Direct measurement of transversely isotropic DNA nanotube by force-distance curve-based AFM

Zhipeng Ma\(^1\), Young-Joo Kim\(^2\), Seongsu Park\(^1\), Yoshikazu Hirai\(^1\), Toshiyuki Tsuchiya\(^1\), Do-Nyun Kim\(^2\) and Osamu Tabata\(^1\)

1. Introduction: DNA origami [1], typically formed from a scaffold of a long strand of DNA such as M13mp18, with the help of about 200 designed single-strand DNA (ssDNA) “staples”, is a versatile methodology that facilitates the creation of nanostructures made of diverse materials: the DNA is used as an engineering material [2]. DNA origami-based nanostructures can be spatially addressable to sub-nanometer precision, enabling nanoscale materials to be deployed at particular locations. This is achieved by utilizing the base sequence data of the scaffold as an address to specifically conjugate a complementary ssDNA unit that has a nanomaterial attached at the other end [2-3]. This feature of DNA origami bridges the gap between nanoscale materials and micrometer-scale devices such as MEMS/LSI, and facilitates the creation of functional micro/nanosystems that rely on phenomena specific to nanostructures, such as plasmonic effects arising from nanoparticles in close proximity [4-7]. In order to achieve accurate and reliable positioning of other materials in a DNA origami structure, its structural stiffness, as well as the strength of the forces by which other materials are attached or encapsulated, need to be quantitatively estimated and measured.

Among a variety of DNA origami structures, the nanotube configuration formed by parallel double-strand DNA (dsDNA) bundles arrayed in a honeycomb lattice (DNA nanotube, hereafter), is very attractive as a structural building block. DNA nanotubes can function as a versatile platform for the creation of new structural systems, by confining or encapsulating different nanoscale materials such as nanoparticles [8-9], reactive proteins, and drugs [10], owing to their hollow structure, relatively high rigidity, high aspect ratio, and other useful properties. However, the exploitation of DNA nanotubes as building blocks for nanostructures, and the design of nanostructures that provide specific mechanical performances, depends on a comprehensive understanding of their mechanical properties. Although studies of certain mechanical properties of dsDNA, such as its persistence length, have been carried out, there are few studies pertaining to the mechanical modeling and measurements of certain key mechanical properties of DNA nanotube structures [11-12]. Most measured results for the bending rigidity or bending persistence length of DNA nanotubes agree well with values estimated using a simple beam model in which parallel dsDNA bundles, connected continuously and rigidly, are regarded as elastic and isotropic rods having the same Young’s modulus or bending persistence length as those of dsDNA (260 MPa and 50 nm, respectively)[13]. On the other hand, the measured results for torsional parameters are far below the estimated values obtained using the same beam model [13].

One explanation for the disparity between torsional parameter estimations and measurement results is that the constraints applied at the dsDNA rod connections are overly idealized, and should be discrete at crossover positions [13]. Another possible explanation for this discrepancy is to assume that the longitudinal and radial mechanical properties of a DNA nanotube are anisotropic. We consider this to be a reasonable assumption, based on the fact that the DNA nanotube is a porous biphasic material, with a designed degree of porosity and the existence of inter-helix spacing between dsDNA units, but it has yet to be experimentally verified. Therefore, further studies on the mechanical properties of DNA origami, especially the radial modulus of DNA nanotubes, are desirable.

In our previous research [14], direct quantitative measurement of the radial behavior of a DNA nanotube was carried out, using force-distance curve-based AFM, to determine the radial modulus of a DNA nanotube and assess the validity of the anisotropy assumption mentioned above. In addition to providing high-resolution images of DNA nanotube surfaces, the AFM system was utilized to probe mechanical properties, by measuring the mechanical response of a DNA nanotube as the AFM cantilever is indented into it and withdrawn.

In this paper, the structure of a newly designed DNA nanotube is presented first. Next, we discuss the method for measuring the radial modulus of the DNA nanotube, based on AFM force-distance curves obtained with the sample immobilized on a mica surface in a magnesium ion solution. A Hertz model, corrected with the finite element method to obtain increased realism, is then used to determine the biphasic radial modulus of the DNA nanotube, based on the measured force-distance curves. Finally, a biphasic radial modulus was obtained for the DNA nanotube in two applied force regimes: we termed the modulus obtained in the low applied force state the radial electrostatic modulus, and that in the high force state the radial elastic modulus. To verify these data, we first estimated the electrostatic force acting on DNA helices in a honeycomb lattice and found that the electrostatic osmotic pressure estimated from the radial electrostatic
modulus is very comparable to that for DNA helices in a hexagonal lattice in a similar magnesium ion solution reported elsewhere [15]. In addition, we constructed a new transversely isotropic model for typical DNA nanotubes in a honeycomb lattice in which the torsional rigidity is determined from the radial elastic modulus measured in our study. The torsional persistence of a 6-helix DNA nanotube estimated from this new model agrees well with that reported elsewhere.

2. Methods: The DNA nanotube employed in our experiments was designed with cdNAano software and its shape and structure were verified with CanDo software [16]. As shown in Fig. 1a, the scaffold is aligned into a honeycomb lattice formed by 24 parallel dsDNA bundles. The length and diameter of the DNA nanotube are estimated as roughly 100 and 12 nm, respectively (Fig. 1b) and AFM imaging verifies these approximate dimensions. The nanotubes are straight and of uniform length, which indicate that the regular distribution of nicks and crossovers has prevented concentration of stress. A quantity of the scaffold strand to 10 copies of staple strands. The mixture was rapidly heated to 80 °C and then cooled to 60 °C at a rate of 4 min°C, then cooled to 24°C at a rate of 120 min°C. The assembled DNA nanotubes were purified by centrifuging with an Amicon Ultra-0.5 mL centrifugal filter (100 kDa) to remove excess staple DNA material and then stored at 4 °C for later use. Prior to AFM measurements, the prepared DNA nanotube solution was further diluted 1:4 with the same buffer solution and then deposited during a 5-minute interval on a freshly cleaved mica surface pre-treated with NiCl2. After the application, the mica surface with the sample was washed with de-ionized water twice. The mica surface and cantilever cell were wetted with buffer solution before indentation measurements were carried out.

A commercial AFM (Multimode 8, Veeco, USA) was used in Quantitative Nanomechanical Property Mapping (QNM) mode to obtain force-distance curve measurements, with each pixel representing a 1×1 nm area. To ensure the fixation of DNA nanotube structures on mica surface, the same surface with dispersed DNA nanotubes still existed on the mica surface with structural integrity. A triangular cantilever probe with a nominal spring constant of 0.4 N/nm, nominal resonant frequency of 70 kHz, and nominal tip radius of 2 nm was used to reproduce reproducible results. The deflection sensitivity of the cantilever was determined by measuring vertical displacements toward the mica surface, with minimal force applied before and after each measurement. The spring constant of the cantilever was obtained by analyzing thermal noise, using the thermal tuning protocol provided in the Nanoscope Analysis software. The tip radius of the cantilever probe was estimated with a relative method based on a PDMS reference sample with nominal Young’s modulus of 3 MPa. The frequency of current applied to the piezoelectric cantilever actuator moving the probe towards and away from the sample surface was set to 2 kHz and the maximum force was kept below 1.5 nN, to ensure that the cantilever tip did not destroy the DNA nanotube samples.

A Hertz model was corrected to improve the determination of the radial modulus of the DNA nanotube via the measured indentation force curves. In this model, the DNA nanotube and cantilever tip are approximated as a cylindrical beam and sphere, respectively, and their relationship is expressed in Eq. 1, where F and δ are the force and indentation distance, respectively, E is Young’s modulus, σ is the Poisson’s ratio, and R_e is the effective radius, which depends on the values of the tip radius (R_t) and tube radius (R_c). In this paper, a Poisson’s ratio of 0.5 for the DNA nanotube was assumed. This Hertz model is widely accepted as a mathematical model for load-deformation behavior during elastic contact, and obtains the elastic rigidity under the assumption of small strains at the contact region, with strains beyond this region disregarded [17].

$$F = \frac{4}{3} \frac{E}{(1-\sigma^2)\delta}\sqrt{R_tR_c}$$

(1)

To minimize errors caused by the above assumption, a finite element method can be used to correct the mathematical model expressed in Eq.1. In this research, ANSYS 14.5 software was employed to solve the contact problem, with the DNA nanotube, cantilever tip, and mica substrate modeled as a cylinder with isotropic elasticity, a rigid sphere, and a rigid flat plane, respectively. For simplicity, no initial deformation of the DNA nanotube or mica surface was assumed. The viscoelastic effect due to the surrounding ionic fluid environment was neglected in our model. To reduce computational time, a quarter-symmetric model with corresponding symmetric boundary conditions was used.

Fig. 1 Schematic configuration and AFM image of the designed DNA nanotubes. (a) Schematic view of DNA nanotube three-dimensional structure (right), with a cross-section showing the honeycomb lattice (left); (b) AFM image of DNA nanotubes deposited on mica substrate; (c) the cross-sectional profile of one DNA nanotube indicated by the
blue line in Fig. 1b, in which the measured height is a little bit smaller than the designed diameter of a DNA nanotube because of the deformation occurred during the measurement process.

A correction factor, \(f \), was introduced in the corrected Hertz model to ensure adequate agreement between the results of measurements using the mathematical model and simulated results. As shown in Fig.2, the corrected Hertz model expressed in Eq.2 can predict simulation results more accurately than the original Hertz model (Eq.1). Equation 3 shows the corrected Hertz model with the addition of a contact point, with \(F_0 \) and \(\delta_0 \) representing new origins for the force and distance, respectively. The dependency of the correction factor on the probe tip radius is shown in Fig.3 and estimated using the fitted 2nd-order polynomial equation of Eq.4 for the analysis of the radial modulus. The calibrated tip radius ranged from 5 to 10 nm for the cantilever we chose, larger than the nominal value of 2 nm, possibly due to mechanical wear during the calibration and scanning processes.

\[
F = \frac{4}{3} \frac{Ef}{1-\sigma^2} \sqrt{Rt \delta^{3/2}}
\]

\[
F - F_0 = \frac{4}{3} \frac{Ef}{1-\sigma^2} \sqrt{Rt} (\delta - \delta_0)^{3/2}
\]

\[
f = -0.001Rt^2 + 0.027Rt + 0.633
\]

3. Results and discussion: Figure 4 shows typical force-distance curves for the center of DNA nanotube immobilized on the mica surface since DNA nanotube is fixed stably under the compression of cantilever tip in the center and the contact problem can be simple assumed as contact without separation and slide between DNA nanotube and mica surface. The loading curve determined for the mica surface alone is used to alert us if the cantilever tip is responding to the underlying mica surface. When performing DNA nanotube measurements, this condition is recognizable in both the loading and unloading force curves when the compression force is at a high level (above about 1 nN). An accurate estimation of the elastic response of the DNA nanotube is therefore impossible in this high-force region. Furthermore, our analyses are based on unloading force curves instead of loading force curves, because the latter include plasticity and viscosity responses. Concerning the noise-force region illustrated in Fig.4, the oscillatory vibration of the cantilever tip arises when it loses contact with the DNA nanotube sample, but this vibration is extinguished when tip reestablishes contact. This vibration is regarded as noise and can be negated by a correction process in the Nanoscope Analysis software. Ultimately, the contact point is estimated based on the zero force point obtained in the corrected force-distance curves and the error associated with this approximation is negligible for this experiment. The low-force region indicated in Fig.4 is utilized for the analysis of the DNA nanotube radial modulus. In this low-force region, the adhesion is normally less than 50 pN which is small enough to keep the DNA nanotube structures intact [18]. Figure 5 shows the force-indentation curve (blue dots) converted from the force-distance curve that is based on the determined contact point.

As mentioned above, we assume that the DNA nanotube will behave as a porous biphasic material under radial compression, as illustrated in Fig.6. During the first measurement phase, when the applied force and deformation are both small, the DNA nanotube undergoes a reduction of inter-helix spacing between adjacent dsDNA helices, and the inherent electrostatic forces between adjacent dsDNA strands therefore dominate the response. As the compressive force is increased, evidence of a transition is expected to appear in the force-indentation curve, after most of the inter-helix space between adjacent dsDNA strands is eliminated. During the second measurement phase, when the force and deformation are both relatively large, the behavior under compression primarily reflects the arrangement of the dsDNA bundles in a tightly packed lattice.
Based on the assumption that the material property being investigated here is biphasic, the force-indentation curves were fitted using the two integrated corrected Hertz models expressed in Eq. 2 and Eq. 3 for the two measurement phases with origin points at \((0, 0)\) and \((F_0, \delta_0)\), respectively. The corrected Hertz model with an origin point at \((0, 0)\) expressed in Eq. 2 was utilized to fit the force-distance curves at low-force region, while the corrected Hertz model with an origin point at \((F_0, \delta_0)\) was for the high-force region of force-distance curves. The process of fitting was carried out automatically by iterative searching of the minimal integral mean square error (MSE) of the fitted results at two regions, illustrated in Fig. 5 by the two red lines for them. We note that the transition point indicated by the arrow in Fig.5 does not necessarily coincide with the contact point \((F_0, \delta_0)\) included in Eq.3, and will cause underestimated or overestimated results if chosen inaccurately. The fitted results obtained by the integrated models were in good agreement with the experimental measurements. As the green fitted line in Fig.5 indicates, the estimation based on the singly corrected Hertz model expressed in Eq.2 conforms poorly with the measured results.

The above fitting protocols were carried out for all force-indentation curves for different DNA nanotubes (N=72), to obtain two sets of Young’s modulus values for the DNA nanotube design, termed the radial electrostatic modulus for the first measurement phase, and the radial elastic modulus for the second measurement phase. The measurement results are illustrated in Fig.7. The radial electrostatic modulus of the DNA nanotube was determined to have an average value of 11.5 MPa, with a standard deviation of 4 MPa, and the average value for the radial elastic modulus was 64.8 MPa, with a standard deviation of 21.1 MPa. Both of these radial modulus values are remarkably low compared to the reported Young’s modulus for dsDNA of about 260 MPa. [13] Considering the reported longitudinal elastic modulus of roughly 260 MPa, our measurements indicate that the axial and radial moduli of the DNA nanotube used in this experiment are anisotropic.
where \(A = \pi ab = \pi R_t \\).

The mean osmotic pressure can then be expressed as a function of the measured radial electrostatic modulus, as formulated below.

\[
P = \frac{8\pi\epsilon d^{3/2}}{15\pi R_t(1-\sigma^2)}
\] \hspace{1cm} (7)

Assuming that the indentation of 3 nm that is under the transition point between the two measurement phases, and that the measured radial electrostatic modulus has a value of 11.5 MPa, a mean osmotic pressure of about 4 MPa can be derived using Eq.7. This derived result is comparable to the reported osmotic pressure that ranges from 1 to 3 MPa for hexagonal DNA helices in the presence of magnesium ions [15]. This implies that the radial electrostatic modulus value of 11.5 MPa that we obtained is reasonable and that the indentation behavior during the first measurement phase is in fact dominated by electrostatic forces between the DNA helices that form the DNA nanotube.

As explained in the introduction, the porous characteristic of DNA nanotube structures may be an alternative reason for the unexpectedly low torsional rigidity of the 6-helix DNA nanotube reported in Ref.13. The torsional persistence length \(P_t \) also quantifies the rigidity in terms of twisting and can be determined from the torsional rigidity, using the following equation.

\[
P_t = \frac{C}{k_B T}
\] \hspace{1cm} (8)

where \(k_B \) is Boltzmann’s constant and \(T \) is the temperature in Kelvin.

The torsional rigidity \(C \) of a 6-helix DNA nanotube in a honeycomb lattice can also be calculated as the product of the torsion constant \((J_t) \) for the 6-helix honeycomb cross-section and the shear modulus \((G) \), as follows:

\[
C = J_t G
\] \hspace{1cm} (9)

where torsion constant \((J_t) \) for the 6-helix honeycomb section is expressed as

\[
J_t = \frac{\pi r^4}{2}
\] \hspace{1cm} (10)

where \(r \) is the effective radius of the 6-helix honeycomb lattice DNA nanotube, assumed to be 3 nm here.

Considering the longitudinal elastic modulus of about 260 MPa reported for dsDNA and other DNA nanotube structures [11], we propose a new mechanical model for such DNA nanotubes in which the radial elastic modulus is transversely isotropic, with a value of about 65 MPa, and the axial elastic modulus is roughly 260 MPa, as illustrated in Fig. 6. It is known that, for a cylindrical structure with a transversely isotropic material property, the shear modulus \((G) \) about the tube axis can be directly determined according to the radial elastic modulus \((E_{rad}) \), as follows:

\[
G = \frac{E_{rad}}{2(1+\sigma)}
\] \hspace{1cm} (11)

Given the above relationship, the shear modulus of the 6-helix DNA nanotube is calculated as 21.7 MPa, based on our measured value of 65 MPa for the radial elastic modulus. Therefore, using Eq. 12 below and this radial elastic modulus, the torsional persistence length for the 6-helix DNA nanotube should be 581 nm, a figure comparable to the reported value of 530 ± 20 nm [13], indicating that the 65 MPa value for the radial elastic modulus can be considered reasonable. The reason why the radial elastic modulus has a lower value than that of the longitudinal elastic modulus can be attributed to the effect of the pores inherent in the honeycomb lattice, and the grooves in the dsDNA strands.

\[
P = \frac{\pi r^4 E_{rad}}{4k_B T(1+\sigma)}
\] \hspace{1cm} (12)

4. Conclusion: The radial modulus of a newly designed DNA nanotube was characterized using force-distance curve measurements obtained by AFM, with the specimen in a magnesium buffer solution. Using a corrected Hertz model, biphasic mechanical properties, i.e., the radial electrostatic and radial elastic moduli, were quantitatively determined to be 11.5 ± 4 MPa and 64.8 ± 21.1 MPa, respectively. The appropriateness of these figures was verified by using them in comparisons of estimated and reported values for the inter-helix mean osmotic pressure and torsional persistence length of a 6-helix DNA nanotube. We also demonstrated the aptness of our model in which the radial elastic modulus of the DNA nanotube is transversely isotropic and much lower than that in the axial direction. In future work, we hope to develop a more precise and comprehensive model that considers the influence of much smaller features, such as the crossover and nick structures that are important aspects of DNA nanotube architecture.

5. Acknowledgments: This project was supported by JSPS and NRF under the Japan - Korea Basic Scientific Cooperation Program, and partly supported by Shaoxing 330 Plan ACY201501. Additionally, Zhipeng Ma is especially grateful for CSC scholarship support.

6. References:

