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Abstract

Birkhoff normal form is a power series expansion associated with the local behavior of the Hamil-
tonian systems near a critical point. It is known that around the critical point one can take a
convergent canonical transformation which puts the Hamiltonian into Birkhoff normal form for
integrable systems under some non-degeneracy conditions. By means of an expression of the
derivative for the inverse of Birkhoff normal form by a period integral, analytic continuation of
the Birkhoff normal forms is considered for the free rigid body dynamics on SO(3). It is shown
that the monodromy of the analytic continuation for the derivative of the inverse for the Birkhoff
normal forms coincides with that of an elliptic fibration which naturally arises from the dynamics.

1 Introduction

In analytical mechanics, the motions of rigid bodies are basic problems. Among them, the free
rigid body, which stands for the rigid body under no external force, is the simplest example.
Its complete integrability and the stability of its equilibria are understood well through the long
history of researches. In particular, geometric mechanics provides a well-organized description of
this dynamical system. (See [38, 1, 25].)

The free rigid body dynamics should first be defined as a Hamiltonian system on the cotangent
bundle of the rotation group SO(3). Because of the left-invariance of this system, it is essentially
described by the so-called Euler equation posed on the angular momentum, which can be justified
by the Lie-Poisson reduction procedure. Moreover, by means of the Marsden-Weinstein reduction,
one can reduce the original system onto the level surface of the norm of the angular momentum in
the space of angular momenta, which is a two-dimensional sphere. The reduced system is of one
degree of freedom, and therefore completely integrable in the sense of Liouville. It is well known
that there are generically six equilibria for the reduced systems on the sphere, four of which are
elliptic and the other two are hyperbolic. (cf. [25].)

Around a stationary point of a Hamiltonian system, it is possible to consider the normal form
of the Hamiltonian. Historically, Birkhoff introduced the notion of Birkhoff normal forms as formal
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series and discussed the relation with the stability [5, 6]. It is known that there exists a Darboux
coordinate system which makes the Hamiltonian in Birkhoff normal form, in a neighbourhood
of a non-degenerate stationary point by a result of Vey [37] for analytic completely integrable
Hamiltonian systems. The differentiable case of class C∞ was studied by Eliasson [12]. The
convergence of canonical transformation which makes the Hamiltonian into Birkhoff normal form
for analytic integrable systems including the degenerate case was shown by Ito [21] under the non-
resonance condition. The convergence of the canonical transformation which puts the Hamiltonian
into Birkhoff normal form for the systems of one degree of freedom was essentially shown by Siegel
[34]. In [41], Nguyen Tien Zung developed another more geometric approach for the analytic
completely integrable Hamiltonian systems, on the basis of the direct proof of the analytic extension
through the period integrals.

The detailed structure of the Birkhoff normal form has been studied recently for the pendulum
[15] and for the free rigid body [16]. In [16], the Birkhoff normal forms both for the elliptic and
hyperbolic stationary points are considered by using the method of relative cohomology, and the
properties of the Birkhoff normal forms and those of the inverse of the Birkhoff normal forms
are discussed. There are also the papers [11, 31] which calculate the Birkhoff normal forms for
the spherical pendulum and for the free rigid body in order to study the semi-global symplectic
invariants introduced by Vũ Ngo.c San [33] for these specific examples.

On the other hand, the free rigid body dynamics is closely related to complex algebraic geometry
because of its complete integrability. In fact, the integral curve of the free rigid body can be
described as an intersection of two quadric surfaces in three-dimensional Euclidean space, which is
a (real) elliptic curve. From the viewpoint of complex algebraic geometry, it is natural to complexify
and to compactify all the settings, which is also helpful to understand the deep geometric structure
of the free rigid body dynamics. In view of this, several elliptic fibrations arising from the free
rigid bodies have been considered in [29]. In this paper, the fibrations are considered over the
base space which includes not only the values of the Hamiltonian but also the principal axes of the
inertia tensor, as their base coordinates. This even allows a geometric description of the bifurcation
phenomena of the free rigid body dynamics as described in [29], where the singular fibres of these
elliptic fibrations are classified in relation to such bifurcation phenomena. In the present paper,
one mainly studies the so-called naive elliptic fibration in [29], which is the family of complexified
and compactified integral curves.

Although the Birkhoff normal form is by definition a local object associated to a stationary
point for a Hamiltonian system, it is possible to enquire its analytic extension in the integrable
case. In the present paper, the Birkhoff normal forms of the equilibria for the free rigid body
dynamics and their analytic continuation are considered in relation to the naive elliptic fibration
which is discussed in [29]. The key to this relation is an expression of the derivative of the inverse
for the Birkhoff normal form in terms of period integrals, which is closely related to a special Gauß
hypergeometric differential equation. This makes the concrete calculation rather easy.

The main results of the present paper are as follows:
First, as to the global properties of Birkhoff normal forms for the free rigid body dynamics, it is
shown that the derivative of the inverse for the Birkhoff normal forms is analytically extended as
multi-valued functions over the regular locus of the base space of the naive elliptic fibration. One
finds that these analytic continuations have the monodromy in a function theoretic sense and the
naive elliptic fibration has also the monodromy structure as one of its geometric aspects. It is shown
that these two kinds of monodromy structures coincide with each other. Moreover, the explicit
calculation of the global monodromy is given by means of the analysis of a Gauß hypergeometric
differential equation and the topology of the complement of a hyperplane arrangement given by
the singular locus of the naive elliptic fibration.

Recently, several researches have been done on the relation between elliptic fibrations and
the compactifications of string theory in view of the F-theory. Among them, [13] deals with the
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elliptic fibrations modeled by quadrics intersections in P3(C), called D5 elliptic fibrations, and puts
emphasis on the appearance of non-Kodaira singular fibres. The non-Kodaira singular fibre of D5

elliptic fibrations is, in [13], shown to consist of four smooth rational curves intersecting at one
point and it is labeled as I∗−0 fibre. It is to be noted that such a singular fibre is also observed in
the modification of elliptic fibrations arising from the free rigid body dynamics in [29], although
the aim of [29] is to give the elliptic fibration whose singular fibres are in the list of singular fibres
of elliptic surfaces by Kodaira for the elliptic fibrations arising from the free rigid body dynamics.
See Subsection 5.3 (in particular pp.392-393) in [29] for detail. It is of much interest that one can
observe the importance of elliptic fibrations modeled by quadrics intersections in P3(C) even in the
simple example of classical mechanics, the free rigid body dynamics, in [29] and the present paper.

The structure of the present paper is as follows:
In Section 2, the expression of the derivative for the inverse of Birkhoff normal forms both around
the elliptic and hyperbolic stationary points for an arbitrary Hamiltonian system of one degree of
freedom is given in terms of period integrals.

After a brief explanation about Euler equation for the SO(3) free rigid body dynamics, Sec-
tion 3 describes the application of the arguments in Section 2 to the case of the free rigid body
dynamics. In this case, the explicit expression of the derivative of the inverse for the Birkhoff
normal forms is given in terms of the complete elliptic integral of the first kind. From this expres-
sion, the derivative of the inverse for the Birkhoff normal forms is connected to a special Gauß
hypergeometric differential equation.

Section 4 deals with the relation between the result in Section 3 and the elliptic fibration arising
from the free rigid bodies which is considered in [29]. The singular fibres of this elliptic fibration
are classified in [29], but the global monodromy is not discussed there. One computes explicitly
the cocycles of the regular fibre in a neighobourhood of singular fibres on an irreducible component
of the singular locus, which form a basis of its first cohomology group, and it is shown that they
are written in terms of the period integrals appearing in Section 3.

Moreover, in Section 5, the global monodromy of the elliptic fibration in [29] is calculated.
First, using the symmetry of this elliptic fibration and the period integrals in Section 3, as well
as the results in Section 4, one computes the basis of the first cohomology group of regular fibres
around the singular fibres on each irreducible component of the singular locus for the elliptic
fibration. Second, the local monodromy of the elliptic fibration is calculated around each irreducible
component of the singular locus. Third, the fundamental group of the regular locus of the fibration
in [29] is determined explicitly, by using the techniques of the topology of the complement of
hyperplane arrangements. Finally, on the basis of these results, the global monodromy of the elliptic
fibration is computed. As the main results of the present paper, the monodromy representation
of the fundamental group of the regular locus of the base space for the naive elliptic fibration is
explicitly determined and it is shown that this monodromy coincides with that of the analytic
continuation for the derivatives of the inverse of the Birkhoff normal forms for the free rigid body
dynamics. The results in Sections 4 and 5 are compared with the results of [16]. In [16, §VI],
it is already emphasised that the n-th coefficient of the inverse for the Birkhoff normal form,
which is viewed as power series in the action variable, around an elliptic equilibrium on the axis

corresponding to I3 is a symmetric polynomial Pn in the parameter r2 =

(
1

I1
− 1

I2

)/(
1

I3
− 1

I2

)
,

where I1, I2, I3 stand for the principal axes of the inertia tensor of the rigid body, in the sense
that

Pn(r2) =

n∑
j=0

Fjr
2j , Fj = Fn−j .

Note that it is assumed that I3 < I1 < I2 in [16]. It is shown here that this property is a consequence
of a covariance of the analytic extensions of the derivative of the inverse for the Birkhoff normal
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forms, relative to the symmetry group S4 of the base space of the naive elliptic fibration arising
from the free rigid body dynamics. This covariance is explained in the formulae (5.1). On the top
of these covariance formulae, another formula is derived in the spirit of the connection formulae of
the Gauß hypergeometric differential equation (cf. Proposition 5.4 and [9]).

A similar study on the simple pendulum dynamics is dealt with in [36]. The relation to the
rigid body dynamics might be clarified in view of [20] and [22] in a future work.

2 Birkhoff normal forms for a system of one degree of free-
dom and period integrals

In this section, we discuss the expressions for the derivative of the inverse of Birkhoff normal forms
both around elliptic and hyperbolic equilibria for a real analytic Hamiltonian system of one degree
of freedom by certain period integrals. Note that the derivative for the inverse of Birkhoff normal
form around an elliptic equilibrium is physically the period of the integral curve. We consider the
derivative for the inverse of Birkhoff normal form because it is more convenient to calculate the
monodromy of its analytic extension than the inverse of Birkhoff normal form itself, as we see in
the free rigid body case.

Take a real analytic symplectic manifold (M,ω) of dimension two and consider a real analytic
Hamiltonian H. For the systems with one degree of freedom, the convergence of the canonical
transformation which puts the Hamiltonian into Birkhoff normal form for an equilibrium was
essentially known from the study by Siegel [34]. Let (x, y) be a Darboux coordinates of (M,ω)
such that ω = dx ∧ dy. Assume that the origin (x, y) = (0, 0) is an elliptic equilibrium, where

H = 0, and that the Hamiltonian H is in Birkhoff normal form H = H
(
x2 + y2

2

)
, where H is an

invertible analytic function in one variable around the origin. Denote the inverse of the function
H by Φ. Suppose that there is a one-form η defined on U \ {(0, 0)}, where U is a neighbourhood
of the origin (x, y) = (0, 0), such that ω = η ∧ dH. Then, we have the following theorem.

Theorem 2.1. The derivative of the inverse Φ of the Birkhoff normal form H around an elliptic
stationary point, where H = 0, writes

Φ′ (h) = − 1

2π

∫
H=h

η.

Here, the integral path is taken as the integral curve of the energy level H = h.

Theorem 2.1 can be proved by performing a straightforward integration of some explicit ex-
pression of the one-form η in the above coordinates (x, y), so we omit the proof. As to the integral
path, we can take another real closed arc homotopic to the original real integral curve in the
complexification of the real integral curve H = h. See the explanation below.

Remark 2.1. The one-form η can be replaced by η + fdH, where f is a function on U \ {(0, 0)}.
In fact, if η′ satisfies η′ ∧ dH = ω, we have (η − η′) ∧ dH = 0. Thus, we have η − η′ = fdH,
for a suitable function f , so that

∫
H=h

η =
∫
H=h

η′. See [10] and [37, §4] for the general case. In
fact, the one-form η is an example of the so-called Gelfand-Leray form, which can be found in [2,
Chapter 7]. An application of Gelfand-Leray form in dynamical systems is given in [17]. Lemma
1 loc. cit. guarantees the existence of η in Theorem 2.1.

In a parallel manner, we consider an expression of the derivative of the inverse for Birkhoff
normal form around a hyperbolic stationary point. In this case, we can take a Darboux coordinates
(X,Y ) with the origin at a hyperbolic equilibrium, such that ω = dX ∧ dY and the Hamiltonian
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H with H(0, 0) = 0 is in Birkhoff normal form H = H (XY ), where H is an invertible analytic
function in one variable whose inverse is again denoted by Φ. We consider the complexification
MC of M where the symplectic form ω and the Hamiltonian H are extended as a holomorphic
two-form and as a holomorphic function. Taking a suitable complex neighbourhood UC ⊂ MC of
(X,Y ) = (0, 0), we choose a holomorphic one-form ηC on UC \{(0, 0)}, such that ηC∧dH = ω. We
can assume that (X,Y ) are holomorphic coordinates on UC. The real integral curve is naturally
complexified to a complex one-dimensional curve H(XY ) = h, (X,Y ) ∈ UC ⊂MC, as a level curve
of the holomorphic function H. On the complex curve H = h in MC, we consider the real closed
arc

γ : X =
√
ϵe

√
−1θ, Y =

√
ϵe−

√
−1θ, θ : 0→ 2π,

where ϵ := Φ(h) = H−1(h).

Theorem 2.2. The derivative of the inverse Φ of the Birkhoff normal form H for the Hamiltonian
H around a hyperbolic equilibrium where H = 0 writes

Φ′(h) =
1

2π
√
−1

∫
γ

ηC.

Remark 2.2. Theorem 2.2 can be proved from Theorem 2.1 through the imaginary transformation

X =
x +
√
−1y√
2

, Y =
x−
√
−1y√
2

of UC. In fact, if we regard (x, y) as real coordinates and restrict the symplectic form ω and
the Hamiltonian H, which are holomorphic on UC, to the real two-dimensional space U ′ = UC ∩{

(x, y) ∈ R2
}

, then we can use Theorem 2.1 for the one-form η′ = ηC|U ′ . Theorem 2.2 follows by
restricting the complexification on UC of this result to U .

Now, we make a comment about the above theorems from the viewpoint of complex analytic
geometry and we discuss the choice of the integral paths of the period integrals. We take a real
analytic Hamiltonian system (M,ω,H) of one degree of freedom as above. Assume that there is
an isolated non-degenerate equilibrium x0 ∈ M , either elliptic or hyperbolic, where H(x0) = 0.
Since all the settings are real analytic, we can complexify the phase space M to a complex two-
dimensional manifold MC, where ω and H are defined as a holomorphic two-form and as a holo-
morphic function. The holomorphic function H induces a fibration π : N → B of a neighbourhood
N ⊂ MC of the singular level set H−1(0)(= π−1(0)) in MC to a neighbourhood B ⊂ C of the
origin. Then, the singular fibre π−1(0) has an A1-singularity at x0 ∈ π−1(0) and the fibration
π : N → B can be regarded as a deformation of the A1-singularity. Clearly, the complexification
in MC of the level set H = h can be seen as a fibre of the fibration π. Now, the real integral curve
in Theorem 2.1, which we denote γ0, and the real closed arc γ in Theorem 2.2 are both vanishing
cycles in the fibre π−1(h) which shrink into the A1-singularity x0, as h→ 0. From such a kind of
viewpoint, we can combine the statements of Theorems 2.1 and 2.2 as follows:

Theorem 2.3. The period integral of the holomorphic one-form η defined on a neighbourhood N
of the complexified phase space MC, such that η ∧ dH = ω, along a vanishing cycle ν in the fibre
π−1(h) ⊂ N as the integral path is proportional to the derivative Φ of the inverse for Birkhoff
normal form respectively around the elliptic or hyperbolic equilibrium x0 ∈ N as

Φ′(h) = −cx0

2π

∫
ν

η,

where cx0 = 1 when x0 is elliptic and cx0 =
√
−1 when x0 is hyperbolic.
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For the application, it is to be noted that the real closed arc γ around the hyperbolic equilibrium
in Theorem 2.2 is in general hard to find explicitly since we do not necessarily know the Darboux
coordinates (X,Y ) concretely, but we can rather easily take another vanishing cycle in an explicit
manner, as we do in the free rigid body case in the next section.

Remark 2.3. A similar formula for the inverse of Birkhoff normal form of Hamiltonian system of
one degree of freedom is given in [14, Theorem 1], but they have considered the period integral of a

one-form ξ such that dξ = ω, which is different from η, as Φ(h) =
1

2π
√
−1

∫
ν

ξ. One can also prove

Theorems 2.1 and 2.2 on the basis of this formula. The idea to use period integrals over vanishing
cycles in the complexification of the real integral curve is also considered in [11] to compute certain
action variables of spherical pendulum around hyperbolic equilibria, but the formula in Theorem
2.2 does not appear explicitly.

3 Derivative of inverse of Birkhoff normal forms for free
rigid body dynamics

In this section, we apply the formulae in the previous section to the free rigid body dynamics. The
motion of a free rigid body can essentially be described by the Euler equation

d

dt
P = P ×

(
I−1(P )

)
,

where P = (p1, p2, p3) ∈ R3 is the angular momentum and I : R3 → R3 is the inertia tensor which
is a symmetric positive-definite linear operator with respect to the standard inner product · of R3.
Without loss of generality, we can assume I = diag (I1, I2, I3) and I1 < I2 < I3. Then, the Euler
equation writes

d

dt
p1 = −

(
1

I2
− 1

I3

)
p2p3,

d

dt
p2 = −

(
1

I3
− 1

I1

)
p3p1, (3.1)

d

dt
p3 = −

(
1

I1
− 1

I2

)
p1p2.

An important property of the Euler equation is that the functions H(P ) =
1

2
P · I−1 (P ) and

L(P ) =
1

2
P ·P are first integrals, so that the system can be restricted to the level surface of L. On

the level surface L =
1

2

(
p21 + p22 + p23

)
= ℓ, where ℓ is a positive constant, there are six equilibria

on the p1-, p2-, p3-axes, and those four on the p1- and p3-axes are elliptic, while the other two on
the p2-axis are hyperbolic. The restricted system on L(P ) = ℓ is a Hamiltonian system for the
Hamiltonian H|{L=ℓ} with respect to the symplectic form

ω =
dp1 ∧ dp2

3p3
=

dp2 ∧ dp3
3p1

=
dp3 ∧ dp1

3p2
. (3.2)

See [25] for more detail on the free rigid body dynamics.
We consider the derivative of the inverse for the Birkhoff normal form around the elliptic

equilibrium (p1, p2, p3) =
(√

2ℓ, 0, 0
)

, where (p2, p3) serves as the local coordinate system on
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L = ℓ. As is mentioned in the previous section, the derivative for the inverse of Birkhoff normal
form around an elliptic equilibrium is the period of the integral curve. By considering such a period
in the free rigid body case, one can more easily consider the analytic extension than the inverse
for Birkhoff normal form itself because of the relation between the derivative of it and a Gauß
hypergeometric differential equation as is described below. On this coordinate neighbourhood, we
consider the one-form

ηs := (1− s)
dp2

3

(
1

I3
− 1

I1

)
p3p1

+ s
dp3

3

(
1

I1
− 1

I2

)
p1p2

, (3.3)

where s is an arbitrary parameter. It is easy to verify that ηs ∧ dH = ω for any s.

Denote the inverse function of the Birkhoff normal form H − ℓ

I1
= H1 around the elliptic

stationary point
(√

2ℓ, 0, 0
)

by Φ1. We have an expression of Φ′
1 in terms of a period integral as

follows:

Theorem 3.1. The derivative of the inverse for the Birkhoff normal form around (p1, p2, p3) =(√
2ℓ, 0, 0

)
writes

Φ′
1(h) = − 1

3π

√
2

ℓ

1√
(d− c)(a− b)

K
(

(d− a)(b− c)

(d− c)(b− a)

)
. (3.4)

Here, a =
1

I1
, b =

1

I2
, c =

1

I3
, d =

h

ℓ
and K(λ) :=

∫ 1

0

dx√
(1− x2)(1− λx2)

is the complete ellip-

tic integral of the first kind. Denote the right hand side of (3.4) by S(a, b, c, d).

Proof. By Theorem 2.1, we have the expression Φ′
1(h) = − 1

2π

∫
H=h

ηs. The integral path is given

by  p21 + p22 + p23 = 2ℓ,
p21
I1

+
p22
I2

+
p23
I3

= 2h.
(3.5)

Using these equations, we have

∫
H=h

ηs = 2

(1− s)

∫ √
2ℓ

1
I1

−h
ℓ

1
I1

− 1
I2

−

√
2ℓ

1
I1

−h
ℓ

1
I1

− 1
I2

dp2

3
(

1
I3
− 1

I1

)
p3p1

+ s

∫ √
2ℓ

1
I1

−h
ℓ

1
I1

− 1
I3

−

√
2ℓ

1
I1

−h
ℓ

1
I1

− 1
I3

dp3

3
(

1
I1
− 1

I2

)
p1p2


= (1− s)

√
2

ℓ

1

3
√

(d− c)(a− b)
K
(

(d− a)(b− c)

(d− c)(b− a)

)
+ s

√
2

ℓ

1

3
√

(d− b)(a− c)
K
(

(d− a)(c− b)

(d− b)(c− a)

)
= − 1

3π

√
2

ℓ

1√
(d− c)(a− b)

K
(

(d− a)(b− c)

(d− c)(b− a)

)
. (3.6)

Here, we have used the formula (8.128.1) in [18] which displays

K
(

λ

λ− 1

)
=
√

1− λK(λ), for Im
√
λ < 0. (3.7)
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Note that
(d− a)(c− b)

(d− b)(c− a)
< 0 near the elliptic stationary point

(√
2ℓ, 0, 0

)
on the p1-axis. �

Here, we mention some covariance properties of the Euler equation (3.1). First, obviously, the
following transformations preserve the Euler equation:

δ1 :

p1p2
p3

 7→
−p1p2

p3

 , t 7→ −t; δ2 :

p1p2
p3

 7→
 p1
−p2
p3

 , t 7→ −t; δ3 :

p1p2
p3

 7→
 p1

p2
−p3

 , t 7→ −t.

It is clear that δ1, δ2, δ3 generate a group isomorphic to Z2 × Z2 × Z2. On the other hand, the
following transformations, where t is not transformed, preserve the Euler equation:

ϵ1 :

p1p2
p3

 7→ −
p1p3
p2

 ,

I1I2
I3

 7→
I1I3
I2

 ; ϵ2 :

p1p2
p3

 7→ −
p3p2
p1

 ,

I1I2
I3

 7→
I3I2
I1

 ;

ϵ3 :

p1p2
p3

 7→ −
p2p1
p3

 ,

I1I2
I3

 7→
I2I1
I3

 . (3.8)

These involutions ϵ1, ϵ2, ϵ3 generate another group isomorphic to the symmetric group S3 of
degree three. Needless to say that the first integral L is invariant with respect to the above
transformations. Note that the transformations δ1, δ2, δ3, ϵ1, ϵ2, ϵ3 act on the symplectic form ω
and the Hamiltonian H as δ∗jω = −ω, δ∗jH = H and ϵ∗jω = −ω, ϵ∗jH = H, j = 1, 2, 3.

By the transformation δ1 of the Euler equation, the equilibrium (p1, p2, p3) =
(√

2ℓ, 0, 0
)

is

mapped to
(
−
√

2ℓ, 0, 0
)

. The integral curves around the two equilibrium points
(
±
√

2ℓ, 0, 0
)

are

mapped to each other, but their orientations are opposite, since the time is reversed by δ1. As to

the period integral, the integrand ηs is transformed as δ∗1ηs = −ηs. Thus, the integral

∫
H=h

ηs is

invariant with respect to δ1. As a result, we have the following corollary.

Corollary 3.2. The derivative of the inverse of the Birkhoff normal form around (p1, p2, p3) =(
−
√

2ℓ, 0, 0
)
is given by (3.4).

Similarly, the transformation ϵ2 maps the equilibrium (p1, p2, p3) =
(√

2ℓ, 0, 0
)

to
(

0, 0,−
√

2ℓ
)

.

It maps the integral curves around each equilibrium to each other by ϵ2, reversing their orientations.
The integrand ηs of the period integral is transformed as ϵ∗2ηs = −ηs and the period integral itself
is transformed from (3.4) by the permutation (ac) ∈ S4 with respect to ϵ2.

Corollary 3.3. The derivative of the inverse Φ3 for the Birkhoff normal form around (p1, p2, p3) =(
0, 0,±

√
2ℓ
)
writes

Φ′
3(h) = − 1

3π

√
2

ℓ

1√
(d− a)(c− b)

K
(

(d− c)(b− a)

(d− a)(b− c)

)
= S(c, b, a, d). (3.9)

Remark 3.1. In [24, §3], the period of the integral curve around the elliptic equilibria for the
Euler equation of the free rigid body dynamics is considered, although the precise formulae as (3.4)
in Theorem 3.1 and (3.9) in Corollary 3.3 are not given. We need these precise expression in order
to consider the analytic continuation of the derivative of the inverse for Birkhoff normal forms.
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Next, we consider the derivative of the inverse for the Birkhoff normal form around the hy-

perbolic stationary points (p1, p2, p3) =
(

0,±
√

2ℓ, 0
)

. Around the stationary point (p1, p2, p3) =(
0,
√

2ℓ, 0
)

, we can use (p3, p1) as a local coordinate system. Take the one-form

η′s := (1− s)
dp3

3

(
1

I1
− 1

I2

)
p1p2

+ s
dp1

3

(
1

I2
− 1

I3

)
p2p3

,

where s is an arbitrary parameter as before, and the real closed arc

γ : p3 =

√√√√2ℓ
1
I2
− h

ℓ
1
I2
− 1

I3

cos θ, p1 =

√√√√2ℓ
1
I2
− h

ℓ
1
I2
− 1

I1

sin θ, θ : 0→ 2π.

Note that γ is a real closed arc contained in the complexification of the real integral curve given
by the affine curve (3.5), where (p1, p2, p3) ∈ C3 are regarded as complex affine coordinates.

We consider the period integral

∫
γ

η′s. Note that the equilibrium (p1, p2, p3) =
(√

2ℓ, 0, 0
)

is mapped to
(

0,
√

2ℓ, 0
)

by the transformation ϵ3 ◦ δ1, which maps the integral curves around(√
2ℓ, 0, 0

)
to those represented by γ. Therefore, using Theorem 2.2, we can calculate the derivative

for the inverse of the Birkhoff normal form around
(

0,
√

2ℓ, 0
)

. As before, this is invariant with

respect to the transformation δ2, which maps (p1, p2, p3) =
(

0,
√

2ℓ, 0
)

to
(

0,−
√

2ℓ, 0
)

.

Theorem 3.4. The derivative of the inverse Φ2 of the Birkhoff normal forms around (p1, p2, p3) =(
0,±
√

2ℓ, 0
)
writes

Φ′
2(h) =

√
−1

3π

√
2

ℓ

1√
(d− c)(b− a)

K
(

(d− b)(a− c)

(d− c)(a− b)

)
= −
√
−1S(b, a, c, d). (3.10)

Remark 3.2. In [31], they consider the inverse for the Birkhoff normal form around a hyperbolic
equilibrium of the free rigid body dynamics in terms of a period integral over a vanishing cycle in
the complexification of the integral curve in order to compute the semi-global symplectic invariant,
although the formula (3.10) is not given there.

Before closing this section, we give the following formulae for S(a, b, c, d) obtained through the
transformations δ1, δ2, δ3, ϵ1, ϵ2, ϵ3:

S(a, b, c, d) = S(a, c, b, d), S(b, a, c, d) = S(b, c, a, d), S(c, b, a, d) = S(c, a, b, d). (3.11)

These three formulae follow from (3.7) in the proof of the previous theorem and the covariance
with respect to δj , ϵj , j = 1, 2, 3. The list can be regarded as the description of the action of the
symmetric group S3 of degree three on S(a, b, c, d). We explain the action by the symmetric group
S4 of degree four in Section 5.

4 Elliptic fibration and explicit calculation of the cocycles

In this section, we discuss the naive elliptic fibration considered in [29] and calculate the cocycles
of the first cohomology group of regular fibres in relation to the period integrals in Section 3. The
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main results of this section are the explicit expressions (4.3) and (4.6), in terms of the analytic
extension of the function S, for a basis of the first cohomology group.

We start with a basic description of the naive elliptic fibration. As we have seen, the integral
curve of the Euler equation is given by the intersection of the two quadrics (3.5). From the
viewpoint of algebraic or analytic geometry, it is natural to complexify and to compactify the
integral curve by the complex projective curve{

x2 + y2 + z2 + w2 = 0,

ax2 + by2 + cz2 + dw2 = 0,
(4.1)

where (x : y : z : w) ∈ P3(C) are the coordinates given by p1 =
√
−2ℓ

x

w
, p2 =

√
−2ℓ

y

w
, p3 =

√
−2ℓ

z

w
,

and where a, b, c, d ∈ C are parameters given by
1

I1
= a,

1

I2
= b,

1

I3
= c,

h

ℓ
= d. The following

proposition is fundamental to the geometric understanding of this projective curve.

Proposition 4.1. If a, b, c, d are distinct, then the variety C defined by the above equations (4.1) is
a smooth elliptic curve, which has four branch points a, b, c, d as a double covering of the projective
line P1(C) ∼= C ∪ {∞}.

For the proof, see [29]. Because of this proposition, we have a natural elliptic fibration. In
fact, denoting by F the algebraic variety in P3(C) × P3(C) : ((x : y : z : w), (a : b : c : d)) defined
by the equation (4.1), we consider the projection πF : F ∋ ((x : y : z : w), (a : b : c : d)) 7→ (a : b :
c : d) ∈ P3(C) to the second component of the product space, which is an elliptic fibration called
the naive elliptic fibration in [29]. Here, an elliptic fibration means a smooth holomorphic mapping
of a complex space onto another complex space whose regular fibres are elliptic curves. As basic
facts of the naive elliptic fibration πF : F → P3(C), it is known that the total space F is smooth
rational variety and that the fibration πF is non-flat, i.e. there is a two-dimensional fibre of πF .
In fact, the singular fibres of πF are classified in [29] as follows:

Classification of the singular fibres of πF

1. If only two of the parameters a, b, c, d are equal, the fibre consists of two smooth rational
curves intersecting at two points. This is a singular fibre of type I2 in Kodaira’s notation
[23, 4]. Topologically, these singular fibres are double pinched tori of real dimension two.

2. If two of a, b, c, d are equal and the other two are also equal without further coincidence, the
fibre consists of four smooth rational curves intersecting cyclically. This is a singular fibre of
type I4 in Kodaira’s notation. Topologically, these singular fibres are quadruple pinched tori
of real dimension two.

3. If three of a, b, c, d are equal without further coincidence, the fibre is a smooth rational curve,
i.e. a two-dimensional sphere as a point set, but with multiplicity two. This singular fibre is
not in the list of singular fibres of elliptic surfaces by Kodaira.

4. If a = b = c = d, the fibre is a space quadric surface x2+y2+z2+w2 = 0, which is isomorphic
to P1 (C)× P1 (C).

It is also known that the fibration πF has no (meromorphic) section. On the total space F , there is
an action of the group Z2×Z2 which respects the fibration πF and which has no fixed point on the
regular fibres. Taking the quotient, we have an elliptic fibration bimeromorphic to a Weierstraß
normal form, which is flat and which admits only singular fibres included in the Kodaira’s list,
after suitable modifications. See [29] for the detailed discussion.
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In order to think about the monodromy of the naive elliptic fibration πF : F → P3(C), we
introduce the following locally constant sheaf G on the base space P3(C). As is known from the
description of the singular fibres, the singular locus of the elliptic fibration πF : F → P3(C) is
given by the divisor D : {a = b} + {a = c} + {a = d} + {b = c} + {b = d} + {c = d} on
P3(C) : (a : b : c : d). For (a : b : c : d) ∈ P3(C) \ Supp(D), the fibre π−1(a : b : c : d) is a smooth
complex torus, so that the first homology group H1

(
π−1
F (a : b : c : d);Z

)
forms a locally constant

sheaf of ZP3(C)\Supp(D)-module over P3(C) \ Supp(D):

G′ =
⊔

(a:b:c:d)∈P3(C)\Supp(D)

H1

(
π−1
F (a : b : c : d);Z

)
.

For a point (a : b : c : d) ∈ Supp(D), we consider its sufficiently small polydisc neighbourhood
U and set U ′ := U \ Supp(D). The group Γ(U ′, G′) of sections of G′ is determined independently
from the choice of U . Regarding Γ(U ′, G′) as the stalk G(a:b:c:d) on (a : b : c : d) ∈ Supp(D), we
consider the locally constant sheaf

G = G′ ⊔
⊔

(a:b:c:d)∈Supp(D)

G(a:b:c:d)

of ZP3(C)-module over the base space P3(C). Taking the dual of each stalk, we have the locally
constant sheaf of ZP3(C)-module

G∗ = G∗′ ⊔
⊔

(a:b:c:d)∈Supp(D)

G∗
(a:b:c:d),

where
G∗′ =

⊔
(a:b:c:d)∈P3(C)\Supp(D)

H1
(
π−1
F (a : b : c : d);Z

)
and G∗

(a:b:c:d) for (a : b : c : d) ∈ Supp(D) is determined in the same manner as G(a:b:c:d). We call
G and G∗ as the homological and cohomological invariant of πF .

Let p0 be a point in P3(C) \ Supp(D) and γ : t 7→ γ(t), 0 ≤ t ≤ 1, a closed path with the
reference point at p0 in P3(C) \ Supp(D). Taking a basis σ1,0, σ2,0 of H1

(
π−1
F (p0),Z

)
, we consider

the elements σ1(t), σ2(t) of H1

(
π−1
F (γ(t)),Z

)
which continuously depend on t and σi(0) = σi,1,

i = 1, 2. Then, there is a matrix A[γ] ∈ SL(2,Z) such that[
σ1(1)
σ2(1)

]
= A[γ]

[
σ1,0

σ2,0

]
.

Note that A[γ] depends only on the homotopy class [γ] ∈ π1 (P3(C) \ Supp(D); p0) of γ. The ho-
momorphism ρ : π1 (P3(C) \ Supp(D); p0) ∋ [γ] 7→ A[γ] ∈ SL(2,Z) is called the monodromy repre-

sentation of π1 (P3(C) \ Supp(D); p0). Similarly, taking the dual basis σ∗
1,0, σ

∗
2,0 of H1

(
π−1
F (p0),Z

)
such that σ∗

i,0 · σj,0 = δij , we have the representation ρ∗ : π1 (P3(C) \ Supp(D); p0) ∋ [γ] 7→ AT
[γ] ∈

SL(2,Z). We call it also monodromy representation. Clearly, the homological invariant G, as well
as the cohomological invariant G∗, is determined by the monodromy representation ρ or ρ∗.

We, now, consider the period integrals which appeared in the last section from the viewpoint of
the (co)homological invariant G (or G∗) and discuss the global monodromy, namely the monodromy
representation itself. We start with the extension of the one-form η such that ω = η ∧ dH to the

complex elliptic fibration πF : F → P3(C). On the level surface L(P ) =
1

2

(
p21 + p22 + p23

)
= ℓ, the

symplectic form ω writes as (3.2). On the coordinate neighbourhood with the coordinates (p2, p3),
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the one-form ηs in (3.3) satisfies ω = ηs ∧ dH for arbitrary s. With this in mind, we consider the
following one-form η:

η =
1√
2ℓ

w2d
( y

w

)
3(c− a)zx

.

According to the notation in Section 2, η should be written as ηC, but we use η also for the holo-

morphic form for the brevity. Because of the transformation of the coordinates p1 =
√
−2ℓ

x

w
, p2 =

√
−2ℓ

y

w
, p3 =

√
−2ℓ

z

w
and a =

1

I1
, b =

1

I2
, c =

1

I3
, d =

h

ℓ
, we see that η and ηs induce the same

section in Ω1
πF

:= Ω1
F /π

∗
F Ω1

P3(C), which is the sheaf over F of germs of relative differential forms

with respect to the fibration πF : F → P3(C). See e.g. [19] for details on relative differential forms.
More precisely, we have the following proposition.

Proposition 4.2. The one-form η induces a meromorphic section of Ω1
πF

on F , which is a holo-

morphic non-zero one-form on π−1
F (P3(C) \ Supp(D)).

Proof. On the total space F of the elliptic fibration πF , we have

η =
1√
−2ℓ

w2d
( x

w

)
3(b− c)yz

=
1√
−2ℓ

w2d
( y

w

)
3(c− a)zx

=
1√
−2ℓ

w2d
( z

w

)
3(a− b)xy

=
1√
−2ℓ

x2d
(
y
x

)
3(c− d)zw

=
1√
−2ℓ

x2d
( z
x

)
3(d− b)wy

=
1√
−2ℓ

x2d
(w
x

)
3(b− c)yz

=
1√
−2ℓ

y2d

(
z

y

)
3(d− a)wx

=
1√
−2ℓ

y2d

(
w

y

)
3(a− c)xz

=
1√
−2ℓ

y2d

(
x

y

)
3(c− d)zw

=
1√
−2ℓ

z2d
(w
z

)
3(a− b)xy

=
1√
−2ℓ

z2d
(x
z

)
3(b− d)yw

=
1√
−2ℓ

z2d
(y
z

)
3(d− a)wx

,

(4.2)

where η, as well as other one-forms, is regarded as a (local) meromorphic section of Ω1
πF

. Clearly,
η is holomorphic and non-zero over P3(C) \ Supp(D) from (4.2). �

Note that the integral
∫
σ
η of the one-form η over a cycle σ included in a fibre of πF depends

only on the class of the relative differential one-form to which η belongs. Thus, the correspondence∫
·
η : G′ ⊃ H1

(
π−1
F (a : b : c : d),Z

)
∋ σ 7→

∫
σ

η ∈ C

can be regarded as a linear functional over G′ with respect to CP3(C)\Supp(D), so that
∫
· η ∈

G∗′C := G∗′ ⊗ZP3(C)\Supp(D)
CP3(C)\Supp(D). Note that η can be regarded as a holomorphic (hence

closed) one-form on each regular fibre, so that

∫
σ

η depends only on the homology class of σ. It is

clear that
∫
σ1,0

η and
∫
σ2,0

η form a basis of G∗′C
p0 = H1

(
π−1
F (p0),C

)
and it suffices to consider

the monodromy of these period integrals in order to calculate the monodromy representation of
π1 (P3(C) \ Supp(D), p0) with respect to the fibration πF : F → P3(C).

We choose a basis of the first homology group H1

(
π−1
F (p0),Z

)
of the regular fibre near the

elliptic and hyperbolic stationary points of the free rigid body dynamics. Assuming the same
condition I1 < I2 < I3 for the inertia tensor I = diag(I1, I2, I3) as in Section 3, we start with a
regular fibre around the elliptic stationary points on the p1-axis. Note that these two points are
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in the same intersection of two quadrics H = h,L = ℓ, such that
h

ℓ
=

1

I1
, i.e. a = d. For the

simplicity, we assume that
1

I1
>

h

ℓ
>

1

I2
>

1

I3
. The real integral curves are parameterized as

σ± : (p1, p2, p3) =

±
√√√√√−2ℓ

(
1
I2
− h

ℓ

)
1
I1
− 1

I2

1−

(
h
ℓ −

1
I1

)(
1
I3
− 1

I2

)
(

h
ℓ −

1
I2

)(
1
I3
− 1

I1

) sin2 θ

,

√√√√2ℓ
(

1
I1
− h

ℓ

)
1
I1
− 1

I2

cos θ,

√√√√2ℓ
(

1
I1
− h

ℓ

)
1
I1
− 1

I3

sin θ

 ,

where θ : 0 → 2π, near (p1, p2, p3) =
(
±
√

2ℓ, 0, 0
)

. If h is near to
ℓ

I1
, i.e. if d is near to a, these

real closed arcs are vanishing cycles around two different A1 singular points and are included in
the same fibre of πF : F → P3(C). By Theorem 3.1 and Corollary 3.2, the period integrals of η
along σ± are the same: ∫

σ±

η = S(a, b, c, d). (4.3)

This reflects the fact that σ± are homologous to each other in H1

(
π−1
F (p0),Z

)
. Here, S(a, b, c, d)

is considered as a multi-valued holomorphic function over P3 (C) \ Supp(D). We take this period

integral as one of the basis of G∗′C
p0 = H1

(
π−1
F (p0),C

)
.

To obtain the other basis element, we consider the following real one-dimensional arcs in the
same regular fibre. We take the arcs

τ± : (p1, p2, p3) =

±
√√√√√−2ℓ

(
1
I2
− h

ℓ

)
1
I1
− 1

I2

1 +

(
h
ℓ −

1
I1

)(
1
I3
− 1

I2

)
(

h
ℓ −

1
I2

)(
1
I3
− 1

I1

) sinh2 φ

,

√√√√2ℓ
(

1
I1
− h

ℓ

)
1
I1
− 1

I2

coshφ,±
√
−1

√√√√2ℓ
(

1
I1
− h

ℓ

)
1
I1
− 1

I3

sinhφ

 ,

where φ moves from −∞ to +∞. It is easy to check that these two arcs are included in the same
fibre of πF : F → P3(C) near the singular locus a = d. Note that σ± meet τ± respectively at
single points

(
±
√
b− d :

√
d− a : 0 :

√
a− b

)
, while σ± do not meet τ∓. We also need to take the

following arcs:

τ ′± : (p1,p2, p3) =

−√−1

√√√√2ℓ
(

1
I2
− h

ℓ

)
1
I2
− 1

I1

sinhφ,

±

√√√√√−2ℓ
(

1
I3
− h

ℓ

)
1
I2
− 1

I3

1 +

(
h
ℓ −

1
I2

)(
1
I1
− 1

I3

)
(

h
ℓ −

1
I3

)(
1
I1
− 1

I2

) sinh2 φ

,±
√
−1

√√√√2ℓ
(

1
I2
− h

ℓ

)
1
I2
− 1

I3

coshφ

 ,

where φ moves from −∞ to +∞. It is easy to see that τ ′± are included in the same regular fibre
of πF : F → P3(C) near the singular locus a = d as τ±. By considering the behavior of these arcs
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when the parameters approaches infinity, we can check that the arcs τ±, τ ′± are connected at these
infinity points as in Figure 1.

Figure 1. The arcs τ± and τ ′±

(√
b− c :

√
c− a :

√
a− b : 0

) (
−
√
b− c :

√
c− a :

√
a− b : 0

)

(√
b− c : −

√
c− a :

√
a− b : 0

)(√
b− c :

√
c− a : −

√
a− b : 0

)

t t
tt

-

6
�

?

τ ′+

τ−

τ ′−

τ+

Note that there is no other intersection among τ± and τ ′± than these four points and that τ ′± do
not meet σ±. We denote the multiplication τ+ · τ ′+ · τ− · τ ′− by τ . In particular, τ is a closed arc in
the same regular fibre of πF : F → P3(C) as σ±. Moreover, the two cycles σ+, homologous to σ−,

and τ form a basis of H1

(
π−1
F (p0),Z

)
= G′

p0
. Thus, calculating the period integrals

∫
τ

η, together

with (4.3), we can obtain a concrete basis of H1
(
π−1
F (p0),C

)
= G′∗C

p0 .

In fact, we can express the period integral − 1

2π

∫
τ

η in terms of the analytic continuation of

the function S as in Theorem 4.4. For the proof, we need the following proposition.

Proposition 4.3. The following formula holds for the analytic continuation of the function S:

S(a, b, c, d) + S(b, a, c, d) = S(c, b, a, d).

Proof. For simplicity, we write as S1 = S(a, b, c, d), S2 = S(b, a, c, d), S3 = S(c, b, a, d). The proof
of the proposition can be performed by using the connection formulae of a special Gauß hyperge-
ometric differential equation. It is known that the complete elliptic integral of the first kind is a

Gauß hypergeometric function K(λ) =
π

2
F

(
1

2
,

1

2
, 1;λ

)
, which satisfies the Gauß hypergeometric

differential equation

(1− λ)λ
d2f

dλ2
+ (1− 2λ)

df

dλ
− 1

4
f = 0. (4.4)

See e.g. [39, Ch. 12. §12.5, p.494]. According to the description of the connection formulae for

this equation by [9, 7.405-7.406, pp.167-169], we consider the function F (λ) := F

(
1

2
,

1

2
, 1;λ

)
and

F ∗(λ) = F ∗
(

1

2
,

1

2
, 1;λ

)
(loc. cit.), which are holomorphic around λ = 0. Then, we set

φ1 = F (λ), φ3 = F (1− λ), φ5 =
1√
−λ

F

(
1

λ

)
, φ∗

2 = F (λ) log λ + F ∗(λ),

φ∗
4 = F (1− λ) log(1− λ) + F ∗(1− λ), φ∗

6 =
1√
−λ

{
F

(
1

λ

)
log(−λ)− F ∗

(
1

λ

)}
. (4.5)

The pairs (φ1, φ
∗
2), (φ3, φ

∗
4), and (φ5, φ

∗
6) give bases of the solution space of the Gauß hypergeo-

metric differential equation (4.4) around λ = 0, λ = 1, and λ = ∞, respectively. Between two of
them, we have the following connection formulae ([9, 7.405-7.406, pp.167-169]):

φ1 =
1

π
(φ3 log 16− φ∗

4) ,

φ∗
2 =

1

π

{(
(log 16)2 − π2

)
φ3 − φ∗

4 log 16
}

= φ1 log 16− πφ3,
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φ1 =

1

π
(φ5 log 16 + φ∗

6) ,

φ∗
2 =

1

π

{((
log 16 + π

√
−1

)
log 16− π2

)
φ5 + φ∗

6

(
log 16 + π

√
−1

)}
= φ1

(
log 16 + π

√
−1

)
− πφ5.

Thus, we have φ1

√
−1 + φ3 = φ5, which shows S1 + S2 = S3. Note that, for λ =

(d− a)(b− c)

(d− c)(b− a)
,

S1 = − 1

3π

√
2

ℓ

φ1(λ)√
(d− c)(a− b)

, S2 = − 1

3π

√
2

ℓ

φ3(λ)√
(d− c)(b− a)

, S3 = − 1

3π

√
2

ℓ

φ5(λ)√
(d− c)(b− a)

.

�

Theorem 4.4. The period integral of the one-form η along the cycle τ is calculated as

− 1

2π

∫
τ

η = S(c, b, a, d), (4.6)

the right hand side of which is a branch of the analytic continuation of S(c, b, a, d).

Proof. We calculate the integrals of the one-form η =
dp2

3
(

1
I3
− 1

I1

)
p3p1

along the real arcs τ±:

− 1

2π

∫
τ+

η = − 1

π

∫ +∞√√√√ 2ℓ( 1
I1

−h
ℓ )

1
I1

− 1
I2

dp2

3
(

1
I3
− 1

I1

)
p3p1

=− 1

3π

√
2

ℓ

{
1√

(d− a)(b− c)
K
(

(d− b)(c− a)

(d− a)(c− b)

)
+

1√
(d− b)(a− c)

K
(

(d− a)(c− b)

(d− b)(c− a)

)}

=
1

2
(S(b, c, a, d) + S(a, c, b, d)) =

1

2
(S(b, a, c, d) + S(a, b, c, d)) =

1

2
S(c, b, a, d).

Here, we used (3.11) and Proposition 4.3. Clearly, we have

∫
τ+

η =

∫
τ−

η and

∫
τ ′
+

η = −
∫
τ ′
−

η from

the choice of the arcs. Thus, we have − 1

2π

∫
τ

η = − 1

π

∫
τ+

η = S(c, b, a, d). �

5 Monodromy and global behavior of Birkhoff normal forms

In this section, we calculate the global monodromy of the naive elliptic fibration πF , which is
connected to the global behavior of Birkhoff normal forms. Starting with the symmetry of the naive
elliptic fibration and of the function S, whose relation to the cohomology group of regular fibres is
discussed in Section 4, we first calculate the local monodromy with respect to the basis associated
to the analytic continuation of S, by using the connection formulae of the Gauß hypergeometric
differential equation (4.4). Next, we give a description of the fundamental group of the regular
locus of the base space P3 (C) for the naive elliptic fibration πF , by using the arguments of the
topology of the complement of hyperplane arrangements. Combining these results by the formula
in Proposition 4.3, we finally obtain the explicit global monodromy of the naive elliptic fibration
in Theorem 5.4. This theorem implies that the monodromy of the analytic continuation for the
derivative of the inverse of Birkhoff normal forms coincides with the global monodromy of the
elliptic fibration in [29].
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The two period integrals − 1

2π

∫
σ±

η = S(a, b, c, d) and − 1

2π

∫
τ

η = S(c, b, a, d) of the one-form

η along the basis σ± and τ of H1

(
π−1
F (p0),Z

)
for a regular fibre π−1

F (p0), where p0 is near to the

singular locus a = d, form a basis of H1
(
π−1
F (p0),C

)
. We take such a basis of the cohomology group

H1
(
π−1
F (p0),C

)
for a regular fibre π−1

F (p0) over p0 which is near to each irreducible component of
the singular locus D : {a = b}+ {a = c}+ {a = d}+ {b = c}+ {b = d}+ {c = d}. To do this, we
use the symmetry of the naive elliptic fibration and that of the function S(a, b, c, d) with respect
to the symmetric group S4 acting on the base space P3(C) : (a : b : c : d) as the permutations
of the four letters a, b, c, d. In fact, we have the following list of equalities among the analytic
continuation of S (σ(a, b, c, d)), for σ ∈ S4, which can be obtained by using the equalities (4.5) of
the Gauß hypergeometric function F :

S1 = S(a, b, c, d) = S(a, c, b, d) = S(b, a, d, c) = S(b, d, a, c)
= S(c, a, d, b) = S(c, d, a, b) = S(d, b, c, a) = S(d, c, b, a),

S2 = S(b, a, c, d) = S(b, c, a, d) = S(a, b, d, c) = S(a, d, b, c)
= S(c, b, d, a) = S(c, d, b, a) = S(d, a, c, b) = S(d, c, a, b),

S3 = S(c, b, a, d) = S(c, a, b, d) = S(b, c, d, a) = S(b, d, c, a)
= S(a, c, d, b) = S(a, d, c, b) = S(d, a, b, c) = S(d, b, a, c).

(5.1)

This means that the function S(a, b, c, d) is invariant with respect to the dihedral group generated
by (bc) and (abdc), which is isomorphic to Z2 n Z4.

The naive elliptic fibration πF : F → P3(C) is invariant with respect to S4 acting on P3(C)×
P3(C) : ((x : y : z : w), (a : b : c : d)) as

σ ((x : y : z : w), (a : b : c : d)) = ((σx : σy : σz : σw), (σa : σb : σc : σd)) ,

for σ ∈ S4. The irreducible components b = c, b = d, a = c, c = d, a = b of the singular locus
D can be obtained from a = d for instance by the action of (ab) · (cd), (abc), (acd), (acb), (abd),
respectively. The basis S3 = S(c, b, a, d), S1 = S(a, b, c, d) of H1

(
π−1
F (p0),C

)
for p0 near to a = d

is mapped by the action of (ab) · (cd), (abc), (acd), (acb), (abd) to the bases S3 = S(d, a, b, c),
S1 = S(b, a, d, c); S1 = S(a, c, b, d), S2 = S(b, c, a, d); S1 = S(d, b, c, a), S2 = S(c, b, d, a); S2 =
S(b, a, c, d), S3 = S(c, a, b, d); S2 = S(c, d, b, a), S3 = S(b, d, c, a) of the first cohomology group of
the regular fibres near the components b = c, b = d, a = c, c = d, a = b, respectively.

We calculate the local monodromy of the fibration πF : F → P3(C) around each irreducible
component of the singular locus D with respect to the above bases.

• Around the singular fibres sitting over the irreducible component {a = d} or {b = c} of D, we
have the basis S3, S1 of H1

(
π−1
F (p0),C

)
over p0 ∈ P3 (C) \ Supp(D) near these components.

We take a real closed arc α1 in P3(C) \ Supp(D), which is homotopic to the arc a = d0 +

ϵe
√
−1θ, b = b0, c = c0, d = d0 or the one a = a0, b = c0 + ϵe

√
−1θ, c = c0, d =

d0. Then, the lambda-function λ =
(d− a)(b− c)

(d− c)(b− a)
can be seen to move as λ = ϵe

√
−1θλ0,

λ0 =
(d0 − a0)(b0 − c0)

(d0 − c0)(b0 − a0)
, where θ : 0 → 2π. Here, a0, b0, c0, d0 are suitable fixed complex

numbers. The formulae (4.5) implies that the basis φ1, φ∗
2 of the solutions of the Gauß

hypergeometric differential equation (4.4) is analytically continued along the above arc as[
φ1(λ)
φ∗
2(λ)

]
7→

[
φ1(λ)

2π
√
−1φ1(λ) + φ∗

2(λ)

]
.
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Using the connection formula φ∗
2 = φ1

(
log 16 + π

√
−1

)
− πφ5, we can see that the basis

S3, S1 is analytically continued along α1 as[
S3

S1

]
7→

[
1 2
0 1

] [
S3

S1

]
.

• Around the singular fibres over the irreducible component {b = d} or {a = c} of D, we
take the basis S1, S2 of H1

(
π−1
F (p0),C

)
over p0 ∈ P3 (C) \ Supp(D) near these components.

Consider a real closed arc α2 in P3(C) \ Supp(D), which is homotopic to the arc a = a0, b =

d0 + ϵe
√
−1θ, c = c0, d = d0 or the one a = c0 + ϵe

√
−1θ, b = b0, c = c0, d = d0. Then,

1− λ =
(d− b)(a− c)

(d− c)(a− b)
can be assumed to move as 1− λ = ϵe

√
−1θ, λ0 =

(d0 − b0)(a0 − c0)

(d0 − c0)(a0 − b0)
,

where θ : 0 → 2π. From (4.5), the basis φ3, φ∗
4 of the solution space of the Gauß hypergeo-

metric differential equation is analytically continued along the above arc as[
φ3(λ)
φ∗
4(λ)

]
7→

[
φ3(λ)

2π
√
−1φ3(λ) + φ∗

4(λ)

]
.

From the connection formula φ1 =
1

π
(φ3 log 16− φ∗

4), we see that the basis S1, S2 is analyt-

ically continued along α2 as [
S1

S2

]
7→

[
1 −2
0 1

] [
S1

S2

]
.

• Around the singular fibres over the irreducible component {c = d} or {a = b} of D, we have
the basis S2, S3 of H1

(
π−1
F (p0),C

)
over p0 ∈ P3 (C)\Supp(D) near these components. Take

a real closed arc α3 in P3(C)\Supp(D), which is homotopic to the arc a = a0, b = b0, c = d0+

ϵe
√
−1θ, d = d0 or the one a = b0 + ϵe

√
−1θ, b = b0, c = c0, d = d0. Then,

1

λ
=

(d− c)(b− a)

(d− a)(b− c)

can be assumed to move as
1

λ
= ϵe

√
−1θ 1

λ0
, λ0 =

(d0 − a0)(b0 − c0)

(d0 − c0)(b0 − a0)
, where θ : 0→ 2π. From

(4.5), the basis φ5, φ∗
6 of the solution space of the Gauß hypergeometric differential equation

is analytically continued along the above arc as[
φ5(λ)
φ∗
6(λ)

]
7→

[
−φ5(λ)

−2π
√
−1φ5(λ)− φ∗

6(λ)

]
.

From the connection formulae, we have φ∗
6 = π

√
−1φ3 +

(
−π
√
−1 + log 16

)
φ5. Taking into

account the fact that the analytic continuation of
√

(d− c)(b− a) along the above arc α3 is
given by the multiplication of −1, we find the analytic continuation of S2, S3 as[

S2

S3

]
7→

[
1 2
0 1

] [
S2

S3

]
.

Remark 5.1. The conjugacy class of the monodromy matrices of the singular fibres of type
I2, which are topologically a double pinched torus, was found by Kodaira [23] together with all
the types of singular fibres of elliptic surfaces. In the context of integrable systems theory, the
conjugacy class of the monodromy around the double pinched torus is mentioned in [27] and [40].

Next, we describe the fundamental group of the regular locus P3(C) \ Supp(D) of the fibration
πF : F → P3(C). Note that the equations a = b, a = c, a = d, b = c, b = d, c = d of the
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singular locus D form the arrangement of affine hyperplanes in V = C4 : (a, b, c, d) of type A3. As
to the complement of the affine hyperplane arrangement, it is known that its fundamental group
is the colored braid group [8]. Applying this general argument to our setting, we can calculate
π1 (P3 (C) \ Supp(D)) as follows:
On V , there is the action of the Weyl group W = S4 whose elements permute the coordinates a,
b, c, d. Obviously, its fixed-point-set is the union of the six hyperplanes a = b, a = c, a = d, b = c,
b = d, c = d. Set

Y := V \ ({a = b} ∪ {a = c} ∪ {a = d} ∪ {b = c} ∪ {b = d} ∪ {c = d}) , X := Y/W.

The quotient mapping Y → X is an unramified covering and we have the exact sequence

1→ π1(Y )→ π1(X)→W → 1.

Further, the fundamental group π1(X) of the quotient space is the braid group generated by the
generators g1, g2, g3 with the relations g1g2g1 = g2g1g2, g2g3g2 = g3g2g3, g1g3 = g3g1 (cf. [7, 8]).
In the sense of geometry of braids, g1, g2, g3 describe the simplest strands between the first and
the second strings, the second and the third strings, the third and the fourth strings, respectively,
for the braids with four strings. The group homomorphism π1(X) → W = S4 is given by the
natural correspondence

g1 7→ (12), g2 7→ (23), g3 7→ (34).

By the above short exact sequence, we can realize π1(Y ) as the kernel of this homomorphism. More
precisely, putting h12 = g21 , h23 = g22 , h34 = g23 , h13 = g1g

2
2g

−1
1 = g−1

2 g21g2, h14 = g1g2g
2
3g

−1
2 g−1

1 =
g−1
3 g1g

2
2g

−1
1 g3 = g−1

3 g−1
2 g21g2g1, h24 = g2g

2
3g

−1
2 = g−1

3 g22g3, we can describe π1(Y ) as the group
generated by h12, h23, h34, h13, h14, h24 with the relations

h12h23h13 = h23h13h12 = h13h12h23, h23h34h24 = h34h24h23 = h24h23h34,

h12h24h14 = h24h14h12 = h14h12h24, h34h14h13 = h14h13h34 = h13h34h14, (5.2)

h12h34 = h34h12, h13h
−1
23 h24h23 = h−1

23 h24h23h13, h23h14 = h14h23.

By taking the quotient of Y through the fixed-point-free action of the group C∗, we have the
complement P3(C) \ Supp(D):

C∗ → Y
↓

P3(C) \ Supp(D)

The homotopy exact sequence (cf. [35]) of this fibre bundle writes

1→ π1(C∗)→ π1(Y )→ π1 (P3(C) \ Supp(D))→ 1,

so that π1 (P3(C) \ Supp(D)) ∼= π1(Y )/π1(C∗). In order to determine the fundamental group
π1 (P3(C) \ Supp(D)), we have to find a generator of π1(C∗) ∼= Z in π1 (Y ). Since all the hyper-
planes a = b, a = c, a = d, b = c, b = d, c = d in V pass through the origin, the generators of
π1(C∗) can be realized as a multiple of the six elements in π1(Y ) presented by closed arcs which
enclose the hyperplanes. Further, the generators of π1(C∗) are in the centre of π1(Y ). This follows
from the following theorem, by means of Zariski’s Theorem (cf. [30, Chapter 5, §5.3]).

Theorem 5.1 (Randell). Let l1, . . . , ln be affine complex lines in C2 which are defined by linear
equations with real coefficients and which pass through the origin. Figure 2 describes the real
section of the line arrangement. Denote the generators of π1

(
C2 \ ∪nj=1lj

)
represented by closed

arcs around lj by γj and γ′
j as in Figure 2. Then, we have

γ1 · · · γn = γ2 · · · γnγ1 = · · · = γnγ1 · · · γn−1, γ′
j = γ−1

n · · · γ−1
j−1γjγj+1 · · · γn.
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Figure 2. Lines in C2 passing through the origin
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For the proof, see [32] or [30], although [30] deals with the fundamental group of the complement
of more general hyperplane arrangements. From this theorem, we see that γ = γ1 · · · γn commute
with γj , since γγj = γjγj+1 · · · γnγ1 · · · γj−1γj = γjγ. The centre of π1(Y ) is generated by (g1g2g3)4

(cf. [3]) and, further, we have the expression

(g1g2g3)4 = h13h12h23h34h24h14.

Thus, we see that π1(C∗) is generated by h13h12h23h34h24h14.

Proposition 5.2. The fundamental group π1 (P3(C) \ Supp(D)) can be realized as the group gen-
erated by h12, h13, h14, h23, h24, h34 with the relations (5.2) and h13h12h23h34h24h14 = 1.

Here, we make comments on the relation between π1 (P3(C) \ Supp(D)) and the fundamental
group of the complement of the line arrangement on the (hyper)plane E : a+ b+ c+ d = 0, which
is isomorphic to P2(C), given by the same equations as D: a = b, a = c, a = d, b = c, b = d, c = d.
Denote the induced divisor on the plane E : a + b + c + d = 0 by D.

Proposition 5.3. The following isomorphism holds:

π1 (P3(C) \ Supp(D)) ∼= π1

(
E \ Supp

(
D
))

.

Proof. We consider the blowing-up of P3(C) : (a : b : c : d) with the centre at a = b = c = d
as [29]: ΦB : B → P3(C). The hyperplane E can be identified with the exceptional divisor

through ΦB. Clearly, we have P3(C) \ Supp(D) ∼= B \
(
E ∪ Supp

(
D̃
))

, where D̃ is the proper

transform of D through ΦB . On the other hand, identifying all the points on a line in P3(C)
which passes through the point a = b = c = d, we have the mapping τB : B → E, which is
in fact a P1(C)-fibre bundle. This structure of P1(C)-fibre bundle is inherited to the complement

B\
(
E ∪ Supp

(
D̃
))

, so that we have the P1(C)-fibre bundle B\
(
E ∪ Supp

(
D̃
))
→ E\Supp

(
D
)
.

By the homotopy exact sequence of fibre bundles [35], we have the exact sequence π1(P1(C)) →
π1

(
B \

(
E ∪ Supp

(
D̃
)))

→ π1

(
E \ Supp

(
D
))
→ 1. The simple connectedness of P1(C) proves

the proposition. �
The real section of the arrangement D on E ∼= P2(C) is drawn as in Figure 3. The six lines

a = b, a = c, a = d, b = c, b = d, c = d on (the real part of) the plane E form an A3 configuration.
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Figure 3. A3 configuration on E

h34

h12

h24

h14

h23

h13

In relation to the description of π1 (P3(C) \ Supp(D)) by the generators h12, h23, h34, h13, h14,
h24, the corresponding closed arcs can be chosen as indicated in Figure 3. Note that the closed arc
around a line is chosen as follows:
Let l be the line in C2 : (u, v) given by v = αu, where α is a real positive constant. We fix the
orientation of l as indicated in Figure 4, which describes the real section. Corresponding to this
line with the orientation, we assign the closed arc u = ϵe

√
−1θ, v = 0, where θ : 0 → 2π and ϵ > 0

is a sufficiently small real constant.

-

6

Re(u)

Im(u)

�
�
�
�

�
�
��

����������*
l

Re(v)

0

��
��

6
?

Figure 4. Closed arc around l

We can calculate the global monodromy, by the results of local monodromy and Proposition
4.3, which means [

S1

S2

]
=

[
0 1
1 −1

] [
S3

S1

]
,

[
S2

S3

]
=

[
1 −1
1 0

] [
S3

S1

]
.

Theorem 5.4. The basis of the first cohomology group for the regular fibre of the fibration πF : F →
P3(C) is given by branches of the analytic continuations of S3 and of S1, which are proportional to
the derivative of the inverse for the Birkhoff normal forms around the p3- and p1-axes, respectively.
The monodromy of the fibration πF with respect to S3 and S1 is given by the correspondence of
the generators h12, h13, h14, h23, h24, h34 of the fundamental group π1 (P3(C) \ Supp(D)) to the
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matrices in SL(2,Z) as follows:

h14, h23 7→
[
1 2
0 1

]
, h13, h24 7→

[
−1 2
−2 3

]
, h12, h34 7→

[
1 0
−2 1

]
. (5.3)

Remark 5.2. In [29], several different elliptic fibrations are considered besides the naive elliptic
fibration πF : F → P3(C) in relation to the free rigid body dynamics. As before, we consider the
blowing-up ΦB : B → P3(C) of P3(C) : (a : b : c : d) with the centre at a = b = c = d, and
the projection τB : B → E ⊂ P3(C) to the exceptional set of ΦB . In fact, we have the following
commutative diagram of elliptic fibrations:

F ← Φ∗
BF

∼= τ∗BF → F − 4:1· · ·→ T ← τ∗BT
∼= Φ∗

BW → W
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

P3(C)
ΦB← B = B

τB→ E = E
τB← B = B

ΦB→ P3(C)

(5.4)

The arrows down from top to bottom are elliptic fibrations: πF : F → P3(C), πΦ∗
BF : Φ∗

BF →
B, πτ∗

BF : τ∗BF → B, πF : F → E, πT : T → E, πτ∗
BT : τ∗BT → B, πΦ∗

BW : Φ∗
BW → B,

πW : W → P3(C). The horizontal arrows are bimeromorphisms except F − · · · → T , which is a
4 : 1 meromorphic mapping, and τB : B → E, τ∗BF → F , τ∗BT → T , which are projections. The
fibration πW : W → P3(C) and πT : T → E are in Weierstraß normal form, while πF : F → E is
not in Weierstraß normal form. The fibration πF : F → E, which was not explicitly considered
in [29], is naturally induced on E, since the fibration πF has the same fibre along the fibre of τB .
The singular loci of these elliptic fibrations are as follows:

• For πF : F → P3(C) and πW : W → P3(C), the singular fibres are over the divisor D = {a =
b}+ {a = c}+ {a = d}+ {b = c}+ {b = d}+ {c = d} on P3(C) : (a : b : c : d).

• For πΦ∗
BF : Φ∗

BF → B, πΦ∗
BW : Φ∗

BW → B, the singular locus is the total transform of D

through ΦB : B → P3(C), i.e. D̃ + E, where D̃ is the proper transform of D through ΦB .

• For πτ∗
BF : τ∗BF → B, πτ∗

BT : τ∗BT → B, the singular fibres are sitting over the proper

transform D̃.

• For πF : F → E, πT : T → E, the singular locus is given by the divisor D = {a = b}+ {a =
c}+{a = d}+{b = c}+{b = d}+{c = d} on E = {a+ b+ c+d = 0} ⊂ P3(C) : (a : b : c : d).

We set P3(C)∗ = P3(C) \ {(1 : 1 : 1 : 1)}, B∗ = B \ E, B′ = B \ Supp
(
D̃
)

, B′′ = B \

Supp
(
D̃ + E

)
, P3(C)′ = P3(C) \ Supp(D), E′ = E \ Supp

(
D̃
)

. Then, we have B′′ ⊂ B′,

B′ \B′′ ∼= E′. Using the homotopy exact sequence of fibre bundles, we can show that these regular
loci of B′, B′′, E′ for the four elliptic fibrations πF , πW , πΦ∗

BF , πΦ∗
BW ; for the two fibrations πτ∗

BF ,

πτ∗
BT ; and for the two fibrations πF , πT , respectively, have the isomorphic fundamental groups:

π1 (B′, ∗) ∼= π1 (B′′, ∗) ∼= π1 (E′, ∗) .

Moreover, the 4 : 1 meromorphic mapping F−· · · → T induces an isogeny on each regular fibres. By
means of these facts, we can show that the monodromy representations of all the elliptic fibrations
which appeared in (5.4) are equivalent.
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Remark 5.3. In [29, Theorem 2], the bimeromorphism between πW : W → P3(C) and π
Ŵ

: Ŵ →
B̂ should be understood as a biholomorphic mapping between the Zariski open set consisting of
regular fibres of πW and that of π

Ŵ
. For the Zariski open set of Ŵ , we need to subtract the fibres

over the proper transforms of the exceptional set E through ΦB.

Remark 5.4. In [28], the confluence of singular fibres in elliptic fibrations is discussed from
the viewpoint of monodromy. In particular, the monodromy matrices for the confluence of three
singular fibres of type I2 to that of type I∗0 in Kodaira’s notation are determined in [28, §8, Table
5] as [

1 2
0 1

]
,

[
1 0
−2 1

]
,

[
−1 2
−2 3

]
,

up to simultaneous conjugations by SL(2,Z). This is checked by an easy computation as follows:[
1 2
0 1

] [
1 0
−2 1

] [
−1 2
−2 3

]
=

[
−1 0
0 −1

]
.

On the other hand, the modification of the total and the base spaces of the fibration πT : T → E
and πΦ∗

BW : Φ∗
BW → B are performed to obtain smooth and flat fibrations which admit only

singular fibres in Kodaira’s list of singular fibres for elliptic surfaces in [29]. For the fibration

πT : T → E, the blowing-up Ê → E with the separate centres at the four points (a : b : c : d) =
(−3 : 1 : 1 : 1), (1 : −3 : 1 : 1), (1 : 1 : −3 : 1), (1 : 1 : 1 : −3), where three of the six lines intersect,
is important to obtain such a desired fibration. See Figure 3. For the finally obtained elliptic
fibration πT̂ : T̂ → Ê, the singular fibres on the exceptional sets through the blowing-up Ê → E
are in general of type I∗0 in Kodaira’s notation. Note that the monodromy matrix for the singular
fibre of type I∗0 is [

−1 0
0 −1

]
.

This configuration of singular fibres is compatible with the result in Theorem 5.4. In fact, we
have seen in Theorem 5.4 that the global monodromy is given by the correspondence (5.3). A

similar comparison can be performed also on the fibration π
Ŵ

: Ŵ → B̂.

Remark 5.5. According to [16, §VI], we consider the Birkhoff normal form around the p2-axis
under the condition I3 < I1 < I2. (Note that we have used another order I1 < I2 < I3, but the
result coincides if we make the permutation (abc) or (I1I2I3).) We take the normalized Hamiltonian

Z =
1

4r2

(
H

ℓ
− b

)/
(c− b) =

1

4r2

(
H

ℓ
− 1

I2

)/(
1

I3
− 1

I2

)
=

1

4
F
(
x, r2

)
, r2 =

a− b

c− b
,

which is a power series in an action variable x with the parameter r2. Denote the inverse as

x = ZĈ(Z)2, Ĉ(Z)2 =
∞∑

n=0

Pn(r2)

n + 1
Zn, where Pn is a polynomial in r2 of degree n. It is shown

in [16] that the roots of Pn are on the unit circle in C. For the proof, the following symmetry
property of Pn is one of the essential conditions:

r2nPn

(
1

r2

)
= Pn(r2). (5.5)

In fact, this property of Pn can be deduced from the covariance property (5.1) of the function

S. The derivative of the inverse Birkhoff normal form is given by
1

4

∞∑
n=0

Pn(r2)Zn = S(b, a, c, d).
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Therefore, from S(b, a, c, d) = S(b, c, a, d), we have
∞∑

n=0

Pn(r2)Zn =
∞∑

n=0

Pn

(
1

r2

)
(r2Z)n, where

we used the fact that r2 is mapped to
1

r2
and Z to r2Z, by the action of the permutation (ac).

Therefore, we obtain (5.5).

6 Concluding remarks

On the basis of the expression of the derivative for the inverse of Birkhoff normal forms around
the equilibria in terms of period integrals, we have considered their analytic continuation for the
free rigid body dynamics, which has monodromy as we have seen. In view of the naive elliptic
fibration, which naturally arises from the dynamics, we have shown that the branches of the
analytic continuation give rise to a basis of the first cohomology group of the regular fibres of the
fibration. Further, the monodromy of the analytic continuation of the derivative for the inverse of
Birkhoff normal forms coincides with the monodromy of the naive elliptic fibration. The explicit
global monodromy has been determined by the monodromy of Gauß hypergeometric differential
equation and by using the techniques to compute the fundamental group of the complement of
hyperplane arrangements.

In view of [31], the analysis in the present paper can be related to further possible studies on
the semi-global symplectic invariants [33]. The semi-global symplectic invariants are defined for
real integrable systems around their hyperbolic equilibria. However, if we deal with a real analytic
integrable system, we can consider its complexification for which there is no essential difference
between elliptic and hyperbolic equilibria. Then, it seems to be possible to enquire the relation
between the (complexification of) semi-global symplectic invariants and the complex analytic or
algebraic geometry of this complexified integrable systems, which is explained in the present paper
in the free rigid body case. We hope that the results in the present paper would be helpful for
such further studies.
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