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Abstract

Soft sensors have been widely used for estimating product quality or other key
variables, and appropriate input variables have to be selected for building highly
accurate soft sensor. A novel input variable selection method based on nearest
correlation spectral clustering (NCSC), which is a correlation-based clustering
method, has been proposed, and it is referred to as NCSC-based variable selec-
tion (NCSC-VS). In NCSC-VS, NCSC is used for variable group construction,
and a few variable groups are selected by their contribution to estimates. Al-
though NCSC-VS can select appropriate input variables and construct an ac-
curate soft sensor, a lot of parameters have to be tuned carefully for selecting
proper variables because its parameter tuning affects the estimation performance
of a soft sensor greatly. The present work proposes a new methodologies for ef-
ficient input variable selection by integrating NCSC and group Lasso, which is
an extension of Lasso that can select variable groups. The proposed method,
referred to as NCSC-based group Lasso (NCSC-GL), can not only reduce the
number of tuning parameters but also achieve almost the same performance as
NCSC-VS. The usefulness of the proposed NCSC-GL is demonstrated through
applications to soft sensor design for a pharmaceutical process and a chemical
process.

Keywords: Soft-sensor design, Input variable selection, Group Lasso, Spectral
clustering, Near infrared spectroscopy

1. Introduction

Soft sensors, or calibration models, are key techniques for estimating product
quality or other important variables when online analyzers are not available. In
chemical processes, for example, soft sensors have been widely used to estimate
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product quality of distillation columns, reactors, etc. In addition, near infrared
spectroscopy (NIRS) has been used as a powerful online monitoring tool be-
cause of its noninvasiveness and short measuring time. Many kinds of material
attributes such as water content, blend uniformity and content uniformity have
been estimated using calibration models with NIR spectra [1, 2]. Partial least
squares (PLS), in particular, has been used to build an accurate soft sensor with
a small number of latent variables [3, 4, 5].

In general, a soft sensor can be fitted to model construction samples when
the number of input variables is large. However, its estimation performance may
deteriorate when input variables that do not physically relate to the objective
property are used. Although appropriate input variables have to be selected
when a soft sensor is built, the computational load increases greatly if all possible
combinations of variables are tested. When the past information is used as
inputs in addition to the present information to take process dynamics into
account in soft sensor design, variable selection becomes difficult because the
number of candidate input variables increases. In addition, when a calibration
model with NIR spectra is constructed, its input variables are wavelengths in
NIR spectra and the number of them is large.

Therefore a systematic methodology for selecting appropriate input variables
is required for improving the estimation performance as well as the efficiency of
soft sensor design [6, 7].

Although a genetic algorithm (GA) can be applied to variable selection [8],
its computational load is still heavy. On the other hand, PLS-based variable
selection methods, such as PLS-Beta and variable influence on projection (VIP),
have been proposed [9]. In addition, stepwise and least absolute shrinkage and
selection operator (Lasso) are well-known variable selection methods for linear
regression [10, 11]. These methods evaluate each candidate variable indepen-
dently as to whether or not it should be used as an input variable; however
such an evaluation is not appropriate because it has a correlation with other
variables. In particular, wavelengths of NIR spectra are strongly correlated with
each other.

Recently, a novel variable selection method based on nearest correlation
spectral clustering (NCSC) [12, 13], which can cluster samples according to the
correlation among them, has been proposed, and it is referred to as NCSC-
based variable selection (NCSC-VS) [14]. In NCSC-VS, some variable groups
are constructed based on the correlation among variables using NCSC, because
it is important to consider the correlation appropriately when building a good
regression model [15]. After variable group construction, each variable group is
examined as to whether or not it should be used as input variables according to
their contribution to the estimates. However, since multiple parameters have to
be tuned at the same time in NCSC-VS for good variable selection, its parameter
tuning is time consuming. Therefore the number of tuning parameters in NCSC-
VS should be reduced for its practical use.

Group Lasso has been proposed as an extension of Lasso for selecting vari-
ables from predefined variable groups and it has just one tuning parameter [16,
17]. Although variable groups have to be made before using group Lasso, ap-
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propriate variable grouping is not always clear.
The present work proposes a new correlation-based variable selection method

by integrating NCSC and group Lasso. In the proposed method, referred to as
NCSC-based group Lasso (NCSC-GL), NCSC constructs variable groups in the
same manner as NCSC-VS and group Lasso selects a few variable groups as input
variables of a soft sensor. Although the number of tuning parameters in NCSC-
GL is less than that of NCSC-VS, it can achieve almost the same performance as
NCSC-VS. That is, the proposed NCSC-GL can design an accurate soft sensor
efficiently.

This paper reports application results of the proposed NCSC-GL to soft
sensor design for a pharmaceutical process and a chemical process.

2. Partial least squares (PLS)

PLS is widely used linear regression method for building a soft sensor. In
PLS, the input X ∈ ℜN×M and the output y ∈ ℜN are decomposed as follows:

X = TP T +E (1)

y = Tb+ f (2)

where T ∈ ℜN×K is the latent variable matrix whose columns are the latent
variable tk ∈ ℜN (k = 1, · · · ,K), P ∈ ℜM×K is the loading matrix of X whose
columns are the loading vectors pk ∈ ℜM and b = [b1, · · · , bK ]T is the loading
vector of y. K denotes the number of adopted latent variables. E ∈ ℜN×M

and f ∈ ℜN are errors.
The nonlinear iterative partial least squares (NIPALS) algorithm can be used

to construct a PLS model [3]. Suppose that the first to kth latent variables
t1, · · · , tk, loading vectors p1, · · · ,pk and loading b1, · · · , bk are given. The
k + 1th residual input and output can be written as follows:

Xk+1 = Xk − tkp
T
k (3)

yk+1 = yk − bktk. (4)

where X1 ≡ X, y1 ≡ y, and tk is a linear combination of the columns of Xk,
that is, tk = Xkwk where wk ∈ ℜM is the kth weighting vector. wk is defined
so that the covariance between yk and tk is maximized under ||wk|| = 1. Using
the Lagrange multipliers method, the function to be maximized can be defined
as

Gk = yT
k tk − µ(||wk||2 − 1) = yT

k Xkwk − µ(||wk||2 − 1) (5)

where µ is the Lagrange multiplier. Solving ∂Gk/∂w = 0, wk is derived as

wk =
XT

k yk

||XT
k yk||

. (6)
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The kth loading vector pk and the kth loading bk are as follows:

pk =
XT

k tk
tTk tk

, bk =
yT
k tk
tTk tk

. (7)

Finally, the above procedure is repeated until the number of adopted latent
variables K is achieved; K can be determined by cross validation.

The estimation performance of the PLS model can be improved by taking
into account process dynamics. For this purpose, the past information is used as
inputs in addition to the present information. In such a case, the input variable
vector zi is written as

zi = [xT
i ,x

T
i−k1

,xT
i−k2

, · · · ]T (8)

where k1, k2, · · · are i or less arbitrary natural numbers, and which past samples
are added to the present information can be determined according to process
knowledge such as a time constant. This method is referred to as dynamic
PLS [18, 19].

3. Conventional input variable selection methods

This section explains several conventional input variable selection methods
briefly.

3.1. PLS-Beta

PLS-Beta translates a PLS model, Eqs. (1) and (2), into a multiple linear
regression (MLR) model and selects input variables based on the magnitude of
its regression coefficients [9]. The estimate ŷ is expressed as follows:

ŷ = T (T TT )−1Ty = Xβpls. (9)

The regression coefficients βpls are described as

βpls = W (P TW )−1(T TT )−1y (10)

where W = [w1, · · · ,wK ] ∈ ℜM×K .
The input variables can be selected individually in descending order of the

magnitude of βpls until

||βselect||
||βpls||

> ν (0 < ν ≤ 1) (11)

is achieved, where βselect denotes the vector of the regression coefficients corre-
sponding to the selected variables.
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3.2. Variable influence on projection (VIP)

The VIP, which expresses the contribution of the input variable to the output
variable, can be used for variable selection [9]. The VIP score of the jth input
variable is defined as

Vj =

√√√√M
K∑

k=1

(
w2

jkb
2
k(t

T
k tk)/||wk||2

)/ K∑
k=1

b2k(t
T
k tk) (12)

where wjk is the jth element of wk. The variables satisfying Vj > η (> 0) should
be selected as input variables, and the default values of η can be determined as
one since the average of all the VIP scores is one [9].

3.3. Selectivity ratio (SR)

The SR score is a variable selection index based on PLS [20]. It is defined as
the ratio of the variance of the input variables explained by the latent variables
vexplj to the variance of the errors verrj , that is, sj = vexplj /verrj , because the
input variables can be expressed as the sum of the latent variables and the
errors as written in Eq. (1). In the SR method, the input variables should be
selected according to the magnitude of sj .

The input variables can be individually selected in descending order of the
SR scores sj until

||sselect||
||sall||

> ξ (0 < ξ ≤ 1) (13)

is achieved, where sall and sselect denote the SR score vectors of all the input
variables and the selected input variables.

3.4. Stepwise

Stepwise selects the input variables of an MLR model on the basis of a hy-
pothesis test. It repeats model construction by adding and eliminating a variable
step by step, and tests whether the true value of the regression coefficient of the
added variable is zero using the F -test [10].

3.5. Least absolute shrinkage and selection operator (Lasso)

Lasso minimizes the sum of the squared errors with L1 regularization [11].
The objective function is formulated as:

βlasso = arg min
β

(
||y −Xβ||22 + λ||β||1

)
(14)

where λ (> 0) is a parameter. In Lasso, some regression coefficients tend to
be zero, and this characteristic can be used for variable selection. Lasso can
be solved by an efficient algorithm called least angle regressio (LARS) whose
computational load is the same order as ordinal least squares (OLS) [21].
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4. Nearest correlation spectral custering (NCSC)

Although NCSC was originally proposed for sample clustering based on the
correlation between variables by not assuming any distribution [12, 13], it can
be used for variable selection.

NCSC integrates the nearest correlation (NC) method [22] that can de-
tect samples whose correlation is similar to the query and spectral clustering
(SC) [23, 24] that can partition a weighted graph. The NC method constructs
the weighted graph that expresses the correlation-based similarities between
samples, and SC partitions the constructed graph.

4.1. Spectral clustering (SC)

SC is a clustering method based on graph theory. It can partition a weighted
graph whose weights express affinities between nodes into subgraphs through
cutting some of their arcs. Although some spectral clustering algorithms have
been proposed, the max-min cut (Mcut) method [23] is described in this sub-
section.

Given a weighted graph G and its affinity matrix (adjacency matrix) W , G
is partitioned into two subgraphs A and B. The affinity between A and B is
defined as

cut(A,B) ≡ W (A,B) (15)

W (A,B) =
∑

u∈A,v∈B

Wu,v (16)

W (A) ≡ W (A,A). (17)

where u and v denote nodes of subgraphs A and B, respectively. That is, the
affinity between subgraphs cut(A,B) is the sum of the weights of the arcs be-
tween subgraphs. The Mcut method searches subgraphs A and B that can
minimize cut(A,B) and maximize W (A) and W (B), simultaneously. The ob-
jective function of the Mcut method is as follows:

min J =
cut(A,B)

W (A)
+

cut(A,B)

W (B)
. (18)

Since indices of the nodes are interchangeable, the affinity matrix W can be
defined as follows:

W =

[
WA WA,B

WB,A WB

]
(19)

where WA and WB are the affinity matrices within the subgraphs A and B,
respectively, and WA,B and WB,A are the affinity matrices between A and
B. The affinity W is described using vectors x = [1, · · · , 1, 0, · · · , 0]T and
y = [0, · · · , 0, 1, · · · , 1]T that express partition into subgraphs.

W (A,B) = xT (D −W )x = yT (D −W )y (20)

W (A) = xTWx (21)

W (B) = yTWy (22)
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where D = diag(We) and e = [1, · · · , 1]T . Using these equations, Eq. (18) can
be described as

min
x,y

J =
xT (D −W )x

xTWx
+

yT (D −W )y

yTWy
. (23)

Only the first term of Eq. (23) needs to be analyzed.
The minimization problem of Eq. (23) is hard to solve, since the optimizing

variables x and y are binary variables. Therefore, these binary variables should
be relaxed. The new index vector q = {a,−b} (a, b > 0) is introduced:

qu =

{
a (u ∈ A)

−b (u ∈ B)
(24)

where qu is the uth element of q. Finally, the problem can be written as

min
q

Jq =
qT (D −W )q

qTWq
. (25)

This minimization problem results in an eigenvalue problem.

(I −D−1/2WD−1/2)z = λz (26)

The solution q∗ of Eq. (25) is expressed as q∗ = D−1/2z2, where z2 is the
eigenvector corresponding to the second smallest eigenvalue λ2. The detailed
analysis of the Mcut method is described in Appendix A.

Through the above procedure, the Mcut method does not need parame-
ter tuning. Although the Mcut method partitions a weighted graph into two
subgraphs, an extended algorithm that can partition the graph into multiple
subgraphs simultaneously has been proposed [24]. The algorithm integrates the
eigenvalue problem and the k-means method for clustering, and it can be used
for multiclass clustering.

In SC, the definition of an affinity and the number of clusters J are arbitrary
and affects results.

4.2. Nearest correlation (NC) method

The NC method can detect samples whose correlation is similar to the query
without any correct labels [22].

The concept of the NC method is as follows. Suppose that the affine subspace
P in Fig. 1 (left) shows the correlation among variables and all the samples on P
have the same correlation. Although x1,x2, · · · ,x5 have the same correlation,
x6 and x7 have a different correlation from the others. The NC method aims
to detect samples whose correlation is similar to the query x1. In this example,
x2, · · · ,x5 on P should be detected.

First, the whole space is translated so that the query becomes the origin
as shown in Fig. 1 (right). That is, x1 is subtracted from all other samples
xi (i = 2, · · · , 7). Since the translated affine subspace contains the origin, it
becomes the linear subspace V .
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Next, a line connecting each sample and the origin is drawn. Then, one must
check whether another sample can be found on this line. In this case, x2-x5

and x3-x4 satisfy such a relationship. The correlation coefficients of these pairs
must be 1 or −1. On the other hand, x6 and x7, which are not the elements of
V , cannot make such pairs. The pairs whose correlation coefficients are ±1 are
thought to have the same correlation as x1.

In practice, the threshold of the correlation coefficient γ (0 < γ ≤ 1) has
to be used, since there are no pairs whose correlation coefficient is strictly ±1.
Therefore, the pairs should be selected when the absolute values of their corre-
lation coefficients are larger than γ.

The pairs whose correlation is similar to the query can be detected through
the above procedure.

4.3. Nearest correlation spectral clustering (NCSC)

The correlation-based affinity matrix for spectral clustering can be con-
structed using the NCmethod. Assume that samples xn ∈ ℜM (n = 1, 2, · · · , N)
are stored in the database. The NCSC procedure is given in Algorithm 1. In
this algorithm, steps 4-9 correspond to the NC method.

In NCSC, the threshold in the NC method γ and the number of clusters
partitioned by SC J are tuning parameters. γ should be close to one, such as
0.99, however it is difficult to determine the appropriate J and it should be
determined by trial and error unless physical knowledges of a process can be
used.

According to Algorithm 1, the computational load of affinity matrix con-
struction by the NC method is O(N3) where N is the number of samples. In
addition, SC results in the eigenvalue problem and it can be solved by QR
decomposition whose computational load is usually O(N3). Therefore the the
computational load of NCSC is O(N3).

5. NCSC-based variable selection (NCSC-VS)

An input variable selection method based on NCSC, referred to as NCSC-
based variable selection (NCSC-VS), has been proposed [14]. In NCSC-VS,
NCSC constructs variable groups based on the correlation, and evaluates each
variable group as to whether or not it should be used as input variables.

First, NCSC-VS classifies variables into J variable groups vj = {xm | m ⊂
Vj} (j = 1, · · · , J) based on their correlation, where Vj is the subset of the index
of variables and V = ∪jVj . To construct variable groups by NCSC, an affinity
matrix is constructed from the transposed variable matrix XT using the NC
method. Next, the jth PLS model with the number of latent variable P , fP

j is
constructed from the jth variable group matrix Xj , whose columns consist of
variables belonging to the jth variable group vj . The validity of the constructed
PLS model fP

j is examined using the contribution ratio to the estimates:

CP
j = 1−

||ŷP
j ||2

||y||2
(27)
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where ŷP
j denotes the estimates by fP

j .

Finally, D (≤ J) variable groups are selected in descending order of CP
j and

the final PLS model is constructed from the variables belonging to the selected
variable groups. The procedure for NCSC-VS is shown in Algorithm 2.

In NCSC-VS, NCSC becomes O(M3) because the input matrix X ∈ ℜN×M

is transposed for variable clustering, while the computational load of PLS re-
mains approximately O(N) [25]. Thus, most of the computational time in
NCSC-VS is occupied by NCSC when M becomes large.

NCSC-VS has four tuning parameters; the parameter in the NC method γ,
the number of variable groups partitioned by SC, J , those of latent variables
in PLS models P and final selected variable groups D. In order to select good
input variables by NCSC-VS, these four parameters should be tuned and this
task is time consuming.

Therefore an efficient variable selection method should be developed for the
practical use.

6. NCSC-based group Lasso (NCSC-GL)

The present work proposes a new NCSC-based variable selection method for
efficient soft sensor design. The proposed method integrates NCSC and group
Lasso, which selects some groups consisting of multiple variables [16], and it is
referred to as NCSC-based group Lasso (NCSC-GL). Since the total number of
tuning parameters in NCSC-GL is smaller than that of NCSC-VS, it can design
a soft sensor efficiently.

6.1. Group Lasso

Group Lasso is an extension of Lasso for selecting some input variable groups
from predefined multiple variable groups for a linear regression model [16, 17].
Suppose that M variables are divided into J groups and Xj and βj denote the
input data matrix and the regression coefficient vector corresponding to the jth
group, respectively. The number of variables in the jth group is Mj , that is,

M =
∑J

j=1 Mj . The objective function of group Lasso is formulated as:

βglasso = arg min
β

(
||y −

J∑
j=1

Xjβj ||22

+ λ
J∑

j=1

√
Mj ||βj ||2

)
(28)

where β = [βT
1 , · · · ,βT

J ]
T , and λ is a parameter.

In group Lasso, an entire variable group can be dropped out and this results
in Lasso when the number of variable groups J = M . Group Lasso can be
solved using the same algorithm used for ordinal Lasso like LARS [16]. In order
to select input variables by group Lasso, variable groups have to be constructed
in advance, however how to construct variable groups is not clear.
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6.2. NCSC-based group Lasso (NCSC-GL)

The proposed NCSC-GL forms multiple variable groups by NCSC in the
same manner as NCSC-VS and selects some variable groups by group Lasso as
input variables of a soft sensor. This integration will be useful because variable
groups have to be formed before using group Lasso. The procedure for the
proposed NCSC-GL is shown in Algorithm 3.

Since group Lasso can be solved by LARS whose computational load is the
same order of OLS, NCSC occupies most of the computational time in NCSC-
GL like NCSC-VS. However, the number of tuning parameters in NCSC-GL
is three; the parameter in the NC method γ, the number of variable groups J
formed by SC and the parameter in group Lasso λ. That is, the number of
tuning parameters in NCSC-GL is one less than that of NCSC-VS.

7. Case study 1: pharmaceutical process

The input wavelength selection result of the proposed NCSC-GL was com-
pared with those of the conventional methods through an application to the
pharmaceutical data provided by Daiichi Sankyo Co., Ltd. [26].

7.1. Objective data

The target drug products consist of six components. Some blending exper-
iments were conducted with different active pharmaceutical ingredient (API)
content. After each blending experiment, the granules for tableting were taken
out, and NIR spectra (2203 points in 800−2500 nm) and the API content were
measured. The objective of this case study is to select appropriate input wave-
lengths of NIR spectra for constructing a precise calibration model that can
estimate the API content.

The calibration data and the validation data consisted of 576 and 20 samples,
respectively.

7.2. Wavelength selection and model construction

Before modeling, a first order differential Savitzky-Golay smoothing filter [27]
was applied to the spectra. A PLS model, called PLS-All, employing all the
wavelengths was constructed as a benchmark, and the number of its adopted
latent variables was determined by cross validation. Input wavelengths were
selected using PLS-Beta, VIP, SR, stepwise, Lasso, group Lasso, NCSC-VS and
the proposed NCSC-GL.

In PLS-Beta, VIP and SR, their parameters ν, η and ξ were selected as
ν = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}, η = {0.6, 0.7, 0.8, 0.9, 1.0, 1.1} and
ξ = {0.70, 0.75, 0.80, 0.85, 0.90, 0.95}, respectively.

The threshold of the p-value in stepwise was p̄ = {0.005, 0.05, 0.08, 0.1, 0.12, 0.15}.
In Lasso, the parameter was λ = {0.1, 0.2, 0.4, 0.5, 0.8, 1.0}. Before using
group Lasso, the full-spectrum region was divided into several wavelength groups
so that they consisted of the same number of successive wavelengths [28]. The
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number of constructed wavelength groups was J = {5, 6, 7, 8, 9, 10} and the
parameter in Eq. (28) was λ = {20, 25}.

In NCSC-based variable selection methods, the parameter of the NC method
was γ = 0.99 and the number of wavelength groups obtained with NCSC was
J = {5, 6, 7, 8, 9, 10}. In NCSC-VS, the number of latent variables in a PLS
model was P = {9, 10, 11} and that of final selected wavelength groups was
D = {2, 3}. On the other hand, the parameter of Eq. (28) in NCSC-GL was
λ = {20, 25}. Parameters used in each method were selected by trial and error.

PLS models were constructed with the wavelengths selected by each method.
Usually, Lasso and group Lasso can not only select input variables but also
derive regression coefficients. However, PLS models were constructed based on
the wavelength selection results by Lasso, group Lasso and the proposed NCSC-
GL in this case study, since the number of selected wavelengths were still large
and there was the correlation among them. The optimal numbers of latent
variables were determined through cross validation, and the API content was
estimated by the constructed PLS models.

Figure 2 shows the number of selected wavelengths and the root-mean-square
error (RMSE) for the calibration data in each parameter. In this figure, #WL
denotes the number of selected wavelengths. The desirable parameters and the
input variables in each method were selected by consulting Fig. 2. Finally, the
PLS models were constructed with the selected input variables, and the API
content was estimated by the constructed PLS models.

Table 1 summarizes the selected parameters, the numbers of selected latent
variables (#LV), RMSE, the determination coefficient R2 and the average CPU
times [s] in each method. The computer configuration was as follows: OS:
CentOS 6.4 (64bit), CPU: Intel Core i7-3930K (3.2GHz×6), RAM: 64G bytes,
and MATLAB 2014b. In addition, Figs. 3 - 11 shows the detailed estimation
results.

These results show that the estimation performance of stepwise was worse
than PLS-All; its performance was not improved whichever parameter was se-
lected. PLS-Beta, VIP, SR, Lasso and group Lasso improved the estimation
performance. On the other hand, both NCSC-based methods achieved higher
performance than the conventional methods. NCSC-GL, in particular, achieved
the highest performance of all methods, and RMSE was improved by about 40%
in comparison with PLS-All.

The average computational loads of NCSC-VS and NCSC-GL were heavier
than those of other methods, because NCSC uses iteration for similarity cal-
culation, and it occupied about 98% of their CPU time. However, the CPU
time is not important since input variables can be selected offline. On the other
hand, it is difficult to find the optimal parameter combination when number
of the number of tuning parameters is large. The actual variable selection by
NCSC-GL was more efficient than NCSC-VS. The total number of computa-
tion for parameter tuning in NCSC-GL was 12 and that of NCSC-VS was 36 in
this case study. In addition, according to Fig. 2, the parameters in NCSC-VS
D and P affected model construction results greatly, while the parameters in
NCSC-GL λ did not affect results so much. This means that variable selection
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in NCSC-GL is easier than NCSC-VS.

7.3. Discussion

To validate the wavelength selection results, the wavelengths selected by
PLS-Beta, VIP, SR, Lasso, group Lasso are shown in Fig. 12. The colored
bands denote the selected wavelengths. PLS-Beta, stepwise and Lasso selected
discontinuous wavelengths. VIP, SR and group Lasso selected continuous wave-
lengths; however, they contained not only the spectra peaks but also other
regions.

Figure 13 shows the wavelengths selected by NCSC-VS and NCSC-GL and
the wavelength groups constructed by NCSC in each method, and the same
color bands denote the same group. The optimal number of wavelength groups
of NCSC-VS was J = 6 and that of NCSC-GL was J = 8. The wavelength
groups generated by NCSC consisted of some successive spectra regions, and
the wavelength groups selected by both NCSC-VS and NCSC-GL contained
almost only specific peaks. These wavelength selection results are consistent
with physicochemical knowledge that peaks in spectra contain much information
about compounds. Therefore it is concluded that NCSC-VS and NCSC-GL can
select meaningful wavelengths for soft sensor design.

8. Case study 2: chemical process

The usefulness of the proposed NCSC-GL is shown through another case
study. A soft sensor for estimating ethane concentration was constructed to
realize the highly efficient operation of the ethylene fractionator at the Showa
Denko K.K. (SDK) Oita plant in Japan [14, 29].

8.1. Ethylene fractionator

A schematic diagram of the ethylene fractionator, referred to as T431/2, is
shown in Fig. 14. This ethylene fractionator consists of the bottom column
T431 and the top column T432. The feed stream enters the bottom column,
and the product ethylene is drawn from the top column. The main specifica-
tion is the ethane concentration in the ethylene product. Although the ethane
concentration must not exceed its upper bound, it should be kept as high as
possible to keep the operating cost as low as possible.

This fractionator is controlled by applying multivariable model predictive
control. The number of controlled variables, manipulated variables, and distur-
bance variables is seven, four, and three, respectively. The controlled variables
are the ethane concentration and methane concentration in the ethylene prod-
uct, T431 tray #29 temperature, T431 differential pressure, T432 differential
pressure, condenser pot level, and reboiler pot level. Manipulated variables are
the T431 reboiler flow rate, T432 internal reflux flow rate, T432 purge flow rate,
and T432 top pressure. The disturbance variables are T431 feed flow rate, T431
feed ethane concentration, and C351 #4 discharge pressure. C351 is a propylene
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compressor. Its #4 discharge pressure affects propylene refrigerant temperature
and then reboiler heat duty.

To realize the highly efficient operation, a soft sensor that can estimate the
ethane concentration accurately in real time needs to be developed.

8.2. Operation data

In the ethylene fractionator, 33 variables listed in Table 2 were measured
and stored in the database every 5 minutes. To take account of the dynamics of
the ethylene fractionator, the candidate input variables consisted of the present
sample and the past samples measured 5, 10, 15, 20, 25, 30, 35, 40 and 45
minutes earlier since it was empirically known to engineers and operators that
the ethylene fractionator achieved a new steady state within less than an hour.
As a result, the total number of candidate variables was 330 (33 × 10) and
appropriate input variables had to be selected to design a precise soft sensor
using the input variable selection methods.

Operation data obtained from November to December 2001 was used to
build a soft sensor, and the ethane concentration was estimated from January
to February 2002.

8.3. Variable selection and model construction

A PLS model, called PLS-All, employing all the candidate variables was
constructed as a benchmark, and input variables were selected using the same
manner as Sec. 7. However, group Lasso was not used in this case study
because how to construct variable groups was not clear in this process. The
desirable parameter in each method was selected by trial and error, and the
numbers of latent variables in the final PLS models were determined by cross
validation. In addition, the SDK engineers selected the input variables on the
basis of physical process knowledge [29]. The selected variables are indicated by
asterisks in Table 2. Since the number of SDK selection variables was 18, the
total number of input variables of the soft sensor was 180 (= 18× 10).

Figures 16-25 show the final ethane concentration estimation results in each
methods and Table 3 summarizes the determined parameters, the numbers of
latent variables, the average CPU times [s] and the final estimation results. The
computer configuration was the same as Sec. 7.

SDK selection, PLS-Beta, SR, Lasso and stepwise achieved almost the same
performance as PLS-All while the number of input variables of the soft sensors
could be reduced. However, the performance VIP deteriorated and it did not
improve whatever the threshold η was selected. On the other hand, NCSC-VS
and NCSC-GL achieved almost the same estimation performance and they were
the highest of all the methods. Their RMSEs were improved by about 36% in
comparison with PLS-All.

In addition, Fig. 26 shows the input variable selected by the conventional
methods and the proposed NCSC-GL. Each cell denotes whether or not a vari-
able was selected as input of the soft sensor. The horizontal line denotes the
measured variables corresponding to those in Table 2, and the vertical lines
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shows measurement time. Although the conventional methods did not select the
specific variables or the specific measurement time, NCSC-VS and the proposed
NCSC-GL selected variables with all different measurement time together be-
cause NCSC classified the same variables with different measurement time into
the same variable classes due to autocorrelation between them.

In this case study, the average computational load of stepwise was heavier
than NCSC-VS and NCSC-GL, this indicates that their computational loads are
not so heavy when the number of candidate input variables is small, because
the number of iterations for similarity calculation in NCSC is proportional to
the square of the number of candidate variables.

These case studies show that parameter tuning in NCSC-GL is more efficient
than NCSC-VS although they achieve almost the same estimation performance.

9. Conclusions

This work proposed a new input variable selection method for efficient soft
sensor design. In the proposed NCSC-GL, NCSC forms variable groups based on
the correlation and variable group are selected using group Lasso. The proposed
NCSC-GL can realize efficient input variable selection and improve estimation
performance of a soft sensor at the same time. The usefulness of NCSC-GL was
demonstrated through case studies of soft sensor design for real processes. In
the pharmaceutical process, the proposed NCSC-GL improved RMSE by about
40% in comparison with PLS-All while reduced the number of input wavelengths
by about half. In the chemical process, RMSE was improved by about 36% in
comparison with PLS-All although the number of input variable was reduced
from 330 to 290 by the proposed method. Therefore NCSC-GL has the potential
for realizing efficient soft sensor design.
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Table 1: Selected parameters, estimation performance and CPU times needed for wavelength
selection in API content estimation

#WL #LV Parameters RMSE R2 CPU time [s]
PLS-All 2203 37 − 1.28 0.83 −
PLS-Beta 928 36 ν = 0.75 1.06 0.81 1.73
VIP 1133 19 η = 0.8 1.01 0.83 0.55
SR 612 20 ξ = 0.75 1.20 0.82 1.46
Lasso 1138 39 λ = 0.2 0.98 0.87 0.89
group Lasso 1457 20 J = 7, λ = 20 1.03 0.90 0.11
stepwise 561 24 p̄ = 0.15 1.42 0.72 28.1
NCSC-VS 843 25 J = 6, D = 2 0.77 0.92 281.0
NCSC-GL 1059 18 J = 8, λ = 25 0.71 0.93 278.5

Table 2: Measured variables of the ethylene fractionator (asterisks indicate the SDK selection
variables)

No. Variables No. Variables
1* T431 tray #29 temperature 18* T432 reflux ratio
2 T432 outlet temperature 19 T431 differential pressure
3 T432 top temperature 20 T432 differential pressure
4 T432 reflux temperature 21* T432 top pressure
5 T431 feed temperature 22 T432 outlet methane concentration
6* T431 bottom temperature 23 outlet acetylene concentration
7* T431 top temperature 24* T431 feed ethane concentration
8* T431 tray #37 temperature 25 C351 #1 intake pressure
9* T432 tray #129 temperature 26 C351 #1 intake temperature
10 T432 tray #90 temperature 27 C351 #1 discharge pressure
11* T431 reflux flow rate 28 C351 #1 discharge temperature
12* T431 reboiler flow rate 29* C351 #2 discharge pressure
13* Product ethylene flow rate 30* C351 #2 discharge temperature
14* T432 reflux flow rate 31* C351 #3 discharge pressure
15* T432 internal reflux flow rate 32 C351 #3 discharge temperature
16 T431 reboiler ethane flow rate 33* V359 level (cooling propylene)
17* T432 purge flow rate
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Table 3: Selected parameters, estimation performance and CPU time needed for variable
selection in ethane concentration estimation

#Var. #LV Parameters RMSE R2 CPU time [s]
PLS-All 330 47 − 28.7 0.77 −
SDK selection 180 37 − 23.8 0.77 −
PLS-Beta 117 25 µ = 0.75 25.7 0.75 0.51
VIP 293 26 η = 0.6 31.5 0.75 0.82
SR 271 45 µ = 0.95 26.0 0.72 0.51
Lasso 217 30 λ = 20 28.1 0.77 5.71
stepwise 151 40 α = 0.01 26.6 0.79 8.18
NCSC-VS 200 35 J = 9, D = 3 18.0 0.86 5.40
NCSC-GL 290 29 J = 8, λ = 2.5 18.1 0.86 6.36

Algorithm 1 Nearest correlation spectral clustering (NCSC)

1: Set parameters γ and J .
2: Set S ∈ ℜN×N ← ON,N and L = 1.
3: for L = 1 to N do
4: Set SL ∈ ℜN×N ← ON,N .
5: for all n = 1, 2, · · · , N (n ̸= L) do
6: x′

n = xn − xL.
7: end for
8: for all k, l (k ̸= l) such that |C ′

k,l| ≥ γ do
9: (SL)k,l = (SL)l,k = 1.

10: end for
11: S = S + SL.
12: end for
13: Partition S by SC.

Algorithm 2 NCSC-based Variable Selection (NCSC-VS)

1: Set parameters γ, J , P and D.
2: Apply NCSC with γ and J to XT ; V → {Vj} (j = 1, · · · , J).
3: for j = 1 to J do
4: Construct a PLS model fP

j with the number of latent variables P .

5: Evaluate a contribution ratio CP
j .

6: end for
7: Sort Vj in descending order of CP

j .

8: Select Vs ← ∪Dj=1Vjasinputvariableofasoftsensor.

Algorithm 3 NCSC-based group Lasso (NCSC-GL)

1: Set parameters γ, J and λ.
2: Apply NCSC with γ and J to XT ; V → {Vj} (j = 1, · · · , J).
3: Apply group Lasso with λ to the variable groups constructed in step 2.
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Figure 1: An example of the procedure of the NC method: The red circle denotes the query
(x1) and the whole space is translated so that the query becomes the origin (left). The dished
lines show pairs of samples that have the same correlation as the query (left).
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Figure 2: Root-mean-square error (◦) and the number of selected wavelengths (×) as a function
of the tuning parameters for each of the methods.
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Figure 3: API content estimation result by PLS-All
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Figure 4: API content estimation result by PLS-Beta
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Figure 5: API content estimation result by VIP
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Figure 6: API content estimation result by SR
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Figure 7: API content estimation result by Lasso
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Figure 8: API content estimation result by group Lasso
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Figure 9: API content estimation result by stepwise
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Figure 10: API content estimation result by NCSC-VS
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Figure 11: API content estimation result by NCSC-GL
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Figure 12: The wavelengths selected by PLS-Beta, VIP, SR, stepwise, Lasso and group Lasso:
Colored bands denote the selected wavelengths.
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Figure 13: The wavelength groups constructed by NCSC with J = 6 (top-left) and J = 8
(top-right), and the wavelengths selected by NCSC-VS (bottom-left) and NCSC-GL (bottom-
right): The same color bands denote the same wavelength group.
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Figure 15: Ethane concentration estimation by PLS-All

26



0 5 10 15 20
Days

SDK selection

RMSE =23.8Measurements

Estimates R  =0.77    2

Figure 16: Ethane concentration estimation by SDK selection
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Figure 17: Ethane concentration estimation by PLS-Beta

27



0 5 10 15 20
Days

VIP

RMSE =31.5Measurements

Estimates R  =0.75    2

Figure 18: Ethane concentration estimation by VIP
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Figure 19: Ethane concentration estimation by VIP
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Figure 20: Ethane concentration estimation by SR
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Figure 21: Ethane concentration estimation by Lasso
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Figure 22: Ethane concentration estimation by stepwise
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Figure 23: Ethane concentration estimation by NCSC-VS
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Figure 24: Ethane concentration estimation by NCSC-GL

0 5 10 15 20
Days

NCSC-VS

RMSE =18.1Measurements

Estimates R  =0.85    2

Figure 25: Ethane concentration estimation by NCSC-GL

31



5 10 15 20 25 30

2

4

6

8

10
SDK selection

5 10 15 20 25 30

2

4

6

8

10
PLS Beta

5 10 15 20 25 30

2

4

6

8

10
VIP

5 10 15 20 25 30

2

4

6

8

10
SR

5 10 15 20 25 30

2

4

6

8

10
stepwise

5 10 15 20 25 30

2

4

6

8

10
Lasso

NCSC−VS

5 10 15 20 25 30

2

4

6

8

10
NCSC−GL

5 10 15 20 25 30

2

4

6

8

10

Figure 26: Selected input variables (black: selected and white: not selected)
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Appendix A. Analysis of the relaxed problem in the Mcut method

The detailed analysis of the relaxed problem in the Mcut method is de-
scribed. The objective function of the Mcut method is as follows:

min
q

Jq =
qT (D −W )q

qTWq
. (A.1)

where D = diag(We), W is an affinity matrix and e = [1, · · · , 1]T . q in Eq.
(A.1) is scaled as

min
q̃

J̃q =
q̃T (I − W̃ )q̃

q̃T q̃
(A.2)

where W̃ = D−1/2WD−1/2, q̃ = D1/2q/|D|1/2 and q̃TW̃ q̃ > 0. W̃ is called a
probability transition matrix because 0 ≤ (W̃ )i,j ≤ 1 and

∑
j(W̃ )i,j = 1 where

(W̃ )i,j is the element of W̃ .

The objective function J̃q can be expressed as Rayleigh quotient when P ≡
I − W̃ . From Rayleigh’s theorem, a quotient R(x) is minimized by the eigen-
vector x1 corresponding to the smallest eigenvalue λ1, and the minimum value
of R(x) is λ1. Using this theorem, the relaxed minimization problem Eq. (A.2)
results in the eigenvalue problem.

Suppose that an eigenvector of P is D1/2e and wi denotes the ith row of
W , then (D)i,i = di = wie and

PD1/2e = ID1/2e− W̃D1/2e

= D1/2e−D−1/2WD−1/2D1/2e = 0. (A.3)

Therefore, one of the eigenvectors of P is D1/2e and its eigenvalue is 0. In
addition, the largest eigenvalue of W̃ is 1 because it is the probability transition
matrix, and xTPx = xT (I − W̃ )x ≥ 0. That is, P is a positive semidefinite
matrix, andD1/2e is the eigenvector z1 corresponding to the smallest eigenvalue
λ1 = 0.

Although z1 can minimize q̃, all elements of z1 are positive and Eq. (24)
is not satisfied. From the max-min theory, the second smallest solution is the
second smallest eigenvalue λ2. The eigenvector z2 corresponding to λ2 satisfies
zT
1 z2 = 0 because P is a symmetric matrix. Therefore, the eigenvector z2 has

both positive and negative elements, and it is the optimal solution q̃∗ of Eq.
(A.2).

From the above analysis, Eq. (A.2) can be rewritten as

min
q̃

J̃q =
q̃T (I −D−1/2WD−1/2)q̃

q̃T q̃
(A.4)

and this results in the eigenvalue problem.

(I −D−1/2WD−1/2)z = λz (A.5)

The solution q∗ is expressed as q∗ = D−1/2z2; λ2 and z2 are called Fiedler
value and Fiedler vector, respectively [30].
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