ALOS-2によるアジア高山域山岳氷河の解析事例 西クンルン山脈

Observation of mountain glaciers by PALSAR 2 in the West Kunlun Shan, NW Tibet

Takatoshi YASUDA and Masato FURUYA Dept. Earth and Planetary Sciences, Faculty of Science, Hokkaido University

Glacier flow maps around the world

Antarctica (Rignot et al., 2011; Mouginot et al., 2012)

Greenland (Joughin et al., 2010; Nagler et al., 2015)

Alaska (Burgess et al., 2013; Abe and Furuya, 2015)

Svalbard (Strozzi et al., 2013; Gladstone et al., 2014)

Patagonia (Muto and Furuya, 2013; Mouginot and Rignot, 2015)

Karakoram (Rankl et al., 2014)

Tien Shan (Li et al., 2014)

West Kunlun Shan (Yasuda and Furuya, 2013)

PALSAR2

- L-band (1.2 GHz) : deeply penetrating into the ice body
- 14-day revisiting : reduce a temporal decorreration
- Modes : Spotlight, StripMap, ScanSAR
 - Improved spatial resolutions with dual/full polarization

http://www.eorc.jaxa.jp/ALOS-2/about/joverview.htm

West Kunlun Shan

- One of the driest and coldest region around Tibetan plateau (ann. temp. -13.4 °C, preci.460mm, Zheng et al., 1988)
- Summer accumulation/ablation (mainly May-August) (Zhang and Jiao, 1987)

Flow map with PALSAR-1

- Non-surge-type : 20-100 m/yr (~0.78-3.8 m/14 days)
- Surging glaciers : >200 m/yr (~7.8 m/14 days)

Clustering of surge-type glaciers

- From Landsat (1972-2013) and satellite SAR (1992-2014)
- Three surging ongoing on the northern slope
- Glacier surging would occur in future.

Objectives

- PALSAR2 detects glacier flow in WKS?
 Yes. (but depend on the time separation)
- New findings?
 - A new surging glacier
- Challenging tasks
 - Phase unwrapping on glaciers
- New applications?
 - Polarimetric SAR (PolSAR)

PALSAR2 data sets

Software : GAMMA (ver. 2015/07/02)

DEM : SRTM4

Parameters : InSAR, MAI 差分干渉 : 3x3 looks unwrapping : 4x4 looks (by minimum cost flow)

Pixel Offset (PO) window size : 64x64 step numbers : 9x9 (range x azimuth pixels)

Preliminary results: InSAR (HH, HV) (A3: 2015/03/03 - 2015/03/31)

Preliminary results: MAI (HH, HV) (A3: 2015/03/03 – 2015/03/31)

Preliminary results: MAI and Pixel offset (A3: 2015/03/03 – 2015/03/31)

PALSAR2 (L-band) 2015/03/03 – 2015/03/31 StripMap (HH), 28 days

Sentinel-1A (C-band) 2015/04/02 – 2015/04/26 TOPS IW (VV), 24 days

TerraSAR-X (X-band) 2015/05/04 – 2015/05/15 StripMap (HH), 11 days

PALSAR2 data sets

Software : GAMMA (ver. 2015/07/02)

DEM : SRTM4

Parameters : InSAR, MAI 差分干涉 : 3x3 looks unwrapping : 4x4 looks (by Minimum Cost Flow)

Pixel Offset (PO) window size : 64x64 step numbers : 9x9 (range x azimuth pixels)

Preliminary results: InSAR, MAI (HH)

• A2: 2014/09/02 - 2015/01/20 (140 days)

Preliminary results: Pixel Offset (HH)

• A2: 2014/09/02 - 2015/01/20 (140 days)

Velocity maps

PALSAR2 data sets

Software : GAMMA (ver. 2015/07/02)

DEM : SRTM4

Parameters : InSAR, MAI 差分干渉 : 3x3 looks unwrapping : 4x4 looks (by minimum cost flow)

Pixel Offset (PO) window size : 64x64 step numbers : 9x9 (range x azimuth pixels)

Preliminary results: InSAR, MAI (HH)

• D1: 2015/03/14 - 2015/03/28 (14 days)

Preliminary results: Pixel Offset (HH)

• D1: 2015/03/14 - 2015/03/28 (14 days)

A new surging glacier (D1: 2015/03/14 – 2015/03/28)

CHALLENGING TASKS

Phase unwrapping on glaciers

Phase unwrapping on glaciers

Problem: large displacement of ice flow

 $\Delta \phi_{wrap} = \phi_{disp} + \phi_{error} \ (-\pi < \Delta \phi_{wrap} \le \pi)$

Simulating 'flow fringe' from range offsets and/or a flow map.

$$\phi_{disp} = \phi_{flow} + \phi_{res}$$

 \rightarrow unwrapping only the residual part: ϕ_{res}

POLARIMETRIC SAR

PolSARpro

• The toolbox for dual-pol and full-pol SAR (<u>https://earth.esa.int/web/polsarpro/home</u>)

✓ Free and open source
 ✓ GUI and CUI
 ✓ Read ENVI format
 (*.hdr, *.bin)
 ✓ Sentinel-1A toolbox
 (https://sentinel.esa.int/web/sentinel/toolboxes)

Polarimetric SAR (POLSAR)

B: single (odd) bounce

G: volume scattering

|S_{HV}+S_{VH}| |S_{HH} + S_{VV}|

Pauli-RGB composition

.....

R: double (even) bounce $|S_{HH}-S_{VV}|$ G: volume scattering $|S_{HV}+S_{VH}|$ B: single (odd) bounce $|S_{HH}+S_{VV}|$

Hokkaido Univ.

Î

PALSAR-2 19-2750-RFP6_3 2014/08/05 Descending

😣 🛛 🕂 Kita 🗖

Pauli-RGB composition on glaciers

R: double (even) bounce $|S_{HH}-S_{VV}|$ G: volume scattering $|S_{HV}+S_{VH}|$ B: single (odd) bounce $|S_{HH}+S_{VV}|$

Crevassed surface ~ slant buildings

Double bounce Volume scattering Crevassed wall + slant to line-of-sight

Ice structure in glaciers?

Single/double bounce

Volume scattering

Unwrapped phase : $\phi_{HH} - \phi_{VH}$

2015/03/03 : $\phi_{HH} - \phi_{VH}$ (unwrapped)

10 km 5 [radian] -2

Differences of the center of scattering?

Single/double bounce

Volume scattering

Summary

- PALSAR2 detects glacier flow in West Kunlun Shan.
 - InSAR, MAI \leq 28 days pairs
 - Pixel Offset \geq 28 days pairs (Gaps with 14 days pairs)
- Velocity maps were consist with Sentinel and TerraSAR-X
 - A new surging glacier (40m/yr \rightarrow 800 m/yr by 2015)
- Challenging tasks:
 - Phase Unwrapping on glaciers
- Future plans:
 - Polarimetric SAR

Thank you for listening

Acknowledgements

- PALSAR level 1.0 data were provided partly from the PIXEL (PALSAR Interferometry Consortium to Study our Evolving Land surface) and partly from ALOS 3rd PI (#538) under a cooperative research contract with JAXA.
- PALSAR 2 data were provided from ALOS RA4 (#1179) under a cooperative research contact with JAXA.
- PALSAR and PALSAR 2 data belong to METI and JAXA, Sentinel-1 data are copyrighted by ESA, TerraSAR-X /Tandem-X data are copyrighted by DLR, respectively.
- This work was partially supported by JSPS DC-2 fellowship to T. Yasuda and by KAKENHI (#24651001).

SUPPLEMENTAL SLIDES

Coherences (InSAR, HH)

SNR (Pixel Offset, HH)

Sentinel 1A

- C-band (5.405 GHz), revisit : 12 days
- Launched : Apr. 2014 (1B scheduled for 2016)
- Main mode: TOPS (Terrain Observation with Progressive Scan)
- Data access : https://scihub.esa.int

http://www.esa.int/spaceinimages/Images/2014/02/Sentinel-1

Sentinel 1A

https://sentinel.esa.int/web/sentinel/sentinel-1-sar-wiki/-/wiki/Sentinel%20One/Acquisition+Modes