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Abstract

This paper proposes an identification method for Hammerstein systems using simultaneous perturbation stochastic
approximation (SPSA). Here, the structure of nonlinear subsystem is assumed to be unknown, while the structure
of linear subsystem, such as the system order, is assumed to be available. The main advantage of the SPSA-based
method is that it can be applied to identification of Hammerstein systems with less restrictive assumptions. In order
to clarify this point, piecewise affine functions with a large number of parameters are adopted to approximate the
unknown nonlinear subsystems. Furthermore, the linear subsystems are supposed to be described in continuous-time.
Though this class of systems closely reflects the actual systems, there are few methods to identify such models. Hence,
the SPSA-based method is utilized to identify the parameters in both linear and nonlinear subsystems simultaneously.
The effectiveness of the proposed method is evaluated through several numerical examples. The results demonstrate
that the proposed algorithm is useful to obtain accurate models, even for high-dimensional parameter identification.

Keywords: systems identification, stochastic approximation, continuous-time Hammerstein models.

1. Introduction

The modelling of real-world plants and processes,
which are nonlinear in nature, remains a challenging
problem. Both an expert and intelligent systems are
therefore required to model accurately such plants and
processes. One way to cope with this difficulty is to in-
troduce identification of block oriented models. These
models include a Hammerstein model (a static nonlinear
subsystem followed by a linear subsystem), a Wiener
model (a linear subsystem followed by a static nonlin-
ear subsystem), or a Hammerstein-Wiener model (a lin-
ear subsystem sandwiched by two static nonlinear sub-
systems or vice-versa). In particular, an intelligent sys-
tem, such as a system with a neural feed-forward con-
troller, is modeled as a Hammerstein model. These mod-
els have been adopted by many researchers partly be-
cause they closely reflect actual nonlinear systems with
relatively simple structures. As a result, these models
have been successfully used to describe many practical
plants, such as fuel cells (Li et al., 2008), valve actu-
ators (Wang & Zhang, 2014), wind turbines (van der
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Veen et al., 2013), spark ignition engine torques (Togun
et al., 2012), and stirred tank reactors (Shi et al., 2011).

Among various types of nonlinear system models, the
Hammerstein model is quite popular. In fact, the iden-
tification of Hammerstein systems has been widely re-
ported in the literature (Pawlak, 1991; Ding & Chen,
2005; Zhao, 2006; Ding et al., 2006; Bai & Li, 2004; Liu
& Bai, 2007; Greblicki, 2000; Ding et al., 2007b, 2011;
Hasiewicz & Mzyk, 2004; Bai, 2004). Over the past
two decades, various methods for identification of Ham-
merstein systems have been studied extensively. These
can be roughly classified into several categories, such
as the iterative method (Stoica, 1981; Narendra & Gall-
man, 1966; Rangan et al., 1995; Voros, 1997; Liu &
Bai, 2007), the over-parameterization method (Chang
& Luus, 1971; Hsia, 1976; Ding et al., 2007a), the blind
approach (Bai & Fu, 2002), the subspace method (Ver-
haegen & Westwick, 1996), the least squares method
(Ding & Chen, 2005; Goethals et al., 2005), the para-
metric instrumental variables method (Stoica & Soder-
strom, 1981; Laurain et al., 2009), the stochastic method
(Bilings & Fakhouri, 1978; Pawlak, 1991; Greblicki,
1996) and the non-parametric identification method
(Greblicki & Pawlak, 1987; Krzyak, 1993; Bai, 2003;
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Krzyak, 1996).
Recently, a decomposition-based Newton iterative

identification approach for a Hammerstein nonlinear
FIR system with ARMA noise was presented by (Ding
et al., 2014). Here, it was claimed that a fast con-
vergence rates with more accurate parameter estima-
tion can be achieved by using the Newton iterative
method. In (Wang et al., 2015), a hierarchical least
squares method has been proposed for the identifica-
tion of Hammerstein state space model. A similar ap-
proach is applied to Hammerstein nonlinear controlled
autoregressive models (Chen & Ding, 2015). Both re-
sults show that the hierarchical identification principle
may improve the computational efficiency by decom-
posing one nonlinear system into several subsystems
with smaller dimensions and fewer variables. In (Ma &
Liu, 2015), a nonlinear recursive instrumental variables
(RIV) identification method for Hammerstein ARMAX
system is adopted. The effectiveness of the RIV method
is shown in terms of identification accuracy and con-
vergence speed, especially under colored noise. Mean-
while, a blind approach with new over-sampling strat-
egy was adopted in (Yu et al., 2014) to produce a con-
sistent parameter estimation in the presence of noise.

In spite of such abundant literature, several restric-
tions are inevitable in their studies from the theoretical
view-point.

(i) Most of the identification methods are restricted to
the models in discrete-time, while it is natural to
express a real system in a continuous-time domain.

(ii) Many approaches assume that the static nonlinear
system is given by a linear combination of several
basis functions.

(iii) In the over-parameterization identification method,
the identification model contains the products of
nonlinear and linear parameters, causing redundant
parameter identification and a large computational
load.

Though it looks that that we can handle general class of
nonlinear subsystems by adopting so many basis func-
tions (such as higher order polynomials and piecewise
affine functions), this is not tractable in reality in the ex-
isting identification frame work.

On the other hand, there are different types of identi-
fication methods which utilize evolutional computation,
such as the cuckoo search algorithm (Gotmare et al.,
2015), the stochastic gradient (Mao & Ding, 2015; Chen
& Wang, 2015), and the PSO (particle swarm optimiza-
tion) (Nanda et al., 2010; Ko, 2011; Wang et al., 2014;

Jingzhuo et al., 2014). These methods are quite flexible
in nature, and do not suffer from (i) and (iii) mentioned
above. In particular, the PSO is known to be effective
in various systems control supplication (Maruta et al.,
2009, 2013). However, they have a serious draw back.

(iv) In swarm based optimization (including PSO), the
computation times per iteration are proportional to
the number of swarms. As a result, these methods
require heavy computation time in the identifica-
tion process, especially for static nonlinear systems
with a large number of basis functions.

Hence, it is not tractable to handle static nonlinear sub-
systems consisting of large number of basis. Conse-
quently, these evolutional computation based methods
cannot avoid (ii) as well.

To the best of the authors’ knowledge, the simul-
taneous perturbation stochastic approximation (SPSA)
method (Spall, 1992) could be only candidate to pro-
vide us with a promising tool for such system identifi-
cation problems. This is because the SPSA method is
well known to be effective for a variety of optimization
problems, even for high-dimensional parameter tuning
(Ahmad et al., 2014b). In comparison to the exist-
ing results, the SPSA method does not suffer from the
afore-mentioned theoretical restrictions (i)-(iv). It may
be expected to identify both linear and nonlinear sub-
systems simultaneously, even for large number of basis
functions with less computational load. Meanwhile, one
major drawback of SPSA may be to guarantee the local
convergence only from the theoretical points of view.

Based on the above observations, this paper thus
presents an identification method of Hammerstein sys-
tems in continuous-time using simultaneous perturba-
tion stochastic approximation. We assume that the
structure (i.e., the system order) of the linear subsystem
is known in advance, while the structure of the nonlinear
subsystem remains unknown. Here, a piecewise affine
function is then used to approximate the unknown non-
linear function in the Hammerstein model. Next, based
on the input and output data, the SPSA-based method
is used to identify the coefficients of the linear time-in-
variant (LTI) model and the piecewise affine function
simultaneously. In order to clarify the benefit of the
SPSA-based method, a large number of parameters in
the piecewise affine function are considered here. So
far, there have been few papers discussing the identi-
fication of such Hammerstein models. Therefore, it is
worth evaluating the effectiveness of the SPSA method.

The remainder of this paper is organized as fol-
lows. Section 2 formulates the identification problem
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for Hammerstein models. In Section 3, the identifica-
tion method using simultaneous perturbation stochastic
approximation-based algorithm is presented. The non-
linear function identification based on piecewise affine
function is also described in the same section. The
method is validated through several numerical exam-
ples in Section 4. Finally, some concluding remarks are
given in Section 5. This paper is based on our prelimi-
nary version (Ahmad et al., 2014a), published in a con-
ference proceedings, and contains the full explanations
and experiments omitted there.

Notation: The symbols R and R+ represent the set
of real numbers and the set of positive real numbers,
respectively. For the vector θ, we use ‖ θ ‖2 to express
the standard Euclidean norm. For δ ∈ R+, satδ : Rn →

Rn denotes the saturation function whose i-th element
given as follows:

The i-th element of satδ(x) =


δ if δ < xi,
xi if − δ ≤ xi ≤ δ,
−δ if xi < −δ

where xi ∈ R is the i-th element of x ∈ Rn.

2. Problem Formulation

Consider the continuous-time single-input-single-
output (SISO) Hammerstein model in Fig. 1, composed
of a nonlinear function f and a linear dynamical system
G described by the differential operator p (:= d

dt ):

G(p) =
B(p)
A(p)

=
bm pm + bm−1 pm−1 + · · · + b0

pn + an−1 pn−1 + · · · + a0
. (1)

Here, u(t) is the input, u(t) is the unmeasurable output of
the nonlinear function, namely u(t) = f (u(t)), ỹ(t) is the
measurement of y(t) but is corrupted by the noise v(t).
The input-output relationship is described as follows:

ỹ(t) = G(p) f (u(t)) + v(t). (2)

In this paper, we address an identification problem of
the Hammerstein model. Here, we assume that:

• m and n are known.

• ai (i = 0, 1, ..., n − 1) and bi (i = 0, 1, ...,m) are
positive real numbers.

• The function f is unknown, but f (u(t)) is a one-to-
one map to u(t). Moreover, f (0) = 0.

• G(p) is stable and minimum phase.

Figure 1: The continuous-time SISO Hammerstein model

• bm = 1 so that f (u(t)) and G(p) can be determined
uniquely.

Remark 2.1. Note that any pair of β f (u(t)) and G(p)/β
for β , 0 would produce the identical input-output
measurements, which make the parameterization of the
Hammerstein model in Fig. 1 non-unique (Bai & Fu,
2002). For this reason, we normalize G(p) by assuming
bm = 1.

In order to evaluate the identified model, we introduce
the objective function

J(Ĝ, f̂ ) =

N∑
κ=0

(ỹ(κts) − ŷ(κts))2 (3)

where ts is the sampling time for the data set (u(t), ỹ(t))
(t = 0, ts, 2ts, ...,Nts), Ĝ and f̂ are the identified models
of G and f , and ŷ(t) = Ĝ(p) f̂ (u(t)).

Then, the identification problem can be described as
follows.

Problem 2.1. For the Hammerstein model in Fig. 1,
suppose that the input-output data (u(t), ỹ(t)) (t =

0, ts, 2ts, ...,Nts) are given. Then, find Ĝ and f̂ which
minimizes J(Ĝ, f̂ ). �

3. Identification Method Using Simultaneous Per-
turbation Stochastic Approximation

This section proposes a method to solve Problem
2.1. First, the standard SPSA algorithm (Spall, 1992)
is briefly explained. An identification technique of the
nonlinear function, based on piecewise affine function,
is then described. Finally, the identification method is
presented based on the SPSA-based algorithm.

3.1. Review of Simultaneous Perturbation Stochastic
Approximation

Consider the optimization problem

min
x∈Rn

h(x) (4)
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where h : Rn → R is the objective function and x ∈ Rn

denotes the design variable.
The SPSA algorithm iteratively updates the design

variable x to search a local optimal solution x∗ ∈ Rn

of (4). The update law is given by

x(k + 1) = x(k) − a(k)g(x(k),4(k)) (5)

for k = 0, 1, ..., where a(k) ∈ R is the gain, 4(k) ∈ Rn

is the perturbation vector, which is randomly generated,
and g(x(k),4(k)) is the update vector given by

g(x(k),4(k))=



h(x(k)+c(k)4(k))−h(x(k)−c(k)4(k))
2c(k)41(k)

h(x(k)+c(k)4(k))−h(x(k)−c(k)4(k))
2c(k)42(k)

...

h(x(k)+c(k)4(k))−h(x(k)−c(k)4(k))
2c(k)4n(k)


. (6)

In (6), c(k) ∈ R is another gain and 4i(k) ∈ R is the i-th
elements of 4(k) ∈ Rn.

The idea of this algorithm is that the expectation of
g(x(k),4(k)) is nearly equal to the gradient of the objec-
tive function h, i.e., ∂h

∂x (x(k)), and thus (5) corresponds
to a kind of stochastic steepest descent. The essential
feature is that the gradient approximation is given by the
only two measurements of the objective function, which
are independent of the dimension of the design variable.
Hence it does not require any explicit form of the objec-
tive function h, and can be a promising tool for solving
large-scale optimization problems. Moreover, the mea-
surement of the objective function h could include the
noise term. A convergence condition of this algorithm
(even if the measurement data is contaminated by noise)
and a guidance to choose a(k), c(k) and 4(k) are reported
in (Spall, 1992).

3.2. Piecewise Affine Approximation of Nonlinear
Functions

Since the nonlinear function f̂ has to be parameter-
ized in the identification process, we adopt a piecewise
affine function to approximate the unknown nonlinear
function f .

The piecewise affine function consists of a number of
line segments that are connected to each other as shown
in Fig. 2 and can be written as

f̂ (u) =



η0 + M1(u − w0) if w0 ≤ u < w1,
η1 + M2(u − w1) if w1 ≤ u < w2,

...
η`−1 +

M`(u − w`−1) if w`−1 ≤ u < w`,

(7)

Figure 2: Piecewise affine approximation

where Mi = (ηi − ηi−1)/(wi − wi−1) (i = 1, 2, ..., `) are
the segment slopes, wi (i = 0, 1, ..., `) ∈ R are the given
input points satisfying w0 < w1 < · · · < w` and con-
necting the line segments, and ηi (i = 0, 1, ..., `) ∈ R are
the output points corresponding to each input point. For
simplicity of the notation, let w := (w0,w1, ...,w`)> ∈
R`+1. Furthermore, since f (u) is a one-to-one map to u
and f (0) = 0 by assumption, it is reasonable to consider

ηi =


η̃i if wi > 0,
0 if wi = 0,
−η̃i if wi < 0,

(8)

for i = 0, 1, ..., `, where η̃i ∈ R+. By choosing ` large,
the accuracy of the approximation increases. However,
such choice results in a high-dimensional parameter
identification problem, which is difficult to solve in
practice.

3.3. Identification Method

This section presents how to apply the SPSA algo-
rithm in Section 3.1 for the identification problem.

By using the piecewise affine approximation of f̂ ,
Problem 2.1 is reduced to the optimization problem with
the objective function

h(θ) =

N∑
κ=0

(ỹ(κts) − ŷ(κts))2 (9)
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for the design variable

θ =



b̂0

b̂1
...

b̂m−1
â0
â1
...

ân−1
η̃0
...
η̃`



∈ Rρ (10)

where ρ = m + n + ` + 1. Solving the optimization
problem in (9) by the SPSA algorithm in (5), we obtain
a solution to Problem 2.1. On the other hand, in order
to accelerate the design variable searching, we employ
the logarithmic scale to the design variable θ by setting
θi = 10xi (i = 1, 2, ..., ρ) with the objective function
h([10x1 10x2 · · · 10xρ ]>). Then, our design procedure
is summarized as follows:

Step 1: Determine the number kmax of the maximum
iterations of the SPSA algorithm in (5). Determine the
number ` and the location wi (i = 0, 1, ..., `). Let xi =

log θi (i = 1, 2, ..., ρ) and select the initial value x(0).

Step 2: Execute the SPSA algorithm in Section 3.1 for
the objective function h in (9).

Step 3: After kmax iterations of the SPSA algorithm, we
obtain x∗ := x(kmax). Output θ∗ := [10x∗1 10x∗2 · · · 10x∗ρ ]>

is a solution to Problem 2.1.

In Step 2, it is required to compute the value of h(θ)
for a fixed θ. This is reduced to computing ŷ(κts) and
it is performed as follows. First, assume that u(t) is a
continuous-time signal given by the zero-order hold for
u(t) (t = 0, ts, 2ts, ...,Nts). Then, we can calculate

ŷ(t) =
pm + b̂m−1 pm−1 + · · · + b̂0

pn + ân−1 pn−1 + · · · + â0
f̂ (u(t)) (11)

in the continuous-time environment. Then, ŷ(t) is sam-
pled to ŷ(κts) at a constant sampling time ts for κ =

0, 1, ...,N.

Remark 3.1. The standard SPSA algorithm in (5) does
not always give a stable solution during the optimization
process. This is due to a possibility that the updated
design variables grow with k and yield an undesirable
solution. In order to avoid this problem, we adopt a

modified SPSA algorithm, which has been proposed in
(Baba et al., 2013). There, a saturation function satδ(·)
has been introduced in (5). That is,

x(k + 1) = x(k) − satδ(a(k)g(x(k),4(k))). (12)

4. Numerical Examples

In this section, the effectiveness of the proposed iden-
tification method is demonstrated with several numeri-
cal examples.

4.1. Example 1
Consider the system:

G(p) =
B(p)
A(p)

, (13)

A(p) = p6 + 10.0000p5 + 54.7700p4 + 156.8000p3

+87.0843p2 + 25.2810p + 4.0197, B(p) = p3,

f (u(t)) = 125(u(t) + 0.5u2(t) + 0.25u3(t)). (14)

In this example, a Pseudo Random Binary Sequence
(PRBS) signal with varying amplitude is considered as
the input u(t), while v(t) is a white noise with zero mean
and variance σ2

v = 0.01. Here, the amplitude of PRBS
signal is varied in a range of [−1, 1]. The output data
ỹ(t) is sampled at ts = 0.001 over N = 24000.

Since the amplitude of PRBS signal is bounded
in the range of [−1, 1], we can divide the input
points wi of the piecewise affine function equally
in the range of [−1, 1] with ` = 10. Then, the
locations of the input points are given by w :=
(−1,−0.8,−0.6,−0.4,−0.2, 0.01, 0.2, 0.4, 0.6, 0.8, 1)> ∈
R11. The design variables θ ∈ R17 and its corresponding
linear and nonlinear coefficients are presented in Table
1. Next, we use the modified SPSA algorithm in (12)
and set the parameters of the SPSA-based algorithm
a(k) = 15/(k + 11)0.9, c(k) = 0.01/(k + 1)1/6, δ = 0.01
and kmax = 5000. The initial values x(0) are tabulated
in Table 1. In order to observe the randomization effect,
we perform 25 independent trials.

Table 2 tabulates the best identified parameter values
from the 25 trials and its parameter identification error
ξ. In this table, θ ∈ Rρ is a vector, whose elements
consists of true identification parameters, and ξ is given
by

ξ =

∣∣∣∣∣∣
∣∣∣∣∣∣
θ1 − θ1

θ1
, · · · ,

θρ − θρ

θρ

> ∣∣∣∣∣∣
∣∣∣∣∣∣
2

(15)

where θi is the i-th element of the vector θ. It shows
that the resultant identified parameters are close to the
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Table 1: Identification parameters of Example 1

θ Coefficients x(0) θ corresponding to x(0)
θ1 â0 2.0000 100.0000
θ2 â1 2.0000 100.0000
θ3 â2 2.0000 100.0000
θ4 â3 2.0000 100.0000
θ5 â4 2.0000 100.0000
θ6 â5 2.0000 100.0000
θ7 η̃0 2.0000 100.0000
θ8 η̃1 1.9031 80.0000
θ9 η̃2 1.7782 60.0000
θ10 η̃3 1.6021 40.0000
θ11 η̃4 1.3010 20.0000
θ12 η̃5 -2.0000 0.0100
θ13 η̃6 1.3010 20.0000
θ14 η̃7 1.6021 40.0000
θ15 η̃8 1.7782 60.0000
θ16 η̃9 1.9031 80.0000
θ17 η̃10 2.0000 100.0000

true identification parameters and parameter identifica-
tion error is becoming smaller as k increases. Mean-
while, in order to see the results more closely, the graph
of the nonlinear function f and the bode diagram of lin-
ear system G are shown in Figs. 3 and 4, respectively. In
both Figs. 3 and 4, the thin gray-dash lines represent the
identified responses from the 25 trials, while the thick
solid-black line represents the true response. It shows
that the SPSA-based method can, with high probability,
accurately identify both linear and nonlinear subsystems
in the Hammerstein model.

Furthermore, the statistical analysis of the objective
function and the parameter identification error with dif-
ferent noise variances, which are 0.01, 0.25, and 1.0,
are tabulated in Table 3. In particular, for each level of
white noise variance, their mean, best, worst and stan-
dard deviation values are observed from the 25 trials.
Note that a high noise level results in a higher value of
the objective function, which can be clearly seen from
the values of mean, best, worst and standard deviation.
However, in terms of the parameter identification error,
the increment of the mean, best, worst and standard de-
viation values are relatively small. Hence, it shows that
the SPSA-based algorithm still can produce smaller pa-
rameter identification error even for high noise level.

4.2. Example 2

In Example 2, consider a fourth order linear subsys-
tem with complex poles and a nonlinear subsystem with

Figure 3: Identified nonlinear functions f̂ (u) with the true nonlinear
function f (u) in Example 1

Figure 4: Identified linear systems Ĝ(p) with the true linear system
G(p) in Example 1

tangent hyperbolic function given by

G(p) =
B(p)
A(p)

, (16)

A(p) = p4 + 5.0000p3 + 408.0000p2

+416.0000p + 1600.0000, B(p) = p + 0.2500,

f (u(t)) = 250 tanh(1.5u(t)). (17)

Here, we consider the same u(t), v(t), ts and N as in
Example 1.

Moreover, w for the piecewise affine function is set
to be similar as in Example 1. The design variables
θ ∈ R16 and its corresponding linear and nonlinear co-
efficients are tabulated in Table 4. Next, we utilize the
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Table 2: The best identified parameters of Example 1

k 100 500 1000 1500 2000 3000 4000 5000 θ
θ1 61.6595 11.0398 6.3880 5.1552 4.6136 4.5745 4.4521 4.4662 4.0197
θ2 64.5654 46.6753 46.1803 40.5091 38.0603 34.3867 32.3358 30.4906 25.2810
θ3 147.9108 191.6781 123.9439 107.0407 103.9615 96.9761 93.9654 91.3663 87.0843
θ4 162.1810 182.4933 162.2306 156.4483 158.4630 156.3911 155.0739 155.9906 156.8000
θ5 117.4898 66.7712 56.5164 55.3787 55.6544 55.0488 54.7945 54.4622 54.7700
θ6 85.1138 11.4642 10.1681 9.7844 9.9173 9.8485 9.7886 9.8931 10.0000
θ7 85.1138 140.1687 103.8806 98.9751 97.4951 95.0511 94.0789 94.3057 93.7500
θ8 98.4215 60.4572 56.4219 59.7494 61.4385 66.7463 68.0568 70.8570 76.0000
θ9 61.3976 45.9962 42.8683 45.3468 49.4876 49.7910 51.1490 52.6335 59.2500
θ10 35.6500 53.2509 42.3143 41.5301 41.6026 40.5197 40.8274 41.1615 42.0000
θ11 21.4304 30.6678 42.9538 36.8894 31.3125 28.0662 27.0867 26.0172 22.7500
θ12 0.0170 0.0204 0.0145 0.0140 0.0138 0.0133 0.0143 0.0147 1.2563
θ13 16.2566 23.8840 18.1743 20.8733 21.0038 22.6007 23.7102 24.3970 27.7500
θ14 34.0455 23.4115 32.7060 42.3298 48.1361 53.5851 55.7866 56.6143 62.0000
θ15 58.6342 69.5208 91.8034 94.9460 100.7211 100.7297 101.6655 100.9917 104.2500
θ16 78.1790 180.0901 166.5565 160.8019 164.4206 162.3344 159.2057 158.6079 156.0000
θ17 107.1519 280.8116 231.9416 223.7404 225.7308 219.6245 217.6851 217.7133 218.7500
ξ 16.7809 2.7240 1.8658 1.4611 1.2704 1.1372 1.0830 1.0462 -

Table 3: The statistical analysis of the objective function and parame-
ter identification error with different noise variances in Example 1

Noise variance, σ2
v 0.01 0.25 1.0

Objective Mean 0.1601 3.9916 15.9640
function, Best 0.1590 3.9666 15.8638
J(Ĝ, f̂ ) Worst 0.1608 4.0071 16.0264

Std. 0.0006 0.0114 0.0445
Parameter Mean 1.2511 1.3368 1.5126
identification Best 1.0462 1.0843 1.1640
error, ξ Worst 1.5190 1.8672 1.8715

Std. 0.1507 0.2009 0.1976

modified SPSA algorithm in (12) and set the parameters
of the SPSA-based algorithm a(k) = 800/(k + 11)0.9,
c(k) = 0.01/(k + 1)1/6, δ = 0.01 and kmax = 5000. The
initial values x(0) are tabulated in Table 4. Then, 25 in-
dependent trials are performed to observe the random-
ization effect.

The best identified parameter values and its parameter
identification error ξ are tabulated in Table 5. It shows
that the SPSA-based method provides a close approxi-
mation to the true parameters, even if the linear subsys-
tem has both slow and fast frequency modes. This is
clearly seen from the graph of the nonlinear function f
and the bode diagram of linear system G in Figs. 5 and
6, respectively. Thus, we can confirm the superiority of
the SPSA-based algorithm in identifying the Hammer-
stein model, particularly for high-dimensional parame-

Table 4: Identification parameters of Example 2

θ Coefficients x(0) θ corresponding to x(0)

θ1 b̂0 1.0000 10.0000
θ2 â0 1.0000 10.0000
θ3 â1 2.0000 100.0000
θ4 â2 2.0000 100.0000
θ5 â3 2.0000 100.0000
θ6 η̃0 2.3010 200.0000
θ7 η̃1 2.2041 160.0000
θ8 η̃2 2.0792 120.0000
θ9 η̃3 1.9031 80.0000
θ10 η̃4 1.6021 40.0000
θ11 η̃5 -1.6990 0.0200
θ12 η̃6 1.6021 40.0000
θ13 η̃7 1.9031 80.0000
θ14 η̃8 2.0792 120.0000
θ15 η̃9 2.2041 160.0000
θ16 η̃10 2.3010 200.0000

ter identifications.

Moreover, Table 6 shows a similar pattern of statisti-
cal data as that of Table 3 in the previous example, in
terms of the mean, best, worst and standard deviation
values of the objective function and the parameter iden-
tification error, respectively, with different noise vari-
ances. This illustrates that the SPSA-based algorithm
may effectively handle a high noise level by producing
relatively smaller parameter identification error.
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Table 5: The best identified parameters of Example 2

k 100 500 1000 2000 3000 4000 5000 θ
θ1 6.1660 0.8844 0.5472 0.2605 0.1064 0.1328 0.2442 0.2500
θ2 107.1519 336.4346 1753.7017 1462.7104 1567.0862 1471.5679 1669.2042 1600.0000
θ3 70.7946 230.7463 494.7244 428.9361 395.1450 494.9514 417.6439 416.0000
θ4 154.8817 291.5834 421.2388 414.8130 407.0802 408.5309 404.4467 408.0000
θ5 12.3027 5.5955 4.5178 4.3391 5.3482 5.5801 5.2192 5.0000
θ6 123.3190 81.1749 199.6981 226.4612 224.1082 250.6631 239.6720 226.2871
θ7 130.0529 79.2151 176.3993 178.6007 212.6533 219.5686 229.4416 208.4137
θ8 84.9535 61.3159 135.0453 150.9329 184.8741 230.2703 185.4966 179.0745
θ9 81.8634 59.7296 125.3047 141.2728 124.8094 158.8265 134.5685 134.2624
θ10 29.6524 35.7899 47.4979 60.8397 91.3870 101.7111 80.0356 72.8282
θ11 0.0155 0.0217 0.0325 0.0401 0.0780 0.0554 0.0266 3.7497
θ12 42.8608 54.5442 55.1930 62.5358 67.8905 43.4431 76.3260 72.8282
θ13 118.3287 92.5177 133.3952 154.7946 117.0218 105.3911 119.4875 134.2624
θ14 117.2685 92.0525 153.4238 183.2179 189.8304 183.1949 163.2413 179.0745
θ15 179.5230 109.8968 232.6424 226.4605 191.6792 169.6387 213.6546 208.4137
θ16 214.3039 131.0503 234.2946 255.4309 212.8191 236.1105 231.3931 226.2871
ξ 24.3699 3.3692 1.6478 1.0799 1.1861 1.3282 1.0205 -

Figure 5: Identified nonlinear functions f̂ (u) with the true nonlinear
function f (u) in Example 2

Table 6: The statistical analysis of the objective function and parame-
ter identification error with different noise variances in Example 2

Noise variance, σ2
v 0.01 0.25 1.0

Objective Mean 0.1601 3.9949 15.9749
function, Best 0.1594 3.9749 15.8868
J(Ĝ, f̂ ) Worst 0.1607 4.0083 16.0216

Std. 0.0003 0.0093 0.0377
Parameter Mean 1.1579 1.4794 1.8459
identification Best 1.0205 1.0583 1.4237
error, ξ Worst 1.3569 1.7621 2.3504

Std. 0.0984 0.1698 0.2285

Figure 6: Identified linear systems Ĝ(p) with the true linear system
G(p) in Example 2

5. Conclusion

In this paper, an identification method of continuous-
time Hammerstein models has been presented, which
is based on Simultaneous Perturbation Stochastic Ap-
proximation (SPSA). The simulation results demon-
strate that the proposed method has a good potential to
identify continuous-time Hammerstein models, even for
high-dimensional parameter identifications. In particu-
lar, the method is shown to be effective in approximating
both linear and nonlinear subsystems in the Hammer-
stein models from the view-points of quadratic output
prediction error and parameter identification error. Al-
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though the results of this work are based only on Ham-
merstein models, the basic idea can be extended to iden-
tify other types of nonlinear models including Wiener
ones shown in Fig. 7, where q is another static nonlin-
ear function.

We believe that our proposed identification scheme
could be the only practical solution at the moment to
solve this identification problem as compared to the
other existing methods, such as cuckoo search (Gotmare
et al., 2015) and particle swarm optimization (Wang
et al., 2014; Jingzhuo et al., 2014). Because the SPSA
method only uses two measurements of performance in-
dex per iteration, while for cuckoo search and particle
swarm optimization methods, the number of measure-
ments per iteration depends on the number of agents,
which tends to be very large in order to deal with high-
dimensional identification problem. Hence, their com-
putation burden would be too heavy to use.

In the future, it is worth improving the SPSA
algorithm, such that it converges much faster when the
number identification parameters become larger. Fur-
thermore, it is interesting to validate the applicability
of the SPSA-based method in identifying Hammerstein-
Wiener models as shown in Fig. 8 and to do the
same for multi-input-multi-output (MIMO) nonlinear
systems under open-loop, closed-loop or time-delay
conditions.
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Figure 7: The continuous-time SISO Wiener model

Figure 8: The continuous-time SISO Hammerstein-Wiener model
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