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Macroscopic worldview

     Genetic drift is considered one of the major evolutionary factors. It refers to chance 

fluctuation of gene frequency. To express genetic drift mathematically, probability is 

an indispensable concept. This raises a philosophical question: What is the appropriate 

interpretation of probability in drift model? 

     First of all, we will make sure of macroscopic worldview. Imagine that a woman and 

a man are walking over the bridge without handrail between mountains. The woman 

follows behind the man, and if the woman pushes the man’ back, what happens? 

Logically there are infinite possibilities, e.g., flying away, moving backwards and so on. 

But in our actual world there is only one trajectory, i.e., falling down. And Newtonian 

mechanics describes it.

     Pierre Laplace (1814) formulates Newtonian worldview. Laplace assumes an 

intelligence, which is called Laplace’s demon after his name. Laplace supposes 

demon has complete information and perfect calculating power. Demon knows initial 

state of the system, and substituting it into the laws of Newtonian mechanics, then it 

can calculate an unique final state with perfect computation. For an intelligence, as 

Laplace says, “nothing would be uncertain and the future, as the past, would be present 

to its eyes” (ibid., p.4). So the world is deterministic, and there is no chance-like or 

probabilistic event in the world. In deterministic worldview, probability concept is 

interpreted as our ignorance, not represented the world. Laplace says, “probability is 

relative, in part to this our ignorance” (ibid., p.6). This is deterministic worldview in 

material world.

     Let us turn our attention to the biological world. There seems to be chance-like event, 

like natural selection, random drift, etc. I will focus only on random genetic drift in this 



paper. Random drift is often explained as an example of random sampling. Assume that 

diploid organisms in some population have either allele A or a on some locus and that 

the frequency of A is p in the parental generation. There are a large number of gametes at 

the time of reproduction of parental generation, but only 2N gametes are sampled from 

them in offspring generation. So there will be N individuals in offspring generation. The 

probability p(i) that the number of allele A is i in the next generation is expressed by

(1)

This is a standard genetic drift model called Wright-Fisher model. Notice that probability 

concepts appear in this equation.

     What is the appropriate interpretation of the probability concept in drift model? 

Alex Rosenberg (1994) provides an answer to this question. I will summarize his 

argument briefly. Rosenberg says evolution including drift occurs at the individual-level. 

Individual organism behaves at the macroscopic level. From Newtonian mechanical 

point of view, macroscopic phenomena are deterministic, as Laplace formulates. Then 

evolutionary phenomena are deterministic. According to deterministic worldview, as 

I explained, probability concepts in drift model is interpreted as our ignorance. This 

is Rosenberg’s answer to the problem of interpretation of probability concepts in drift 

model.

Population-level phenomena

     There are some critiques of Rosenberg’s argument. Let me introduce a critique of first 

sentence of his argument, i.e., evolution including drift occurs at the individual level. 

Walsh, Lewens, and Ariew (2002) criticize Rosenberg’s argument. They raise simple 

questions. When you toss a coin ten times, 6 head and 4 tails is more likely than 9 head 

and 1 tail. And when you toss the coin, 9 heads and 1 tail is more likely than 99 heads 

and 1 tail. In these cases, similar probability distributions are obtained whoever tries, so 

these are objective phenomena to be explained. Why such phenomena happens? Walsh 

et al. claim dynamical or Newtonian mechanical account at individual level cannot 

p(i) =           p (1 - p)(       )2N

  i
i 2N - i

.
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explain such phenomena, but statistical account can. So there exist population-level 

phenomena. Citing some examples of drift case, like Hagedoorn effect, Wright effect 

and bottle neck effect, Walsh et al. claim drift can occur at not individual but population 

level. I agree with them. Remember that Francis Galton created the quincunx device to 

demonstrate bell-shaped curve of the normal distribution. Whoever drops the balls, the 

similar probability distribution can be obtained. It seems too difficult for Rosenberg to 

explain such population-level phenomena on the base of Newtonian mechanics.

     Let us turn our attention to Wright-Fisher drift model. It says the probability that 

the number of allele A is i in the next generation is expressed binominal distribution 

in equation (1). In the standard derivation of drift model we need some assumptions, 

for example, random gamete sampling, sexual reproduction, constant population size, 

no selection. Among these assumptions I focus on the assumption of random gamete 

sampling. This assumption means each gamete has an ‘equal probability’ of sampling. 

Are all gametes the same? Is this equality assumption empirically grounded? At the 

molecular level empirical data shows there are selectively neutral or nearly neutral 

alleles (Kimura 1983). But how about organism or population level? No consensus 

exists yet. Application of Wright-Fisher model is not restricted to the molecular level. It 

can also be applied to higher-level phenomena. 

     Fortunately, we can derive Wright-Fisher drift model without equality or neutrality 

assumption. Morimoto (2009a) adopts Jayens’ works to drift model. Statistical physicist 

Edward Jaynes (1957a; 1957b) derives equal probability by the use of the maximum 

entropy principle, which is a method of information theory. According to this principle, 

when entropy is maximum, we can make rational inference. Jaynes adopts maximum 

entropy principle to statistical mechanics. Standard approaches to statistical mechanics 

are based on the postulate of equal a priori probability, which is introduced by statistical 

physicist Richard Tolman (1938). It says that for an isolated system in equilibrium, it 

is found with equal porbability in any of its accessible microstates. On the other hand, 

Jaynes shows the standard formalisms in statistical mechanics can be derived without 

assuming ‘equal probability’ by using the maximum entropy principle and claimed that 

statistical mechanics is a consequence of rational inference.

     I will summarize Jaynes’ work by applying it to gamete sampling case. What we 
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want to know is the probability that i gametes are sampled from 2N gametes. Now we 

know the sum of all probabilities equals to 1. This is one of axioms of probability theory. 

Suppose that this is all information we have. Notice that we have no information about 

equality or neutrality. And then we maximize information entropy which is derived 

by Claude Shannon (1948). Subject to partial information D1 (in this case axiom of 

probability) we maximize entropy, that is, utilize our information most efficiently, then 

we obtain equal sampling probability

(2)

This equation expresses that sampling probability of each gametes is ‘equal’ (see 

Appendix 1 for detailed derivation). In this derivation equal probability is not an 

assumption, but a consequence of rational inference. Then Jaynes says there is no need 

for the principle of indifference nor of a priori probability in statistical mechanics. 

     Jaynes’ work is not about biology but about physics. Morimoto (2009a) adopts his 

work to drift model. There are many gametes in one generation and in the next 

generation only finite 2N gametes are drawn, so there are N individuals because of 

assumption of diploid organism. Suppose that in parental generation the frequency of 

gamete A is p and that in offspring generation the number of A is i. Let us number the 

gamete and define random variable xk as follows. xk is 1 if the number k allele is A, and 

xk is 0 if the number k allele is a. Let pk be the probability that k allele is A, and we don’t 

know what this probability is. In offspring generation, the number of allele A is i and the 

expected number of allele A in offspring generation is

(3)

and call this information D2. 

     In this situation we know axiom of probability which is denoted D1 above and we 

have further information, that is, expectation of the number of gametes A in offspring 

generation, which is denoted D2. Here again we don’t assume equal probability. Subject 

to these partial information (D1 & D2), we maximize information entropy function by 

  i

2N
p(i | D ) =           1 .

Σ2N
k = 1 x  p  = 2Np       k k .
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the use of maximum entropy principle, we obtain 

(4)

This equation is identical to Wright-Fisher model in equation (1) (see Appendix 2 for 

detailed derivation).

     By the use of maximum entropy principle we can derive drift model without equality 

assumption. Therefore complete or full information which Laplace’s demon could 

have, is not needed to derive drift model. However this doesn’t mean that drift model 

is incomplete or that it can't capture the real aspect of biological world. For we use 

observable and objective information about population, e.g., frequency of A, population 

size and so on. Such information reflects some aspects of reality.

     Let us summarize the derivation of drift model by the use of maximum entropy 

principle. Maximum entropy principle is a tool for rational inference from partial 

information. Here we have two kinds of information, i.e., axiom of probability and 

expectation. And notice that we don’t assume equal probability and we use information 

about objective properties of population. Under these constraints we can derive drift 

model by using maximum entropy principle.

Bayesian interpretation

     To clarify the meaning of probability concepts in drift model, I will explore maximum 

entropy principle further. Economist and statistician Arnold Zellner (1988) derives 

Bayes’ theorem by using maximum entropy principle. He says updating information by 

using MEP is an optimal information processing. 

    Suppose that there are some hypothesis Hk and data D and we have information in 

hypothesis p(Hk ), information in data p(D), and information in data given hypothesis 

p(D |Hk ). And by using some information processing rule, we get output information, 

that is, information in hypothesis given data p(Hk |D). Zellner claims that when we use 

different information processing rule like rule of adding irrelevant information or rule of 

decreasing information, we get different output information. And to minimize difference 

p(i | D  & D  )            1        =            p (1 - p)(       )2N

  i
i 2N - i

2
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between input and output information, that is, to minimize information loss, is an an 

optimal information processing rule. Here again we know the sum of all probabilities 

equals to 1 (D1). If we maximize entropy, that is, we minimize information loss, subject 

to partial information D1, we obtain

(5)

This equation is identical to Bayes’ theorem (see Appendix 3 for detailed derivation). To 

maximize information entropy means to utilize our information most efficiently, that is, 

to minimize information loss. Therefore Bayes’ theorem can be derived from maximum 

entropy principle. 

     From information theoretical point of view, Bayes’ theorem is a result of optimal 

information processing rules. When we update partial information optimally, we can 

derive drift model. If we just know one of axioms of probability, we can obtain equal 

probability by using MEP. If we have additional information, we can derive drift model 

by updating information optimally.

     I have attempted to interpret the probability concepts in genetic drift model from 

information theoretical point of view. If my attempt meets with success, drift model can 

be inferred by updating partial information optimally. To derive drift model, we don’t 

need complete of full information but partial one. We just know axiom of probability 

and the expectation. To derive drift model other assumptions including equality one is 

not needed. Even if we could have further information, we dare to dismiss it. 

     Moreover I show that probability concepts in drift model can be interpreted as 

Bayesian. Consequences of inference depend on what we know. Bayesian interpretation 

is one of the subjective interpretation. Namely, probability may change depending on 

what we know. If we just know axiom of probability, then we obtain equal probability 

by the use of maximum entropy principle. And if we have additional information 

of expectation, we get genetic drift model by using it. However, even if we put this 

interpretation on drift model, it doesn't mean drift model fails to capture objective 

features. In fact, as we saw, in derivation of drift model we use objective properties 

of population, like population size, frequency of allele A. So probability concepts in 

p(D  & H  ) p(H  )            1 k k

p(D  & H  ) p(H  )            1 k kΣk

p(H  | D )  =            1k .
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drift model can be interpreted as not just our ignorance as Rosenberg says, but rational 

inference from partial information. 
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Appendix 1. Equal probability

Let pk (k = 1,2,…2N) stand for probability that gamete k is sampled from 2N ones. 

Suppose that we are not given the value of probability pk , but we just know one of the 

axioms of probability

(A 1.1)

We call this information data 1; D1. In addition, Shannon (1948) proved that the quantity, 

which is positive, which increases with increasing uncertainty, and which is additive for 

independent source of uncertainty, is the information entropy function

(A 1.2)

In deriving pk on the basis of partial information, we ought to use the probability which 

has maximum entropy subject to whatever we know. We show that maximization of H 

leads to probability pk by equating the derivation to 0 subject to the constraint. 

Maximizing H yields

(A 1.3)

Now there is a constraint; one of the axioms of probability (A 1.1). Differentiating this 

gives

(A 1.4)

We maximize H by using the method of maximum entropy principle. We obtain

(A 1.5)

Σ2N
k = 1 p  = 1    k .

Σ2N
k = 1 p  log p    k k  =    H ‒ .

  =    dH 0 .

Σ2N
k = 1 dp  k = 0 .

Σ2N
k = 1 dp  k = 0 dH α‒ ,
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where α is a Lagrange multiplier. Now differentiating (A 1.2) gives

(A 1.6)

Substituting this into (A 1.5) yields

(A 1.7)

All these coefficients of dpk must be 0 in order to satisfy this identical equation. Then

(A 1.8)

Transforming this equation yields

(A 1.9)

Substituting this into (A 1.1) becomes 

(A 1.10)

Then

(A 1.11)

Substituting this into (A 1.9) gives

(A 1.12)

Thus probability p k can be derived by using maximum entropy principle. Further, when 

i gametes are sampled, we obtain

Σ2N
k = 1 (1 + log p )    k  =    ‒

dH
dpk

.

Σ2N
k = 1  (1 + log p )    k‒ .dpα+ [                        ] k= 0 

 (1 + log p )    k .α+ = 0 

 p   k ,exp( - α - 1 )=

.exp( - α - 1 )Σ2N
k = 1 p  k =  Σ2N

k = 1 =  exp( - α - 1 )Σ2N
k = 1=  2Nexp( - α - 1 )=  1

exp( - α - 1 ) =  2N
1 .

=  2N
1 . p  k
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(A 1.13)

Appendix 2. Wright-Fisher drift model

We will derive Wright-Fisher drift model by using maximum entropy principle. Initially, 

assume that diploid organisms in some population have either allele A or a on a specific 

locus and that the frequency of A is p in the parental generation. There are a large 

number of gametes at the time of reproduction of parental generation, but we suppose 

that only 2N gametes are sampled from them in offspring generation. So there will be N 

individuals in offspring generation. Now we want to know the probability that the 

number of allele A is i in the next generation. Let pk (k = 1,2,…2N) stand for the 

probability that k allele in the offspring generation is A and we don’t know what it is. 

Again suppose that we know normalization. As we see in A1 above, this is one of the 

axioms of probability theory;

(A 2.1)

and call this information D1. Further, we know expected number of allele A in offspring 

generation. 

     Let us number each allele in this time from 1 to 2N and define random variables xk 

as follows. xk is 1 if the number k allele is A, and xk is 0 if the number k allele is a. In 

offspring generation, the number of allele A is i, then

(A 2.2)

And expected number of allele A in offspring generation is

(A 2.3)

=  2N .p(i | D )           i

i

Σ2N
k = 1 p  = 1    k ,

Σ2N
k = 1 x  = i    k .

Σ2N
k = 1 x  p  = 2Np       k k .
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and call this information D2. Suppose that we know only D1 and D2, then here are two 

constraints; normalization and expectation. Differentiating each constraint gives

(A 2.4)

and 

(A 2.5)

By maximizing H under these constraints, we obtain

(A 2.6)

where α and β are Lagrange multipliers. Substituting entropy H into (A2.6) yields

(A 2.7)

and then

(A 2.8)

Transforming this equation yields

(A 2.9)

Substituting this equation into (A2.1) yields

(A 2.10)

Then we obtain

(A 2.11)

Σ2N
k = 1 dp  k = 0 ,

Σ2N
k = 1  dp  k = 0 x  k .

Σ2N
k = 1 dp  k- αdH Σ2N

k = 1  dp  kx  k- β = 0 ,

Σ2N
k = 1  (1 + log p )    k‒ .dpα+ [                                 ] k= 0 β+ xk

  1 + log p     k .α+ = 0 βx+ k

p     k .α- βx- kexp(                    )- 1=

Σ2N
k = 1 p  =     k Σ2N

k = 1  =     Σ2N
k = 1α- exp(            )         exp(        ) = 1 .- 1α- βx- kexp(                    )- 1 βx- k

Σ2N
k = 1

α- exp(            )         - 1
exp(        )   

=
1

βx- k
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Substituting this into (A2.9) becomes

(A 2.12)

Next, to erase multiplier β, we ought to differentiate entropy function H subject to the 

two constraints. Entropy function and normalization are not the function of multiplier β. 

So we only differentiate expected value with respect to β, then we obtain 

(A 2.13)

Substituting (A2.12) into this equation yields

(A 2.14)

The left-hand side of this equation is transformed to

(A 2.15)

Then multiplier β is

(A 2.16)

Substituting this into (A2.12) yields

(A 2.17)

Σ2N
k = 1 exp(        )   

 p  =    k

exp(        )   βx- k
 =    

[exp(      ) + 1]  

exp(        )   βx- k

β- 2Nβx- k

Σ2N
k = 1 x  p  - 2Np = 0 .     k k

Σ2N
k = 1 exp(        )   

exp(        )   βx- k

 =    

d  xkΣ2N
k = 1

dβ
log Σ2N

k = 1 exp(        )   βx- k[                         ] =    

 =    
d

dβ
log exp(        ) + 1  βx- k(                        ) 2N

exp(   ) + 1  β
2N .

βx- k

Σ2N
k = 1 exp(        )   

exp(        )   βx- k

 =    
  xkΣ2N

k = 1 2Np
βx- k

 =    
1 - p

.β log p

. p  =     k

1 - p
p

+ 1

1 - p
p(          )

(                 ) 2N

k

= p ( 1 - p ) i 2N - i

x
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This is the probability that k allele in the offspring generation is A. Summing (A2.17) 

from k = 1 to 2N and substituting (A2.2) into the result, we obtain

(A 2.18)

This result is identical to Wright-Fisher drift model. Therefore it can be derived by using 

the method of maximum entropy principle.

Appendix 3. Bayes’ theorem

Let Hk (k = 1,2, …, n) stand for hypothesis and D for data. There is a need to measure 

information in the input and output probability functions. The following measures will 

be employed;

     Information in      (A3.1)

 

     Information in     (A3.2)

     Information in     (A3.3)

     Information in     (A3.4)

In each case, information is given as an average of a log probability function with 

p(Hk |D) used as a weight function. The difference between the output and input 

information is represented as

           

 (A3.5)

According to an optimal information processing rule, the output information should 

be as close as possible to the input information and ideally equal to it. To minimize 

information loss with this rule, we ought to minimize (A3.5). Here again, suppose that 

  pΣn
k = 1 =    (H  | D )   k log  p (H )   k  p (H )   k   -

  pΣn
k = 1 =    (H  | D )   k log  p (D)     p (D)    =     - log  p (D)     -

  pΣn
k = 1 =    (H  | D )   k log  -  p (D | H  )   k

  p (D | H  )   k

  pΣn
k = 1 =    (H  | D )   k log  -  p (H  | D )   k   p (H  | D )   k

  pΣk  =    (H  | D )   klog   -  p (H  | D )   k   p (H  | D ) +   kΣ i log  p (D)    log  p (D | H  )   kL

  pΣk (H  | D )   k  - log  p (H  ) .   k

p(i | D  & D  )            1        =            p (1 - p)(       )2N

  i
i 2N - i

2
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we know only that the sum of all probabilities equals to 1;

         (A3.6)

Minimize (A3.5) subject to the condition (A3.6) by using the method of maximum 

entropy principle, we obtain

       (A3.7)

where α is a Lagrange multiplier. The left-hand side of this equation is transformed to

  

       

       

       

   

Then we get

    (A3.8)

Substituting this equation into (A3.6) and differentiating respect to Hk yields

    (A3.9)

So we obtain

       (A3.10)

Substituting this into (A3.8) gives

  pΣk (H  | D )   k = 1 .   

  dpΣk (H  | D ) - 1   kL + α{                             }d
dHk

= 0 ,
[ [

  pΣk (H  | D )   klog   -  p (H  | D )   k   p (H  | D ) +   kΣk log  p (D)    log  p (D | H  )   k

  pΣk (H  | D )   k  - log  p (H  )    k

 [
 [

=  Σk log  p (D | H  ) -   klog  p (H  | D ) -   k [ log  p (H  )    k + α  [+ 1 - 1 

=  Σk log  p (D | H  ) -   klog  p (H  | D ) -   k [ log  p (H  )    k + α  [ . 

d
dHk

  dpΣk (H  | D ) - 1   k   + α{                             }

log  p (D | H  )    klog  p (H  | D )    k log  p (H  )    k - α . =   +

log  p (D | H  )    k log  p (H  )    k=   Σk Σk - α+log  p (H  | D )    kΣk = 0 .  

log  p (D | H  )    k log  p (H  )    k=   Σk α
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       (A3.11)

This equation is identical to Bayes’ theorem. Therefore we can derive Bayes’ theorem 

from maximum entropy principle.

(D | H  )    k log  p (H  )    k
=   Σk 

  p (D | H  )    k log  p (H  )    k  p (H  | D )    k
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