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ABSTRACT

Forced shallow-water turbulence on a rotating sphere with Newtonian cooling is examined with the aim of

elucidating the mechanism of the robust formation of equatorial superrotation reported by R. K. Scott and

L. M. Polvani. It is shown that the Newtonian cooling term distorts the structure of the Hough modes. This

distortion can be visualized as either the westward or eastward tilting of the equiphase line with increasing

absolute value of latitude; the structural change of the Hough modes leads to the acceleration of the zonal-

mean flow. A statistical analysis based on a weak-nonlinear theory predicts that stochastically excited Hough

modes generate a prograde equatorial jet, the profile of which is quantitatively consistent with that of the

ensemble-averaged zonal-mean flow obtained in nonlinear time evolutions. The predicted prograde equa-

torial jet originates mainly from the acceleration produced by Rossby modes, the equiphase line of which is

tilted westward by the Newtonian cooling term. This tilt of the equiphase line of the Hough modes is clarified

and a comparison between the acceleration mechanism presented in the present paper and that in other

numerical studies in which equatorial superrotation emerges is made.

1. Introduction

The zonally banded patterns and latitudinally alter-

nating zonal jets are striking features of the atmospheres

of Jupiter and Saturn. To explain the origins of these

zonal structures, one series of studies following Busse

(1983) considers convective motions extending over a

deep planetary atmosphere, while another series follow-

ing Williams (1978) considers quasi-two-dimensional

motions within a shallow surface layer of a planetary

atmosphere.

In the latter ‘‘shallow layer’’ context, the effect of the

differential rotation due to the spherical geometry of the

planets plays a crucial role. This effect (the so-called

b effect) induces a spatial anisotropy in turbulent flows,

resulting in the predominance of latitudinally alternating

zonal jets. This zonation process was first revealed by

Rhines (1975) in freely decaying turbulence on a b plane,

and subsequently Vallis and Maltrud (1993) examined

the process in detail, considering a forced-dissipative case

and showing that the anisotropic energy cascade in two-

dimensional wavenumber space leads to the zonation.

The numerical time evolution of a two-dimensional tur-

bulent flowon a rotating spherewas first performed in the

aforementioned pioneering work by Williams (1978),

revealing the spontaneous emergence of strong zonal jets.

Note that the numerical model used there was not a full

spherical model in that the numerical model imposed

symmetry on the flow field. Full spherical numerical ex-

periments were conducted by Yoden and Yamada (1993)

and Nozawa and Yoden (1997), in which latitudinally

alternating zonal jets were found to emerge from freely

evolving turbulence and forced-dissipative turbulence,

respectively.

The studies mentioned in the previous paragraph

treated two-dimensional nondivergent flows. By in-

cluding the effect of the horizontal divergence of a flow,

which can be represented as a finite Rossby radius of

deformation dependent on the latitude in the quasi-

geostrophic context, numerical time evolutions of tur-

bulence can reproduce other features observed in

Jupiter and Saturn. These include vortical motion pre-

dominating in the polar region (Okuno and Masuda

2003) and zonal jets having larger amplitudes near the
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equator (Theiss 2004). Dritschel and McIntyre (2008)

provided a comprehensive review of previous studies on

the zonation process in the quasigeostrophic context and

proposed a theory for predicting jet-to-jet spacing based

on the potential vorticity staircase paradigm.

The quasigeostrophic approximation, however, is not

applicable near the equator. Hence, shallow-water equa-

tions on a rotating sphere are more suitable for dealing

with the effect of horizontal divergence. Cho and Polvani

(1996) conducted numerical experiments on freely de-

caying shallow-water turbulence on a rotating sphere and

showed the predominance of retrograde equatorial jets as

well as latitudinally alternating zonal jets at midlatitudes.

Hayashi et al. (2007) explored the parameter (the Rossby

and Froude numbers) dependence of the flow-pattern

formation in detail and showed that the momentum

transport by the Rossby waves is the cause of the retro-

grade equatorial jets.

Retrograde equatorial jets in decaying shallow-water

turbulence are rather robust features in rotating spheres,

but these do not correspond to the strong prograde

equatorial jets (i.e., equatorial superrotation) observed

in the atmospheres of Jupiter and Saturn. Kitamura and

Ishioka (2007) conducted a large number of ensemble

experiments and showed that if the Froude number is

relatively large and the Rossby number is not too small,

there is a certain probability that a prograde equatorial

jet will emerge even from decaying shallow-water tur-

bulence depending on the initial random field. This

probability is, however, much less than 50% and it is not

straightforward to relate this prograde equatorial jet to

the equatorial superrotation of Jupiter and Saturn. Even

with a small-scale random forcing that mimics small

convections, the frequency of emergence of a prograde

equatorial jet in ensemble numerical experiments is at

most 50% if Rayleigh friction or hypodiffusion is used for

large-scale dissipation. Moreover, this value decreases

when the model parameters are chosen corresponding to

the Jovian atmosphere (Scott and Polvani 2007).

A breakthrough to overcome the robustness of the

retrograde equatorial jet (not corresponding to equa-

torial superrotation of Jupiter and Saturn) in shallow-

water turbulence on a rotating sphere was achieved by

changing the dissipation process. Scott and Polvani (2008)

adopted Newtonian cooling as a more relevant large-

scale dissipation process for Jupiter and Saturn and ob-

tained robust strong superrotation from forced-dissipative

shallow-water turbulence. They suggested that the equa-

torial super-/subrotation dependence on the dissipation

process stems from the fact that the zonal-mean flow ac-

celeration induced by equatorial waves also depends on the

dissipation process, as revealed by Andrews and McIntyre

(1976) and more recently examined by Warneford and

Dellar (2014, manuscript submitted to J. Fluid Mech.).

They found that the zonal-mean flow acceleration in-

duced by equatorial Rossby waves is prograde at the

equator if the waves are dissipated byNewtonian cooling,

whereas the acceleration is retrograde if the waves are

dissipated by Rayleigh friction. They concluded that the

dependence of the zonal-mean flow acceleration on the

dissipation process is the cause of the predominance of

the equatorial superrotation (subrotation) in the New-

tonian cooling (Rayleigh friction) experiments conducted

by Scott and Polvani (2008). However, since the zonal-

mean flow acceleration due to each equatorial Rossby

wave under Newtonian cooling/Rayleigh friction has its

own latitudinal profile and no quantitative comparison

has been made between the acceleration produced by

linear waves and the growth of equatorial zonal jets in

nonlinear numerical experiments, it still remains unclear

to what degree the acceleration caused by equatorial

Rossby waves contributes to the robust formation of the

equatorial superrotation under Newtonian cooling.

The purpose of the present study is to show quantita-

tively that the zonal-mean flow acceleration due to wave

modes distorted by Newtonian cooling triggers the for-

mation of the robust equatorial superrotation reported by

Scott and Polvani (2008). The wave modes on which our

analysis is based are Hough modes, which are the eigen-

modes of the linearized shallow-water equations on

a sphere (Longuet-Higgins 1968) rather than the eigen-

modes of the linearized shallow-water equations on the

equatorial b plane (Matsuno 1966), as used in Warneford

andDellar (2014, manuscript submitted to J. FluidMech.).

After analyzing how each Hough mode distorted by

Newtonian cooling causes zonal-mean flow accelera-

tion, we examine whether randomly excited Hough

modes can generate a prograde equatorial jet in the

early stages of the time evolution of forced shallow-

water turbulence on a rotating sphere. To statistically

evaluate the net acceleration of zonal-mean flow pro-

duced by the randomly excited Hough modes, we par-

tially follow the quasi-linear approach used by Srinivasan

and Young (2012).

The remainder of the present paper is organized as

follows. In section 2, we describe ensemble experiments

of forced shallow-water turbulence with Newtonian

cooling and examine the robustness of the formation of

the equatorial superrotation. In section 3 we use eigen-

value analysis of the linearized shallow-water equations

with Newtonian cooling to show how the Hough modes

are distorted. In section 4, we show that these distorted

Hough modes induce second-order zonal-mean flow ac-

celeration and statistically evaluate the net acceleration

produced by the randomly excited Hough modes. A

summary and discussion are presented in section 5.
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2. Ensemble experiments

a. Model description

The system under consideration is described by shallow-

water equations on a sphere of radius a* rotating at an

angular frequency V*. Here, the asterisk subscript indi-

cates dimensional variables; variables without this sub-

script are nondimensionalized. Using a* and 2p/V* as

the length and time scales, respectively, the shallow-

water equations can be nondimensionalized as follows:
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where t is the time; l is the longitude; m 5 sinu for

latitude u; z is the vorticity;D is the divergence; h is the

geopotential anomaly from the global-mean value F;

(U, V) 5 (u, y) cosu for eastward and northward ve-

locity components u and y, respectively; F and d(z,D,h)

represent the forcing and dissipation terms, re-

spectively; and =2 is the horizontal Laplacian, which is

defined as
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Since the Rossby deformation radius at the poles

nondimensionalized by a* is defined as
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we can write this as F5 16p2L2
D and use LD as an ex-

perimental parameter.

As for the forcing/dissipation terms imposed on the

right-hand side of (1)–(3), we adopt the same type of

forcing/dissipation as used by Scott and Polvani (2007,

2008). The forcing F is a small-scale white-in-time ran-

dom process imposed in a narrow spectral band, which is

written as
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Here, «0 is a measure of the energy injection rate; Pm
n (m)

is the associated Legendre function, which is normalized

as
Ð 1
21 [P

m
n (m)]

2 dm5 2; and umn (t) is a uniform random

number in [0, 2p], which is changed at each time step

(intervalDt) of the time integration. Note that no forcing

is applied to the zonal modes (m 5 0). This setting is to

ensure consistency with the weak-nonlinear and quasi-

linear models considered in section 4. We compared the

results of the experiments with and without the zonal

components of the forcing and confirmed that there are

no significant differences between the two. The tempo-

ral structure of the forcing is described by the function

jmn (t), which is a model for a white-noise process with

unit variance and, if Dt is infinitesimally small, satisfies

hjmn (t)jmn (t0)*i5 d(t2 t0) , (6)

where (�)* indicates the complex conjugate, the angle

brackets indicate the ensemble average, and d(t 2 t0) is
theDirac delta function.We set themiddle wavenumber

of the forcing nf 5 42 and the width of the spectral band

Dn 5 4. The settings for Dt and «0 are described later in

this section. The dissipation terms are set as follows:

dz 52n=8z, dD 52n=8D, dh52n=8h2
1

trad
h .

(7)

That is, each dependent variable is dissipated at small

scales by the hyperviscosity term with n, and the New-

tonian cooling effect is imposed only on the geopotential

anomaly h. Here, we set trad 5 0:25L22
D , following Scott

and Polvani (2008), and the hyperviscosity coefficient as

n 5 10/[NT(NT 1 1)]4, where NT is the truncation

wavenumber of the spectral method (described below).

We compute the time evolution of (1)–(3) using the

spherical spectral method, expanding the dependent

variables with the spherical harmonics truncated in

a triangular manner with NT 5 170. To calculate the

nonlinear terms, we use the standard transform method

with an alias-free grid of 512 (zonal)3 256 (meridional).

We use the classical fourth-order Runge–Kutta scheme
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for the time integration with a time increment of Dt 5
0.0125. Note that there are some differences between

the settings used in the present work and those of Scott

and Polvani (2007, 2008), in which second-order leap-

frog schemes with Robert–Asselin time filters were

adopted for the time integration. The truncation wave-

number used by Scott and Polvani (2007) was the same as

that used in the present study, whereas Scott and Polvani

(2008) conducted higher-resolution experiments with

NT 5 682.

With the above settings, we have two control param-

eters: the nondimensionalized Rossby deformation ra-

dius LD and the measure of the energy injection rate «0.

We set «05 6.43 102EwhereE is chosen to be 6, 7, or 8.

These are referred to as the ‘‘E6,’’ ‘‘E7,’’ and ‘‘E8’’ ex-

periments, respectively. We conduct ensemble numeri-

cal experiments for 120 members for E6–E8. Scott and

Polvani (2008) set «0 5 5.0 3 1027, so in our work, the

setting of «0 in our E7 experiments provides the closest

reproduction of their experiment. For the parameter

LD, we use LD 5 0.1, although Scott and Polvani (2008)

used three values ofLD: 1.0, 0.1, and 0.025, among which

they considered 0.025 as a typical value for Jupiter and

Saturn. One reason why we only use LD 5 0.1 is that, in

the case ofLD5 1.0, themaximumphase speed of gravity

modes becomes very fast, meaning Dtmust be very small

to yield accurate results, which makes it time consuming

to conduct many ensemble experiments. The other rea-

son is that, in the case of LD 5 0.025, the hyperviscosity

termbecomes comparable to theNewtonian cooling term

around the forcing wavenumbers, which may make it

difficult to examine the influence of Newtonian cooling

on the zonal flow acceleration (this point is discussed in

section 5).

b. Results

While most of the ensemble members yield equatorial

superrotation, some yield equatorial subrotation. Figure 1b

shows the meridional profiles of the zonal-mean zonal

velocities at the end of the time integrations (at t5 10000)

FIG. 1. (a)–(c) Latitudinal profiles of zonal-mean zonal velocity for 120 ensemble members at the end of the time evolution (t5 10 000)

for (a) E6, (b) E7, and (c) E8 experiments. (d)–(f) Time evolutions of the zonal-mean zonal velocity at the equator for 120 ensemble

members for (d) E6, (e) E7, and (f) E8 experiments. The red and blue curves indicate the ensemble members with positive and negative

equatorial zonal-mean zonal velocities at the end of the time evolution, respectively. The number of red curves is 105 for E6, 99 for E7, and

120 for E8 experiments.
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for the E7 experiments, in which the value of «0 is closest

to that used by Scott and Polvani (2008) as described

in the previous subsection. Among the 120 members,

99 members exhibit a strong prograde jet at the equator

and latitudinally alternating weak zonal jets at mid-

latitudes (Fig. 1b, red curves). The meridional profiles of

the zonal-mean zonal velocities for these 99 members are

very similar to the profile forLD5 0.1 in Fig. 1 of Scott and

Polvani (2008). On the other hand, the other 21 members

exhibit a strong retrograde jet at the equator (Fig. 1b, blue

curves). The emergence of equatorial retrograde jets seems

in discord with the results of Scott and Polvani (2008) be-

cause they obtained only equatorial superrotation when

Newtonian cooling was the main dissipation. We discuss

possible causes of this difference in section 5. For the E8

experiments, where the measure of «0 is 10 times smaller

than that used in the E7 experiments, every member ex-

hibits a prograde jet at the equator (Fig. 1c). We also

conducted the same ensemble experiments but with an

additional, smaller value of «0 and confirmed that every

member yields a prograde equatorial jet (not shown). On

the other hand, for the E6 experiments, where the value

of «0 is 10 times larger than that used in E7 experiments, 15

members exhibit a retrograde jet at the equator (Fig. 1a).

There may be a significant difference in the frequency of

emergence of prograde equatorial jets between the E6 and

E7 experiments.

The time evolutions of the equatorial jets in the en-

semble experiments are almost monotonic; that is, in

most cases, the equatorial jet grows monotonically,

maintaining an either prograde or retrograde direction

from the initial stages of its growth. Figures 1d–f show

the time evolutions of the zonal-mean zonal velocities at

the equator for each ensemble member in E6–E8 ex-

periments, respectively. It can be seen, especially for E6

and E8 (Figs. 1d and 1f, respectively), that in most en-

semble members, the equatorial jet has become either

prograde or retrograde by t5 1000, and does not change

in direction, but increases in speed monotonically after

that. In the E7 experiment, the direction of the equa-

torial jet changes after t 5 1000 for some ensemble

members (Fig. 1e). However, for as many as 88 ensem-

ble members, the jet is prograde by t 5 1000. Note that

each time evolution in the E8 and E9 experiments does

not reach a statistically steady state by t 5 10 000 when

the speed of the equatorial jet is still increasing. This is

because the dissipation effect of Newtonian cooling on

the potential vorticity field is very weak near the equa-

tor, and it takes a long time to reach a statistically steady

state as discussed by Scott and Polvani (2007).

Although the experimental results shown in this sec-

tion seem to be in discord with those of Scott and Polvani

(2008), in that there emerge retrograde equatorial jets

in our experiments, more than 80% of the ensemble

members exhibit equatorial superrotation. Considering

that when Rayleigh friction was used as the main dis-

sipation process, the frequency of emergence of a pro-

grade equatorial jet was at most 50% in the ensemble

numerical experiments conducted by Scott and Polvani

(2007), it is clear that using Newtonian cooling instead

of Rayleigh friction significantly increases this value

and that there must be some accelerationmechanism that

favors equatorial superrotation. We can make two de-

ductions about this mechanism from our experimental

results. First, this acceleration mechanism acts from the

beginning of the time evolution and plays a crucial role,

particularly in the initial stages of the growth of the

equatorial jet, because in most of the ensemble members

the equatorial jet does not change direction after t5 1000,

implying that its direction is determined at an early stage.

Second, it may be possible that this acceleration mecha-

nism can be described in a weak-nonlinear framework

because the emergence of equatorial superrotation is

more predominant for forcings of smaller amplitude (es-

pecially in E8 experiments).

In the following sections, we focus on the time evolution

until t5 1000 and investigate the acceleration mechanism

of the prograde equatorial jet during this early stage.

3. Structural change of the Hough modes due to
Newtonian cooling

In this section, we examine the effect of Newtonian

cooling on the structure of Hough modes. Hough modes

are the eigenmodes of the linearized shallow-water

equations on a rotating sphere (Longuet-Higgins 1968).

If the considered dissipation process is expressed as a

linear term of the dependent variable, it is easy to in-

corporate the dissipation effect into the eigenvalue

analysis and obtain the distorted Hough modes.

Pioneering work in this line of study was conducted by

Yamagata and Philander (1985). They examined how

such linear dissipation terms distort equatorial wave

modes, which are the eigenmodes of the linearized

shallow-water equations on the equatorial b plane, and

they showed that the dissipation terms cause tilting of

the equiphase lines of each equatorial wave mode. In

Yamagata and Philander (1985), there is a very important

equation [their (A.6)] that describes the tilting of the

equiphase line of the y field and u field for the mixed

Rossby–gravity (MRG) mode and the Kelvin mode, re-

spectively. If the coefficient of Rayleigh friction a (here,

we have changed the letter denoting the coefficient) and

the coefficient of Newtonian cooling g are sufficiently

small, then the equation can be approximately written as

follows:
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x5
1

4

(g2a)

kvr

y2 1 const . (8)

Here, x is the eastward coordinate, y is the northward

coordinate (the origin is at the equator), k is the zonal

wavenumber, and vr is the real part of the frequency of

the eigenmode. Each variable is nondimensionalized

using the b parameter and the mean value of the geo-

potential field. If we consider Newtonian cooling only—

that is, g. 0 anda5 0—then (8) indicates the following:

1) The equiphase line for a westward-propagating

mode (vr , 0) tilts westward as the absolute value

of latitude increases, whereas that for an eastward-

propagating mode tilts eastward.

2) If the zonal wavenumber of the mode is fixed, then the

tilt decreases as the frequency jvrj of themode increases.

Note that (8) and statements 1 and 2 hold exactly only

for the y field and u field of the MRG mode and the

Kelvin mode of equatorial waves, respectively. Within

our results, however, statements 1 and 2 seem to also

hold for other dependent variables and Hough modes,

including not only the MRG and Kelvin modes but also

Rossby and gravity modes individually as shown below.

In the following, we present the results of the eigenvalue

analysis into which Newtonian cooling was incor-

porated, while keeping statements 1 and 2 in mind.

We perform eigenvalue analysis of the linearized version

of (1)–(3) around the stationary solution (z 5D5 h[ 0),

omitting the forcing term in (1) and assuming that each

dependent variable has the form of Re[Â(m)ei(ml2vt)]. To

solve the eigenvalue problem numerically, it is dis-

cretized using the same spherical-harmonics expansion

as used in the nonlinear time evolution. The value of the

parameter LD is also set to the same value (0.1) as used

in the nonlinear time evolutions in section 2. The geo-

potential anomaly fields of the distorted Hough modes

computed as eigenmodes for the zonal wavenumber

m 5 1 are shown in Fig. 2. To quantify the tilt of a

equiphase line later, the phase of each mode is set so

that one of the zero contours passes through the point

(l, u) 5 (08, 908 2 «), where « is infinitesimal. As pre-

dicted by statement 1, it is clearly seen in Fig. 2a that the

equiphase line of the Kelvin mode tilts eastward as the

absolute value of latitude increases, since the geopotential

anomaly field of the Kelvin mode is in phase with the u

field. In a neighbor of (l, u) 5 (08, 08) in Fig. 2a, one of

the zero contours crosses the equator at (l,u)5 (Dl, 08),
where Dl 5 27.68 in this case. In the following, we use

Dl as a quantitative measure of the tilt of an equiphase

line; a positive (negative) Dl corresponds to a westward

(eastward) tilt and a larger Dl corresponds to a larger

tilt. Similarly, in Figs. 2b and 2c, it is shown that the

equiphase line slightly tilts westward (eastward) as

the distance from the equator increases for westward

(eastward) propagating MRG modes, although the

geopotential anomaly field is not completely in phase

with the y field in eachhemisphere for thesemodes (Dl5
12.858 and 22.038 in Figs. 2b and 2c, respectively). The

tilt of the equiphase line is also in accordance with state-

ment 1 for the gravity and Rossby modes. Each of the

eastward-propagating gravity modes shown in Figs. 2d–f

has a very slightly eastward-tilting equiphase line (Dl 5
20.898,20.498 and20.258 in Figs. 2d–f, respectively). The
tilt can also be clearly seen for theRossbymodes shown in

Figs. 2g–l, for which the equiphase line tilts westward,

corresponding to the westward propagation of the Rossby

modes. The difference in the extent of the tilt between the

gravity and Rossby modes can be understood from

statement 2, although it is not directly applicable to these

modes as noted above. That is, Rossby modes exhibit

larger tilts than gravitymodes because of smaller values of

jvrj. Furthermore, in Figs. 2g–i, it is clear that amode with

a smaller associated value of jvrj has a larger tilt among

symmetric Rossby modes. Here, we modify the definition

ofDl as follows:Dl is the increment of longitude as one of

the zero contours is tracked from (l, u)5 (08, 908 2 «) to

the equator. Then, Dl 5 208, 2138, and 3858 in Figs. 2g–i,

respectively. For antisymmetric Rossbymodes (Figs. 2j–l),

the similar relationship between the tilt and jvrj holds.
Here, we use the Dlmodified above except that the zero

contour is tracked up to u 5 58 in order to avoid a large

phase jump near the equator. Then, Dl 5 378, 2258, and
3918 in Figs. 2j–l, respectively. Although the above defi-

nitions of Dl may seem a little ad hoc, Dl is actually

a good measure of the average tilt. In each of Figs. 2g–l,

a long-dashed straight linewhose slope isDl/Du is drawn,

whereDu5 908 and 858 for symmetric and antisymmetric

Rossby modes, respectively. It is clearly seen that the

slope of each straight line correspondswell to the average

tilt of the equiphase line.

We examined all the distorted Hough modes (in-

cluding many other modes that are not shown in Fig. 2)

calculated in the discretized eigenvalue analysis and

qualitatively confirmed that statements 1 and 2 can be

regarded as almost general rules in each category of

Hough modes at least.

4. Acceleration of zonal-mean flow due to Hough
modes distorted by Newtonian cooling

In the previous section, it was shown that Newtonian

cooling distorts the structure of Hough modes, especially

that of Rossby modes. In this section, we investigate the

acceleration of zonal-mean flows induced by these dis-

torted Hough modes through a weak-nonlinear analysis.
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FIG. 2. Geopotential anomaly fields of the distorted Hough modes with the zonal wavenumber m 5 1.

(a) Kelvin mode, (b) westward-propagatingMRGmode, (c) eastward-propagatingMRGmode, (d)–(f) the first

three eastward-propagating antisymmetric gravity modes, (g)–(i) the first three symmetric Rossby modes, and

(j)–(l) the first three antisymmetric Rossby modes. The frequency of each eigenmode is written above each

panel; i is the imaginary unit. Each thick long-dashed line in (g)–(l) has a slope corresponding to the average tilt

of the equiphase line of each mode (see text for details).
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a. Description of the weak-nonlinear model

The weak-nonlinear model introduced here is essen-

tially the same as that used in Kitamura and Ishioka

(2007), in which the second-order acceleration induced by

waves is evaluated based on a perturbative approach, ex-

cept that Kitamura and Ishioka (2007) assumed a nonzero

basic zonal flow. It is different from other quasi-linear

models, such as used in Srinivasan and Young (2012), in

that it does not consider the time evolution of the basic

zonal flow caused by the second-order acceleration.

First, we expand the dependent variables using a small

parameter « around a zonally uniform basic flow. That

is, the vorticity field z, for example, is expanded as

z(l,m, t)5 z01 «z11 «2z21O(«3) . (9)

The other dependent variables are expanded similarly.

We substitute these expansions into the shallow-water

equations [(1)–(3)] and assume that the forcing is of the

first order—namely, F5 «F1—and that the basic state is

the state of the rest; that is, z05D05h0[ 0 (because we

consider a very early stage of the time evolution). Then,

we obtain the first-order equations:

›z1
›t

52

�
1

12m2

›

›l
(4pmU1)1

›

›m
(4pmV1)

�
1 dz

1
1F1 ,

(10)

›D1

›t
52

�
1

12m2

›

›l
(4pmV1)2

›

›m
(4pmU1)

�

2=2h11 dD
1
, and (11)

›h1

›t
5216p2L2

DD11 dh
1
. (12)

The zonally averaged second-order equations are obtained

as follows:

›z2
›t

52
›

›m
(4pmV2)1dz

2

2
›

›m
(z1V1) , (13)

›D2

›t
52

›

›m
(4pmU2)2=2h21 d

D
2

2
›

›m
(z1U1)

2=2

2
4U2

1 1V2
1

2(12m2)

3
5, and (14)

›h2

›t
5216p2L2

DD21 dh
2
2

›

›m
(V1h1) . (15)

At this point, we specify a certain form for neither the

forcing term F1 nor the dissipation terms d(z1,D1,h1)
and

d(z2,D2,h2)
; we only assume that the dissipation terms are

linear.

For convenience, we introduce the following vector-

form expressions:

X5 (z1,D1,h1)
T , (16)

Y5 (z2,D2,h2)
T , (17)

F5 (F1, 0, 0)
T, and (18)

A5

0
@2

›

›m
(z1V1),2

›

›m
(z1U1)2=2

2
4 U2

1 1V2
1

2(12m2)

3
5,

2
›

›m
(V1h1)

1
A

T

.

(19)

In the above expressions, the vector (z1, D1, h1)
T, for

example, is the abbreviated notation for the vector

(ẑ11, . . . , ẑ
NT

NT
, D̂1

1, . . . , D̂
NT

NT
, ĥ1

1, . . . , ĥ
NT

NT
)T, where ẑmn , D̂

m
n ,

and ĥm
n are the coefficients in the spherical-harmonics

expansion of z1, D1, and h1, respectively.

We can now rewrite the first- and second-order

equations in wavenumber space as follows:

›X

›t
5L1X1F and (20)

›Y

›t
5L2Y1A , (21)

where L1 and L2 are matrices that correspond to the

linear terms (including the dissipation terms) in (10)–

(12) and (13)–(15), respectively.

Next, we expand the first-order variables by the dis-

tortedHoughmodesHm
l , which are the eigenmodeswith

the dissipation terms d(z1,D1,h1)
taken into account, and

the second-order terms by the zonal Hough modes Zl,

which are the eigenmodes with the dissipation terms

d(z2,D2,h2)
taken into account, as follows:

X5 �
m
�
l

Xm
l Hm

l , (22)

F5 �
m
�
l

Fm
l Hm

l , (23)

Y5 �
l

YlZl, and (24)

A5 �
l

AlZl . (25)
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Here, m is the zonal wavenumber and l is the index for

each mode. The Hough modes above are normalized so

that the root-mean-square velocity corresponding to

them is unity. Note that since the dissipation terms are

included in the eigenvalue problem, we generally obtain

the right and left eigenvectors for each eigenvalue. In

the above expansion, we use the right eigenvectors. The

evolution equations for the expansion coefficients Xm
l

and Ym
l become

dXm
l

dt
5sm

l X
m
l 1Fm

l and (26)

dYl

dt
5 slYl 1Al . (27)

Here, sm
l and sl are the eigenvalues corresponding to

Hm
l and Zl, respectively. Note that the notation for the

eigenvalues of the Hough modes has been changed here

(sm
l corresponds to 2iv introduced in section 3) for

convenience.

In the following two subsections, we evaluate the

second-order zonal-mean flow acceleration induced by the

distorted Hough modes using (26) and (27).

b. Acceleration induced by each Hough mode

In this subsection, we investigate the second-order

acceleration of the zonal-mean flows induced by each

Hough mode that is distorted by Newtonian cooling. As

stated in section 1, a similar investigation was conducted

for equatorial waves on the b plane by Warneford and

Dellar (2014, manuscript submitted to J. Fluid Mech.).

In the following, we present the results of our analysis,

noting similarities to the previous work.

We evaluate the second-order acceleration induced

by each distorted Hough mode through the following

procedure. To examine only the effect of Newtonian

cooling on the Hough modes, we consider no other

dissipation processes [d(z1,D1) 5 0, dh1
52t21

radh1] and

exclude the forcing term F1 in the first-order equations

and the dissipation term in the second-order equations

[d(z2,D2,h2)
5 0]. Let us consider a situation in which there

is only one Hough mode Hm
l and its amplitude decays

according to (26). The time evolution of its amplitude

can be written as

Xm
l (t)5 es

m
l t . (28)

Here, we assume that the initial value of Xm
l (t) is unity.

Because of the dissipation by Newtonian cooling, the

real part of the eigenvalue is negative [Re(sm
l ), 0] and

the amplitude decays with time [Xm
l (t)/0(t/‘)].

Meanwhile, each of the second-order zonal modes Zj

evolves according to (27). Since A consists of quadratic

terms of the first-order variables, the time evolution of

Aj can be written as

Aj(t)5Aj0e
2Re(sm

l )t , (29)

where Aj0 is a constant that is determined by (25) and

(27). Considering each balanced zonal mode of Zj, the

corresponding eigenvalue of which is zero (sj 5 0), the

time evolution of the amplitude is obtained as the so-

lution of (27) as follows:

Yj(t)5
Aj0

2Re(sm
l )

[e2Re(sm
l
)t 2 1] . (30)

Consequently,

Yj‘ 5 lim
t/‘

Yj(t)52
Aj0

2Re(sm
l )

. (31)

Summing up the contributions from all the balanced

zonal modes evaluated in (31) as Yj‘, we can calculate

the net zonal acceleration induced by each distorted

Hough mode until it decays to zero. Figure 3 shows the

result of this calculation for the distorted Hough modes

shown in Fig. 2. For the acceleration induced by the

Rossby modes, Figs. 3c and 3d in the present study

correspond to Fig. 11 in Warneford and Dellar (2014,

manuscript submitted to J. Fluid Mech.), except that

their analysis is for Rossby waves on an equatorial b

plane and they also show results with Rayleigh friction.

Comparing Figs. 3a–d, it can be clearly seen that the

gravity modes produce smaller acceleration and the

Rossbymodes produce larger acceleration than the other

modes. We confirmed that, for the zonal wavenumber

m 5 1, higher (i.e., having more nodes in the latitudinal

direction) gravity modes that are not shown in Fig. 3

produce even smaller acceleration, and higher Rossby

modes produce yet larger acceleration. We also checked

that this tendency holds for modes of larger zonal wave-

numbers. This tendency can be qualitatively explained by

the results in section 3, because the acceleration of the

zonal-mean flow induced by the wave modes is closely

related to the tilt of the equiphase lines of those modes.

That is, a Hough mode that has a smaller absolute value

of the real part of the frequency, as well as an equiphase

line that is tilting to a high degree, accelerates the zonal-

mean flow to a greater extent. Acceleration induced by

the distorted Kelvin mode is exceptionally small as seen

in Fig. 3a. The reason is likely that the Kelvin mode

has nomeridional velocity component if it is not distorted

by Newtonian cooling. Even when the equiphase line of
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the Kelvin mode is tilted by Newtonian cooling, the

meridional transport of zonal momentum is not increased

sufficiently.

As shown in Figs. 3c and 3d, it is remarkable that

Rossby modes distorted by Newtonian cooling produce

significant prograde acceleration near the equator. Be-

cause this acceleration is consistent with the robust

formation of the equatorial superrotation shown in the

numerical experiments in section 2, it is reasonable to

infer that the acceleration induced by the Rossby modes

plays a crucial role as argued by Warneford and Dellar

(2014,manuscript submitted to J. FluidMech.). However,

it is a little naive to consider the acceleration due to

each mode independently. Since the vector A consists

of quadratic terms of the first-order variables, it also

includes contributions from cross terms of different

modes. These contributions do not vanish even after

averaging over the entire ensemble; therefore, to in-

terpret the results of nonlinear numerical experiments

in which many Hough modes are excited, it is in-

sufficient to simply consider the superposition of the

accelerations due to each Hough mode. Thus, we have

to take into account all Hough modes excited by the

stochastic forcing and their correlations, for which the

FIG. 3. Net zonal acceleration induced by each distorted Hough mode shown in Fig. 2 until it decays to zero (see

text for details of the calculation). (a) Kelvin mode (solid black curve), westward-propagating MRG mode (long-

dashed red curve), and eastward-propagating MRG mode (short-dashed blue curve); (b) the first three eastward-

propagating antisymmetric gravity modes (solid black curve, long-dashed red curve, short-dashed blue curve,

respectively); (c) the first three symmetricRossbymodes (solid black curve, long-dashed red curve, short-dashed blue

curve, respectively); and (d) the first three antisymmetric Rossby modes (solid black curve, long-dashed red curve,

short-dashed blue curve, respectively).
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quasi-linear-like approach described in the next sub-

section is suitable.

c. Quasi-linear-like approach

In this subsection, we investigate the extent to which

the acceleration induced by the distorted Hough modes

contributes to the emergence of the prograde equatorial

jet observed in the numerical experiments in section 2. To

this end,we adopt a statistical approach for evaluating the

effect of stochastically forcedHoughmodes and calculate

the time evolution of the ensemble-averaged zonal-mean

flow. Herein, we refer to this approach as the ‘‘quasi-

linear-like’’ approach because we follow a very similar

line to the method used in the quasi-linear approach

adopted by Srinivasan and Young (2012).

1) EVALUATION OF THE ENSEMBLE-AVERAGED

SECOND-ORDER ZONAL-MEAN FLOW

Here, we assume the same type of forcing and dissi-

pation as used in the numerical experiments in section 2.

That is, the dissipation terms are set as follows:

d
(z

1
,D

1
)
52n=8(z1,D1), dh

1
52t21

radh12 n=8h1 ,

d
(z

2
,D

2
)
52n=8(z2,D2), dh

2
52t21

radh22 n=8h2 ,

where the values of n and trad are the same as used in

section 2.

To evaluate the covariance of the forcing coefficient

Fm
l (t), we define Gm

l as the normalized left eigenvector

corresponding to the right eigenvector H
m
l , so as to

satisfy the following biorthogonal condition:

(G
m

1

l
1
)yHm

2

l
2
5 dl

1
l
2
dm

1
m

2
.

Here, (�)y indicates the complex-conjugate transpose.

Then, from (23), we can calculate Fm
l (t) as

Fm
l (t)5G

my
l F(t) . (32)

Since the temporal dependence of the forcing F(t) is

described by the function jmn (t) as defined in (5), we can

express F(t) as F(t) 5 RJ(t), where J(t) is a column

vector consisting of jmn (t) and R is a matrix that consists

of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n(n1 1)«0/[(2n1 1)Dn]

p
and many zeros. The

correlation between Fm1

l1
(t) and Fm2

l2
(t0) can be written as

hFm
1

l
1
(t)F

m
2

l
2
(t0)*i5G

m
1
y

l
1

RhJ(t)J(t0)yiRyGm
2

l
2

5G
m

1
y

l
1

R[Id(t2 t0)]RyGm
2

l
2

5G
m

1
y

l
1

RRyGm
2

l
2
d(t2 t0)

[B
m

1
m

2

l
1
l
2

d(t2 t0) , (33)

where I is the identity matrix and the coefficient Bm1m2

l1l2
is

defined as

B
m

1
m

2

l
1
l
2

5G
m

1
y

l
1

RRyGm
2

l
2
.

With the random forcing F1 described above, (26)

forms a Langevin equation. If we assume that the ini-

tial value of each Xm
l is zero, then the time-dependent

solution of the covariance of the coefficients of X

becomes

hXm
1

l
1
(t)X

m
2

l
2
(t)*i

52
B
m

1
m

2

l
1
l
2

sl
1

m
11sl

2

m
2
*
f12 exp[(sl

1

m
1 1sl

2

m
2
*)t]g. (34)

Note that the covariance ofXm
l is nonzero, so it toomust

be considered alongside the variance.

Since the vector A consists of quadratic terms of the

first-order variables, each of the expansion coefficients

Al can be expressed in a quadratic form of X as

Al 5XyQlX ,

whereQ is a matrix that corresponds to the definition of

A in (19). Substituting (22) into the above equation

yields

Al 5

 
�
m

1

�
l
1

X
m

1
*

l
1
H

m
1
y

l
1

!
Ql

 
�
m

2

�
l
2

X
m

2

l
2
H

m
2

l
2

!
(35)

5 �
m

1

�
l
1

�
m

2

�
l
2

X
m

1
*

l
1
X

m
2

l
2
H

m
1
y

l
1

QlH
m

2

l
2
. (36)

Since the zonal-mean operation is included in the

definition of A, the quadratic form Hm1y
l1

QlH
m2

l2
can be

expressed as

H
m

1
y

l
1

QlH
m

2

l
2
5 dm

1
m

2
K

m
1

ll
1
l
2
,

where we introduce the coefficient Km1

ll1l2
. Hence, using

(34), the ensemble average of Al can be calculated as

hAli5 �
m
�
l
1

�
l
2

Km
ll
1
l
2
hXm*

l
1
Xm

l
2
i

52�
m
�
l
1

�
l
2

Bmm
l
1
l
2
Km

ll
1
l
2

sm
l
1
1sm*

l
2

f12 exp[(sm
l
1
1sm*

l
2
)t]g .

(37)

Based on (37), the time-dependent solution of the

ensemble average of hYli in (27) is found to be
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hYli52�
m
�
l
1

�
l
2

Bmm
l
1
l
2
Km

ll
1
l
2

sm
l
1
1sm*

l
2

2
66412 eslt

sl
2

e
(sm

l1
1sm*

l2
)t
2 eslt

sm
l
1
1sm*

l
2

2 sl

3
775.

(38)

Summing up all the contributions from hYli, we can

calculate the time evolution of the ensemble-averaged

zonal-mean flow accelerated by the randomly excited

distorted Hough modes.

2) COMPARISON WITH THE NONLINEAR TIME

EVOLUTIONS

Now, we compare the theoretical predictions from

(34) and (38) with the results of the nonlinear time

evolutions shown in section 2. As mentioned in section

2, comparisons are made only for the early stages of the

time evolution (i.e., from t 5 0 to t 5 1000) to focus on

the generation process of the prograde equatorial jet.

Limiting the time-evolution period makes it possible to

conduct two series of additional numerical experiments

beyond those shown in section 2. First, we increase the

number of ensemblemembers from120 to 400 in order to

obtain more accurate statistics. Second, for comparison

with the weak-nonlinear model, we conduct numerical

experiments with smaller amplitudes of forcing: «0 5
6.4 3 102E, where E 5 9, 10, and 11. Using the naming

convention introduced in section 2, these experiments are

referred to as the ‘‘E9,’’ ‘‘E10,’’ and ‘‘E11’’ experiments,

respectively.

Before focusing on the zonal-mean flow, we examine

how well the time evolution of the variance (calculated

using 400 ensemble members) of a distorted Hough

mode is predicted by the quasi-linear-like approach.

Figure 4 shows the time evolutions of the variance of the

gravest antisymmetric Rossby mode ofm5 42, which is

strongly excited by the forcing, alongside the theoretical

predictions from (34) for comparison. To facilitate this

comparison, we normalize the variance by the measure

of the energy input rate. Consequently, all the theoret-

ical predictions collapse into one curve (Fig. 4, solid

black curve). Although the time evolution of the vari-

ance in each experiment agrees well with the theoretical

prediction at first, it deviates from the prediction after

some period of time, which is longer for experiments

with smaller forcing amplitudes. The deviation from the

theoretical prediction means that the assumptions in the

theory are no longer valid: the second-order zonal-mean

flow becomes so large that it cannot be considered small

relative to the first-order wave components, and the

third- and higher-order nonlinear interactions come into

play. In fact, we confirmed that the inverse energy

cascade is clearly seen in the energy spectrum before the

deviation becomes significant (not shown).

Nowwe focus on the time evolution of the zonal-mean

flow. We check the theoretical prediction of the time

evolution [(38)] before comparing it with the result of

the nonlinear time evolutions. Dashed red curves in

Fig. 5c show the theoretically predicted time evolution

of the zonal-mean flow. Here, the measure of the energy

input rate is set to the value used in the E8 experiments.

As time goes on, a prograde equatorial jet emerges in

the equatorial region (juj& 208) and somewavy patterns

appear at high latitudes (juj * 808). At midlatitudes,

however, no significant acceleration is observed. We

also calculated the same time evolution of the zonal-

mean flow based on the quasi-linear-like approach, ex-

cept that only the contribution from the Rossby modes

to the term hAli was included in (37). We obtained al-

most the same results as dashed red curves in Fig. 5c; the

difference cannot be seen because of the resolution of

the figure. This agreement means that the zonal-mean

flow acceleration induced by the Rossby modes is pre-

dominant in the weak-nonlinear model. The importance

of the Rossby modes for the emergence of the prograde

equatorial jet was also discussed by Warneford and

Dellar (2014, manuscript submitted to J. Fluid Mech.).

FIG. 4. Time evolution of the variance of the coefficient of the

gravest antisymmetric Rossby mode with the zonal wavenumber

m5 42. The solid black curve is the theoretical prediction (see text

for details of the calculation). The colored curves are the ensemble

averages of 400 nonlinear runs for each experiment: the results for

E6–E11 experiments are shown by long-dashed red, short-dashed

green, dashed–dotted blue, long-dashed–two-dotted cyan, long-

dashed–three-dotted purple, and long-dashed–four-dotted yellow

curves, respectively. The value of the variance is normalized by the

measure of the energy injection rate.
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Figure 5 compares the time evolution of the zonal-mean

flow predicted theoretically in (38) with that of the

ensemble-averaged zonal-mean flow obtained in the

numerical experiments. For all cases (E6–E11 experi-

ments as shown in Figs. 5a–f, respectively), the time

evolutions of the profiles of the zonal-mean flow in the

numerical experiments agree qualitatively with the

theoretical predictions, in that there appears a prograde

equatorial jet, whereas no significant jet is seen at mid-

latitudes. Moreover, in the early stages of the time

evolution, the profiles of the prograde equatorial jet are

in good quantitative agreement for E7–E9 experiments

as shown in Figs. 5b–d. For E10 and E11, the theoretical

and ensemble-averaged results are almost indentical, as

shown in Figs. 5e and 5f. To facilitate a quantitative

comparison, the time evolutions of the eastward velocity

of the ensemble-averaged zonal-mean flow at the

equator for E6–E11 experiments are shown in Fig. 6 and

the value of the velocity is normalized by the measure of

the energy injection rate. As can be seen, the time

evolutions of all but that for E6 experiments overlap

quite well with the theoretical prediction (Fig. 6, solid

black curve) in the early stages. Note that this good

agreement following the normalization by «0 makes

clear the importance of the second-order acceleration

terms for the formation of the equatorial prograde jet.

For E6 experiments, however, the time evolution de-

viates from the theoretical prediction at around t ; 10,

which is soon after the beginning of the simulation. The

reason seems to be that the forcing is so strong for E6

experiments that the validity of the weak-nonlinear

theory is lost in the initial stages of the time evolution.

It may seem strange that the result of E8 experiments

shows better agreement with the theoretical prediction

than that of E9 experiments, despite the larger forcing

amplitude in E8 experiments (cf. Fig. 5c with Fig. 5d and

the dashed–dotted blue curve in Fig. 6a with the long-

dashed–two-dotted cyan curve in Fig. 6b). By making

a quasi-linear model and conducting a similar ensemble

experiment to that conducted in this section, we found

that this seemingly good agreement with the theory after

t5 200 for E8 experiments is just a coincidence, which is

FIG. 5. Dashed red curves indicate snapshots of the ensemble-averaged zonal-mean zonal velocity calculated from the theoretical

prediction [(38)] at t 5 nDt (n 5 0, 1, . . . , 10; Dt 5 100). Solid black curves indicate profiles of the ensemble-averaged zonal-mean zonal

velocity for 400 nonlinear runs. (a)–(f) E6–E11 experiments, respectively. The scale for velocity is indicated by a ruler at the upper right of

each panel. The dashed vertical lines indicate zero velocity at each time.
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the result of a combination of effects that are not ac-

counted for in the theory (see appendix for detail).

5. Summary and discussion

The main purpose of the present study was to quan-

titatively determine whether the zonal-mean flow ac-

celeration due to wave modes distorted by Newtonian

cooling leads to the formation of the robust equatorial

superrotation reported by Scott and Polvani (2008) in

forced shallow-water turbulence. For this purpose, we

conducted ensemble experiments in section 2 and con-

firmed the robust formation of equatorial superrotation

but also found that some ensemble members formed

equatorial subrotation. In section 3, we showed that in-

cluding a Newtonian cooling term in the shallow-water

equations leads to the tilting of the equiphase lines of the

Houghmodes, and in section 4, following the calculation

of the zonal-mean flow acceleration induced by the

distorted Hough modes using a weak-nonlinear frame-

work, performed a statistical analysis to evaluate the

acceleration induced by the distorted Houghmodes that

were themselves excited by the stochastic forcing. The

evaluated acceleration is almost completely due to

Rossby modes, the equiphase lines of which are tilted

westward by Newtonian cooling. The acceleration pro-

vides a good quantitative explanation for the onset of

the equatorial superrotation in the nonlinear time evo-

lutions shown in section 2. Although Yamagata and

Philander (1985) and Warneford and Dellar (2014,

manuscript submitted to J. Fluid Mech.) dealt with

equatorial wave-related subjects similar to those ex-

plored in sections 3 and 4b, respectively, the present study

is the first to show quantitatively that the second-order

acceleration induced by the distortedHoughmodes leads

to the onset of equatorial superrotation in a randomly

forced shallow-water system with Newtonian cooling.

Since the present paper is motivated by the equatorial

superrotation of Jupiter and Saturn, let us compare the

equatorial jet speeds for the superrotating runs obtained

in section 2 with those of the real planetary atmospheres

even though there is a large gap between the model used

in the present paper and the real planetary atmospheres.

With Jovian parameters (the rotation rate and the ra-

dius), the typical value of the nondimensionalized speed

of the equatorial jets for the E8 experiments, 0.05, ap-

proximately corresponds to 100ms21 whereas those of

the E7 and the E6 experiments, 0.15 and 0.35, approxi-

mately correspond to 250 and 580ms21, respectively,

with Saturn parameters. Comparing them with the ob-

served values (e.g., Liu and Schneider 2010), the E8 ex-

periments corresponds to Jupiter whereas the E7 and the

E6 experiments correspond to Saturn, roughly speaking.

In the present paper, we focused on the onset of the

equatorial superrotation. We believe, however, that the

onset is crucial for the subsequent robustness of the equa-

torial superrotation. Once a sufficiently strong prograde

equatorial jet is formed, it can persist owing to either the

potential vorticity mixing or the interaction between the

zonal flow and waves. Details of these mechanisms are

FIG. 6. Time evolution of the ensemble-averaged zonal-mean zonal velocity at the equator. Solid black curves

indicate the theoretical prediction (see text for details of the calculation). The colored curves are the ensemble averages

of 400 nonlinear runs for each experiment. (a) The results for E6, E7, and E8 experiments are shown by long-dashed red,

short-dashed green, and dashed–dotted blue curves, respectively. (b) The results for E9, E10, and E11 experiments are

shown by long-dashed–two-dotted cyan, long-dashed–three-dotted purple, and long-dashed–four-dotted yellow curves,

respectively. The value of the velocity is normalized by the measure of the energy injection rate.
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discussed in Kitamura and Ishioka (2007). The impor-

tance of the initial jet for the location of the subsequent

jet sharpening by turbulent mixing is also reported in

Dritschel and Scott (2011).

We also note that the initial acceleration mechanism

of the prograde equatorial jet discussed in the present

study may have some implications on the stochastic

structural stability theory (SSST, or S3T) analysis carried

out by Farrell and Ioannou (2009) using a quasi-linear

model of shallow-water equations on the equatorial b

plane. Although their S3T analysis demonstrates that

both prograde and retrograde equatorial jets are stable

and realizable for forcings sufficiently small in amplitude,

the nonlinear time evolutions performed in the present

paper show the predominance of equatorial super-

rotation. The initial acceleration of the prograde equa-

torial jet induced by the wave modes as discussed in the

present paper was not taken into account in the S3T

analysis, indicating that this is likely the reason for the

differences in the findings of the two studies.

As summarized above, we explored the origin of the

equatorial superrotation emerging from shallow-water

turbulence on a rotating sphere with Newtonian cooling.

The robust formation of the superrotation in this system,

first reported by Scott and Polvani (2008), was con-

firmed in section 2. However, there is a small but notable

difference between their results and ours. Whereas they

obtained a prograde equatorial jet in all cases with

Newtonian cooling as the sole dissipation process at

large scales, we obtained an equatorial retrograde jet for

some ensemble members. As mentioned in section 2,

there are two differences in the experimental setup: one

is the hyperviscosity coefficient (corresponding to the

difference in the truncation wavenumber) and the other

is the time-integration scheme. If the value of LD had

been smaller, the hyperviscosity term might have

changed the experimental result because its dissipation

effect could also have distorted the Hough modes and

affected the second-order acceleration as a result. For

this reason, we setLD5 0.1 in section 2. The ratio of the

damping rate caused by the Newtonian cooling to that

due to the hyperviscosity is t21
rad/fn[n(n1 1)]4g’ 186 for

n 5 44 (the highest total wavenumber at which the

forcing is imposed), which is still sufficiently larger than

unity. This is not the case for setting LD 5 0.025, in

which the ratio becomes about 12. In addition, in order

to check whether the emergence of the equatorial sub-

rotation in section 2 is due to the hyperviscosity (and the

spatial resolution of the model), we conducted addi-

tional experiments where the resolution is increased to

NT 5 341 and the hyperviscosity coefficient n is de-

creased in accordance with the definition in section 2.

Because these experiments are quite time consuming,

we only managed to conduct 20 ensemble experiments

each for the E6 andE7 settings. Among the 20members,

16 members yielded a prograde equatorial jet and the

other members yielded a retrograde equatorial jet for

E6, whereas all of the members yielded a prograde

equatorial jet for E7. Because a retrograde equatorial jet

emerges even for these higher-resolution and smaller-

hyperviscosity experiments, it is suggested that the equa-

torial subrotation obtained in section 2 is not a spurious

result caused by the low resolution or the hyperviscosity.

On the other hand, it is possible that the time-integration

schemes caused the difference in the experimental results.

Whereas we used the classical fourth-order Runge–Kutta

scheme, Scott and Polvani (2008) used the second-order

leapfrog scheme with a Robert–Asselin time filter. This

time filter tends to preferentially damp high-frequency

oscillations, such as high-order gravity modes. Since the

acceleration mechanism proposed in the present study

originates mainly from Rossby modes, which have lower

frequencies, the preferential damping of high-frequency

modes may have exaggerated the frequency of emergence

of prograde equatorial jets in their study. In fact, Kitamura

and Ishioka (2007) reported that the difference in time-

integration schemes can lead to differences in experi-

mental results for a shallow-water system.

Since the equatorial subrotation obtained in section 2

does not seem to be a spurious result as discussed above,

let us consider the reason why the frequency of the

emergence of prograde equatorial jets depends on the

forcing amplitude. In the ensemble experiments in sec-

tion 2, all of the ensemble members exhibit a prograde

equatorial jet for the E8 experiments and for the exper-

iments with smaller forcing amplitudes, whereas at least

10% of the members exhibit a retrograde equatorial jet

for the E6 and E7 experiments. Based on the fact that the

time evolution of the variance of a Hough mode deviates

from the theoretical prediction sooner for the E6 and E7

experiments than for the E8–E11 experiments as shown

in Fig. 4, a possible explanation for this dependence on

the forcing is that the energy injection rate is too large for

the acceleration mechanism described in section 4 to

work and produce a sufficiently strong prograde equa-

torial jet in the initial stages of the time evolution for the

E6 and E7 experiments. With the prograde acceleration

not lasting long enough in the E6 and E7 experiments,

equatorial subrotation resulting from the random vor-

ticity field in the initial stages can survive and be re-

inforced in some cases by subsequent wave–mean flow

interactions as discussed in Kitamura and Ishioka (2007).

To explore the dependence of the frequency of the

emergence of prograde equatorial jets on the energy in-

jection rate further, we conducted additional ensemble

experiments with a greater energy injection rate. The

1480 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



settings are as described in section 2 except that the

measure of the energy injection rate is set to «0 5 6.4 3
1025. Among the 120 members in these E5 experiments,

only three members exhibit a retrograde equatorial jet,

whereas 117 members exhibit a prograde equatorial jet

(not shown). Also taking into account the fact that the

number of the members with equatorial superrotation in

the E6 experiments, 105, is slightly larger than that of the

E7 experiments, 99, as shown in section 2, the frequency

of the emergence of prograde equatorial jets increases as

the forcing amplitude increases among theE5, E6, andE7

experiments. Based on the discussion in the previous

paragraph, it is unlikely that the acceleration mechanism

described in section 4 alone plays a major role in the

emergence of these prograde equatorial jets. Instead, there

must be another mechanism that can work effectively in

the cases of larger forcing amplitudes to produce the pro-

grade equatorial jets. The S3T theory proposed by Farrell

and Ioannou (2009) provides a possible mechanism in

which it is demonstrated that only prograde equatorial jets

are stable for sufficiently large forcing amplitudes. Al-

though it may be interesting to explore this possibility,

quantitative comparison between their theory and our

results is difficult because of the differences in the gov-

erning equations and the experimental parameters adop-

ted in the present study and in Farrell and Ioannou (2009).

The explorationmay be a good subject for our futurework.

It is finally necessary to discuss the reason why the

Newtonian cooling term causes the equiphase line of the

Rossby modes to tilt westward, because this phenome-

non is crucial for the formation of the equatorial

superrotation. The fundamental dynamics of a Rossby

wave can be described by the quasigeostrophic potential

vorticity (QGPV) equation, which is derived from the

shallow-water equations [(1)–(3)] when both the Rossby

and Froude numbers are sufficiently small. As discussed

by Scott and Polvani (2007) and later by Warneford and

Dellar (2014, manuscript submitted to J. Fluid Mech.),

Newtonian cooling is expressed in the QGPV equation

as a term with a dissipation coefficient that is pro-

portional to m2. Thus, the dissipation rate is larger at

higher latitudes and almost zero near the equator. With

such a latitude-dependent dissipation, each eigenmode

has to be accompanied by an energy transfer from lower

latitudes to higher latitudes in order to maintain its

structure. This poleward energy transfer indicates a pole-

ward group velocity, which manifests itself as the west-

ward tilt of the equiphase lines with increasing absolute

value of latitude for Rossby modes. To summarize, the

essential cause of the prograde acceleration at the equator

in a shallow-water system with Newtonian cooling is the

latitudinal dependence of the dissipation acting on the

Rossby modes. This implies that equatorial superrotation

can emerge similarly in other systems through accelera-

tion due to Rossby modes if the systems have latitudinally

dependent dissipation processes. For example, Schneider

and Liu (2009) and Liu and Schneider (2010) conducted

three-dimensional general circulation model (GCM) ex-

periments intending to simulate the Jovian atmosphere and

obtained a strong equatorial superrotation, which was

quantitatively similar to that actually observed on Jupiter.

Schneider and Liu (2009; see their appendix B, section h)

obtained such a strong equatorial superrotation only by

considering latitudinally dependentRayleigh friction,which

was introduced as a simplified model of the magnetohy-

drodynamics drag effect in the Jovianatmosphere.Hence, it

is very likely that a similar acceleration mechanism to that

shown in the present study contributes, at least partly, to the

formation of the strong equatorial superrotation obtained

in their three-dimensional GCM experiments.
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APPENDIX

The Quasi-Linear Experiment

The quasi-linear approximation to (1)–(3) is obtained

here. We express each of the dependent variables as the

sum of its zonal-mean component and the deviation

from it as follows:

z5 z1 z0, D5D1D0, h5h1h0 , (A1)

and substitute (A1) into (1)–(3). Taking the zonal means

yields

›z

›t
52

›

›m
[(4pm1 z)V]1dz 2

›

›m
(z0V0) , (A2)

›D

›t
52

›

›m
[(4pm1 z)U]1 dD 2

›

›m
(z0U0)

2=2

2
4h1

U21V2

2(12m2)
1

U 021V02

2(12m2)

3
5, and (A3)
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›h

›t
5216p2L2

DD1 dh2
›

›m
(V h)2

›

›m
(V0h0) . (A4)

Next, subtracting (A2)–(A4) from (1)–(3) and neglect-

ing the second-order terms of the deviations gives

›z0

›t
52

�
1

12m2

›

›l
[(4pm1 z)U0 1 z0U]

1
›

›m
[(4pm1 z)V0 1 z0V]

�
1 dz0 1F , (A5)

›D0

›t
52

�
1

12m2

›

›l
[(4pm1 z)V0 1 z0V]

2
›

›m
[(4pm1 z)U0 1 z0U]

�

2=2

�
h01

U 0U1V0V
12m2

�
1 dD0 , and (A6)

›h0

›t
5216p2L2

DD
0 1dh0 . (A7)

Equations (A2)–(A7) form the quasi-linear approxi-

mations of the shallow-water equations on a sphere.

Unlike the system described by (10)–(15) considered in

the main text, here the time evolutions of the deviations

are affected by changes in the zonal-mean flow. In both

systems, however, the third- and higher-order nonlinear

interactions are neglected and hence the inverse energy

cascade does not occur. We conduct ensemble experi-

ments using the quasi-linearmodel described abovewith

400 ensemble members, employing the same viscosity,

parameters, and forcing form as used in section 2.

Figure A1 shows a comparison of the time evolutions of

the ensemble-averaged zonal-mean flow at the equator

for the full-nonlinear and quasi-linear models with the

theoretical predictions for E8, E9, and E10 experiments.

The result for E8 experiments (Fig. A1a) shows that

after t 5 200, the time evolution of the quasi-linear

model deviates from the theory to a greater extent than

that of the full-nonlinearmodel. This implies that, for E8

experiments, the relatively good agreement between the

time evolution of the full-nonlinear model and the the-

ory after t 5 200 is just a coincidence, which may be

caused by effects that are not considered in the theory.

On the other hand, for E9 experiments, the time evolu-

tion of the quasi-linear model shows better agreement

with the theory than that of the full-nonlinear model

(Fig. A1b). For E10 experiments, the time evolutions of

both the quasi-linear and full-nonlinear models are in

almost complete agreement with the theoretical pre-

diction (Fig. A1c). These two results for E9 and E10 ex-

periments indicate that the level of agreement obtained

between the time evolutions of the full-nonlinear model

and the theory is not just a coincidence.
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