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Smooth Output Reconstruction for Linear Systems
with Quantized Measurements

Hongzhong Zhu, Toshiharu Sugie, Hiroshi Fujimoto

ABSTRACT

This paper presents a novel approach to reconstruct theitoaftfinear
systems in the case where the measured output is uniforndgtged. By
fitting the quantized measurements with polynomials in a ingpworizon
manner, a smooth signal is reconstructed by solving a coaopérization
problem with¢;-norm regularization. The quantization feature and théesys
models are taken into account in the optimization. A nunarexample
is given to show the excellent reconstruction performarfcéhe proposed
method. In addition, the proposed method is implementedhigla-precision
linear stage through DSP, and its effectiveness is verifisaligh experiments
using a real positioning system.

Key Words:  quantization; polynomial fitting approach; convex optiatian;
state observer

I. Introduction not be ignored?, 3, 4]. Therefore, it is necessary to
Quantization in 1/O signals is an inherent feature consider the signal quantization effect explicitty b,
7,8,9 10

in many control systems, including digital systems,

networked systems and low resolution sensor/actuator
systems. In some cases, the quantization error is
relatively small compared to system noise and the
desired control accuracy. Nevertheless, this is not
always the case in various systems, such as compute
storage systems, NC machine tools, industrial robots,

In order to cope with the quantization effects,
various methods have been proposed in the literature
to reconstruct the real system output. One strategy is
to utilize the system model information. For instance,
some observer-based methods have been proposed to
estimate the system state, and a reconstruction output
and ultra-precision positioning systems, where the can be obtained by utilizing the estimated state and the

required accuracy is nano order. In these systems, themodel mformgﬂon 13, 12 legtagt al. prop_osed a
quantization error caused by low-resolution sensors method to estimate the quantization error directly via

could significantly degrade the control performance and € |€ast square method in the presence of a constant
may cause limit cycle oscillationd] In addition, in disturbance 13]. Nevertheless, since these methods
networked control systems with limited communication Strongly depend on the system models, the accuracy of

capacity, sensor measurement is quantized beforethe reconstructed output could be degraded drastically

transmission. In such cases, the quantization error may"When the models are not precise. Also, it is desirable to
handle not only the constant disturbances but also the
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be locally approximated by low-degree polynomials. Il. System description
Nevertheless, if this is not the case, higher-degree
polynomials are required. Hence, it would be difficult

to adopt these methods. Moreover, how to determine the

Consider the linear time-invariant SISO system
with quantized output given by:

degree of the polynomials was not clear in the literature. zlk + 1] = Az[k] + Bulk] + Fwlk], (1)

Based on the above observation, Zlet al. ylk] = Czl[k], 2
proposed a method to estimate the velocity of motion yu K] = ylk] + v[k], 3
systems based on low-resolution encodei§].[The Yqlk] = Q(yu[K]), (4)

method combines a curve fitting approach with the
observer-based ones. It is shown that the method
outperforms the conventional Kalman filter approach.
In fact, it achieves smooth velocity reconstruction

with high precision even if the encoder resolution input disturbance.A, B, F, C are constant system

is extremely low. Furthermore, its effect.i\'/en.ess has matrices of appropriate dimensior@(-) denotes the
been demonstrated through DC motor positioning SerVo quantization. v is assumed to be zero-mean and

experiments. Nevertheless, it considers the velocity hounded agv|.. < § with knowns.

estimation of second order mechanical systems only, The disturbance is assumed to be expressed by:

and the disturbance was assumed to be zero mean,

which may be too restrictive in many practical systems. Clk + 1] = T¢l], ®)

Also, the experiments were conducted using MATLAB wlk] = H(E], (6)

and RTW toolbox package, hence it is not clear if it where ¢ denotes the disturbance state and where

works in field applications where the algorithm should T' and H are real matrices of suitable dimensions.

be implemented irg.g., DSP. Note that suchw may include step and/or periodic
The purpose of this paper is to extend the disturbances,.v_vhich can be seen in many practical

method proposed inlp] to output reconstruction of sy;terTni. Defining the augmented state as z. :=

general linear systems while overcoming the above [ ¢ 1", the augmented system d)((2), (3), (4) can

drawbacks. More precisely, the contribution of this P& €xpressed by:

where z e R", y€R, y, € R and y, € R are the
system state, the system output, the corrupted output
and the quantized output, respectively.c R is
the measurement noise, ande R is the unknown

paper is as follows. (a) A new method for general linear ok + 1] = Aczo[k] + Beulk], @)
systems is given to reconstruct the smooth output from yo[k] = Coe[k] + v[K], (8)
the quantized measurement in the presence of (non- valk] = Q(yulk]), 9)

zero mean) system disturbances based 1i}. [The
method to reconstruct the output uses moving horizon Where

polynomial curve fitting, wheré;-norm regularization A — A FH B
is adopted to determine the appropriate polynomial ‘ o T |'7° 0 |’
curve and the information of the system models is c.=[cC o].

exploited. (b) The proposed method is implemented . . . .

in a real high-precision linear stage through DSP, and In ?dd'tlon' tr;.e fltj'nctz)r?()dwg (_4) Is assumed as the

its effectiveness is verified though the experiments of untiorm quantization defined by:

positioning control. Qyv) =1-A, yy € ((1 —0.5)A, (i +0.5)A] (10)
This paper is organized as follows. In Sectibn ~ wherei € Z, A > 0 denotes the quantization step. The

the system model is introduced and the problem setting relationship between, andy, is shown in Figurel.

is described. Sectioll presents the polynomial fitting The quantizer 10) could represent low-resolution

approach based on convex optimization that consists ofoptical encoders or analog-to-digital converters in real

the ¢,-norm regularization method and some constraint Systems, whera is referred to as the resolution.

conditions. A numerical example is given in Sectloh Due to the measurement noise the difference

to illustrate the advantages of the proposed approach.Petween the system outpuy and the measured

In SectionV, the proposed algorithm is implemented Quantized outpuj,, denoted by := y — y,, is bounded

in DSP and its effectiveness is demonstrated throughby:

experiments using a high-precision positioning stage.

A
) ) ) . < — 44 11
The conclusions are summarized in Sechin = 2 * (11)
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Fig. 1. Quantization characteristiA is the quantization step.

[ll. Algorithm for output reconstruction

Fig. 2. Fitting strategy. The latept+ 1 quantized measurements are
locally fitted by a polynomialy (7). gx(7p) is regarded as the
reconstruction output at time instait

In this section, an output reconstruction approach with variable o := [ag a1 -+ a,,]". Here,n is the
is proposed. First, the quantized measurements areweighting factor. This is ar/;-norm regularization
locally fitted by a polynomial based ori;-norm problem and can be expressed by:
regularization method. Then, the moving horizon

. . 2
manner is applied to achieve the real-time output i [Tec= Bl +mledh, (14)
reconstruction. Finally, some constraint conditions where
taking advantage of the quantization feature and 1 70 een gm [k — p]
observer techniques are adopted to achieve smooth 0 0 Ya b
reconstruction signals. Do S :
T=|1 7 " |.B=|ylk-p+i
3.1. Polynomial fitting formulation oo :
A polynomial for fitting p+ 1 quantized mea- Lo o Yqlk]

surements{y,[k — i]}i=o,1,.. p) IS considered. Herd;

Figure 2 demonstrates the fitting strategy. Note that

denotes the current time instant. In order to do so, first, (14) becomes a normal least-square polynomial fitting

choose the time intervd b] in advance and introduce
the virtual time indiceg7;},=0 1,... ,,,» Which are defined
by

To=a,m =a+h,---, 7 =a+ih,-- 7 =0,
whereh = (b — a)/p, to equally dividga b]. Then, the

data(7;, yo[k —p +1il),_, .. , are fitted in Euclidean

space with the polynomial:
gk(t) = o+ a7+ 0427'2 4+ OélmTlm, (12)

wherer € [a b, ag, a1, -+ «,, are the polynomial

coefficients andm is the degree of the polynomial.

Without loss of generalityyn is assumed to ben <
p + 1. The fitting problem is formulated by:

gk(10) — yq[k -]

min : 9i(7i) — Yqlk — p + 1] +nllelf1, (13)

9 () — yqlk] )
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problem if » = 0. Regularization witl?;-norm can be
used to find a sparse solution af [17]. In this way,
the unnecessary terms of the polynomisa®)(can be
removed automatically if a high-degree polynomial is
used to fit a simple signal. In practical situatioms,
can be relatively large so that simple signals, as well
as complex signals, could be properly fitted.

In general, the time indice§r;}i—o,1,..., are
chosen as the real time instants. In such a case, however,
the Vandermonde matriX' is time-varying and would
become ill-condition, so the fitting accuracy might
be degraded. In order to cope with the problem, a
fixed symmetric interval with respect to the origin is
chosen to mak&" well-condition [L8]. Without loss of
generality,[a b] is chosen as-1 1] in this study.

3.2. Moving horizon manner

Once the convex optimization probleni4] is
solved, the polynomiallQ) is determined. Hence, the
guantityy[k] is given by:

glk] == g (1p) = TpTa, (15)
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gk +1] = grra(7p)
yq[k + 1]

Fig. 3. Updating strategy. A new polynomial is calculatecewlthe time instant is updated.

wherer, = [1 7, 72 --- 7)*]", which is regarded as the ~ disturbance model) should be taken into account. Let
reconstruction value of the true outpyk]. When the  ¢[k] be the output of the observer for the augmented
time instantt is updated, say, fromk to k + 1, a new system () (8). Namely,

quantized measuremepj[k + 1] is sampled. Then, a - .

new polynomialg;.;1(r) can be determined by fitting 2 +1] = Ac@[k] + Beu[k] + Le(y[k] — glk]), (18)
the new datg{y,[k —p+ 1], yqlk —p+2],- -+, yqlk + ylk] = C. [ ] (19)

1]}. The updated quantity[k + 1] is calculated by: . . .
I P a ik + 1] y where L, € R("*+1x1 is the observer gain to stabilize

glk 4+ 1] = gry1(7p). Aded—dLeCe. Then, the following two constraints are
added.
Figure3 shows the updating strategy. As shown above, .
y[k] is determined from the dat@y, [k — p|, y,[k — p + ge(rp—1) = Y[k —1], (20)
2],--- ,y4lk]} in the moving horizon manner. In the . 1 B
case ofk <p, yglk —i] (i =k, k+1,---,p) is set as (1) = 3 (Glk] —glk — 1)) (21)
Yglk — ] :=0. where g, (7) is the first derivative of the polynomial

(12), which is given by
3.3. Constraint conditions

. . gk(7'> =oq + 2097+ -+ + m()éme_l. (22)
In order to improve the reconstruction accuracy,

some constraint conditions are added in the optimiza- Equation 20) indicates thatj[k — 1] and y[k] belong
tion problem (4) by taking advantage of the model to g,(7) and that Equation2l) is a slope condition
information. for obtaining smooth reconstruction. Note that the left

First, since the discrepancy between the systemhand sides of40) and Q1) are also affine tax. For
output y[k] and the corresponding quantized output the implementation of real-time calculatiop[k] is
yq|k] is bounded by 1), the quantityy[k] should be computed via:
bounded by:

A ?Q[k] =C. [Aei[ - 1] + Beu[k 1] +
[91K] = yalk]| < 5 +9. (16) Lo(glk—1]-glk—1])].  (23)

According to (2) and (L5), this condition can be

expressed hy:
P y 3.4. System output reconstruction

A
|7y o= wglk]| < 5 +0. (17) The quantized output reconstruction algorithm is

. . ) summarized as follows.
Note that the left hand side ofl{) is convex with

respect tax. o o Algorithm: Output reconstruction

Second, the fitting curve(¢) (at time instant
k) should takegy[k-1] into account as well as the 1. Choose proper valuesfor p, m, n; setinitial value
quantized output sequenggli| (: =k, k—1,--- ,k — for 8 as B = 0, assign the values for A, ¢;

p). In addition, the system information (including the 2. repeat

*kk *kkkk Kok kkkkkk

Prepared using ****



H. Zhu et al. : Smooth Output Reconstruction for Linear Systems with Quantized Measurements 5

F{é Yq )(L—» Plant Y
L

quantizer 7

| <

quantizer

€o
al y
Bpproach er
Fig. 4. Block diagram of the proposed approaghs regarded as the
reconstruction of. Fig. 5. Block diagram of the quantized system for simulation
(a) Sample the position measurement y, k], IV. lllustrative examples

update the vector 3; ) ) ) o

(b) solve the problem In this section, one numerical example is given

. 2 to illustrate the effectiveness of the proposed method.
min:||Tec= Bl + el (4)  consider the system given by:
st:lb'ject to: (17), (20), (21) ol + 1] = Awlk] 1 Blulk] + wik]). =[0] = 0, (26)
to obtain «;
’ = 27
(c) calculatej[k], &[k] by (15), (18) and (19); y[k] = Cx[k], (27)
(d) setk + k+1. where

The optimization problem2() is a convex opti- 1.00000  0.00001 0
mization problem and can be solved efficiently. Note A= 0 1.00000 0.00001 |,
that the three constraint conditions are independent of 0 —0.00020 0.99930
each other so the problem is feasible if the polynomial 0
(12) has a degree not less thans2 & 2). The block B = 0|, C=[1 0 0],
diagram of the proposed approach is shown in Figure 0.00030

and v = 30sin %, k < 10°. The evaluation for the

3.5. Discussions proposed approach is shown in FiguBe In the

From (11) and (L6), it is immediate to have proposed method, the order of the polynomial 12)(
- is set asm = 4, the number of quantized output used
[ylk] — y[k]| < A +25, VEk. (25)  forfitting is p + 1 = 50, and the weight factoy is n =

1 x 10~3. The observer gaii. in (18) (19) is properly
given as/0.0007 0.0214 0.0015 0.3599] .

We compare the accuracy of three output
estimates:

Hence, the construction error is guaranteed to be
bounded, and the control system is BIBO stable if the
unquantized system is stable. Unfortunately, since the
quantization error behaves as highly colored noise so
that the asymptotic convergence cannot be obtained (a) Quantized outpuy,;

by polynomial fitting approach, it is difficult to give (b) An observer-based output estimate

a tighter error bound analytically, which is similar to (c) The reconstructed outpuj by the proposed
the existing results1[9]. Nevertheless, it is intuitively method.

clear that the reconstructed outpiik] is much closer
to y[k] compared tay,[k], becausgj[k] takes account  In the above (b)j[k] is calculated fromu[k] andy, k]

of both the smooth maneuver gf] (due to the system  using the same observetd) (19) (except thay[k] is
dynamics) and the constraints given by the augmentedreplaced byy,[k]). The errors used for evaluation are
system model. In fact, according to our extensive defined by:

simulation/experimental study, the proposed method

yields surprisingly precise output estimation in almost €q = qu -9 (28)
all cases. Hence, it would be beneficial to illustrate its €o =19~y (29)
performance through some numerical examples. er =7 —y, (30)
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— Input

Input
o

Error

0 2 4 6 8 10 : : : ;
Step k ( x10%) 0 2 4 6 8 10
Step k ( x10%)

Fig. 6. Inputu for the system shown in Figuie
Fig. 8. Simulation result when quantization step is setdas- 28,

x107° The dotted line shows the quantization eregr the dot-dashed

2 line shows the estimated errey by the observer, and the solid

-Max. of & line shows the reconstruction errey of the proposed approach.

1.5t |:|Max. of e

-Max. of e |

Maximum error
N

28 279 2710 >-11  5-12

Quantization step A

Disturbance

Fig. 7. Comparison of the maximum errors.

L Step k ( x10*)
wheree, denotes the quantization errey, denotes the

estimation error of the observer, argd denotes the . ) .
. (a) Comparison of disturbance and estimated
reconstruction error of the proposed approach. disturbance.
First, the disturbance is set asw[k] =
0, V k, and the maximum errors, namely

max, |eq[¥]|, max; |e,[k]|and mayx, |e,[k]],
are calculated for various quantization steps
A e {278,279 ... 2712} The comparison is shown

Error

in Figure 7. It shows that the reconstruction error of
the proposed approach is much smaller thaande,.
Also, the reconstruction accuracy is almost insensitive

to the quantization step. Figure8 shows an example 0 5 4 A A 10
of time trajectories ok, e,, ande, explicitly in the Step k ( X10%)

case ofA =278, The reconstruction errat, is very

small compared to the quantization errgr and the (b) Reconstruction error when disturbance is
estimation erroe,. Figure7 and Figures illustrate the added.

effectiveness of the proposed approach.
Then, the dynamic response of the proposed rig. 9. Simulation results when step disturbance is addéd-at2 x
method in the presence of disturbances examined. A 104,
step signatv[k] = 5,k > 2 x 10* is introduced into the
system at the time instait= 2 x 10*. The numerical
results are shown in Figure Figure 9(a) shows the
comparison of the added disturbance (solid line) and the the reconstruction erray.. Althoughe, could be larger

estimated disturbance (dashed line). It is demonstratedthan the quantization error during the transient process,

that the disturbance also can be estimated excellentlyit converges gradually and becomes much smaller than

by the proposed approach after the convergence. This |sh tizati This implies that th d
important because we can suppress their effects usingt € quantization error. This Implies that the propose

the accurate estimation of the disturbances. Figiine method is effective against disturbances with non-zero
shows the comparison of the quantization egpand mean.
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Table

Linear motor

-
Carriage - 18) (19

Encoder O<«—| Proposed
approach

A

Fig. 12. Block diagram of the control system.

Fig. 10. Experimental setup.

[Carriagg approach. The nominal model is expressed as:
Axx | 4@ a _ 26.5
SRRCE: Sﬁ} sH s PO = Siams v any (1)

39) -

5.2. Control system

A two-degree-of-freedom controller is exploited
to control the stage, and the block diagram of the
control system is shown in Figufi€. The feed forward
controller, designed by the perfect tracking control

PEV board

\
1 o i
| . )
! § i ur ot (PTC) method 20Q], is the stable inverse system of the
: g | si gnal nominal plant, so perfect tracking at every sampling
! FPGA board| _ instant can be guaranteed. The feedback controller is
D “ Sonal " designed as the PID compensator given by:
Digital control system
s 1
K=k, +k + ki—, 32
Fig. 11. Configuration of experimental system. P 40.0045 + 1 s (32)

where k, = 2065.6, k; = 34624, k; = 43.45 and the

bandwidth of the close-loop system i§ Hz. In the

figure,y, denotes the desired position trajectory gpd

) . . denotes the measurement position used for feedback.

In this section, the effectiveness of the proposed The control system is discretized with the sampling

method will be validated through experiments using a period T, = 5 ms. Denotez as z := [y ¢]7, where

high precision stage. y, y are the position and the velocity of the stage,
respectively. The discrete-time state space expression of
(31) using the zero-order-hold method is given by:

xzlk + 1] = Azx[k] + B(u[k] + w[k]),
The high precision stage is shown in Figuré. y[k] = Cx[k],
The stage is a simplified model of the scanner in
exposure systems used for the fabrication of integratedwhere
circuits, which is required to achieve extremely precise N { 1 0.0050 ] B

V. Experimental validation

5.1. Description of the experiment system

2.247¢7°
motion control. The configuration of the experimental 0 —0.9919 = [ 8.977¢ 3 ] )
system is shown in Figurkl. Two linear motors located c=[1 0]
at both sides of the carriage are applied to drive the o ’
stage. An air guide system is introduced to reduce the and w is the input disturbance. According to the real
friction between the stator and the slider of the motors. situation,w is treated as a step disturbance. Therefore,
DSP(TMS320C6713, 225MHz) is used as the processorl’ and H in the disturbance state equatids) (6) are

to implement the controllers and the proposed fitting chosen a¥ =1 andH = 1.
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Although a linear encoder with a resolution of
1nm is available for the position measurement in this
system, we do not use it for control purposes. Instead, a
software quantizer is introduced, whose resolutia, (

ey
o
o

Reference [mm]
al
o

gquantization step) ig\ = 20 xm, in order to evaluate 0 —Pos. reference |
the effectiveness of the proposed method. The quantized 0 05 1 15 2
output y, (with a resolution of 20um) is supposed Time [sec]

to be used for control. The high-resolution encoder is

used only for monitoring the performance precisely. In Fig. 13. Trajectory reference.

this way, the measurements from the linear encoder are
regarded as the actual outpytand the signal from the
software quantizer is treated as the quantized oufput

5.3. Implementation of the proposed method

According to the algorithm given in Section 3.4,
we implement the proposed method to yigldased on
uandy,. The number of data used for polynomial fitting o 05 1 15 >
is set agp + 1 = 15, and the degree of the polynomial Time [sec]
is set asn = 3. The weight factor, is properly chosen
asn =2 x 1072, ¢ is seta x 10~? by trial and error. @

The C-code of solving the convex optimization problem
(24) is generated by CVXGENZ2[]. The gainL. of

the state estimator is determined by placing the poles of
the observer g0.5335, 0.6242, 0.7304], which results in

the observer bandwidth being 20Hz. The reconstruction
algorithm is implemented in the DSP. By this setting,
the average computational time of solving the convex

Control error [um]

Quantization error [um]

optimization problemZ4) is about3 ms, which shows 2% 05 1 15 2

the problem can be solved safely during the sampling Time [sec]

periodT = 5 ms.
(b)

5.4. Experimental evaluation

. . 0.4
We perform experiments for the following three — Control input
cases. g 02
. . 3
Case | y, is used directly as the measuremgnt g 0
. . -0.2
Case Il ¢ is used for the measuremeypyt,, wherey is
the output of the observer given byg) and (L9) 0 05 Timel[sec] 15 2
with the inputy, instead ofy.
Case lll §is used as the measurement ©
For comparison, the position tracking error also is _ , y ,
defined: Fig. 14. Experimental results @fase L (a) shows the position tracking
: error. (b) shows the quantization error, and (c) shows tinérab
input.

e =Yg — Y- (33)

In order to examine the transient and the settling
performance of the stage, the trajectory reference,in Figure 14, Figure 15 and Figurel6, respectively.
including acceleration, uniform motion, deceleration, In the figures, (a)s show the control errafs (b)s in
and settling motion, is given, as shown in FigiB2The Figure 15 and Figurel6 show the comparison of,
experimental results faCases |, I, andlll are shown and e /e,.. Finally, (c)s show the control inputs. It is
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observed that the high-order vibration is excited not
only at the transient process, but also in the settling
motion area inCase L In Case I, the estimated error

e, can be larger than the quantization step. Hence,
it may further degrade the control performance, as
shown in Figurel5(a) (compared to Figurd4(a)).
Figure16(b) shows that the reconstruction error is much
smaller than the quantization error, which implies that
the accuracy of the feedback signal is improved. This
is also reflected in Figuré6(a), where the high-order
vibration excited by the quantization error is suppressed
by the proposed method. The estimated disturbance is
shown in Figurel6(c). It is indicated that the residual
control input v during the settling motion area is
correctly estimated by the augmented observer. These
experimental results support the effectiveness of the
proposed method.

VI. Conclusion

This paper has presented an approach to recon-
struct smooth output based on the quantized mea-
surement in the presence of system disturbances. By
fitting the quantized measurements with polynomials
in a moving horizon manner, a smooth signal
is reconstructed via solving a convex optimization
problem, where/;-norm regularization is exploited to
automatically determine the degree of the polynomial.
The information on the quantization and the system
models is taken into account in the optimization. Its
performance has been illustrated through numerical
simulation. Furthermore, the proposed method has

50

Control error [um]
o

_ R | \'F
50 0.5 1 1.5 2
Time [sec]

o

Error [um]

1
Time [sec]

(b)

—Control input

0.2

Input [A]

—-0.2}

1
Time [sec]

©

been implemented in a real high-precision linear stage Fig. 15. Experimental results @fase II. (a) shows the position tracking

through DSP, and its effectiveness is verified though the
experiments using the real positioning system.
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