コヒーレンス差解析を用いた災害情報の抽出

<u>東日本大震災(石巻市)</u>

<u>天津化学工場爆発</u>

災害前後の<u>△| y_{RP-11}|は、建物倒壊域をよく検出。</u> 緊急観測で4偏波データ観測はあまり行われていない(視野が狭い、分解能がやや劣る)

*3 M. Watanabe, et al., Analysis of Urban Areas Affected by the 2011 off the-Pacific-Coast of Tohoku Earthquake and Tsunami with L-band SAR Full-Polarimetric Mode, TGRSSL, 9(3), 536-540, 2012

コヒーレンス差解析について

建物損壊域の検出

<u>兵庫県南部地震</u>

Yonezawa C, & Takeuchi S (2001), INT. J. REMOTE SENSING 22(8): 1585–1600

Tamura M, El-Gharbawi T (2015), Proc. of the 58th spring conference of the remote sensing society of Japan:pp29-30 (in Japanese)

<u>2015ネパール地震(Gorkha)</u>

渡邉ら、JpGU 2015

Kobayashi T, et al., Journal of the Geospatial Information Authority of Japan 122:pp143-151 (in Japanese)

ネパール調査

日程 : 2015年8月16日~22日 主な調査地: Katnandu, Sankhu, Khokana, Bhaktapur <u>Sankhu, Khokanaで全棟調査</u>

場所 : Bhaktapur 発災日: 2015年4月25日 データ:災害前: 2014年 10/14 2015年 2/21、 災害後: 2015年 5/2

$$\Delta \gamma = \frac{\gamma_{\text{\%} \equiv \hat{n}_{2} - \text{\%} \equiv \hat{n}_{1}} - \gamma_{\text{\%} \equiv \hat{n}_{2} - \text{\%} \equiv \hat{\kappa}_{2}}}{\gamma_{\text{\%} \equiv \hat{n}_{2} - \text{\%} \equiv \hat{n}_{1}} + \gamma_{\text{\%} \equiv \hat{n}_{2} - \text{\%} \equiv \hat{\kappa}_{2}}}$$

HH HVを用いた、検出精度向上
コヒーレンスフィルタを併用した、広域データからの建物倒壊域検出

Gangabu地区

建物倒壊がほとんど検出されず

■ <u>2偏波(HH, HV)で精度向上した要因</u>

α=0°: σ⁰_{нн}大 σ⁰_{нν}-∞ α≥0°: σ⁰_{нн}小 σ⁰_{нν}大 都市部2回散乱の偏波依存性 データ数の増加 損壊領域の検出精度が悪い要因(27.1-42.1%)

PALSAR-2分解能が10mと低かった。 建物は常に高いコヒーレンス(明るい後方散乱)を示さない

都市域の災害前コヒーレンス(HH HV平均)

Khokana

Sankhu

Gangabu

Gangabuで低コヒーレンス 建物密度が高いため?

Madhyapur Thimi地区

Madhyapur Thimi 地区

道路の陥没(液状化)を検知? 建物倒壊はほとんどなし

ダラハラタワー

カルモチャン マハデブ寺院

大きくて周りに何もない建物は検出しやすい

森林(低密度?)や農地でコヒーレンス低下箇所が残る

コヒーレンス低下領域は、 火砕丘の範囲をカバー

火砕丘(7/11ドローン映像等より) コヒーレンス差 $\Delta \gamma = \frac{\gamma_{\hat{\mathfrak{A}}||2-\hat{\mathfrak{A}}||1} - \gamma_{\hat{\mathfrak{A}}||2-\hat{\mathfrak{A}}||3}}{\gamma_{\hat{\mathfrak{A}}||2-\hat{\mathfrak{A}}||1} + \gamma_{\hat{\mathfrak{A}}||2-\hat{\mathfrak{A}}||3}}$

赤: $0.6 \le \Delta \gamma$, 櫿: $0.4 \le \Delta \gamma \le 0.6$

まとめ

- ▶ネパール地震(Gorkha)後、損壊建物損壊全棟調査を行う
- ▶コヒーレンス差解析による、建物倒壊域検出
 - (HH, HV偏波)+コヒーレンスフィルタ利用
- → コヒーレンスフィルタは精度向上に有効、HV偏波の利用はやや有効 Δγ_{HH HV平均}: 0.1~0.2で、半壊以上の建物損壊を検出
- ▶ 検出精度
 - 非損壞場所:97.2%以上 損壞場所:27.1-42.1%
 - ⇒ 災害直後に広域観測データからの建物損壊検知に有望。
- ▶ 火山丘の検出でも有望

(謝辞)

建物損壊についてのさまざまな助言と資料を頂いた、防災科学研究所大角氏、東京大学地 震研究所楠氏、大阪大学工学部真田氏に、心より御礼申し上げます。

(EMS-98)

石煉瓦作り

Classification of da	mage to masonry buildings
	Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.
	Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster. Partial collapse of chimneys.
	Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls. Roof tiles detach. Chimmeys fracture at the roof line; failure of individual non-struc- tural elements (partitions, gable walls).
	Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.
	Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

Classification of damage to	buildings of reinforced concrete
	Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Fine cracks in plaster over frame members or in walls at the base. Fine cracks in partitions and infills.
	Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in columns and beams of frames and in structural walls. Cracks in partition and infill walls; fall of brittle cladding and plaster. Falling mortar from the joints of wall panels.
	Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Cracks in columns and beam column joints of frames at the base and at joints of coupled walls. Spalling of conrete cover, buckling of reinforced rods. Large cracks in partition and infill walls, failure of individual infill panels.
	Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Large cracks in structural elements with compression failure of concrete and fracture of rebars; bond failure of beam reinforced bars; tilting of columns. Collapse of a few columns or of a single upper floor.
	Grade 5: Destruction (very heavy structural damage) Collapse of ground floor or parts (e. g. wings) of buildings.