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     Biology has been a very dynamic and successful science in the second half of the 

twentieth century, thanks to molecular and cell biology methods. However, it seems that 

the pace of progress is exponentially increasing since the 90s, mostly due to the rise of 

genomics and functional genomics, which offer radically new ways to investigate cells 

and organisms (Nowak 1995; Hieter and Boguski 1997). These new technologies have 

brought about important changes in the way research is conducted. Among these is the 

necessary development of new collaborative efforts with other scientific disciplines, 

like physics, mathematics, computer science, and engineering. In this paper, I focus 

on the calls made in favor of building new bridges between biology and engineering 

in the context of the emergence of systems and synthetic biology (Csete and Doyle 

2002; Lazebnik 2002; Stelling et al. 2004; Tomlin and Axelrod 2005; Endy 2005; 

Kremling and Saez-Rodriguer 2007; Reeves and Fraser 2009). This issue is interesting 

because while disciplines like physics and chemistry have played essential roles in the 

development of modern biology, engineering’s contribution has been mainly technical. 

Here my goal is to discuss the different ways in which engineering methods, models and 

concepts have been and might be useful in the analysis of biological systems.

Reverse engineering biological complexity

     An important part of biology can be conceived as consisting in the analysis 

of biological systems through a method of decomposition and localization that is 

fundamentally mechanistic (Bechtel and Richardson 1993; Craver and Darden 2005). 

Roughly speaking, the goal of such research strategies is to decompose a complex 

system into its constituent parts and to explain how their interactions produce some 
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of the system’s behaviors. Each component performs a certain operation and through 

their organization they produce the system’s behavior. This is how physiology, cell 

biology and molecular biology have made great progress in the past. However, the 

rapid development of new experimental approaches in the last twenty years has shown 

important limits of classical decomposition methods. It has become evident that the 

traditional ways used by molecular and cell biologists to build mechanistic models are 

often not sufficient.

     Let me first briefly sketch the nature of these changes. It has begun with the launch of 

the Human Genome Project and other genomics projects in the 80s. Once complete DNA 

sequences were known, the real challenge began, because biologists had to find out their 

functions – what each is doing in the cell’s economy. Functional genomics methods have 

been gradually developed in order to functionally analyze genomic sequences. What is 

remarkable about the so-called “-omics” approaches is that they allow analyzing cells 

and organisms at the systems level. What this means is that thousands of components 

can be observed simultaneously: gene expression (transcriptomics), protein-protein 

interactions (proteomics), etc. The access to data on a very large scale is of course a 

great chance, but with it come serious challenges. How to make sense of this flood 

of data (which are often of relatively poor quality)? How to infer the structure and 

functioning of the system from these data? How to analyze and explain the properties of 

these large and complex systems? How to construct mechanistic models with this level 

of complexity? How to analyze complex dynamical behaviors produced by intricate 

regulatory mechanisms? It seems that classical mechanistic model building based on 

intuition is not sufficient. According to many systems biologists, these challenges must 

be tackled with the help from engineering.

What can be brought by engineering

     Because it is often faced with complex system analysis, engineering has developed 

over the last decades a variety of tools, models and concepts that are potentially 

helpful for biologists. A first family of methods is called system identification, which 

basically aims at facilitating inferences about the structure of the system from data 
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about its behavior (Kremling and Saez-Rodriguez 2007). These data usually come from 

perturbation experiments. Importantly, these methods can also help design the most 

informative perturbations experiments. As useful as these methods are, in the case of 

biological systems, this task is very difficult, and often impossible, for several theoretical 

and practical reasons. First, because these systems are very large, models would consist 

of a several thousand ordinary differential equations. Second, the structure is unknown 

and with potentially millions of parameters, which makes the problem intractable. Third, 

only a limited amount of relatively poor quality and noisy data is available, which makes 

the problem even more difficult.

     It is thus impossible to start from large-scale experiments and directly retrieve the 

system’s structure. The problem must be constrained, and this can be done in several 

ways. One of these is to assume that these systems are modular. The modularity 

hypothesis not only simplifies reverse engineering, but it also plays various kinds of 

methodological and explanatory roles in systems biology, as we will see. A modular 

framework has been widely adopted in the last decade in the context of systems biology 

(Lauffenburger 2000; Segal et al. 2003; Wolf and Arkin 2003). The rationale is that 

analyzing biological systems in terms of modules is a powerful way to handle their 

complexity.

     Generally speaking, it simplifies the complexity of the task by reducing the number 

of components and interactions that must be perturbed, measured and analyzed. Instead 

of studying the interactions between all components (like genes or proteins), several 

components are grouped into a module and only interactions between modules are 

modeled. Each module is perturbed and then the intermodular interaction map can be 

retrieved. An early example of this approach can be found in the work of Kholodenko et 

al. (2002).

     The general underlying principle behind the modular hypothesis is that a module has 

relatively independent functional properties and can be modeled as an integrated sub-

system. In other words, what a module does is relatively independent from the context 

in which it is embedded. This is a functional criterion, but a module can also be defined 

structurally, by assuming that intra-modular connections are denser than inter-modular 

ones. This criterion can be used to identify modules in a large network based only on 
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structural knowledge. In all cases, the goal is to decompose a large and complex system 

in terms of relatively small modules, whose properties can be more easily analyzed and 

described.

     There are different ways to carry on such decomposition, depending on how modules 

are characterized and defined. One approach that has been much discussed recently 

is based on a comparison of molecular regulatory mechanisms (for example gene 

regulation networks) with electrical circuits. Such models are particularly interesting, 

because the comparison with engineering models is direct (and not only metaphorical). 

In an often-cited paper, Tyson et al. write: “Complex molecular networks, like electrical 

circuits, seem to be constructed from simpler modules: sets of interacting genes and 

proteins that carry out specific tasks and can be hooked together by standard linkages…

From these components, nature has constructed regulatory networks of great complexity 

” (Tyson, Chen and Novak 2003).

     This quotation encapsulates the most central principles of the modular framework. 

The first is that each module is characterized by specific dynamic properties that allow 

it to perform a specific function, in the same way as an amplifier or an oscillator in an 

electrical circuit. Second, these basic components can be connected in different ways, 

but according to some rules, and produce new functions and behaviors. Again, this is 

how many engineering systems are designed. Modules represent standard parts that 

are used again and again in the building of a large diversity of systems. An engineer 

who wants to understand the behavior of large circuit does not need to model it at the 

physical level, because decomposing it in terms of these basic functional modules can 

explain most of the system properties. It must be stressed that in this framework, the 

functions are not primarily defined in biological terms or based on chemical properties, 

but rather in terms of dynamical behavior (oscillator, filter, signal amplification, etc.).

     Such method also facilitates hierarchical modeling: modules linked together form 

higher-level modules. In a landmark paper on this perspective, Hartwell et al. write: 

“The higher-level properties of cells, such as their ability to integrate information from 

multiple sources, will be described by the pattern of connections among their functional 

modules” (Hartwell et al. 1999, C48). This again illustrates how systemic properties are 

to be explained in this framework.
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     Importantly, this method of decomposition is different from (though not incompatible 

with) molecular and cell biology: while the latter focuses on components (genes, 

proteins, etc.), the modular framework decomposes a system in terms of entities 

characterized dynamically.

     Robert Rosen, a theoretical biologist who worked on dynamical modeling starting 

in the 70s, had long ago expressed his dissatisfaction with molecular biology's focus on 

molecular components.

     He called instead for an analysis based on dynamical properties. Scientists like Rosen 

remained relatively marginal at that time, but in the last decade a growing number 

of biologists have been convinced that a new language is necessary to describe and 

analyze biological systems. There are several reasons to think that engineering can offer 

such language (Lazebnik 2002). First, it is functional, which is obviously not the case 

with physics and chemistry. Second, contrary to classical mechanistic models, it deals 

fundamentally with dynamical phenomena. Engineering is indeed certainly the field 

that has most successfully developed the cybernetic and systems view originating in the 

40s and 50s. Third, it can unify different phenomena through this focus on dynamics, 

because mechanisms that do not look similar from a molecular point of view can share 

the same dynamical principles.

     Another benefit of adopting an engineering view point is that it provides a kind 

of simplicity, which is much needed, as scientists are increasingly puzzled by the 

complexity of the systems they study. The complexity of biochemical mechanisms 

produces relatively simple and reliable behaviors. Models must sometimes be able to 

ignore part of this complexity and capture these essential features. Molecular biologist's 

focus on mechanistic details can make them miss these emergent properties. Of course, 
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Thus when we apply a prespecified set of fractionation techniques to an unknown system, 

there is no reason why the fractions so obtained should be simply related to properties of the 

original system. Yet this is exactly what happens when a molecular biologist fractionates a 

cell and attempts to reconstruct its functional properties from the properties of his fractions 

(Rosen 1972, 54).



this does not mean that detailed and complex models are useless, but only that they 

must be complemented by the identification of general principles able to provide some 

intelligibility.

     It is to be noted that the emerging field of synthetic biology shows a remarkable 

convergence with this general view. Whereas classical genetic engineering consists in 

introducing new genes in organisms, synthetic biologists are interested in rewiring and 

designing regulatory circuits. A famous example is the repressilator, which is a synthetic 

gene network designed by Michael Elowitz and Stanislas Leibler (2000) to exhibit 

stable oscillations. They adopted an engineering perspective in the creation of this new 

property. Systems and synthetic biology are thus complementary, because while the 

former focuses on modeling modules and circuits, the latter tries to build them in vivo.

Analyzing robustness

     Another important contribution of engineering to biology is the study of robustness, 

understood as the ability of a system to perform a function despite internal and external 

perturbations (Kitano 2004; Stelling et al. 2004). This is a much-discussed topic since 

the turn of the century and engineering has contributed to this inquiry in several ways.

     The first point is that modularity might be part of the basic architectural requirements 

for designing a robust system. Kitano writes: “modularity is an effective mechanism 

for containing perturbations and damage locally to minimize the effects on the whole 

system” (Kitano 2004, 828). Engineers design their systems to be modular in order to 

increase robustness. It is not straightforward to find out if biological systems really share 

this property, but at least biologists have now some tools to address this question.

     The second idea is that modules themselves exhibit robustness, at the level of their 

ability to perform their characteristic function (input-output transformation) or behavior 

(for example oscillating). The goal is then to measure a system’s or a mechanism’

s robustness and engineering offers several useful analytical tools, which I can only 

briefly mention here: sensitivity analysis, which allows a rigorous characterization of the 

dependency of a dynamical behavior on parameters’ values; bifurcation analysis; control 

analysis.
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     Another important point is that robustness analysis contributes to the explanation of 

the complex organization of regulatory circuits. It is probable that in most cases, part 

of the observed complexity provides the necessary robustness of biological functions 

(and their relative simplicity at the level of behavior). In other words, many biological 

functions could be performed with simpler mechanisms, but additional layers of 

regulation increase their reliability and guarantee that the function is produced despite 

noise at the level of the components (which is always the case in biological systems). 

Hence robustness analysis is necessary to understand cellular organization.

     The last aspect is more methodological. Robustness analysis provides criteria for 

model building. The difficulty is that there are always many possible models compatible 

with experimental data. Robustness analysis can help distinguish between more and less 

plausible models, because it is unlikely that a non-robust mechanism exists in nature. 

Of course, this does not mean that the most robust model is the correct one, but this 

provides some kind of constraint (Morohashi et al. 2002). It can also suggest how to 

improve a model by identifying which features might increase its robustness.

Conclusion

     The modular framework analyzed here looks very convincing and exciting from 

many points of view. However, some important questions about its fundamental 

assumptions must be raised. First, can biological systems really be decomposed in such 

relatively autonomous sub-systems? Second, how good is the analogy with engineering 

modules?

     It is not clear that the identified modules are really independent from other parts of 

the system. If this dependence is large, the arguments put forward by the proponents of 

the modular framework become less convincing. This problem also arises in the context 

of synthetic biology, when it turns out that a designed circuit does not behave in the 

same way in all cells (because it interferes with normal processes).

     It is nonetheless arguable that engineering can offer an original contribution to 

biology because contrary to physics and chemistry, it shares with biology a functional 

framework. Engineers have developed a rich set of tools to describe and design 
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functional devices, based on the rigorous analysis of their dynamical properties. This 

contribution is not only methodological but also theoretical, as illustrated by robustness 

analysis. However, there are huge differences between biological and engineering 

systems. They have tended to be downplayed in the recent hype about these approaches. 

It is still too early to know how far these analogies can be pushed and how important 

the transfer of knowledge will be. But the engineering mindset has already encouraged 

biologists to ask new questions about cells and organisms and explore original avenues 

of research.
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