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Smooth Output Reconstruction for Linear Systems

with Quantized Measurements

Hongzhong Zhu, Toshiharu Sugie, Hiroshi Fujimoto

ABSTRACT

This paper presents a novel approach to reconstruct the output of linear
systems in the case where the measured output is uniformly quantized. By
fitting the quantized measurements with polynomials in a moving horizon
manner, a smooth signal is reconstructed by solving a convexoptimization
problem withℓ1-norm regularization. The quantization feature and the system
models are taken into account in the optimization. A numerical example
is given to show the excellent reconstruction performance of the proposed
method. In addition, the proposed method is implemented in ahigh-precision
linear stage through DSP, and its effectiveness is verified through experiments
using a real positioning system.

Key Words: quantization; polynomial fitting approach; convex optimization;
state observer

I. Introduction

Quantization in I/O signals is an inherent feature
in many control systems, including digital systems,
networked systems and low resolution sensor/actuator
systems. In some cases, the quantization error is
relatively small compared to system noise and the
desired control accuracy. Nevertheless, this is not
always the case in various systems, such as computer
storage systems, NC machine tools, industrial robots,
and ultra-precision positioning systems, where the
required accuracy is nano order. In these systems, the
quantization error caused by low-resolution sensors
could significantly degrade the control performance and
may cause limit cycle oscillations [1]. In addition, in
networked control systems with limited communication
capacity, sensor measurement is quantized before
transmission. In such cases, the quantization error may
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not be ignored [2, 3, 4]. Therefore, it is necessary to
consider the signal quantization effect explicitly [5, 6,
7, 8, 9, 10].

In order to cope with the quantization effects,
various methods have been proposed in the literature
to reconstruct the real system output. One strategy is
to utilize the system model information. For instance,
some observer-based methods have been proposed to
estimate the system state, and a reconstruction output
can be obtained by utilizing the estimated state and the
model information [11, 12]. Hirata et al. proposed a
method to estimate the quantization error directly via
the least square method in the presence of a constant
disturbance [13]. Nevertheless, since these methods
strongly depend on the system models, the accuracy of
the reconstructed output could be degraded drastically
when the models are not precise. Also, it is desirable to
handle not only the constant disturbances but also the
other types of disturbances.

There is another line of research on reconstructing
the real system output from the noise-corrupted output
by curve fitting methods. For instance, polynomial
filtering approaches have been proposed to recover
non-uniformly sampled signals [14] and position
signals obtained from incremental encoders [15]. The
methods can work well if the output signal can
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be locally approximated by low-degree polynomials.
Nevertheless, if this is not the case, higher-degree
polynomials are required. Hence, it would be difficult
to adopt these methods. Moreover, how to determine the
degree of the polynomials was not clear in the literature.

Based on the above observation, Zhuet al.
proposed a method to estimate the velocity of motion
systems based on low-resolution encoders [16]. The
method combines a curve fitting approach with the
observer-based ones. It is shown that the method
outperforms the conventional Kalman filter approach.
In fact, it achieves smooth velocity reconstruction
with high precision even if the encoder resolution
is extremely low. Furthermore, its effectiveness has
been demonstrated through DC motor positioning servo
experiments. Nevertheless, it considers the velocity
estimation of second order mechanical systems only,
and the disturbance was assumed to be zero mean,
which may be too restrictive in many practical systems.
Also, the experiments were conducted using MATLAB
and RTW toolbox package, hence it is not clear if it
works in field applications where the algorithm should
be implemented in,e.g., DSP.

The purpose of this paper is to extend the
method proposed in [16] to output reconstruction of
general linear systems while overcoming the above
drawbacks. More precisely, the contribution of this
paper is as follows. (a) A new method for general linear
systems is given to reconstruct the smooth output from
the quantized measurement in the presence of (non-
zero mean) system disturbances based on [16]. The
method to reconstruct the output uses moving horizon
polynomial curve fitting, whereℓ1-norm regularization
is adopted to determine the appropriate polynomial
curve and the information of the system models is
exploited. (b) The proposed method is implemented
in a real high-precision linear stage through DSP, and
its effectiveness is verified though the experiments of
positioning control.

This paper is organized as follows. In SectionII ,
the system model is introduced and the problem setting
is described. SectionIII presents the polynomial fitting
approach based on convex optimization that consists of
theℓ1-norm regularization method and some constraint
conditions. A numerical example is given in SectionIV
to illustrate the advantages of the proposed approach.
In SectionV, the proposed algorithm is implemented
in DSP and its effectiveness is demonstrated through
experiments using a high-precision positioning stage.
The conclusions are summarized in SectionVI.

II. System description

Consider the linear time-invariant SISO system
with quantized output given by:

x[k + 1] = Ax[k] +Bu[k] + Fw[k], (1)

y[k] = Cx[k], (2)

yv[k] = y[k] + v[k], (3)

yq[k] = Q(yv[k]), (4)

where x ∈ R
n, y ∈ R, yv ∈ R and yq ∈ R are the

system state, the system output, the corrupted output
and the quantized output, respectively.v ∈ R is
the measurement noise, andw ∈ R is the unknown
input disturbance.A, B, F , C are constant system
matrices of appropriate dimensions.Q(·) denotes the
quantization. v is assumed to be zero-mean and
bounded as‖v‖∞ ≤ δ with knownδ.

The disturbancew is assumed to be expressed by:

ζ[k + 1] = Γζ[k], (5)

w[k] = Hζ[k], (6)

where ζ denotes the disturbance state and where
Γ and H are real matrices of suitable dimensions.
Note that suchw may include step and/or periodic
disturbances, which can be seen in many practical
systems. Defining the augmented statexe as xe :=
[xT ζT ]T , the augmented system of (1), (2), (3), (4) can
be expressed by:

xe[k + 1] = Aexe[k] +Beu[k], (7)

yv[k] = Cexe[k] + v[k], (8)

yq[k] = Q(yv[k]), (9)

where

Ae =

[

A FH

0 Γ

]

, Be =

[

B

0

]

,

Ce =
[

C 0
]

.

In addition, the functionQ(·) in (4) is assumed as the
uniform quantization defined by:

Q(yv) = i ·∆, yv ∈ ((i− 0.5)∆ , (i + 0.5)∆] (10)

wherei ∈ Z, ∆ > 0 denotes the quantization step. The
relationship betweenyv and yq is shown in Figure1.
The quantizer (10) could represent low-resolution
optical encoders or analog-to-digital converters in real
systems, where∆ is referred to as the resolution.

Due to the measurement noisev, the difference
between the system outputy and the measured
quantized outputyq, denoted byξ := y − yq, is bounded
by:

|ξ| ≤
∆

2
+ δ. (11)
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Fig. 1. Quantization characteristic.∆ is the quantization step.

III. Algorithm for output reconstruction

In this section, an output reconstruction approach
is proposed. First, the quantized measurements are
locally fitted by a polynomial based onℓ1-norm
regularization method. Then, the moving horizon
manner is applied to achieve the real-time output
reconstruction. Finally, some constraint conditions
taking advantage of the quantization feature and
observer techniques are adopted to achieve smooth
reconstruction signals.

3.1. Polynomial fitting formulation

A polynomial for fitting p+ 1 quantized mea-
surements ({yq[k − i]}i=0,1,··· ,p) is considered. Here,k
denotes the current time instant. In order to do so, first,
choose the time interval[a b] in advance and introduce
the virtual time indices{τi}i=0,1,··· ,p, which are defined
by

τ0 = a, τ1 = a+ h, · · · , τi = a+ ih, · · · , τp = b,

whereh = (b− a)/p, to equally divide[a b]. Then, the
data(τi, yq[k − p+ i])

i=0,1,··· ,p are fitted in Euclidean
space with the polynomial:

gk(t) = α0 + α1τ + α2τ
2 + · · ·+ αmτm, (12)

whereτ ∈ [a b], α0, α1, · · · αm are the polynomial
coefficients andm is the degree of the polynomial.
Without loss of generality,m is assumed to bem ≤
p+ 1. The fitting problem is formulated by:

min
α

:

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

















gk(τ0)− yq[k − p]
...

gk(τi)− yq[k − p+ i]
...

gk(τp)− yq[k]

















∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

2

2

+ η‖α‖1, (13)

Fig. 2. Fitting strategy. The latestp + 1 quantized measurements are
locally fitted by a polynomialgk(τ). gk(τp) is regarded as the
reconstruction output at time instantk.

with variableα := [α0 α1 · · · αm]T . Here, η is the
weighting factor. This is anℓ1-norm regularization
problem and can be expressed by:

min
α

: ‖Tα− β‖22 + η‖α‖1, (14)

where

T =

















1 τ0 · · · τm0
...

...
. . .

...
1 τi · · · τmi
...

...
. . .

...
1 τp · · · τmp

















, β =

















yq[k − p]
...

yq[k − p+ i]
...

yq[k]

















.

Figure 2 demonstrates the fitting strategy. Note that
(14) becomes a normal least-square polynomial fitting
problem if η = 0. Regularization withℓ1-norm can be
used to find a sparse solution ofα [17]. In this way,
the unnecessary terms of the polynomial (12) can be
removed automatically if a high-degree polynomial is
used to fit a simple signal. In practical situations,m
can be relatively large so that simple signals, as well
as complex signals, could be properly fitted.

In general, the time indices{τi}i=0,1,··· ,p are
chosen as the real time instants. In such a case, however,
the Vandermonde matrixT is time-varying and would
become ill-condition, so the fitting accuracy might
be degraded. In order to cope with the problem, a
fixed symmetric interval with respect to the origin is
chosen to makeT well-condition [18]. Without loss of
generality,[a b] is chosen as[−1 1] in this study.

3.2. Moving horizon manner

Once the convex optimization problem (14) is
solved, the polynomial (12) is determined. Hence, the
quantityȳ[k] is given by:

ȳ[k] := gk(τp) = τT
p α, (15)
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Fig. 3. Updating strategy. A new polynomial is calculated when the time instant is updated.

whereτp = [1 τp τ
2
p · · · τ

m
p ]T , which is regarded as the

reconstruction value of the true outputy[k]. When the
time instantk is updated, say, fromk to k + 1, a new
quantized measurementyq[k + 1] is sampled. Then, a
new polynomialgk+1(τ) can be determined by fitting
the new data{yq[k − p+ 1], yq[k − p+ 2], · · · , yq[k +
1]}. The updated quantitȳy[k + 1] is calculated by:

ȳ[k + 1] = gk+1(τp).

Figure3 shows the updating strategy. As shown above,
ȳ[k] is determined from the data{yq[k − p], yq[k − p+
2], · · · , yq[k]} in the moving horizon manner. In the
case ofk ≤ p, yq[k − i] (i = k, k + 1, · · · , p) is set as
yq[k − i] := 0.

3.3. Constraint conditions

In order to improve the reconstruction accuracy,
some constraint conditions are added in the optimiza-
tion problem (14) by taking advantage of the model
information.

First, since the discrepancy between the system
output y[k] and the corresponding quantized output
yq[k] is bounded by (11), the quantityȳ[k] should be
bounded by:

|ȳ[k]− yq[k]| ≤
∆

2
+ δ. (16)

According to (12) and (15), this condition can be
expressed by:

∣

∣τT
p α− yq[k]

∣

∣ ≤
∆

2
+ δ. (17)

Note that the left hand side of (17) is convex with
respect toα.

Second, the fitting curvegk(t) (at time instant
k) should takeȳ[k-1] into account as well as the
quantized output sequenceyq[i] (i = k, k − 1, · · · , k −
p). In addition, the system information (including the

disturbance model) should be taken into account. Let
ŷ[k] be the output of the observer for the augmented
system (7) (8). Namely,

x̂[k + 1] = Aex̂[k] +Beu[k] +Le(ȳ[k]− ŷ[k]), (18)

ŷ[k] = Cex̂[k], (19)

whereLe ∈ R
(n+1)×1 is the observer gain to stabilize

Ae −LeCe. Then, the following two constraints are
added.

gk(τp−1) = ŷ[k − 1], (20)

ġk(τp−1) =
1

h
(ŷ[k]− ŷ[k − 1]) (21)

where ġk(τ) is the first derivative of the polynomial
(12), which is given by

ġk(τ) = α1 + 2α2τ + · · ·+mαmτm−1. (22)

Equation (20) indicates that̂y[k − 1] and ȳ[k] belong
to gk(τ) and that Equation (21) is a slope condition
for obtaining smooth reconstruction. Note that the left
hand sides of (20) and (21) are also affine toα. For
the implementation of real-time calculation,ŷ[k] is
computed via:

ŷ[k] = Ce

[

Aex̂[k − 1] +Beu[k − 1] +

Le

(

ȳ[k − 1]− ŷ[k − 1]
)

]

. (23)

3.4. System output reconstruction

The quantized output reconstruction algorithm is
summarized as follows.

Algorithm: Output reconstruction

1. Choose proper values for p, m, η; set initial value
for β as β = 0, assign the values for ∆, δ;

2. repeat
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Fig. 4. Block diagram of the proposed approach,ȳ is regarded as the
reconstruction ofy.

(a) Sample the position measurement yq[k],
update the vector β;

(b) solve the problem

min
α

: ‖Tα− β‖22 + η‖α‖1 (24)

subject to : (17), (20), (21)

to obtain α;
(c) calculate ȳ[k], x̂[k] by (15), (18) and (19);
(d) set k ← k + 1.

The optimization problem (24) is a convex opti-
mization problem and can be solved efficiently. Note
that the three constraint conditions are independent of
each other so the problem is feasible if the polynomial
(12) has a degree not less than 2 (m ≥ 2). The block
diagram of the proposed approach is shown in Figure4.

3.5. Discussions

From (11) and (16), it is immediate to have

|ȳ[k]− y[k]| ≤ ∆+ 2δ, ∀ k. (25)

Hence, the construction error is guaranteed to be
bounded, and the control system is BIBO stable if the
unquantized system is stable. Unfortunately, since the
quantization error behaves as highly colored noise so
that the asymptotic convergence cannot be obtained
by polynomial fitting approach, it is difficult to give
a tighter error bound analytically, which is similar to
the existing results [19]. Nevertheless, it is intuitively
clear that the reconstructed outputȳ[k] is much closer
to y[k] compared toyq[k], becausēy[k] takes account
of both the smooth maneuver ofy[k] (due to the system
dynamics) and the constraints given by the augmented
system model. In fact, according to our extensive
simulation/experimental study, the proposed method
yields surprisingly precise output estimation in almost
all cases. Hence, it would be beneficial to illustrate its
performance through some numerical examples.

Fig. 5. Block diagram of the quantized system for simulation.

IV. Illustrative examples

In this section, one numerical example is given
to illustrate the effectiveness of the proposed method.
Consider the system given by:

x[k + 1] = Ax[k] +B(u[k] + w[k]), x[0] = 0, (26)

y[k] = Cx[k], (27)

where

A =





1.00000 0.00001 0
0 1.00000 0.00001
0 −0.00020 0.99930



 ,

B =





0
0

0.00030



 , C =
[

1 0 0
]

,

and u = 30 sin 2πk
105 , k ≤ 105. The evaluation for the

proposed approach is shown in Figure5. In the
proposed method, the order of the polynomial in (12)
is set asm = 4, the number of quantized output used
for fitting is p+ 1 = 50, and the weight factorη is η =
1× 10−3. The observer gainLe in (18) (19) is properly
given as[0.0007 0.0214 0.0015 0.3599]T .

We compare the accuracy of three output
estimates:

(a) Quantized outputyq;
(b) An observer-based output estimateŷ;
(c) The reconstructed output̄y by the proposed

method.

In the above (b),̂y[k] is calculated fromu[k] andyq[k]
using the same observer (18) (19) (except that̄y[k] is
replaced byyq[k]). The errors used for evaluation are
defined by:

eq := yq − y, (28)

eo := ŷ − y, (29)

er := ȳ − y, (30)
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Fig. 6. Inputu for the system shown in Figure5.
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whereeq denotes the quantization error,eo denotes the
estimation error of the observer, ander denotes the
reconstruction error of the proposed approach.

First, the disturbance is set asw[k] =
0, ∀ k, and the maximum errors, namely
maxk |eq[k]|, maxk |eo[k]|and maxk |er[k]|,
are calculated for various quantization steps
∆ ∈ {2−8, 2−9, · · · , 2−12}. The comparison is shown
in Figure 7. It shows that the reconstruction error of
the proposed approach is much smaller thaneq andeo.
Also, the reconstruction accuracy is almost insensitive
to the quantization step∆. Figure8 shows an example
of time trajectories ofeq, eo, and er explicitly in the
case of∆ = 2−8. The reconstruction errorer is very
small compared to the quantization erroreq and the
estimation erroreo. Figure7 and Figure8 illustrate the
effectiveness of the proposed approach.

Then, the dynamic response of the proposed
method in the presence of disturbancew is examined. A
step signalw[k] = 5, k ≥ 2× 104 is introduced into the
system at the time instantk = 2× 104. The numerical
results are shown in Figure9. Figure 9(a) shows the
comparison of the added disturbance (solid line) and the
estimated disturbance (dashed line). It is demonstrated
that the disturbance also can be estimated excellently
by the proposed approach after the convergence. This is
important because we can suppress their effects using
the accurate estimation of the disturbances. Figure9(b)
shows the comparison of the quantization erroreq and

Fig. 8. Simulation result when quantization step is set as∆ = 2−8.
The dotted line shows the quantization erroreq , the dot-dashed
line shows the estimated erroreo by the observer, and the solid
line shows the reconstruction errorer of the proposed approach.

(a) Comparison of disturbance and estimated
disturbance.

(b) Reconstruction error when disturbance is
added.

Fig. 9. Simulation results when step disturbance is added atk = 2×

104 .

the reconstruction errorer. Althougher could be larger
than the quantization error during the transient process,

it converges gradually and becomes much smaller than
the quantization error. This implies that the proposed

method is effective against disturbances with non-zero
mean.
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V. Experimental validation

In this section, the effectiveness of the proposed
method will be validated through experiments using a
high precision stage.

5.1. Description of the experiment system

The high precision stage is shown in Figure10.
The stage is a simplified model of the scanner in
exposure systems used for the fabrication of integrated
circuits, which is required to achieve extremely precise
motion control. The configuration of the experimental
system is shown in Figure11. Two linear motors located
at both sides of the carriage are applied to drive the
stage. An air guide system is introduced to reduce the
friction between the stator and the slider of the motors.
DSP(TMS320C6713, 225MHz) is used as the processor
to implement the controllers and the proposed fitting

Fig. 12. Block diagram of the control system.

approach. The nominal model is expressed as:

P (s) =
26.5

s(14.7s+ 24)
. (31)

5.2. Control system

A two-degree-of-freedom controller is exploited
to control the stage, and the block diagram of the
control system is shown in Figure12. The feed forward
controller, designed by the perfect tracking control
(PTC) method [20], is the stable inverse system of the
nominal plant, so perfect tracking at every sampling
instant can be guaranteed. The feedback controller is
designed as the PID compensator given by:

K = kp + kd
s

0.004s+ 1
+ ki

1

s
, (32)

where kp = 2065.6, ki = 34624, kd = 43.45 and the
bandwidth of the close-loop system is10Hz. In the
figure,yd denotes the desired position trajectory andym
denotes the measurement position used for feedback.
The control system is discretized with the sampling
period Ts = 5 ms. Denotex as x := [y ẏ]T , where
y, ẏ are the position and the velocity of the stage,
respectively. The discrete-time state space expression of
(31) using the zero-order-hold method is given by:

x[k + 1] = Ax[k] +B(u[k] + w[k]),

y[k] = Cx[k],

where

A =

[

1 0.0050
0 −0.9919

]

, B =

[

2.247e−5

8.977e−3

]

,

C =
[

1 0
]

,

andw is the input disturbance. According to the real
situation,w is treated as a step disturbance. Therefore,
Γ andH in the disturbance state equation (5) (6) are
chosen asΓ = 1 andH = 1.
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Although a linear encoder with a resolution of
1nm is available for the position measurement in this
system, we do not use it for control purposes. Instead, a
software quantizer is introduced, whose resolution (i.e.,
quantization step) is∆ = 20 µm, in order to evaluate
the effectiveness of the proposed method. The quantized
output yq (with a resolution of 20µm) is supposed
to be used for control. The high-resolution encoder is
used only for monitoring the performance precisely. In
this way, the measurements from the linear encoder are
regarded as the actual outputy, and the signal from the
software quantizer is treated as the quantized outputyq.

5.3. Implementation of the proposed method

According to the algorithm given in Section 3.4,
we implement the proposed method to yieldȳ based on
u andyq. The number of data used for polynomial fitting
is set asp+ 1 = 15, and the degree of the polynomial
is set asm = 3. The weight factorη is properly chosen
asη = 2× 10−3. δ is set as2× 10−9 by trial and error.
The C-code of solving the convex optimization problem
(24) is generated by CVXGEN [21]. The gainLe of
the state estimator is determined by placing the poles of
the observer at[0.5335, 0.6242, 0.7304],which results in
the observer bandwidth being 20Hz. The reconstruction
algorithm is implemented in the DSP. By this setting,
the average computational time of solving the convex
optimization problem (24) is about3ms, which shows
the problem can be solved safely during the sampling
periodT = 5 ms.

5.4. Experimental evaluation

We perform experiments for the following three
cases.

Case I yq is used directly as the measurementym.

Case II ŷ is used for the measurementym, whereŷ is
the output of the observer given by (18) and (19)
with the inputyq instead of̄y.

Case III ȳ is used as the measurementym.

For comparison, the position tracking error also is
defined:

et := yd − y. (33)

In order to examine the transient and the settling
performance of the stage, the trajectory reference,
including acceleration, uniform motion, deceleration,
and settling motion, is given, as shown in Figure13. The
experimental results forCases I, II, andIII are shown
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Fig. 13. Trajectory reference.
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Fig. 14. Experimental results ofCase I. (a) shows the position tracking
error. (b) shows the quantization error, and (c) shows the control
input.

in Figure 14, Figure 15, and Figure16, respectively.
In the figures, (a)s show the control errorset. (b)s in
Figure 15 and Figure16 show the comparison ofeq
and eo/er. Finally, (c)s show the control inputs. It is
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observed that the high-order vibration is excited not
only at the transient process, but also in the settling
motion area inCase I. In Case II, the estimated error
eo can be larger than the quantization step. Hence,
it may further degrade the control performance, as
shown in Figure15(a) (compared to Figure14(a)).
Figure16(b) shows that the reconstruction error is much
smaller than the quantization error, which implies that
the accuracy of the feedback signal is improved. This
is also reflected in Figure16(a), where the high-order
vibration excited by the quantization error is suppressed
by the proposed method. The estimated disturbance is
shown in Figure16(c). It is indicated that the residual
control input u during the settling motion area is
correctly estimated by the augmented observer. These
experimental results support the effectiveness of the
proposed method.

VI. Conclusion

This paper has presented an approach to recon-
struct smooth output based on the quantized mea-
surement in the presence of system disturbances. By
fitting the quantized measurements with polynomials
in a moving horizon manner, a smooth signal
is reconstructed via solving a convex optimization
problem, whereℓ1-norm regularization is exploited to
automatically determine the degree of the polynomial.
The information on the quantization and the system
models is taken into account in the optimization. Its
performance has been illustrated through numerical
simulation. Furthermore, the proposed method has
been implemented in a real high-precision linear stage
through DSP, and its effectiveness is verified though the
experiments using the real positioning system.
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