Title

Author(s)

Nishiyama, Kei; Ito, Noritoshi; Orita, Tomohiko; Hayashida, Kei; Arimoto, Hideki; Abe, Mitsuru; Unoki, Takashi; Endo, Tomoyuki; Murai, Akira; Ishikura, Ken; Yamada, Noriaki; Mizobuchi, Masahiro; Anan, Hideaki; Watanabe, Tomorou; Yasuda, Hideto; Homma, Yosuke; Shiga, Kazuhiro; Tokura, Michiaki; Tsujimura, Yuka; Hatanaka, Tetsuo; Nagao, Ken

Citation

Resuscitation (2015), 96: 16-22

Issue Date

2015-11

URL

http://hdl.handle.net/2433/203062

Right

© 2015 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Type

Journal Article
Clinical Paper

Characteristics of regional cerebral oxygen saturation levels in patients with out-of-hospital cardiac arrest with or without return of spontaneous circulation: A prospective observational multicentre study

Kei Nishiyama a,⁎, Noritoshi Ito b,⁎, Tomohiko Orita c,⁎, Kei Hayashida d,⁎, Hideki Arimoto e,⁎, Mitsuji Abe f,⁎, Takashi Unoki f,⁎, Tomoyuki Endo g,⁎, Akira Murai h,⁎, Ken Ishikura i,⁎, Noriaki Yamada j,⁎, Masahiro Mizobuchi k,⁎, Hideaki Anan l,⁎, Tomorou Watanabe m,⁎, Hideto Yasuda n,⁎, Yosuke Homma o,⁎, Kazuhiro Shiga p,⁎, Michiaki Tokura q,⁎, Yuka Tsujimura r,⁎, Tetsuo Hatanaka s,⁎, Ken Nagao t,⁎

⁎ Authors for correspondence.

Abstract

Aim: Our study aimed at filling the fundamental knowledge gap on the characteristics of regional brain oxygen saturation (rSO2) levels in out-of-hospital cardiac arrest (OHCA) patients with or without return of spontaneous circulation (ROSC) upon arrival at the hospital for estimating the quality of cardiopulmonary resuscitation and neurological prognostication in these patients.

Methods: We enrolled 1921 OHCA patients from the Japan – Prediction of Neurological Outcomes in Patients Post-cardiac Arrest Registry and measured their rSO2 immediately upon arrival at the hospital by near-infrared spectroscopy using two independent forehead probes (right and left). We also assessed the percentage of patients with a good neurological outcome (defined as cerebral performance categories 1 or 2) 90 days post cardiac arrest.

Keywords:
Cardiopulmonary resuscitation
Cerebrovascular circulation
Cardiac arrest
Near-infrared spectroscopy
Oxygen
Prognoses

Abbreviations: CPC, cerebral performance categories; CPR, cardiopulmonary resuscitation; EMS, emergency medical services; J-POP, Japan – Prediction of Neurological Outcomes in Patients Post-cardiac Arrest Registry; OHCA, out-of-hospital cardiac arrests; PCAI, post-cardiac arrest intervention; ROSC, return of spontaneous circulation; rSO2, regional cerebral oxygen saturation.

⁎ A Spanish translated version of the abstract of this article appears as Appendix in the final online version at http://dx.doi.org/10.1016/j.resuscitation.2015.07.013.

⁎ Corresponding author at: Department of Primary Care and Emergency Medicine, Kyoto University Graduate School of Medicine, 54 Kawara-machi, Seigoin, Sakyo-ku, Kyoto 606-8507, Japan.

⁎⁎⁎ E-mail address: keinishi@kuhp.kyoto-u.ac.jp (K. Nishiyama).

⁎⁎⁎ J-POP Registry Investigators.
1. Introduction

Recent guidelines for cardiopulmonary resuscitation (CPR) increased the focus on methods ensuring that high-quality CPR is performed in all resuscitation attempts.1,2 A reliable, inexpensive, non-invasive physiological monitor that will increase our ability to optimize CPR for individual patients of cardiac arrest should be developed. This is necessary to advance the delivery of optimal CPR and ultimately save more lives.3-5

On the other hand, the advent of systematic bundled post-cardiac arrest interventions (PCAs) has increased the likelihood of patients surviving out-of-hospital cardiac arrests (OHCA)s while maintaining good neurological conditions.6-11 Hence, the importance of estimating the severity of brain damage and the neurological prognostication for OHCA patients has been emphasized in the literature.6,9,10,12,13

Regional cerebral oxygen saturation (rSO\textsubscript{2}) is a measure of cerebral perfusion that is obtained noninvasively via near-infrared spectroscopy (NIRS) and can be monitored in patients with cardiac arrest.14-18 We previously reported that rSO\textsubscript{2} measured upon the patient’s arrival at the hospital might help to predict neurological outcomes in OHCA patients.19,20 The optimal cut-off point identified in our study was an rSO\textsubscript{2} >42%. These data suggest that rSO\textsubscript{2} monitoring might be useful for (1) monitoring the quality of CPR for patients before the return of spontaneous circulation (ROSC), and (2) determining a neurological prognostication for all OHCA patients.

When continuous rSO\textsubscript{2} monitoring of patients undergoing pre-hospital CPR is performed,21 rSO\textsubscript{2} values of patients with and without ROSC have to be assessed. This will likely cause some confusion regarding which rSO\textsubscript{2} values (those during the resuscitation state vs. those post resuscitation) should be adopted for prognostication and precise triage to PCAs. To establish methods for quality monitoring of resuscitation and neurological prognostication, rSO\textsubscript{2} levels might therefore have to be interpreted according to ROSC status in patients with and without ROSC on arrival at the hospital.

Achieving ROSC after an OHCA has a significant effect on cerebral circulation and oxidation. Using receiver operating characteristic analyses, our previous report demonstrated the different optimal cut-off points for predicting good neurological outcomes between OHCA patients with and without ROSC upon arrival at the hospital (rSO\textsubscript{2} >62% and >21%, respectively).19 However, few studies have focused on how ROSC upon arrival at the hospital affects rSO\textsubscript{2} monitoring and sensitivity for the neurological prognostication after an OHCA.

To address this knowledge gap, we conducted a descriptive study aimed at performing a precise comparison of rSO\textsubscript{2} values in patients undergoing resuscitation and those post resuscitation upon arrival at the hospital.

2. Methods

2.1. Study design and setting

The Japan – Prediction of Neurological Outcomes in Patients Post-cardiac Arrest Registry (J-POP) is a prospective multicentre cohort study. Fifteen tertiary emergency care hospitals in Japan participated in this study from 15 May 2011 to 30 August 2013. Among the consecutive 3086 OHCA patients who were transported to the hospitals, 1921 patients were enrolled in the study. Individuals who were unresponsive during and after resuscitation upon arrival at the hospital following an OHCA were included in our study. The exclusion criteria included trauma, accidental hypothermia, age <18 years, completion of the “Do Not Attempt Resuscitation” form, and a Glasgow coma scale (GCS) score of >8 upon arrival at the hospital.

The study protocol was approved by the institutional review board or ethics committee at each participating hospital. The details of the J-POP registry design and its main outcomes have been published elsewhere.19

2.2. Emergency medical services and cardiopulmonary resuscitation in Japan

In Japan, emergency lifesaving technicians are permitted to insert tracheal tubes and administer intravenous adrenaline (epinephrine).22 All emergency medical service (EMS) providers perform CPR according to current CPR guidelines.2,23 However, EMS providers are not permitted to terminate CPR in the field.

2.3. Resuscitation procedures after arrival at the hospital

All patients received advanced life support in accordance with the national guidelines for resuscitation after arrival at the emergency department. If sustained ROSC (restoration of a palpable pulse that is sustained for at least 20 min) was not obtained using standard advanced life support, patients whose initially documented electrocardiograph rhythm was ventricular fibrillation or pulseless ventricular tachycardia received extracorporeal CPR with extracorporeal circulatory support or a cardiopulmonary bypass. When patients achieved ROSC, therapeutic hypothermia was induced once their systolic blood pressure exceeded 90 mmHg and their GCS score was between 3 and 8.24-26 All procedural decisions were made at the discretion of the attending physician(s).

2.4. Patient characteristics and cardiac arrest

Data were collected prospectively based on the Utstein style.27,28 Baseline patient characteristics and in-hospital data were collected from medical records and databases.19

Cardiac arrest was defined as the absence of spontaneous respiration, a palpable pulse, and stimuli responsiveness.27-29 The arrest was presumed to be of cardiac origin unless it was caused by cerebrovascular disease, respiratory disease, external factors (e.g., drug overdose or asphyxia), or other non-cardiac factors. Cardiac or non-cardiac origin was determined clinically by the physician-in-charge.
2.5. Near-infrared spectroscopy

Upon arrival at the hospital, two disposable near-infrared spectrometer (INVOS™ 5100C; Covidien, Boulder, CO, USA) probes were carefully applied on both sides of the patient’s forehead (right and left) to monitor rSO2 using two channels. After several seconds of stabilization, rSO2 was monitored using the probes for a minimum of 1 min.19,30–33 The measurable range of rSO2 was 15–100%; hence, if rSO2 values were very low (<15%), the patients’ rSO2 values were shown as 15%.

First, the right- and left-sided rSO2 values in each patient were compared. We then selected the lower of the two rSO2 values and used it to analyze the patients’ distribution of rSO2 levels upon arrival at the hospital and the association between rSO2 levels upon arrival at the hospital and the patients’ neurological outcomes.

2.6. Neurological outcomes

The primary study endpoint was the patients’ 90-day neurological outcomes, which were categorized according to the Glasgow-Pittsburgh cerebral performance categories (CPCs) as described in the Utstein style guidelines.27,28 The guidelines categorize CPC 1 (good performance) and CPC 2 (moderate disability) as ‘good neurological outcomes’, and CPC 3 (severe disability), CPC 4 (vegetative state), and CPC 5 (brain death or death) as ‘poor neurological outcomes’. The CPCs of individual patients were determined by at least two physicians-in-charge who were blinded to the rSO2 readings that were obtained upon arrival at the hospital.

2.7. Statistical analyses

Unpaired t-tests or Mann–Whitney U-tests were conducted for unpaired comparisons, and a x2 test or Fischer exact test was used to examine differences between categorical variables. The strength of the association between two ranked variables was calculated with Spearman correlation. Finally, the Cochran Armitage Trend Test was used to test the potential association between a variable with two categories and variables with ordered levels. JMP version 10.0.0 (SAS Institute, Cary, NC, USA) was used for all statistical analyses. All reported probability values are 2-tailed, and P < 0.05 was considered statistically significant.

The authors had full access to the data and assume responsibility for its integrity. All authors have read and agree with the contents of this manuscript.

2.8. Ethical considerations

The study protocol conformed to the Guidelines for Epidemiologic Studies issued by the Ministry of Health, Labor, and Welfare of Japan.15 The study protocol was approved by the institutional review board or ethics committee of each participating medical institution. The requirement for informed consent was waived by the institutional review boards or ethics committees. Our work complies with the principles laid down in the Declaration of Helsinki.

3. Results

3.1. Patient characteristics and neurological outcomes

During the study period, J-POP accumulated data on 3086 consecutive OHCA patients who were referred to the 15 participating hospitals. After exclusions, 1921 patients were included in our analysis (Fig. 1). Among these, 148 (8%) achieved ROSC and 1773 (92%) did not achieve ROSC when rSO2 was monitored upon their arrival at the hospital. 1382 (72%) were pronounced dead in the emergency department. Of the remaining 539 patients, 115 (6%) survived for at least 90 days. After 90 days, 60 (3%), 19 (1%), 9 (0.5%), and 27 (1%) patients had CPCs of 1, 2, 3, and 4, respectively. Accordingly, 79 patients (4%) were considered to have good neurological outcomes (CPC 1 or 2, Fig. 1).

Among patients with ROSC upon arrival at the hospital (n = 148), 22 (15%) were pronounced dead in the emergency department. Of the remaining 126 patients (85%); 71 (48%) survived for at least 90 days. After 90 days, 45 (30%), 11 (7%), 7 (5%), and 8 (5%) patients had CPCs of 1, 2, 3, and 4, respectively. Thus, 56 patients (38%) were considered to have good neurological outcomes (Table 1).

Among patients without ROSC upon arrival at the hospital (n = 1773), 1360 (77%) were pronounced dead in the emergency department. Of the remaining 413 patients (23%), 44 (2%) survived for at least 90 days. After 90 days, 15 (0.9%), 8 (0.5%), 2 (0.1%), and 19 (1%) patients had CPCs of 1, 2, 3, and 4, respectively. Hence, 23 patients (1%) in this patient group were considered to have good neurological outcomes (Table 1).

Compared to patients with ROSC upon arrival at the hospital, patients without ROSC frequently had unfavorable characteristics such as OHCA at home, no witnesses, no bystander-initiated CPR, and no shockable rhythms. These patients frequently underwent prehospital procedures such as intravenous epinephrine administration and defibrillation, as well as procedures after arrival at the hospital such as therapeutic hypothermia, coronary angiography, and primary percutaneous coronary intervention. In contrast, patients with ROSC upon arrival at the hospital frequently had favorable outcomes such as survival to hospital admission, survival after 90 days, and good neurological outcomes (Table 1).
Table 1
Patient characteristics and neurological outcomes.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Total (n = 1921)</th>
<th>With ROSC (n = 148)</th>
<th>Without ROSC (n = 1773)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in years, median (IQR)</td>
<td>76 (63–84)</td>
<td>72 (57–84)</td>
<td>76 (63–84)</td>
<td>0.14</td>
</tr>
<tr>
<td>Male sex (%)</td>
<td>1167 (61)</td>
<td>100 (68)</td>
<td>1067 (60)</td>
<td>0.08</td>
</tr>
<tr>
<td>Location of cardiac arrest (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>Home</td>
<td>1319 (69)</td>
<td>67 (45)</td>
<td>1252 (71)</td>
<td></td>
</tr>
<tr>
<td>Nursing home/assisted living</td>
<td>177 (9)</td>
<td>21 (14)</td>
<td>156 (9)</td>
<td></td>
</tr>
<tr>
<td>Public building</td>
<td>76 (4)</td>
<td>13 (9)</td>
<td>63 (4)</td>
<td></td>
</tr>
<tr>
<td>Street</td>
<td>114 (6)</td>
<td>19 (13)</td>
<td>95 (5)</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td>235 (12)</td>
<td>28 (19)</td>
<td>207 (12)</td>
<td></td>
</tr>
<tr>
<td>Type of bystander/witness status (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>No witness</td>
<td>970 (50)</td>
<td>34 (23)</td>
<td>936 (53)</td>
<td></td>
</tr>
<tr>
<td>Family members</td>
<td>528 (27)</td>
<td>52 (35)</td>
<td>476 (27)</td>
<td></td>
</tr>
<tr>
<td>EMS</td>
<td>122 (6)</td>
<td>14 (9)</td>
<td>108 (6)</td>
<td></td>
</tr>
<tr>
<td>Others</td>
<td>301 (16)</td>
<td>48 (32)</td>
<td>253 (14)</td>
<td></td>
</tr>
<tr>
<td>Bystander-initiated CPR (%)</td>
<td>481 (25)</td>
<td>69 (46)</td>
<td>412 (23)</td>
<td><0.01</td>
</tr>
<tr>
<td>Origin of cardiac arrest (%)</td>
<td></td>
<td></td>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td>Presumed cardiac</td>
<td>1195 (62)</td>
<td>89 (60)</td>
<td>1106 (62)</td>
<td></td>
</tr>
<tr>
<td>Non-cardiac</td>
<td>726 (38)</td>
<td>59 (40)</td>
<td>667 (38)</td>
<td></td>
</tr>
<tr>
<td>Initially documented rhythms on the scene of the cardiac arrest (%)</td>
<td>205 (11)</td>
<td>40 (27)</td>
<td>165 (9)</td>
<td><0.01</td>
</tr>
<tr>
<td>VF/pulseless VT</td>
<td>487 (25)</td>
<td>43 (29)</td>
<td>444 (25)</td>
<td></td>
</tr>
<tr>
<td>Prehospital procedures (%)</td>
<td>1229 (64)</td>
<td>65 (44)</td>
<td>1164 (66)</td>
<td></td>
</tr>
<tr>
<td>Advanced airway devices</td>
<td>1098 (57)</td>
<td>80 (54)</td>
<td>1018 (57)</td>
<td>0.44</td>
</tr>
<tr>
<td>Intravenous epinephrine administration</td>
<td>508 (26)</td>
<td>67 (45)</td>
<td>441 (25)</td>
<td><0.01</td>
</tr>
<tr>
<td>Defibrillation</td>
<td>201 (11)</td>
<td>53 (36)</td>
<td>238 (12)</td>
<td><0.01</td>
</tr>
<tr>
<td>Emergency call to arrival at the hospital in min, median (IQR)</td>
<td>32 (26–40)</td>
<td>33 (27–40)</td>
<td>32 (26–40)</td>
<td>1.00</td>
</tr>
<tr>
<td>Rhythm at rSO2 measurement (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF/pulseless VT</td>
<td>87 (5)</td>
<td>N/A</td>
<td>87 (5)</td>
<td>N/A</td>
</tr>
<tr>
<td>Prehospital procedures (%)</td>
<td>303 (20)</td>
<td>N/A</td>
<td>303 (20)</td>
<td>N/A</td>
</tr>
<tr>
<td>Extracorporeal CPR</td>
<td>121 (6)</td>
<td>9 (6)</td>
<td>112 (6)</td>
<td>1.00</td>
</tr>
<tr>
<td>Therapeutic hypothermia</td>
<td>203 (11)</td>
<td>72 (49)</td>
<td>131 (7)</td>
<td><0.01</td>
</tr>
<tr>
<td>Coronary angiography</td>
<td>153 (8)</td>
<td>53 (36)</td>
<td>100 (6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Primary percutaneous coronary intervention</td>
<td>65 (3)</td>
<td>22 (15)</td>
<td>43 (2)</td>
<td><0.01</td>
</tr>
<tr>
<td>Survival to hospital admission</td>
<td>539 (28)</td>
<td>126 (85)</td>
<td>413 (23)</td>
<td><0.01</td>
</tr>
<tr>
<td>Neurological outcomes at 90 days after OHCA (%)</td>
<td></td>
<td></td>
<td></td>
<td><0.01</td>
</tr>
<tr>
<td>CPC 1, good performance</td>
<td>60 (3)</td>
<td>45 (30)</td>
<td>55 (39)</td>
<td></td>
</tr>
<tr>
<td>CPC 2, moderate disability</td>
<td>19 (1)</td>
<td>11 (7)</td>
<td>8 (5)</td>
<td></td>
</tr>
<tr>
<td>CPC 3, severe disability</td>
<td>9 (0.5)</td>
<td>7 (5)</td>
<td>2 (0.1)</td>
<td></td>
</tr>
<tr>
<td>CPC 4, vegetative state</td>
<td>27 (1)</td>
<td>8 (5)</td>
<td>19 (1)</td>
<td></td>
</tr>
<tr>
<td>Deaths (CPC 5)</td>
<td>1806 (94)</td>
<td>77 (52)</td>
<td>1729 (98)</td>
<td><0.01</td>
</tr>
</tbody>
</table>

CPC, cerebral performance categories; CPR, cardiopulmonary resuscitation; EMS, emergency medical service; IQR, interquartile range; N/A, not applicable; PEA, pulseless electrical activity; rSO2, regional cerebral oxygen saturation; ROSC, return of spontaneous circulation; VF, ventricular fibrillation; VT, ventricular tachycardia; OHCA, out-of-hospital cardiac arrest.

* Comparing patients with ROSC and those without ROSC upon arrival at the hospital.

Table 2
Regional cerebral oxygen saturation levels upon arrival at the hospital.

<table>
<thead>
<tr>
<th>rSO2 upon arrival at the hospital, % median (IQR)</th>
<th>P-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td></td>
</tr>
<tr>
<td>Right side (n = 1905)</td>
<td>58 (43–67)</td>
</tr>
<tr>
<td>Left side (n = 1899)</td>
<td>57 (42–68)</td>
</tr>
<tr>
<td>Lower value (n = 1921)</td>
<td>56 (39–65)</td>
</tr>
<tr>
<td>Higher value (n = 1921)</td>
<td>60 (44–70)</td>
</tr>
</tbody>
</table>

ROSC, return of spontaneous circulation; rSO2, regional cerebral oxygen saturation.

* Comparing patients with ROSC to those without ROSC upon arrival at the hospital.

3.2. Regional cerebral oxygen saturation upon arrival at the hospital

We were able to examine right-sided rSO2 in 1905 (99%) and left-sided rSO2 in 1899 (99%) patients. Table 2 shows the rSO2 levels of the patients upon arrival at the hospital by ROSC status. The median (IQR) rSO2 levels on the right and left sides were 15% (15–24%) and 15% (15–25%), respectively (P = 0.95), and the median (IQR) lower and higher rSO2 levels were 15% (15–20%) and 17% (15–28%), respectively. We found significantly higher rSO2 levels in patients with ROSC upon arrival at the hospital than in those without ROSC (P < 0.01).

The association between right- and left-sided rSO2 is depicted in Fig. 2. The Spearman’s correlation coefficients were 0.74, 0.94, and 0.66 among all patients, patients with ROSC, and patients without ROSC upon arrival at the hospital, respectively.

3.3. Distribution of regional cerebral oxygen saturation levels upon arrival at the hospital and 90-day neurological outcomes

rSO2 was <15% in 16/148 (11%) and 1256/1773 (71%) of patients with or without ROSC upon arrival at the hospital, respectively (Fig. 3a, Supplemental Table). Of the patients with or without ROSC upon arrival at the hospital, only 1/16 (6%) and 5/1773 (0.5%), respectively, had good 90-day neurological outcomes, respectively (Fig. 3b). The percentage of patients with a good 90-day neurological outcome increased significantly in proportion to the lower rSO2
levels measured upon arrival at the hospital, irrespective of their ROSC status (*P* < 0.01 for both) (Fig. 3b).

Supplementary material related to this article can be found, in the online version, at http://dx.doi.org/10.1016/j.resuscitation.2015.07.013

4. Discussion

Our results show that the characteristics of rSO2 monitoring (median rSO2 levels, the association between right- and left-sided rSO2, and the distribution of rSO2 levels) were different between OHCA patients with and without ROSC upon arrival at the hospital. On the other hand, the rate of 90-day good neurological outcomes increased in proportion to the patients’ rSO2 levels irrespective of their ROSC status upon arrival at the hospital (Fig. 3b), implying that rSO2 evaluation is effective for both monitoring the quality of resuscitation and neurological prognostication.

Compared to patients without ROSC upon arrival at the hospital, those with ROSC had significantly higher rSO2 levels, and their right- and left-sided rSO2 levels showed a statistically significant association. Because EMS staffs are not permitted to terminate CPR in the field in Japan, all patients without ROSC upon arrival at the hospital had undergone continuous standard CPR by EMS staff. rSO2 was <15% in 71% of patients without ROSC upon arrival at the hospital. Very few of these patients (0.5%) had good 90-day neurological outcomes. Thus, continuous standard CPR by EMS staff did not remarkably improve rSO2 levels in our study population. Moreover, the correlation of right- and left-sided rSO2 levels was lower in these patients. This might have been caused by (1) inadequate cerebral perfusion and oxidation following OHCA by standard CPR, (2) generation of signal noise originating from the NIRS system during CPR, or (3) cerebral hypoperfusion and hypoxia inducing severe brain damage specific to the post-cardiac arrest syndrome. Future studies employing continuous rSO2 monitoring prior to the patients’ arrival at the hospital are needed.

The percentage of patients with good 90-day good neurological outcomes increased significantly in proportion to their rSO2 levels irrespective of their ROSC status upon arrival at the hospital, implying that adequate cerebral perfusion and oxidation were vital to protect from brain damage after the OHCA. To our surprise however, rSO2 levels did not improve to levels >15% even with continuous standard CPR by EMS staff in 1256/1773 (71%) of patients without ROSC upon arrival at the hospital. Of these patients, 5/1773 (0.5%) had a good 90-day neurological outcome. Moreover, even when patients achieved ROSC upon arrival at the hospital, 16/148 (11%) exhibited the lowest possible rSO2 (15%) levels, and only 1/16 (6%) patients had good 90-day neurological outcomes. Low rSO2 levels combined with a poor neurological prognosis implies severe brain damage due to cerebral hypoperfusion and hypoxia.

Our data demonstrate that rSO2 evaluation might be effective for both the monitoring of the quality of resuscitation in patients without ROSC upon arrival at the hospital and neurological prognostication in all non-traumatic OHCA patients.

5. Limitations

This study has several limitations. Studies have shown that healthcare providers often have difficulty detecting a pulse; thus, our ROSC measure might have been unreliable. Second, as we reported previously, continuous rSO2 monitoring would be desirable prior to arrival at the hospital. However, the absence of NIRS devices in ambulances makes this impossible. Third, NIRS measurements of rSO2 levels only reflect cerebral perfusion in
the superficial layers of limited frontal lobe areas. Even though rSO₂ measured by NIRS has been shown to compare well to rSO₂ measured through jugular venous oxygen saturation in normal subjects, rSO₂ may not be a reliable marker of brain tissue oxygen partial pressure under critical cerebral conditions such as post cardiac arrest syndrome. Fourth, we could not blind the investigators to the patients’ rSO₂ values because rSO₂ monitoring requires real-time visual confirmation. As per a pre-specified protocol, all patients received the best available therapy, regardless of their rSO₂ levels. Therefore, we could not eliminate the possibility that low rSO₂ levels might have influenced the decision to terminate resuscitation. Fifth, as EMS providers in Japan are not permitted to terminate CPR, most OHCA patients who were treated by EMS personnel were transported to emergency departments; therefore, a very small proportion of patients with documented rhythms at the scene of cardiac arrest demonstrated ventricular tachycardia/fibrillation, and the majority had very poor 90-day neurological outcomes.

6. Conclusions

Our study shows that the rSO₂ monitoring characteristics and neurological prognoses differed in OHCA patients with and without ROSC upon arrival at the hospital. However, irrespective of ROSC attainment, the percentage of patients with good 90-day good neurological outcomes increased in proportion to their lower rSO₂ levels upon arrival at the hospital. In conclusion, our data indicate that rSO₂ evaluation might be effective for both, monitoring of resuscitation and neurological prognostication.

Conflict of interest statement

Dr. Nishiyama has conducted an investigator-sponsored study (Covidien, Japan) entitled “Prehospital rSO₂ Study” (“Pre-hospital Resuscitation for Sustaining Cerebral Oxidation: Observational Cohort Study”).

Acknowledgments

We are greatly indebted to all of the J-POP Registry investigators: T. Suzuki, N. Sato, Y. Nakayama, T. Kimura, and K. Koike (Kyoto University Graduate School of Medicine, Kyoto, Japan); Morooka, H. Rinka, and T. Ikehara (Osaka City General Hospital, Osaka, Japan); M. Suzuki, A. Shirishita-Takeshita, and S. Hori (Keio University School of Medicine, Tokyo, Japan); S. Beppu and I. Kaneko (National Hospital Organization Kyoto Medical Center, Kyoto, Japan); Y. Toyoda and M. Kitano (Saiseikai Yokohamashi Tobu Hospital, Yokohama, Japan); M. Machida and H. Ishikura (Fukuoka University Hospital, Fukuoka, Japan); T. Oomura, D. Kudo, and S. Kishimoto (Tohoku University Hospital, Sendai, Japan); K. Okuchi, M. Fujioka, and T. Seki (Nara Medical University Hospital, Kashihara, Japan); H. Himeno, M. Otsuka, H. Yano, K. Arakawa, M. Nitta, O. Akasaka, and S. Ryu (Fujisawa City Hospital, Fujisawa, Japan); T. Hatada and H. Imai (Mie University Hospital, Tsu, Japan); S. Nachi, H. Ushikoshi, and S. Ogura (Gifu University Hospital, Gifu, Japan); M. Mizobuchi, T. Kobayashi, K. Shibata, and S. Nakamura (Kyoto Katsura Hospital, Kyoto, Japan); H. Yasuda, H. Kamura, and A. Kataoka (Japanese Red Cross Musashino Hospital, Musashino, Japan); T. Mochizuki, Y. Nishi, K. Niwa, T. Watanabe, T. Inohara, T. Takabayashi, and S. Ishimatsu (St Luke’s International Hospital, Tokyo, Japan); J. Kotani and A. Hashimoto (Hyogo Medical University, Nishinomiya, Japan); S. Marukawa (Iseikai Hospital, Osaka, Japan); S. Shirai and J. Oomura (Kokura Memorial Hospital, Kitakyushu, Japan); M. Kikuchi, S. Nishino, and K. Ono (Dokkyo Medical University, Tochigi, Japan); S. Tanaka (Seirei Hamamatsu General Hospital, Hamamatsu, Japan).

This work was supported by JSPS KAKENHI (grant numbers 24390400 and 26462753). The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

InterAmerican drome: force uniform
New spontaneous
Association, force
Circulation Cardiovascular
cardiac International
citation Cummins
Nagao
Teasdale
Morrison
Genbrugge
Hayashida
a resuscitation
useful
cooling
scale.
of
of
JP,
K,
RO,
LJ,
T,
Morley
Lancet
C,
European
defibrillation
Consensus
for
dysfunction
in
with
out-of-hospital
cardiac arrest:
A
supervision
of
Arrest:
Heart Care
First
advisory
and
professionals
requested
for
a
demands
and
hours
in
the
role
of
the
Utstein
templates
for
resuscitation
registries: a statement for healthcare professionals from a task
force of the International Liaison Committee on Resuscitation. Circulation

Jacobs I, Nadikarni V, Bahr J, et al. Cardiac arrest and cardiopulmonary resuscitation
outcome reports: update and simplification of the Utstein templates for resuscitation
registries: a statement for healthcare professionals from a task force of the International Liaison Committee on
Resuscitation (American Heart Association, European Resuscitation Council, Australian
Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation
of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa).

Cummins RO, Chamberlain DA, Abramson NS, et al. Recommended guidelines for
uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style. A
statement for health professionals from a task force of the American Heart
Association, the European Resuscitation Council, the Heart and Stroke Foundation

rescuers and survival from out-of-hospital cardiac arrest. J Am Med Assoc
2010;304:1447–54.

Yao FS, Tseng CC, Ho CY, Levin SK, Illner P. Cerebral oxygen desaturation is
associated with early postoperative neuropsychological dysfunction in patients undergoing cardiac surgery. J Cardiothorac

Murken JM, Adams SJ, Novick RJ, et al. Monitoring brain oxygen saturation during
coronary bypass surgery: a randomized, prospective study. Anesth Analg

Mayr NP, Martin K, Hausleiter J, Tassani P. Measuring cerebral oxygenation helps

Parnia S. Cerebral oximetry – the holy grail of non-invasive cerebral perfusion
monitoring in cardiac arrest or just a false dawn? Resuscitation 2012;83:11–2.

The Ministry of Health LaW, Ministry of Education, Culture, Sports, Science and
Technology. Ethical guidelines for epidemiologic research; 2004.

Eberle B, Dick WF, Schneider T, Wisser G, Doetsch S, Tzanova I. Checking the
carotid pulse check: diagnostic accuracy of first responders in patients with and

Moule P. Checking the carotid pulse: diagnostic accuracy in students of

Ochoa FJ, Ramaille-Gomara E, Carpintero JM, Garcia A, Saralegui I. Competence

of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation

Hasegawa K, Tsugawa Y, Camargo Jr CA, Hiraide A, Brown DF. Regional variability
in survival outcomes of out-of-hospital cardiac arrest: the All-Japan Utstein