro
Takasuc

a Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto

611-0011, Japan.
b Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel.

c National Institute of Informatics, Tokyo 101-8430, Japan.

Abstract

The largest common subtree problem is to find a bijective mapping between
subsets of nodes of two input rooted trees of maximum cardinality or weight
that preserves labels and ancestry relationship. The problem is known to
be NP-hard for unordered trees. In this paper, we consider a restricted
unordered case in which the maximum outdegree of a common subtree is
bounded by a constant D. We present an O(nD) time algorithm where n
is the maximum size of two input trees, which improves a previous O(n2D)
time algorithm. We also present an O((H2 · 22H−1 · D2H)D−1poly(n)) time
algorithm, where H is the maximum height of two input trees.

Keywords: Tree edit distance, Unordered trees, Dynamic programming,
Parameterized complexity

1. Introduction

In computer science trees are one of the fundamental data structures,
and extraction of a common structure between two or more given data sets
is a fundamental problem. In order to find a common structure between
two trees, extensive studies have been done on finding a largest common

∗Corresponding author. Tel.: +81-774-38-3015 Fax.:+81-774-38-3022
Email addresses: takutsu@kuicr.kyoto-u.ac.jp (Tatsuya Akutsu),

tamura@kuicr.kyoto-u.ac.jp (Takeyuki Tamura), melkman@cs.bgu.ac.il (Avraham
A. Melkman), takasu@nii.ac.jp (Atsuhiro Takasu)

Preprint submitted to Theoretical Computer Science October 7, 2014



subtree (LCST)1 based on a bijective mapping between subsets of nodes of the
two input trees which preserves labels and ancestry relationship, a mapping
which is intimately related to the edit distance problem for rooted trees [23].
The LCST and related problems have various applications in bioinformatics
including comparison of glycans [5], vascular networks [21], and cell lineage
data [12]. They also have applications in comparison and search of XML data
[13] and documents processed by natural language processing [20]. In many
applications, it is required or desirable to treat input trees as unordered trees
rather than ordered trees because the ordering of children is not uniquely
determined in many cases [5, 12, 13, 20, 21].

For the ordered case of the LCST and edit distance problems, O(n6) time
algorithm was developed by Tai [18], where n is the maximum number of
nodes in the input trees. After several improvements, Demaine et al. [8]
developed an O(n3) time algorithm and showed that this bound is optimal
under a certain model.

However, for unordered case of the LCST and edit distance problems,
they are known to be NP-hard even for bounded degree input trees [23].
Moreover, several MAX SNP-hardness results are known for both problems
[1, 10, 22]. In order to cope with these hardness results, approximation
algorithms [1], fixed-parameter algorithms [1, 2, 17], efficient exponential
time algorithms [4], and branch and bound algorithms [12, 16] have been
developed for LCST and/or edit distance problems.2 However, none of them
is yet satisfactory for handling large scale data and thus further development
is needed.

Recently another approach was proposed by Akutsu et al. [2], in which
the maximum outdegree (i.e., the maximum number of children) of common
subtrees is fixed. They developed an O(n2D) time algorithm for comput-
ing an LCST of bounded outdegree D, where D is a constant. They also
developed an O(n2) time algorithm for the case of D = 2. Constraining
the maximum outdegree of a common subtree is reasonable in several ap-
plications because the maximum outdegree is usually bounded by a small
constant in such data as glycans [5], vascular networks [21] and parse trees,
and thus the maximum outdegree of common trees should also be bounded

1Although a LCST is not necessarily a subgraph of the input trees, the term is com-
monly used in this context.

2LCST and edit distance problems are equivalent in optimization, but are different in
approximation and on some parameters.

2



by a small constant (otherwise, it would not be a common structure). For
example, phylogenetic trees are usually binary trees and it is often required
to find a binary agreement tree [6] although specialized algorithms have been
developed for comparison of phylogenetic trees because labels of leaves play
an important role.

In this paper, we present an improved O(nD) time algorithm.3 The im-
provement is achieved by reducing the number of combinations to be searched
for among the descendants of a node x in the first input tree and the descen-
dants of a node y in the second input tree, when nodes are mapped to the
same node in an LCST. Whereas the previous O(n2D) algorithm basically
examined all D-tuples consisting of D pairs of descendants of x and y, the
improved algorithm examines significantly fewer combinations by making use
of tables to avoid redundant calculations and by making use of the property
that the parent in an LCST is uniquely determined if at least two of its
children are determined from each input tree.

Furthermore, we present a parameterized algorithm that runs in O((H2 ·
22H−1 ·D2H)D−1poly(n)) time, where H is the maximum height of two input
trees and the degree of poly(n) does not depend on D or H. Since the LCST
problem is known to be NP-hard even for trees of height at most two [1], this
result is meaningful at least from a theoretical viewpoint.4 It is to be noted
that this algorithm is not comparable to other fixed-parameter algorithms
[1, 2, 17] because our algorithm depends on the maximum height of input
trees and a constraint on the maximum outdegree of an LCST, whereas
the algorithm in [2] depends on the edit distance between two input trees
and the algorithms in [1, 17] depend on the number of branching nodes.
Furthermore, the ideas introduced in this paper are very different from those
in [1, 2, 17]. In particular, the fixed-parameter algorithm in [2] is based on
repeated elimination of identical subtrees and is useful only for comparison
of similar input trees, whereas the fixed-parameter algorithm in this paper is
based on examination of a limited number of node pairs and is (theoretically)
useful only for comparison of low height trees.

3The algorithm was significantly simplified from the one in a preliminary version [3].
4In a preliminary version [3], we claimed that computation of LCST of bounded out-

degree D is W [1]-hard. However, there is a crucial error in the proof and it is still unclear
whether the problem is W [1]-hard for trees of unbounded height.

3



T1 T2

a

c

b

r

e

b f

d

a b c

LCST

r

b

r

f bc d

a

a

c b

h

a b

a b cb c d

y1

y2

y3
y4

y5

Figure 1: Example of an LCST with the weight function giving the maximum number of
nodes (i.e., f(u, v) = 1 if ℓ(u) = ℓ(v), and f(u, v) = 0 otherwise), and outdegree constraint
of D = 3. The corresponding mapping M is shown by dashed curves. If D = 4, a node
labeled f can be added as a child of the left child of the root of LCST. The nodes labeled
y1 through y5, are used to illustrate consistent sets of descendants in Section 4.

2. Preliminaries

For a rooted unordered tree T = (V,E), V (T ) denotes the set of nodes
and r(T ) denotes the root of T . For a node v ∈ V (T ), p(v) denotes the
parent of v (p(v) = v if v is the root), chd(v) denotes the set of children of
v, deg(v) denotes the outdegree of v (i.e., deg(v) = |chd(v)|), ℓ(v) denotes
the label of v where a label is given from a finite or infinite alphabet Σ,
des(v) and anc(v) denote the sets of descendants and ancestors of v where
v /∈ des(v) and v /∈ anc(v), and T (v) denotes the subtree of T induced by v
and its descendants. For a set S of edges or node pairs, if an edge {u, v} or
a pair (u, v) is a member of S, we say that u (resp., v) appears in S.

The LCST problem is defined via a bijective mapping between subsets of
the nodes of two input trees T1 and T2 that preserves the ancestor-descendant
relationship: if u is mapped to v and u′ to v′, then u is an ancestor of u′ in
T1 iff v is an ancestor of v′ in T2. Let f(u, v) denote the weight for a matched
node pair (u, v) by a mapping M . Then the LCST problem is to find a
bijective mapping M maximizing W (M) =

∑

(u,v)∈M f(u, v) (see Fig. 1).

If we define f(u, v) by f(u, v) = del(u) + ins(v)− sub(u, v) where del(u),
ins(v), and sub(u, v) are the costs for deletion of a node u, insertion of a
node v, and substitution of the label of u by the label of v, respectively, it is
known [23] that the edit distance (i.e., the minimum cost sequence of editing
operations that transforms T1 to T2) is given by

∑

u∈V (T1)

del(u) +
∑

v∈V (T2)

ins(v)−W (M).

4



If we define the weight function by f(u, v) = 1 if ℓ(u) = ℓ(v), and
f(u, v) = 0 otherwise, the LCST problem is to find a common subtree (based
on a bijective mapping) with the maximum number of nodes. In this paper,
we consider a general weight function f(u, v) and thus nodes with different
labels can match each other. However, as mentioned in Section 1, we impose
the constraint that the maximum outdegree of a common subtree is at most
D, that is, the subtree of T1 induced by the nodes appearing in M must have
maximum outdegree less than or equal to D. Therefore, the LCST prob-
lem with maximum outdegree D is to find a mapping M with the maximum
weight satisfying this condition.

In Section 4, we will use the device of imposing on a node v ∈ V (T1), or
a node w ∈ V (T2), the constraint that it does not appear in any mapping
giving a common subtree. Such a node will be called inactive. Imposing this
constraint is equivalent to setting f(v, y) = −∞ for all nodes y ∈ V (T2), or
f(x, w) = −∞ for all nodes x ∈ V (T1).

3. Previous Algorithms

In this section, we briefly review the previous algorithms for finding an
LCST of bounded outdegree D (see [2] for details) since our proposed O(nD)
time algorithm is based on them.

Let S(x, y) be the weight of an LCST of T1(x) and T2(y) of bounded
outdegree D. Then, S(x, y) can be computed by the following dynamic
programming procedure (the initialization part is omitted):

S(x, y) = max



















maxh=0,...,D

{

maxx1,...,xh∈des(x),y1,...,yh∈des(y)
[(

∑h

i=1 S(xi, yi)
)

+ f(x, y)
]}

,

maxy1∈des(y) S(x, y1),
maxx1∈des(x) S(x1, y),

(1)

where xi /∈ des(xj) ∪ {xj} and yi /∈ des(yj) ∪ {yj} must be satisfied for any
i 6= j, and such tuples as (x1, . . . , xh) and (y1, . . . , yh) are called consistent,
see Definition 4.2. It is straightforward to see that this algorithm works in
O(n2D+2) time.

This algorithm was improved by using least common ancestors (LCAs).
Let lca(z1, z2, . . . , zh) denote the LCA of z1, z2, . . . , zh. Then, all S(x, y) can
be computed by the following dynamic programming procedure, which can
be made to run in O(n2D) time by modifying the innermost ‘for’ loop [2]:

5



Procedure LcaBasedLCST (T1, T2, D)
for all (x, y) ∈ V (T1)× V (T2) do S(x, y)← f(x, y);
for all h ∈ {1, . . . , D} do
for all consistent tuples (x1, . . . , xh) do
xa ← lca(x1, . . . , xh);
for all consistent tuples (y1, . . . , yh) do
ya ← lca(y1, . . . , yh);
for all (x, y) with x ∈ anc(xa) ∪ {xa} and y ∈ anc(ya) ∪ {ya} do
S(x, y)← max{S(x, y), S(x1, y1) + · · ·+ S(xh, yh) + f(x, y)};

4. Improved Algorithm

4.1. Preliminaries

In this section, we present some preliminary considerations that will be
useful in the development of an O(nD) time algorithm for computing an
LCST of bounded outdegree D.

The following lemma allows attention to be restricted to binary input
trees.

Lemma 4.1. If an LCST of bounded outdegree D can be computed in O(nf(D))
time for T1 and T2 of bounded outdegree 2 where D is a constant, then an
LCST of bounded outdegree D can be computed in O(nf(D)) time for any T1

and T2.

Proof. Wemodify each node v of outdegree d > 2 by d−1 nodes v1, . . . , vd−1

with outdegree 2 as shown in Fig. 2. Let T ′
1 and T ′

2 be the resulting trees.
Then, the maximum outdegree of T ′

1 and T ′
2 is 2. We inactivate v2, . . . , vd−1

(i.e., v2, . . . , vd−1 cannot appear in a mapping). Then, it is straightforward
to see that an LCST of bounded outdegree D for T1 and T2 has the same
weight as an LCST of bounded outdegree D for T ′

1 and T ′
2 has.

Since the number of nodes in each T ′
i is at most 2n − 3 < 2n, the total

computation time is

O((2n)f(D)) = O(2f(D) · nf(D)) = O(nf(D))

for any constant D. �

6



v

u1 u2 u3 u4 u1

u2

u3 u4

v1

v2

v3

Figure 2: Transformation of a high outdegree node into nodes with outdegree 2.

Denote by T ′ the binary tree obtained from the general tree T using the
modification described in Lemma 4.1. It is not difficult to see that a tree S
with bounded outdegree D is a subtree of T if and only if S is a subtree of T ′.
Note in particular that here D may be greater than 2. Consequently there
is no loss of generality in assuming that the maximum outdegree of input
trees is 2, and we will do so in this section. Furthermore, we can assume
without loss of generality (w.l.o.g.) that every internal node has outdegree
2.5 We also assume w.l.o.g. that every internal node of LCST has outdegree
D. We can get such a tree with the same score as the optimal one by adding
D children to each internal node of T1 and T2 and letting f(x, y) = 0 for
any of such children pairs (x, y) and letting f(x, y) = −∞ if exactly one of
x and y is such a node (and then applying Lemma 4.1). The desired trees
can be obtained by removing nodes corresponding to added nodes. Although
this increases the size of input trees, it does not increase the degree of the
polynomial in n.

In the development of the algorithm it will be convenient to employ the
notion of a consistent set of descendants of a node.

Definition 4.2. A set S of D descendants {y1, . . . , yD} of a node y is con-
sistent if none of the descendants in S is an ancestor of another descendant
in S, and y is the LCA of {y1, . . . , yD}.

For example, in Fig. 1, {y1, y2}, {y1, y4, y5}, {y2, y3} are consistent sets of
descendants of r(T2), whereas {y1, y3}, {y1, y2, y4}, {y1, y2, y3} are inconsis-
tent sets of descendants of r(T2). In order to enumerate all possible sets of

5This can be done by adding a dummy child w (i.e., w is inactive) to each node u of
outdegree 1.

7



consistent descendants we will use binary trees with D leaves. We call such a
tree a skeleton tree and denote it T s (see also Fig. 3). For our purposes it will
be sufficient to consider only consistent descendants of y that are obtained
as follows.

1. Let m be any mapping of the internal nodes of T s to nodes of T that
maps the root of T s to y, and preserves ancestry relationships.

2. For each leaf ℓi of T
s, if ℓi is the left son of internal node p set yi =

lson(m(p)), and otherwise set yi = rson(m(p)),

where lson(x) and rson(x) denote the left and right children of x, respec-
tively.

Denote by CD(y) the set comprising all tuples ofD consistent descendants
of y obtained in this manner. For example, C2(y) is the singleton contain-
ing the set {lson(y), rson(y)}. For simplicity we let C1(y) be the singleton
containing the set {y}.

Tr(T)

y

y3

y1

y5y4

T
s

m(p)

l1 l2 l3

l4

p

l5

y2

Figure 3: Example of a skeleton tree T s and a mapping m. Dotted arrows represent m(p),
and dashed arrows represent the resulting mapping between leaves of T s and {y1, . . . , yD},
where D = 5 in this example.

Noting that a given skeleton tree with D leaves has only D − 1 internal
nodes, and that the root of the skeleton tree has to be mapped to y, yields
the following result.

Lemma 4.3. For any node y the number of sets of D consistent descendants
of y obtained as above is O(nD−2), i.e. |CD(y)| = O(nD−2).

8



4.2. Main algorithm

We turn now to the description of the improved LCST algorithm. It is
qualitatively simpler than the preliminary version given in [3], although it re-
tains the same order of magnitude of running time, and the description of the
algorithm was also greatly simplified. The algorithm computes, successively
and bottom-up, the following generalization of S(x, y).

Definition 4.4. Let k ≥ 2, and let Πk be the set of all permutations π on
{1, . . . , k}. Given a node x in T1 and a set of nodes Y = {y1, . . . , yk} ∈ Ck(y),
with y ∈ T2, define

Fk(x;Y ) = max
{x1,...,xk}∈Ck(x)

max
π∈Πk

k
∑

i=1

S(xi, yπ(i)).

For simplicity we set F1(x; {y}) = max{S(lson(x), y), S(rson(x), y)}.
The value we wish to compute, S(x, y), can be obtained from FD by

S(x, y) = max







max{S(lson(x), y), S(rson(x), y)},
max{S(x, lson(y)), S(x, rson(y))},
f(x, y) + maxY ∈CD(y) FD(x;Y ).

(2)

To compute FD we use for k ≥ 2 the recursion formula

Fk(x;Y ) = max
Z⊂Y,1≤|Z|=j≤k−1

{Fj(lson(x);Z) + Fk−j(rson(x);Y \ Z)}. (3)

In particular, the base case k = 2 is given by

F2(x; {y1, y2}) = max{ S(lson(x), y1) + S(rson(x), y2),

S(lson(x), y2) + S(rson(x), y1)}.

Next we analyze the time required by a bottom-up implementation of this
dynamic programming algorithm. Observe first of all that once the necessary
values of Fj have been computed, equation (3) takes time that depends only
on k, i.e. only on D and not on n. Computing Fk(x;Y ) for all x and all
Y with |Y | ≤ D − 1 takes therefore in all O(nD) time (with the constant
depending on D).

Consider now the total time taken up by the computations resulting from
equation (2). For fixed x and y the third line examines |CD(Y )| values of
FD, each of which is computed in constant time, using equation (3), from the
values of FD−1. According to Lemma 4.3, |CD(y)| = O(nD−2). Hence the
total time necessary for computing S(x, y) for all x and y is O(nD).

In summary, the above considerations prove the following theorem.

9



Theorem 4.5. A largest common subtree of bounded outdegree D can be
computed in O(nD) time for fixed D.

Suppose a tree T is a LCST for outdegree D = d as well as for outdegree
D = d + 1. Is T then an LCST for any outdegree D ≥ d? The answer is
negative, as demonstrated by the example of the trees in Fig. 4. Consider a
weight function defined by f(a, a) = 2, and f(x, y) = 1 for any other (x, y).
Then the weight of an LCST is 4 for D = 2 and D = 3, but it is 5 for D = 4.

T1 T2c

a

b b

a

b b

a

b b b b

Figure 4: Example for LCST under different degree bounds.

We have so far considered subtrees based on bijective mappings (i.e., sub-
trees obtained by deletions and substitutions of nodes of arbitrary degree).
We can also consider the problem of finding common homeomorphic subtrees
(for which only nodes with outdegree at most 1 may be deleted) while im-
posing the same degree constraints. Although the original problem is known
to be solvable in polynomial time [19], the imposition of the same degree
constraints enables a speeding up of the running time as follows.

Theorem 4.6. Given trees T1 and T2, on n1 and n2 nodes respectively, a
largest common homeomorphic subtree of bounded outdegree D can be com-
puted in time O(Dn1n2).

Proof. Although the algorithms of [14] are phrased for unrooted trees they
can be easily adapted to take advantage of the fact that the trees are rooted,
and that a bounded degree largest common homeomorphic subtree is re-
quired, as follows.

Let SD(x, y) be the weight of a largest common homeomorphic subtree of
bounded outdegree D between T1 and T2. Denote by C(x) the set of children

10



of x in its tree. The recursion for S(x, y) is

SD(x, y) = max{ max{SD(x, v) : v ∈ C(y)},

max{SD(u, y) : u ∈ C(x)},

max{MWMD(C(x), C(y)) + f(x, y)}

}.

Here MWMD(C(x), C(y)) is the weight of the maximum weight matching
of size D between C(x) and C(y). The computation of this weight can be
reduced to a min-cost max-flow problem on the flow network with vertices
s1, s2, t in addition to C(x) and C(y), and the following edges: (s1, s2) with
capacity D and cost 0, (s2, u), u ∈ C(x) and (v, t), v ∈ C(y) all with capacity
1 and cost 0, and (u, v) with capacity 1 and cost −SD(u, v) for all u ∈
C(x), v ∈ C(y). The number of edges of the network is dxdy + 1 + dx + dy
where dx is the outdegree of x, so that the time for constructing this network
is O(dxdy). By adapting the arguments of [14] it can be shown that the
min-cost flow of size D can be found by repeatedly augmenting the flow by 1
unit along a min-cost path D times, and that the time required is O(Ddxdy).

Thus the time taken by a dynamic programming implementation of the
recursion is

O(
∑

x∈T1,y∈T2

Ddxdy) = O(Dn1n2).

�

5. Parameterized Algorithm

In this section, we present a parameterized algorithm for LCST that works
in O((H2 · 22H−1 ·D2H)D−1poly(n)) time, where H is the maximum height of
two input trees and the degree of poly(n) does not depend on D or H.

It is to be noted that if the size of an alphabet Σ is also considered as a
parameter, there exists an almost trivial parameterized algorithm as below.

1. Enumerate all possible trees under constraints on D,H,Σ

2. For each tree, check whether it is a subtree of both input trees using
tree inclusion.

11



It is known that tree inclusion (i.e., deciding whether T2 is obtained from
T1 using only insertion operations) for unordered trees can be solved in
O(22Dpoly(n)) time [11]. For our parameterized algorithm the tree inclu-
sion has to be modified so as to take into account the cost of substitutions
and insertions. As shown in [15], the modified tree inclusion algorithm also
runs in O(22Dpoly(n)) time. Since the number of possible trees does not
depend on n, the above algorithm works in O(f(D,H, |Σ|)poly(n)) time.

Hereafter, we assume that Σ is not fixed.

5.1. Maximum Weight Bipartite Matching with d-Edges

Let G(U ∪ V ;E) be a bipartite graph in which each edge e = (u, v) has
weight w(e) = w(u, v). For a set of edges M ⊆ E, we define w(M) =
∑

e∈M w(e). We compute a matching M ⊆ E with maximum w(M) under
the condition that |M | = d, where d is a given constant.

Although this problem can be solved in polynomial time with respect to
|E| and d, as shown in [7] and also shown algorithmically as part of the proof
of Theorem 4.6, we present a fixed parameter version as an introduction
to the fixed-parameter algorithm for LCST. Let MOPT denote an optimal
solution.

The following observations provide the basis for the algorithm.

Proposition 5.1. Let e = (u, v) ∈ E be an edge with highest weight. Then
there is an optimal matching in which both u and v participate as endpoints
of edges, possibly of the same edge e = (u, v).

Proof. Suppose there is an optimal matching MOPT in which u does not
appear. If v does not appear in MOPT either, then let M ′ be a matching
obtained by replacing an arbitrary edge in MOPT with e. Otherwise, let
e′ = (u′, v) be an edge in MOPT , and let M ′ be a matching obtained by
replacing e′ with e. In both cases the matching M ′ contains e and has weight
no less than that of MOPT .

The case that v does not appear in MOPT is handled similarly. �

Proposition 5.2. Let e = (u, v1) ∈ E be an edge with highest weight and
let (u, vi), i = 1, . . . , deg(u) be the edges out of u sorted according to weight
(the order between equal-weight edges is immaterial). Then there is an op-
timal matching in which one of the edges (u, vi) with i ≤ min(deg(u), d)
participates.

12



Proof. In case deg(u) ≤ d the statement follows from Proposition 5.1.
Assuming deg(u) > d, let MOPT be an optimal matching in which both u

and v1 appear, as ensured by Proposition 5.1. Suppose that the edge (u, vi)
participating in MOPT has i > d. Since MOPT consists of d edges and v1
appears in it, there is at least one vj with 1 < j ≤ d that does not appear
in MOPT , see also Fig. 5. Upon replacing (u, vi) by (u, vj), a matching is
obtained whose weight is no less than that of MOPT , proving the proposition.

�

u

vivj=v3 v1 v2v4

highest

2, ..., d  highest for u

edges in MOPT

Figure 5: Illustration of the proof of Prop. 5.2, where d = 4 in this example.

These propositions lead to the following algorithm, where NE((u, v)) =
{(u′, v′)|(u′, v′) ∈ E and (u′ = u or v′ = v)}. It is straight-forward to check
that the algorithm runs in O(ddpoly(|E|)) time.

Procedure FptBipartite(M,E, d)
Let e = (u, v1) be an edge in E with the highest weight;
if d = 1 then return w(M ∪ {(u, v1)});
sort the edges (u, vi), i = 1, . . . , deg(u) according to weight;
d′ ← min(deg(u), d);
return max1≤i≤d′{FptBipartite(M ∪ {(u, vi)}, E −NE((u, vi)), d− 1)}.

5.2. FPT-Algorithm

In the following, for a node u in T , let Anc(u) = anc(u) ∪ {u} and
Des(u) = des(u) ∪ {u}, and let h(u) and d(u) denote the height and depth
of u, respectively (h(u) = 0 if u is a leaf, and d(u) = 0 if u is the root).
For a tree T , h(T ) denotes the height of T (i.e., h(T ) = maxu∈V (T ) h(u)).
Let S0(x, y) denote the weight of an LCST of T1(x) and T2(y) under the
condition that x is mapped to y. In the following, the score means S0(x, y).

13



The basic strategy of the FTP algorithm for LCST, described below, is
similar to the one underlying the recursion equation (1) in Section 3. There,
given a pair of nodes (x, y), all possible tuples of d ≤ D descendant pairs
(x1, y1), . . . , (xd, yd) are examined. The resulting algorithm runs in O(n2D+2)
time because O(n2D) tuples are examined for each pair (x, y). In contrast,
the FPT algorithm examines, for given a pair of nodes (x, y), a number of
tuples that does not depend on n.

In order to limit the number of tuples, we use the idea embodied in
FptBipartite(M,E, d). In that algorithm, in order to find a set of d edges
(i.e., d pairs) with the maximum total weight, d edges are examined in each
recursive call, each of which in turn invokes d recursive calls. Since the
recursive depth is limited to d where the depth of the first recursive call is
regarded as 1, the total number of recursive calls is O(dd). It is to be noted
that all edges in an optimal solution are selected from distinct recursive
depths. It should also be noted that the removal of the edges in NE(. . .)
from further recursive calls ensures that those calls consider only edges that
do not conflict with previously selected edges.

The FPT algorithm for LCST uses a similar stragegy of examining only
sets of d (d ≤ D) descendant pairs for each node pair (x, y). One difference
from the bipartite matching case is that the descendants of the roots of input
trees are layered (according to their depths). Since the ancestor-descendant
relationship plays an important role in trees, the algorithm examines can-
didate pairs separately for all possible combinations of depths of the two
input trees (see Fig. 6). Furthermore, if (x1, y1) is selected as a candidate
descendant pair of (x, y), no descendant or ancestor of x1 or y1 can appear in
the remaining set of descendant pairs. Therefore, the analogue of NE(· · · )
includes also all pairs in which one of the vertices is an ancestor or a descen-
dant. Furthermore, for the same reason the algorithm needs to examine a
much larger number of candidate pairs (compared to d pairs) in each recur-
sive call, where this number depends not only on D but also on the heights
of input trees (but not on n).

The main routine of the FPT algorithm for LCST is FptBdhLCST (T1, T2, D);
it corresponds to the dynamic programming algorithm based on equation (1).
The set of tuples of d descendant pairs that it examines, a much smaller set
than all possible tuples of d pairs, is generated by CandTuples(T 1, T 2, d).
The latter routine uses recursive calls in a manner reminiscent of FptBipartite(M,E, d).
However, instead of examining d pairs at each recursive call, CandTuples(T 1, T 2, d)
examines a much larger number of pairs, generated by CandPairs(T 1, T 2).

14



Since CandPairs(T 1, T 2) is rather involved, we describe these three proce-
dures in a top-down manner.

Procedure FptBdhLCST (T1, T2, D)
for all leaf pairs (x, y) ∈ L(T1)× L(T2) do
S0(x, y)← f(x, y);

for all other pairs (x, y) ∈ V (T1)× V (T2) do (in a bottom up manner)
S0(x, y)← f(x, y) + maxd=0,...,D{

max((x1,y1),...,(xd,yd))∈CandTuples(T1(x),T2(y),d)[
∑d

i=1 S
0(xi, yi)]};

return maxx,y S
0(x, y).

The time complexity of the procedure depends on the size of the set
of candidate tuples generated by CandTuples(T1(x), T2(y), d). If the size
of this set is bounded by f(D,H) and the time required for generation of
this set is O(f(D,H)poly(n)) where H is the maximum height of two in-
put trees and n = max(|V (T1)|, |V (T2)|), the total time complexity is also
O(f(D,H)poly(n)). Furthermore, if the set of candidate tuples always con-
tains at least one tuple consisting of children of (x, y) in some LCST then it
is clear that the procedure is correct.

Next, we describe how to generate a set of candidate d-tuples. Let
V=b(T ) and T≤b denote the set of nodes at depth b in T and the sub-
tree of T induced by the nodes of depth at most b, respectively. Basi-
cally, a set of candidate tuples is generated by applying the approach em-
ployed in FptBipartite(M,E, d) to V=b1(T1) and V=b2(T2) for all pairs of
b1 ∈ {1, 2, . . . , h(T1)} and b2 ∈ {1, 2, . . . , h(T2)}. However, since many nodes
may become unavailable once an ancestor or descendant node appears in an
optimal d-tuple, we need to keep many more node pairs.

Suppose that we are trying to find a d-tuple 〈(x1, y1), . . . , (xd, yd)〉 that
maximizes

∑

S0(xi, yi), the core part of FptBdhLCST (T1, T2, D). We call
such a d-tuple an optimal d-tuple (for (x, y) and d). Following is the procedure
to generate a set of candidate d-tuples, where we use T 1 and T 2 for the trees
from which the candidates are selected, in order to distinguish them from
the original input trees T1 and T2 (T 1 and T 2 are subtrees of T1 and T2,
respectively).

Procedure CandTuples(T 1, T 2, d)
if |V (T 1)| = 1 or |V (T 2)| = 1 then return {};
(x, y)← argmax(x,y)∈(V (T 1)−{r(T 1)})×(V (T 2)−{r(T 2)})S

0(x, y);

15



if d = 1 then return {(x, y)};
Q← {};
for b1 = 1 to h(T 1) do
for b2 = 1 to h(T 2) do
R← CandPairs(T 1

≤b1
, T 2

≤b2
);

for all (x, y) ∈ R do
P ← CandTuples(T 1 ⊖ x, T 2 ⊖ y, d− 1);
Q← ({(x, y)} × P ) ∪Q;

return Q.

Here T ⊖ u denotes the tree obtained by deleting Anc(u)∪ des(u)− {r(T )}.
Let us briefly explain the procedure (see also Fig. 6). Consider the case of

|V (T 1)| > 1, |V (T 2)| > 1, and d > 1. For all depth pairs (b1, b2), we generate
a set R of pairs each of which is a candidate for participation in an optimal
d-tuple. For each candidate pair in R, we recursively search for candidates for
the remaining d− 1 pairs. Note that if x appears in a pair in a d-tuple, none
of its ancestors or descendants can appear in the remaining d− 1 pairs. For
each depth pair (b1, b2), R is analogous to the set {(u, v1), (u, v2), . . . , (u, vd)}
in FptBipartite(M,E, d), although it contains many more pairs.

T1 T2

x

y

depth b1

depth b2

Figure 6: Illustration of CandTuples(T 1, T 2, d). R is chosen from pairs between depth
b1 nodes in T 1 and depth b2 nodes in T 2, where all depth pairs are examined. For each
(x, y) ∈ R, the remaining d− 1 pairs are searched between gray regions.

In order to describe CandPairs(T 1, T 2), we define some terms (see Fig. 7).
For a tree T , let V̂ (T ) be a set of nodes each of which has a descendant whose
depth in T is h(T ). Let u ∈ V̂ (T ) be a node at depth b = h(T )−h in T . The

16



set of leaves of depth h in T (u) will be called a level-h block (headed by u),
and will be denoted B(u). In particular, a leaf of depth h is a level-0 block,
where we identify a leaf with the set consisting of only this leaf. We identify
a set of pairs between B(r(T 1)) and B(r(T 2)) with a set of edges between
B(r(T 1)) and B(r(T 2)). For a node pair (x′, y′) ∈ V (T 1)× V (T 2) and a set
of edges P , deg(B(x′), B(y′), P ) denotes the number of edges between B(x′)
and B(y′) in P . If P is clear from the context, we omit P and simply write
deg(B(x′), B(y′)). We impose the constraint that deg(B(x′), B(y′), P ) ≤
g(h(x′), h(y′))dh(x

′)+h(y′) for any node pair (x′, y′) ∈ V̂ (T 1) × V̂ (T 2), where
g(i, j) is given by

g(i, j) =

{

1 if i = 0 or j = 0,
g(i, j − 1) + g(i− 1, j) otherwise.

Thus g(i, j) ≤ 2i+j−1 for i+ j ≥ 1.

x1

x2

x3

B(x1)

y1

y2

y3

B(x2)
B(x3)

x4B(x4)

B(y1)

B(y2)
B(y3)

level-2 block

level-1 block

T 1
3

T 2
3

Figure 7: Illustration for degree constraints in CandPairs(T 1

≤3
, T 2

≤3
). In this ex-

ample, deg(B(x1), B(y2), P ) = 2, deg(B(x1), B(y3), P ) = 3, deg(B(x2), B(y1), P ) =
2, deg(B(x2), B(y2), P ) = 5, deg(B(x2), B(y3), P ) = 8, deg(B(x3), B(y3), P ) = 17,
deg(B(x4), B(y2), P ) = 0, and deg(B(x4), B(y3), P ) = 2, where curved edges denote those
in the current P . Note that this figure does not illustrate the procedure itself.

17



The procedure CandPairs(T 1, T 2), whose pseudocode follows below, greed-
ily adds edges between leaves of depth h(T 1) in T 1 and leaves of depth h(T 2)
in T 2 in descending order of scores under some degree constraints (see Fig. 8).

Procedure CandPairs(T 1, T 2)
P ← {};
for all pairs (x, y) ∈ B(r(T 1))×B(r(T 2)) in descending order of S0(x, y) do

for all pairs (x′, y′) ∈ V̂ (T 1)× V̂ (T 2) do
if deg(B(x′), B(y′), P ∪ {(x, y)}) > g(h(x′), h(y′))dh(x

′)+h(y′) then
skip to next (x, y);

P ← P ∪ {(x, y)};
return P .

T 1
1

9
8

7
6

7 6

5 4 8
6 7

3

2

T 2
1

Figure 8: Example of CandPairs(T 1

≤1
, T 2

≤1
) for d = 2. The score is attached to each pair

(i.e., each edge) where edges with score 0 are omitted. Bold edges are included in P but
dashed edges are not included in P . Since 2d2 = 8, 8 edges are selected.

5.3. Analysis

We begin with analysis of the time complexity.

Proposition 5.3. FptBdhLCST (T1, T2, D) works in O((H2·22H−1·D2H)D−1poly(n))
time.

Proof. Because of the degree constraint, the number of pairs generated by
CandPairs(T 1

≤b1
, T 2

≤b2
) is bounded by 22H−1·D2H . Since CandPairs(T 1

≤b1
, T 2

≤b2
)

18



is called at most H2 times per each recursion level of CandTuples(T 1, T 2, d),
the total number of pairs generated at each recursion level (d > 1) is bounded
by H2 · 22H−1 ·D2H .

Next, we analyze the size of the set of tuples given by CandTuples(T 1, T 2, d).
At the first call, we examine H2 ·22H−1 ·D2H pairs for each of which recursive
call is invoked. In the case of d = 1, only one pair is returned. Therefore,
the total number of tuples is bounded by (H2 · 22H−1 ·D2H)D−1.

Finally, we analyze the main procedure. In this procedure, CandTuples
(T 1, T 2, d) is called O(Dn2) times. Therefore, the total number of tuples
((x1, y1), . . . , (xd, yd)) examined in this procedure is bounded by O(D(H2 ·
22H−1 ·D2H)D−1n2). Since polynomial time is clearly enough per tuple in all
procedures and D ≤ n trivially holds, the total time complexity is O((H2 ·
22H−1 ·D2H)D−1poly(n)). �

Next, we present a key lemma showing that CandPairs(T 1, T 2) does
not miss a required pair. The basic idea of the proof is similar to that
of Proposition 5.2 and is summarized as: (i) if we select sufficiently many
high scoring pairs, one pair must be contained in some optimal solution,
(ii) it is enough to examine at most d edges connecting to each node at
the bottom level.6 However, due to the ancestor-descendant relationship, we
need to consider many more pairs. For example, consider height 1 tree T1

and height 2 tree T2 in Fig. 9. Suppose that x0 appears in an optimal d-tuple
for (r(T1), r(T2)), where d = 2 in this example. Suppose also that (x0, y1),
(x0, y2), (x0, y3), and (x0, y4) are 4 highest-scoring pairs between x0 and the
bottom nodes in T2, with f(x0, y1) > f(x0, y2) > f(x0, y3) > f(x0, y4). In this
case, examining d = 2 highest-scoring pairs connecting to x0 is not enough
because (x0, y1) or (x0, y2) may not be contained in an optimal 2-tuple if
f(x1, y5) > f(x0, y1) holds. Examining d2 = 4 pairs, however, ensures that
the desired pair will be found because an optimal tuple consists of 2 pairs.
Of course, there is a case that (x0, y6) is contained in an optimal 2-tuple.
However, such a case is treated separately because y6 is not a bottom node.
In the proof of the lemma, we generalize this discussion to an arbitrary pair
of heights. In the following, MOPT means an optimal d-tuple for the original
trees (i.e., T1(x), T2(y) in FptBdhLCST (T1, T2, D)), where a tuple can be
regarded as a set of pairs of nodes.

6It does not mean that we need to examine d edges for every node.

19



x0 x1 y1 y2 y3 y4

y5
T1

T2

y6

Figure 9: Illustration of the basic idea in the proof of Lemma 5.4. In this example, we
need to consider d2 pairs between x0 in T1 and the bottom nodes in T2, where d = 2.

Lemma 5.4. If there exists a pair (x0, y0) ∈ B(r(T 1)) × B(r(T 2)) that ap-
pears in an optimal d-tuple, then the set P outputted by CandPairs(T 1, T 2)
contains at least one pair (x, y) that appears in some optimal d-tuple.

Proof. Let x0 = r(T 1) and y0 = r(T 2). We prove the lemma by contra-
diction. Suppose that (x0, y0) ∈MOPT appears in B(r(T 1))×B(r(T 2)), but
P does not contain any pair in any optimal d-tuple. It is to be noted that
MOPT can contain a pair including a node outside T 1 and T 2 (i.e., MOPT

can contain a pair including a node in T1(x) and T2(y)). We assume in the
following that d ≥ 2 because only then is CandPairs(T 1, T 2) invoked.

We begin with the case of h(T 1) = h(T 2) = 1, then prove the lemma for
the case of h(T 2) = h(T 2) = 2, and finally extend the proof to the general
case.

[Case of Height 1 Trees]
First we note that P can not contain any pair in MOPT because of the

assumption.
Recall that deg(B(x), B(y)) denotes the number of edges between B(x)

and B(y) in P . The constraint deg(B(x′), B(y′)) ≤ g(h(x′), h(y′))dh(x
′)+h(y′),

limits the cases to be considered to the following:

(a) deg(B(x0), B(y0)) = d,

(a’) deg(B(x0), B(y0)) = d,

20



(b) deg(B(x0), B(y0)) < d, deg(B(x0), B(y0)) < d,
and deg(B(x0), B(y0)) = 2d2,

(c) deg(B(x0), B(y0)) < d, deg(B(x0), B(y0)) < d,
and deg(B(x0), B(y0)) < 2d2,

because x0 ∈ B(x′) (resp., y0 ∈ B(y′)) holds if and only if x′ = x0 or x′ = x0

(resp., y′ = y0 or y′ = y0). Fig. 10 illustrates cases (a), (a’), and (b).
In the following we assume that at each step none of the preceding con-

ditions is satisfied.

(a) deg(B(x0), B(y0)) = d holds.
The score could be increased (resp., kept) by replacing (x0, y0) with
(x0, yk) ∈ P such that yk does not appear in a pair in MOPT , which
contradicts the assumption that MOPT is an optimal d-tuple (resp., P
does not contain any pair in any optimal d-tuple). Such a pair must
exist because |MOPT | ≤ d and (x0, y0) ∈MOPT .

(a’) is handled similarly to (a).

(b) |P | = g(1, 1)d2 = 2d2 (i.e., deg(B(x0), B(y0)) = 2d2).
We bound the number of edges of P connecting to either endpoint of
any edge in MOPT . Since case (a) was not applicable we can assume
that deg(B(x), B(y0)) < d and deg(B(x0), B(y)) < d hold for any pair
(x, y) ∈MOPT such that x ∈ B(x0) and y ∈ B(y0). Then, the required
bound is given by

d ·max(2(d− 1), d) < 2d2,

which means that there exists at least one edge (xh, yk) ∈ P such that
neither endpoint appears in MOPT . Here we note that S0(x0, y0) ≤
S0(xh, yk) holds because otherwise (x0, y0) would have been added to
P before (xh, yk) under the assumption that condition (a) does not
hold. The score could be increased (resp., kept) by replacing (x0, y0)
with (xh, yk) ∈ P , which contradicts the assumption that MOPT is an
optimal d-tuple.

(c) The remaining case.
From the assumption, |P | < 2d2. Therefore, we could have added
(x0, y0) or another pair with higher or the same score to P , which
contradicts the assumption.

21



xh

yk

(a)

(b)

y0

x0

x0 x1 x2 x3 x4

y0y0 y1 y2 y3 y4

x0

(a’)

Figure 10: Cases (a), (a’), and (b) in the proof of Lemma 5.4 for height 1 trees, where
d = 4. Dotted arrows/lines denote pairs in MOPT , where dotted arrows mean connections
to nodes outside T 1 and T 2. Dashed/bold lines denote pairs in P .

[Case of Height 2 Trees]
We say that block B(u) is inactivated if u appears in MOPT . Each node

in block B(u) is also inactivated in such a case. ‘Inactivate’ means that
the node (or, any node in the block) cannot appear in MOPT except u (see
Fig. 11). We can assume that d pairs with B(x0)× B(y0) appear in MOPT .
If a descendant node of u appears in MOPT , u is also inactivated. If u is not
inactivated, u is called active. A pair (u, v) is also called inactivated if either
u or v is inactivated.

Here we focus on level-2 blocks (i.e., height 2 trees). Let MOPT be an
optimal d-tuple. Let B(x0) and B(y0) be level-2 blocks. Let (x0, y0) ∈
B(x0)×B(y0) be a pair in MOPT that is not in P (see Fig. 12).

From the constraint of deg(B(x′), B(y′)) ≤ g(h(x′), h(y′))dh(x
′)+h(y′) and

a fact that x0 ∈ B(x′) and y0 ∈ B(y′) hold if and only if

(x′, y′) ∈ {(x0, p(y0)), (p(x0), y0), (x0, p
2(y0)), (p

2(x0), y0), (p(x0), p(y0)),

(p(x0), p
2(y0)), (p

2(x0), p(y0)), (p
2(x0), p

2(y0))}

22



T 2

T 1 x0

y0

y0

x0 xh

yk

p(x0)

(level-1
block)

(level-2
block)

xi
B(xi)

p(xi)

B(p(xi))

Figure 11: Gray regions and nodes represent inactivated blocks and nodes, where dotted
arrows/lines denote pairs in MOPT .

holds,7 we only need to consider the following cases where we omit the sym-
metric cases (i.e., (p(x0), y0), (p

2(x0), y0), and (p2(x0), p(y0))). It is to be
noted if x′ = x0, we need not consider the cases that both xh and yk are
active because B(x0) = {x0} and x0 is inactive by the assumption.

(a) deg(B(x0), B(p(y0))) = d.
The score could be increased or kept by replacing (x0, y0) with some
other (x0, yk) ∈ P such that yk is active.

(b) deg(B(x0), B(p2(y0)) = g(0, 2)d2 = d2.
Since deg(B(x0), B(p(yi))) ≤ d holds for any yi ∈ B(y0) and deg(B(x0),
B(p(y0))) < d holds, there exists an edge (x0, yk) ∈ P such that yk is
active (note that both B(p(x0)) and B(p(y0)) are active except for the
nodes in MOPT , and at most d − 1 other level-1 blocks (B(p(yk))s)
are inactivated by MOPT ). The score could be increased or kept by
replacing (x0, y0) with (x0, yk).

7p2(x) denotes p(p(x)). We need not consider the case of (x′, y′) = (x0, y0) because of
the assumption.

23



(c) deg(B(p(x0)), B(p(y0))) = g(1, 1)d2 = 2d2.
This case corresponds to case (b) for height 1 trees.

(d) There exists a pair (xh, yk) ∈ B(p(x0))× B(p(y0)) appearing in P such
that both xh and yk are active.
The score could be increased or kept by replacing (x0, y0) with (xh, yk)
because condition (a) nor (b) does not hold.

(e) deg(B(p(x0)), B(p2(y0))) = g(1, 2)d3.
Note that d − 1 pairs in MOPT (excluding (x0, y0)) inactivate at most
(d− 1)(g(0, 2)d2 + g(1, 1)d2) pairs. On the other hand, (x0, y0) inacti-
vates at most g(0, 2)d2 + g(1, 0)d pairs. From

(d− 1)(g(0, 2)d2 + g(1, 1)d2) + (g(0, 2)d2 + g(1, 0)d) < g(1, 2)d3,

we can see that there exists a pair (xh, yk) ∈ P such that xh is active,
xh ∈ B(p(x0)), yk is active (accordingly B(p(yk)) is active), and yk ∈
B(p2(y0))−B(p(y0)). Since deg(B(p(x0)), B(p(y0))) < 2d2, S0(x0, y0) ≤
S0(xh, yk) holds and thus the score could be increased or kept by re-
placing (x0, y0) with (xh, yk) (otherwise, (x0, y0) would have been added
to P in place of (xh, yk)).

(f) There exists a pair (xh, yk) ∈ B(p(x0))× B(p2(y0)) in P such that both
xh and yk are active.
The score could be increased or kept by replacing (x0, y0) with (xh, yk).

(g) deg(B(p2(x0)), B(p2(y0))) = g(2, 2)d4.
Note that d − 1 pairs in MOPT (excluding (x0, y0)) inactivate at most
(d−1)(g(1, 2)+g(2, 1))d3 pairs because one endpoint of a pair in MOPT

inactivates at most g(1, 2)d3 = g(2, 1)d3 pairs. For example, (x0, y0)
inactivates at most g(0, 2)d2 + g(2, 0)d2 pairs. From

2(d− 1)g(1, 2)d3 + 2g(0, 2)d2 < g(2, 2)d4

we can see that there exists a pair (xh, yk) ∈ P such that both xh and
yk are active. Since deg(B(p(x0)), B(p2(y0))) < 4d3, the score could be
increased or kept by replacing (x0, y0) with (xh, yk) (otherwise, (x0, y0)
would have been added to P in place of (xh, yk)).

(h) deg(B(p2(x0)), B(p2(y0))) < g(2, 2)d4.
From the assumption, |P | < g(2, 2)d4. Therefore, we could have added
(x0, y0) or another pair with higher or the same score to P .

24



[General Case]
Finally, we generalize the proof for arbitrary heights. Let I = h(T 1) and

J = h(T 2). We show by means of the following procedure that a contradiction
always occurs (see Fig. 13). For simplicity, we assume w.l.o.g. that I ≤ J
and omit symmetric cases.

(1) Let i = 0. For j = 1 to J , repeat the following: if deg(B(x0), B(pj(y0))) =
dj holds, the score could be increased or kept by replacing (x0, y0) with
some other pair (x0, yk) ∈ P such that yk ∈ B(pj(y0))−B(pj−1(y0)) is
active.

(2) For i = 1 to I, repeat step (3).

(3) For j = i to J , repeat steps (4) and (5).

(4) If deg(B(pi(x0)), B(pj(y0))) = g(i, j)di+j, the score could be increased or
kept by replacing (x0, y0) with some other pair (xh, yk) ∈ P such that
both xh ∈ B(pi(x0)) − B(pi−1(x0)) and yk ∈ B(pj(y0)) − B(pj−1(y0))
are active because

(d−1)(g(i−1, j)+g(i, j−1))di+j−1 + (g(0, j)dj+g(i, 0)di) < g(i, j)di+j

holds.

(5) If deg(B(pi(x0)), B(pj(y0))) < g(i, j)di+j and there exists a pair (xh, yk) ∈
P such that both xh ∈ B(pi(x0)) − B(pi−1(x0)) and yk ∈ B(pj(y0)) −
B(pj−1(y0)) are active, the score could be increased or kept by replacing
(x0, y0) with (xh, yk).

(6) deg(B(pI(x0)), B(pJ(y0))) < g(I, J)dI+J must hold. Therefore, we could
have added (x0, y0) or another pair with higher or the same score to P .

The correctness of this procedure (i.e., it always finds a contradiction)
can be shown by repeatedly applying the discussions in the proof for the
height 2 trees (i.e., the level-2 case). �

Theorem 5.5. LCST of bounded outdegree D can be computed in O((H2 ·
22H−1 ·D2H)D−1poly(n)) time, where H is the maximum height of two input
trees.

25



Proof. We show by mathematical induction thatQ outputted by CandTuples
(T 1, T 2, d) contains at least one optimal d-tuple for (r(T 1), r(T 2)) if it exists.

When d = 1, an optimal pair (x, y) is clearly contained in Q (because
Q = {(x, y)}).

Suppose d ≥ 2. Let (x, y) be a pair in an optimal d-tuple Mopt, where
d(x) = b1 and d(y) = b2. Lemma 5.4 states that P outputted by CandPairs
(T 1

≤b1
, T 2

≤b2
) contains (x′, y′) such that (x′, y′) ∈ MOPT or (x′, y′) ∈ M ′

OPT ,
where M ′

OPT is another optimal d-tuple, d(x′) = b1, and d(y′) = b2. Then,
the remaining d − 1 pairs must be found in the following recursive calls by
the assumption of mathematical induction.

Therefore, Q outputted by CandTuples(T 1, T 2, d) contains an optimal
d-tuple. Since an optimal d-tuple is not missed for any d = 0, 1, . . . , D,
FptBdhLCST (T1, T2, D) works correctly. By combining with Prop. 5.3, we
have the theorem. �

It is left as an open problem to decide whether the bounded degree LCST
problem without the height constraint is fixed-parameter tractable or W [1]-
hard.

Acknowledgment

We would like to thank Yefim Dinitz for helpful comments. This work
was partially supported by the Collaborative Research Programs of National
Institute of Informatics. T.A. and T.T. were partially supported by JSPS,
Japan: Grant-in-Aid 26240034 and Grant-in-Aid 25730005, respectively.

References

[1] T. Akutsu, D. Fukagawa, M.M. Halldórsson, A. Takasu, K. Tanaka,
Approximation and parameterized algorithms for common subtrees and
edit distance between unordered trees, Theoret. Comput. Sci. 470 (2013)
10–22.

[2] T. Akutsu, D. Fukagawa, A. Takasu, T. Tamura, Exact algorithms for
computing tree edit distance between unordered trees. Theoret. Comput.
Sci. 421 (2011) 352–364.

[3] T. Akutsu, T. Tamura, A.A. Melkman, A. Takasu, On the complexity
of finding a largest common subtree of bounded degree, in: Proc. 19th
International Symposium on Fundamentals of Computation Theory, in:
LNCS, vol. 8070, Springer, 2013, pp. 4–15.

26



[4] T. Akutsu, T. Tamura, D. Fukagawa, A. Takasu, Efficient exponential
time algorithms for edit distance between unordered trees, in: Proc. 23rd
Annual Symposium on Combinatorial Pattern Matching, in: LNCS, vol.
7354, Springer, 2012, pp. 360–372.

[5] K.F. Aoki, A. Yamaguchi, N. Ueda, T. Akutsu, H. Mamitsuka, S. Goto,
M. Kanehisa, KCaM (KEGG Carbohydrate Matcher): A software tool
for analyzing the structures of carbohydrate sugar chains, Nucl. Acids
Res. 32 (2004) W267–W272.

[6] R. Cole, M. Farach-Colton, R. Hariharan, T. M. Przytycka, M. Thorup,
An O(n log n) algorithm for the maximum agreement subtree problem
for binary trees, SIAM J. Comput. 30 (2000) 1385–1404.

[7] M. Dell’Amico and S. Martello, The k-cardinality assignment problem,
Discrete Appl. Math. 76 (1997) 103-121.

[8] E.D. Demaine, S. Mozes, R. Rossman, O. Weimann, An optimal de-
composition algorithm for tree edit distance, ACM Tran. Algorithms 6
(2009) 1.

[9] J. Flum, M. Grohe, Parameterized Complexity Theory. Springer, 2006.

[10] K. Hirata, Y. Yamamoto, T. Kuboyama, Improved MAX SNP-hard re-
sults for finding an edit distance between unordered trees, in: Proc. 22nd
Annual Symposium on Combinatorial Pattern Matching, in: LNCS, vol.
6661, Springer, 2011, pp. 402–415.

[11] P. Kilpeläinen, H. Mannila, Ordered and unordered tree inclusion. SIAM
J. Comput. 24 (1995) 340–356.

[12] Y. Horesh, R. Mehr, R. Unger, Designing an A∗ algorithm for calculating
edit distance between rooted-unordered trees, J. Comput. Biol. 6 (2006)
1165–1176.

[13] D. Milano, M. Scannapieco, T. Catarci, Structure-aware XML object
identification, Data Eng. Bulletin 29 (2006) 67–74.

[14] N. Milo, S. Zakov, E. Katzenelson, E. Bachmat, Y. Dinitz, M. Ziv-
Ukelson, Unrooted unordered homeomorphic subtree alignment of RNA
trees, J. Alg. in Mol. Biol. 8 (2013) 13.

27



[15] T. Mori, J. Hwang, T. Tamura, A. Takasu, T. Akutsu, Fast similar
subtree search using weighted tree inclusion, In preparation.

[16] T. Mori, T. Tamura, D. Fukagawa, A. Takasu, E. Tomita, T. Akutsu,
A clique-based method using dynamic programming for computing edit
distance between unordered trees, J. Comput. Biol. 19 (2012) 1089–1104.

[17] D. Shasha, J.T.-L. Wang, K. Zhang, F.Y. Shih, Exact and approximate
algorithms for unordered tree matching, IEEE Trans. Syst., Man, and
Cyber. 24 (1994) 668–678.

[18] K-C. Tai, The tree-to-tree correction problem, J. ACM 26 (1979) 422–
433.

[19] G. Valiente, Algorithms on Trees and Graphs. Springer, 2002.

[20] K. Wang, Z. Ming, T.-S. Chua, A syntactic tree matching approach to
finding similar questions in community-based QA services, in: Proc. Int.
ACM SIGIR Conf. Research and Development in Information Retrieval,
ACM Press, 2009, pp. 187–194.

[21] K.-C.Yu, E.L. Ritman, W.E. Higgins, System for the analysis and visual-
ization of large 3D anatomical trees, Computers in Biology and Medicine
27 (2007) 1802–1830.

[22] K. Zhang, T. Jiang, Some MAX SNP-hard results concerning unordered
labeled trees, Inform. Proc. Lett. 49 (1994) 249–254.

[23] K. Zhang, R. Statman, D. Shasha, On the editing distance between
unordered labeled trees, Inform. Proc. Lett. 42 (1992) 133–139.

28



(a)

y0

x0

d nodes
(b)

d2 nodes

y0

d3 edges(e)

B(p(x0))

x0

y0

yk

yk

xh

y0

x0
(g)

xh

yk

(c) (d)

y0

x0 xh

yk

<

y0

x0

B(p(y0))

x0

B(    (y0))p 2

B(p(x0))

B(p(x0))

B(p(y0))

d 2 edges 2d2 edges

g(1,2)

d4 edgesg(2,2)

2

Figure 12: Illustration of cases in the proof of the correctness for level-2 blocks, where
cases (f) and (h) are omitted here.

29



(i=0, j=1)

(i=0)

(i=1)

(i=1, j=1)

(i=0, j=2)

d d2

(i=0, j=3)

d3

(i=2)

(i=1, j=2) (i=1, j=3)

(i=2, j=2) (i=2, j=3)

(i=3, j=3)

(i=3)

g(1,1) g(1,2) g(1,3)

g(2,2)

g(3,3)

d 3 d 4

d 4

d 2

d 6

g(2,3)d 5

Figure 13: Illustration of cases in the proof of the correctness for the general case.

30


