
How tightly does calcite e-twin constrain stress?

Atsushi Yamajia,∗

a Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan

Abstract

Mechanical twinning along calcite e-planes has been used for paleostress analyses. Since the twinning has a critical resolved shear

stress at ∼10 MPa, not only principal stress axes but also differential stress can be determined from the twins. In this article, five-

dimensional stress space used in plasticity theory was introduced to describe the yield loci of calcite e-twinning. The constraints

to paleostress from twin and untwin data and from calcite grains twinned on 0, 1, 2 and 3 e-planes were quantified by using their

information contents, which were defined in the stress space. The orientations of twinned and untwinned e-planes are known to

constrain not only stress axes but also differential stress, D, but they loose the resolution of D if the twin lamellae were formed at

D greater than 50–100 MPa. On the other hand, it is difficult to observe twin lamellae subparallel to a thin section. The sampling

bias due to this difficulty may give rise to distortive effect to the constraints especially to the determination of D. The stochastic

modeling of this effect showed that 20–25% of twin lamellae can be overlooked.
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1. Introduction

Calcite e-twinning is useful for understanding tectonics in the

upper crust, because calcite is a common mineral and records

deformations at low temperatures and low differential stresses

(e.g., Turner, 1953; Groshong, 1972; Jamison and Spang, 1976;

Laurent et al., 1981; Pfiffner and Burkhard, 1987; Burkhard,

1993; Constantin et al., 2007; Lacombe, 2010). Calcite e-twin

has been used to infer not only the orientations but also the

magnitudes of paleostresses.

In this paper, the theoretical analyses of Takeshita et al.

(1987), Fry (2001) and Sato and Yamaji (2006) are reformu-

lated to relate stress and the orientations of twinned and un-

twinned e-planes to define the yield locus of calcite e-twinning

and to quantify the constraints from e-twin lamellae. The

present study is based on the fact that the twinning occurs if

resolved shear stress along the gliding direction of a twin plane

exceeds a critical value, τc, which is assumed to be 10 MPa (La-

combe, 2010, and references therein) throughout of this paper,

meaning that the twins are useful to investigate tectonics at the

depths of about 0.5 to 5 km (Lacombe, 2007; Lacombe et al.,

2009).

Here, we introduce, first, the five-dimensional stress space

in which the yield loci of e-twinning is defined. Second, by

using information theory, the constraints from twin and untwin

data are quantitatively estimated, because several researchers

utilized not only the attitudes of twinned e-planes but also those

of untwinned ones in their stress inversion (Laurent et al., 1981,

1990; Etchecopar, 1984). Fry (2001, Fig. 3) explained why

untwin data are necessary to constrain differential stress. The
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constraints from grains twinned on 0, 1, 2 and 3 e-planes are

evaluated as well. In case the number density of twin lamellae

is low, attention must be payed to sampling bias. It is shown that

20–25% of twin lamellae are overlooked due to the low angles

made by the lamellae and the observation plane, e.g., a thin

section. Thus, the bias can have distortive effects on paleostress

analysis.

2. Notations and basic equations

In this section we introduce mathematical symbols and im-

portant terms for the following analyses. Let c be the unit vector

indicating the host c-axis of a twin lamella, the unit normal of

which is denoted by e (Table 1). The vectors are represented by

(3 × 1)-matrices. The angle made by c and e is denoted by α,

which is about 26.25◦ (Twiss and Moores, 2006, p. 499). We

pay attention to the ‘footwall’ of a twin lamella to consider the

gliding direction and shear stress on the lamella. Correspond-

ing to the choice that compression is positive in sign, the unit

normal, e, is defined to point inward of the footwall block (e.g.,

Yamaji, 2007, p. 62). The unit vector, g, indicates the gliding

direction of the footwall. This vector can be calculated from c
and e,

g = P(c − e)
/ |P(c − e)| , (1)

where the (3 × 3)-matrix, P ≡ I − eeT, is called elementary

orthogonal projector (Meyer, 2000, p. 322), by which c − e is

orthogonally projected onto the twin plane.

A calcite grain has three sets of planes for e-twinning, which

have three-fold symmetry about the c-axis. A set of e-planes is

characterized by the paired vectors, e and g. Each of the three

sets has two states, twinned or untwinned. Following Venkita-

subramanyan (1971), we refer to calcite grains with 1, 2 and 3

Preprint submitted to Tectonophysics January 21, 2015



twinned planes as singlets, doublets and triplets, respectively.

In addition, we use the term, ‘zeroplets,’ to refer to untwinned

grains.

Twinning is assumed to occur on a twin set if the resolved

shear stress parallel to the gliding direction, τ, satisfies

τ ≥ τc. (2)

Otherwise, the potential set is left untwinned. A stress tensor is

said to be compatible with a twin datum, if this condition is met

on the e-plane from which the datum is obtained. Likewise, a

stress tensor is said to be compatible with an untwin datum, if

this condition does not hold on an untwinned e-plane. A stress

tensor is said to explain a twin datum, if Eq. (2) is satisfied on

the e-plane.

Given a stress tensor, σ, the vectorial shear stress and re-

solved shear stress are given by s = Pσe and

τ = −gTs = −|s| cos θ, (3)

respectively, where θ is the angle made by s and g. The minus

signs in Eq. (3) correspond to the fact that deformation occurs

in the direction to relieve stress.

The lateral translation of Mohr circles on a Mohr diagram

does not affect shear stresses. Accordingly, we assume that the

minimum principal stress equals zero, and consider the stress

tensor of the form,

σ = σ0D, (4)

where D = σ1 − σ3 is differential stress, and

σ0 = Q diag(1,Φ, 0) QT, (5)

Q the orthogonal matrix representing the principal orientations,

and Φ = (σ2 − σ3)/(σ1 − σ3). Φ is called stress ratio, and has

a value between 0 and 1. It follows from Eqs. (3) and (4) that

τ = −gTσ0eD. (6)

The tensor, σ0, carries the information of the attitude (Q) and

shape (Φ) of stress ellipsoid, the size of which is denoted by D.

3. Yield locus

In this section, we introduce the yield locus of calcite e-

twinning. The locus is represented by a solid figure in five-

dimensional stress space. Although the space and the locus are

the concepts of abstract plasticity theory, it is worth introduc-

ing them, because (1) not only a multi-axial state of stress but

also twin and untwin data are represented by position vectors in

the space, and (2) the constraints from twin and untwin data on

differential stress have geometric interpretations. In addition,

the constraints from twin and untwin data are quantitatively es-

timated in the space.

3.1. Sigma- and epsilon-vectors
It is convenient for theoretical considerations to introduce the

deviatoric stress tensor,

T = σ −
(
σ1 + σ2 + σ3

3

)
I.

Combining Eqs. (4) and (5), we haveσ3 = 0, σ2 = ΦD, σ1 = D
and

T =
(
σ0 − Φ + 1

3
I
)

D, (7)

Now, suppose the tensor,

ς =
1

λ

(
σ0 − Φ + 1

3
I
)
, (8)

where the denominator in the right-hand side of this equation,

λ =

√
Φ2 − Φ + 1

3
, (9)

is always positive in sign, and has the minimum, 1/2, atΦ = 1/2
and the maxima, 1/

√
3 ≈ 0.58, at Φ = 0 and 1. Then, Eq. (7)

is rewritten as T = ςλD. The tensor, ς, has the second basic

invariant,

ςII ≡ 1

2
(ς : ς) =

1

2
(ς2

11 + ς
2
22 + ς

2
33) + ς2

23 + ς
2
31 + ς

2
12 = 1, (10)

where the colon denotes the inner product of square matrices,

A = (Ai j) and B = (Bi j), such that

A : B =
3∑
i, j

Ai jBi j.

The second basic invariant of T is TII = (λD)2. The scalar quan-

tity, σe =
√

3TII =
√

3λD, is known as equivalent stress, which

is used to predict yielding under multiaxial loading conditions

(e.g., Hill, 1998). σe coincides with differential stress for axial

stresses (Φ = 0 or 1). ς is the reduced stress tensor normalized

by the conditions, trace ς = 0 and ςII = 1, and has the form

(Sato and Yamaji, 2006),

ς = Q
[
diag (2 − Φ, 2Φ − 1,−Φ − 1)

3λ

]
QT.

Resolved shear stress, τ, can be expressed in terms of ς. It

follows from Eq. (8) that

σ0 = λς +

(
Φ + 1

3

)
I. (11)

Substituting Eq. (11) into (6), we find that an equation similar

to Eq. (6) holds for the tensor, ς,

τ = −gT

(
λς +

Φ + 1

3
I
)

eD = −λDgTςe, (12)

where the term, gTIe, vanished due to the orthogonality of e
and g. These vectors are exchangeable in this equation, so we

obtain

τ = −1

2

(
gTςe + eTςg

)
λD. (13)
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The constraints of twin and untwin data are represented by

geometrical conditions in the five-dimensional space. Now, we

derive strain tensor for a twin datum to introduce the conditions.

Generally, infinitesimal strain tensor has the expression,

E =
1

2

[
∇u + (∇u)T

]
, (14)

where u is displacement vector, and ∇u is displacement gradi-

ent tensor. E-twinning results in simple shear along an e-plane.

Let us use the coordinate system with the first and second coor-

dinates parallel to g and e, respectively. Then, the displacement

associated with twinning is written as u′ = (γξ, 0, 0)T, where γ
is shear strain, and ξ is the distance from the e-plane. Thus, we

have

∇u′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 γ 0

0 0 0

0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,
in the coordinate system. Let b be the unit vector perpendicular

to g and e, i.e., b = g × e. Then, the orthogonal matrix,

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
g1 e1 b1

g2 e2 b2

g3 e3 b3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

transforms ∇u′ to ∇u, the components of which are described

in a coordinate system that is taken independently from the e-

plane in question. That is, we have

∇u = R
(∇u′
)

RT = γgeT = γ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
g1e1 g1e2 g1e3

g2e1 g2e2 g2e3

g3e1 g3e2 g3e3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ . (15)

It follows from Eqs. (14) and (15) that the simple shear by e-

twinning has the strain tensor,

E =
γ

2

(
geT + egT

)
.

The magnitude of this tensor is denoted by γ, and the content of

the parentheses bears the information of the direction of strain:

The role of γ in E is comparable with that of D in σ. Just like

the information of stress magnitude has been abstracted away

from ς, we omit γ to define the reduced strain tensor,

ε = geT + egT

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
2g1e1 g1e2 + g2e1 g1e3 + g3e1

g2e1 + g1e2 2g2e2 g2e3 + g3e2

g3e1 + g1e3 g3e2 + g2e3 2g3e3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

to denote the direction of strain. Since simple shearing keeps

volume unchanged, ε is a deviatoric tensor, i.e., trace ε = 0.

Thanks to the orthonormality of e and g, the second basic in-

variant of this tensor satisfies εII = (ε : ε)/2 = 1. This means

that ε is the deviatoric strain tensor normalized by this invariant.

In terms of the components of ς and ε, Eq. (13) becomes

τ = − (ε11ς11 + ε22ς22 + ε33ς33

+ ε23ς23 + ε31ς31 + ε12ς12) λD. (16)

This is further simplified to the equation,

τ =
(
�ς · �ε) λD (17)

using the six-dimensional vectors,

�ς =

(
ς11√

2
,
ς22√

2
,
ς33√

2
, ς23 ς31, ς12

)T
(18)

�ε = −
(√

2ε11,
√

2ε22,
√

2ε33, ε23, ε31, ε12

)T
The conditions, ςII = 1 and εII = 1, yield |�ς| = 1 and |�ε| = 1.

That is, �ς and �ε are unit vectors. In addition, because of

ς11 + ς22 + ς33 = 0, �ς has five degrees of freedom, and the same

is true for �ε. This means that five-dimensional vectors corre-

sponding to �ς and �ε are enough for our theoretical analyses.

However, the arbitrariness in the choice of coordinate system

in the five-dimensional space gives rise to the variations in the

vector components depending on researchers (e.g., Il’yushin,

1954; Ohashi et al., 1975; Kocks et al., 1983; Sato and Yamaji,

2006), and we use the five-dimensional vectors,

�σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(ς11 − ς33)

1

2
√

3
(−ς11 + 2ς22 − ς33)

ς23

ς31

ς12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(19)

and

�ε = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
(ε11 − ε33)

2√
3

(−ε11 + 2ε22 − ε33)

ε23

ε31

ε12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

which are called sigma- and epsilon-vectors, and represent, re-

spectively, a reduced stress stress tensor and a twin or untwin

datum that is represented by the pair, e and g. The conditions,

ςII = εII = 1, yield |�σ| = |�ε| = 1, meaning that the endpoints of

the vectors exist on the unit sphere, S, in the five-dimensional

space. Hence, the vectors are identified with points on S.

S is a curved four-dimensional space. Accordingly, there

are always four directions that lie on S and meet at right an-

gles, analogous to a sphere in three-dimensional space on which

there are always two directions making right angles. If the in-

formation of size is abstracted away from stress ellipsoid, the

principal orientations and Φ indicate the remaining informa-

tion; and the principal orientations are denoted by three angles,

e.g., φ1, φ2 and φ3 in Fig. 1a. Mutually perpendicular four di-

rections from a point on S correspond to the changes in Φ and

the three angles (Fig. 1b). If the three angles are kept con-

stant and only Φ changes along a direction on S, it is referred

to as the Φ-direction on S. If the three angles are unchanged,

the variation of Φ is represented by the great circle along the

Φ-direction. The planes on which the great circles lie are called

π-planes in plasticity theory (e.g., Khan and Huang, 1995).

In case ς is a diagonal matrix, the stress axes coincide with

the coordinate axes in the physical space. Then, we have

�σ = (∗, ∗, 0, 0, 0)T, where ∗ stands for the components of a

3



two-dimensional unit vector. Therefore, sigma-vectors lying on

the 12-coordinate plane in the five-dimensional space form a π-
plane. The sigma-vectors lying on this plane are different only

in their Φ values (Fig. 1c). The sigma-vectors with Φ = 0 and

1 make the angles of the multiples of 60◦. Φ changes along

the great circle defined by the intersection of S and the 12-

coordinate plane (Fig. 1). The antipodal points on this great

circle represent the stresses that have the stress ratio, Φ and

1−Φ, and the reverse order of eigenvalues, e.g., ς33 < ς22 < ς11

and ς11 < ς22 < ς33. Since the orientations of the coordinate

axes in the physical space are arbitrarily chosen, there is a great

circle passing an arbitrary point on S along which Φ changes

but the attitude of the stress ellipsoid is unchanged (Fig. 1b).

It is important for the theoretical analysis of e-twinning

that the points indicated by epsilon-vectors are not distributed

densely on S. Those on a π-plane exist at the point correspond-

ing to the sigma-vectors with Φ = 1/2 (Fig. 1c). This is

shown as follows. The point in the five-dimensional space rep-

resenting the paired data, g = (1, 0, 0)T and e = (0, 0,−1)T, is

(0, 0, 0,−1, 0), which corresponds to

ς =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 0 1

0 0 0

1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

This matrix has the eigenvalues, −1, 0 and 1, meaning that

Φ = 1/2. This statement holds not only for the pair but also

for other pairs of e and g thanks to the benefit of the normaliza-

tion of reduced stress and strain tensors. Since the choice of co-

ordinate orientations is arbitrary, the statement on the specific

vectors apply to other couples. Accordingly, epsilon-vectors

can exist only in six directions separated by 60◦ on a π-plane

(Fig. 1c). It should be noted that epsilon-vectors can exist con-

tinuously in the directions on S perpendicular to π-planes. The

epsilon-vectors that correspond to the three twin sets of a cal-

cite grain meet at angles of ∼77◦ in the five-dimensional space.

Therefore, the vectors are not coplanar, and do not exist on the

same π-plane.

3.2. Twinning condition and yield locus

The vectors, �σ and �ε, are different from �ς and �ε only in the

choice of coordinate systems: They represent the same physical

entities (Sato and Yamaji, 2006; Yamaji and Sato, 2006). Eq.

(17) is, accordingly, rewritten as

τ =
(
�σ · �ε) λD. (20)

Let ψ be the angle between �σ and �ε. Note that �σ ·�ε = cosψ and

−1 ≤ cosψ ≤ 1. It follows that �σ ·�ε is the orthogonal projection

of �σ onto the line parallel to �ε (Fig. 2). We call

τ ≡ τ/λD (21)

as non-dimensionalized resolved shear stress.

Using Eq. (20), the condition for e-twinning in Eq. (2) is

rewritten as

τc/λD ≤ �σ · �ε. (22)

It follows that twin data must satisfy cosψ > τc/λD, and un-

twin data must satisfy cosψ < τc/λD. That is, the epsilon-

vectors corresponding to twin data should be in the spherical

cap centered by �σ and with the radius,

Ψ = cos−1 (τc/λD) , (23)

along the surface of S. Those corresponding to untwin data ex-

ist out of the cap. Ψ is a monotonously increasing function of

D with a steep slope between 20 and ∼50 MPa (Fig. 3). Ψ

asymptotes to 90◦ for the limit, D → ∞. It follows from Eq.

(23) that

cosΨ = τc/λD. (24)

Let �εt and �εu be the epsilon-vectors corresponding to twin and

untwin data, respectively. It follows from the inequality (22)

that

(τc/λ)�εt · �σ ≤ D < (τc/λ)�εu · �σ.
Therefore, twin and untwin data place constraints on the lower

and upper bounds of D (Fry, 2001). That is, untwin data are

indispensable for the paleostress analysis of the attitudes of e-

twin lamellae to deterine D.

The equation for the yield surface for e-twinning is derived

as follows. To this end, we define the five-dimensional vector,

�x = (λD) �σ. (25)

Combining Eqs. (2) and (20), we obtain the equation for the

critical condition of e-twinning,

τc = �ε · �x. (26)

This is also an equation of a hyperplane perpendicular to �ε
with the distance, τc, from the origin of the space (Takeshita et

al., 1987; Fry, 2001). Since the possible directions of epsilon-

vectors are separated by 60◦ on a π-plane (Fig. 1c), the hy-

perplanes corresponding to the epsilon-vectors define a regu-

lar hexagon on a π-plane, which defines the yield locus of e-

twinning (Fig. 4a). The reason for the yield locus to have the

hexagonal shape is the discrete directions of epsilon-vectors on

a π-plane. Contour lines of D on a π-plane are regular hexagons

as well. Epsilon-vectors are discretely distributed on a π-plane,

but they can have continuous distributions in the ψ-directions on

S (Fig. 4b), defining the yield surface of e-twinning. Figures

4c–f show the increase of Ψ and the stepwise replacement of

the attributes of epsilon-vectors from ‘untwinned’ to ‘twinned’

with increasing D.

4. Information-theoretical evaluation of constraints

Here, we introduce information theory to quantify the con-

straints on stress from twin and untwin data. Suppose that a

data set is compatible with a set of deviatoric stress tensors. If

the variation among the elements of the latter set is small, the

data set is said to place a tight constraint on stress. Then, a

randomly chosen deviatoric stress tensor is compatible with the

data set at a small probability. Accordingly, the measure of the

constraint can be related with such a probability.
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On the other hand, if a data set places tight constraints, the

set has a large amount of information about stress. Therefore,

the constraints can be measured by this amount. If P is the

probability of a deviatoric stress tensor to be compatible with a

data set, the quantity,

I = − log2 P, (27)

is called the information content of the set (e.g., Jones and

Jones, 2000), and is measured by the bit. If P is large, a data

set has a low information content, and places loose constraints.

It is shown in the next section that the information content of

a twin datum is always greater than that of an untwin datum.

And, both the information contents approach 1 bit for D→ ∞.

To quantify the information contents of twin and untwin data

sets, let us consider the probability of a randomly chosen T with

a prescribed D value to be compatible with the data set. Such

a tensor corresponds to �σ. And, the random sampling is sub-

stituted by the random sampling of a point from S. S is divided

into two regions. One of the regions is composed of the points

that correspond to deviatoric stress tensors compatible with the

data set (Fig. 5); and the points corresponding to the tensors

incompatible with the data set make up the other region. The

probability, P, equals the ratio of the area of the former region

to S , the surface area of S. The former area can be evaluated

numerically as follows.

Observe that the twinning condition in Eq. (22) is equivalent

with the situation whether the function, H(λD�σ ·�ε −τc), has the

value 1 or 0, where

H(x) =

⎧⎪⎪⎨⎪⎪⎩
1 (x ≥ 0)

0 (x < 0),

is the Heaviside step function. In case the function has the value

1, the deviatoric stress tensor corresponding to λD�σ is compat-

ible with the datum that is represented by �ε. In case the func-

tion has the value 0, the tensor is incompatible with the datum.

Therefore, we have the probability of randomly chosen devia-

toric stress tensor to be compatible with the datum,

Pt(D) =
1

S

∫
S

H(λD�σ · �ε − τc) dS , (28)

in which �σ is the variable of integration. This equation denotes

the probability for randomly chosen deviatoric stress tensors

that is represented by λD�σ to be compatible with the datum

that is represented by �ε. This integration was evaluated nu-

merically using the set of a great number of points, C = {�c (1),
�c (2), . . . , �c (M)}, which were distributed with uniform intervals

over S (Fig. 5). That is, �σ can be replaced with the elements of

this set, and the integration is replaced with summation. As a

result, we have

Pt(D) ≈ 1

M

M∑
m=1

H(λD�c (m) · �ε − τc). (29)

Such a convenient set of objects that allows us to replace a defi-

nite integral with the summation of the function values is known

as a low-discrepancy sequence, which is used in mathematical

finance (Drmota and Tichy, 1997). Without loss of generality,

we can assume e = (0, 0,−1)T and g = (1, 0, 0)T to evaluate the

information contents of a twin and an untwin datum. It follows

that �ε = (0, 0, 0, 1, 0)T. Then, Eq. (29) becomes

Pt(D) ≈ 1

M

M∑
m=1

H(c (m)

4
λD − τc), (30)

where c (m)

4
is the fourth component of �c (m). Substituting this

into Eq. (27), we obtain the information content of a twin da-

tum,

It(D) ≈ log2 M − log2

M∑
m=1

H(c (m)

4
λD − τc). (31)

Likewise, we obtain that of an untwin datum,

Iu(D) ≈ log2 M − log2

M∑
m=1

H(τc − c (m)

4
λD). (32)

The summation in Eq. (31) indicates the number of points in C
where the condition, τ ≥ τc, is satisfied.

Eq. (31) indicates that the information content of a twin da-

tum depends on D. It(D) denotes the information content of

a twin set that was formed at the differential stress. And, Iu

denotes the information content of a twin set that was left un-

twinned at the differential stress. However, when we study pa-

leo stresses, we do not know the differential stress at which e-

twins were formed. Then, It(D) indicates the information con-

tent of a twin set that was formed at an assumed differential

stress. Such measures may seem useless, but they are shown

to be useful in the following sections of this paper especially in

the stress inversion of twin data.

In this study, we used the 60,000 points on S, which were

generated by Yamaji and Sato (2012), to calculate information

contents, i.e., M = 60, 000. In addition, the points were used in

the following part of this paper as the trial stress tensors, each

of which is tested whether it explains twin data.

5. Constraints from twin and untwin data

The constraints of twin and untwin data are evaluated in this

section. The contents at very low and very high stress levels are

easily evaluated. It is clear that twinning does not occur when

D < 2τc. In this case, we have Iu(D) = 0, because any stress

with D < 2τc explains an untwin datum. And, It(D) is not

defined, because Pt(D) = 0. On the other hand, the twinning

condition (Eq. 22) approaches

�σ · �ε ≥ 0. (33)

for D → ∞. This inequality indicates the hemisphere centered

by �ε. It follows that both Pt and Pu asymptote to 1/2, and so

It(∞) = Iu(∞) = 1 bit.

The information contents at intermediate D values were nu-

merically evaluated using Eqs. (31) and (32). The information

content of (or the constraint from) a twin datum was always
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greater than that of an untwin datum (Fig. 6), meaning that a

twin datum is more valuable than an untwin datum. If the D
value at the time of twinning was smaller than ∼100 MPa, the

constraint from a twin datum was ∼10 to several times more

significant than that from an untwin datum. If the D value was

greater than ∼100 MPa, they were comparably significant.

Paired stereograms in Fig. 7 shows the stresses with vari-

ous D values that are compatible with a twin and an untwin

data with the vertical e and eastward g. Corresponding to the

monotonous increase of It(D), the stresses compatible with a

twin datum increase their variation with increasing D. Note that

the patterns in the paired stereoplots with D = 50 and 1000 MPa

have tiny difference. Figure 6 shows that the increase of the in-

formation content of a twin datum become gentle at around 100

MPa. Therefore, the paleostress analysis of the orientations of

twin data loses resolution for differential stresses if twin lamel-

lae were formed at differential stress greater than 50–100 MPa.

In contrast, variation of the stresses compatible with the untwin

datum changes slowly when D is of the order of 101 MPa, and

continues to change beyond 100 MPa. Untwin data are impor-

tant to place the upper bound on the differential stresses in paleo

stress determination from e-twins. Green is a dominant color in

Fig. 7. This is a result of the fact that stress ratio tends to have

intermediate values: It is a natural feature of a uniform distri-

bution of stress tensors that triaxial stresses with intermediate

Φ values are abundant and that axial stresses (Φ ≈ 0 or 1) are

rare (Sato and Yamaji, 2006).

6. Constraints from n-plets

6.1. The minimum differential stresses for generating n-plets
The minimum differential stress for e-twinning is 2τc. Ob-

viously, the minimum one for singlet to be formed is also 2τc:

The occurrence of singlet places the constraint on the minimum

differential stress (Fig. 8a). Do doublet and triplet have the

same threshold? It seems that the minimum one for n-plet has

positive correlation with n, because the condition, τ ≥ τc, must

be met simultaneously on e-planes this different orientations.

The minimum ones were determined theoretically as follows.

Doublet. Suppose that doublets are formed only in the opti-

mally oriented calcite grains, and that those grains have vertical

c-axes and a westerly dipping untwinned plane (Fig. 8b). From

the symmetry of the crystal structure and that of stress tensor, it

is obvious that the stress tensor allowing twinning only on the

remaining e-planes has the σ1- and σ3-axes lying on the E-W

trending vertical plane. It can been seen (Appendix A) that

doublet is formed at the minimum differential stress with Φ = 1

and the westward dip of the σ1σ2-plane,

p =
1

2
tan−1

(
4 cos 2α

5 sin 2α

)
. (34)

It follows from α = 26.25◦ that p ≈ 15.7◦, and from and Eqs.

(A.2) and (A.3) that the minimum differential stress is approx-

imately equal to 2.27τc. If τc = 10 MPa, the occurrence of

doublet indicates differential stress greater than 22.7 MPa.

Triplet. From the symmetries of stress tensor (orthorhombic or

axial) and of the configuration of the e-planes and their gliding

directions of a triplet, it is obvious that the minimum stress to

generate a triplet is axial tension (Φ = 1) with the σ3-axis par-

allel to the c-axes of the triplets (Fig. 8c). Substituting p = 0

into Eq. (A.2), we obtain τ = (1/2) sin 2α. Therefore, we have

the smallest differential stress, Dmin = (2/ sin 2α)τc ≈ 2.52τc,

for generating triplets. If τc = 10 MPa, the occurrence of triplet

indicates the differential stress greater than 25.2 MPa.

6.2. Information contents and compatible stresses for n-plates

The information contents of n-plets were calcu-

lated as a function of D using the computational grid,{
�c (1),�c (2), . . . , �c (60000)

}
. In(D) refers to the content of the n-plet.

The results are shown in Fig. 9. Since no twinning occurs

when D < 2τc, we have I0(D < 2τc) = 1. I0(D) shows a

gradual increase in the range, 2τc ≤ D.

Corresponding to the minimum differential stresses of sin-

glet, doublet and triplet, I1(D ≤ 2τc), I2(D ≤ 2.3τc) and

I3(D ≤ 2.5τc) have no value. I1(D), I2(D) and I3(D) decrease

rapidly in the range, D � 50 MPa. It is clear from Fig. 9 that

the constraints from n-plets become tighter with increasing n.

And, constraint from a zeroplet becomes more important than

those from singlet and doublet for D � 70 and 150 MPa, re-

spectively, if τc is 10 MPa.

Fig. 9 also shows the convergence, I1(∞) = I2(∞) ≈ 1.6
bits, and I3(∞) = I0(∞) ≈ 2.5 bits. The relationship, I1(∞) =

I2(∞) < I3(∞) = I0(∞), can be theoretically derived as well. To

this end, let �ε (1), �ε (2) and �ε (3) be the sigma-vectors of the three

twin sets of a calcite grain. It follows from Eq. (33) that the

sigma-vectors satisfy the simultaneous inequalities,

�ε (1) · �σ < 0, �ε (2) · �σ < 0, �ε (3) · �σ < 0 for zeroplet (35)

�ε (1) · �σ ≥ 0, �ε (2) · �σ < 0, �ε (3) · �σ < 0 for singlet (36)

�ε (1) · �σ ≥ 0, �ε (2) · �σ ≥ 0, �ε (3) · �σ < 0 for doublet (37)

�ε (1) · �σ ≥ 0, �ε (2) · �σ ≥ 0, �ε (3) · �σ ≥ 0 for triplet (38)

at the limit, D→ ∞. Obviously, if �σ is a solution of the simul-

taneous inequalities in (35), −�σ is a solution of those in (38). It

follows that I0(∞) = I3(∞). Likewise, we obtain I1(∞) = I2(∞)

from the inequalities in (36) and (37).

The stresses compatible with n-plets are illustrated as the

functions of D in Fig. 10. The information contents of a singlet,

doublet and triplet show rapid declines in the range, D � 50

MPa (Fig. 9), and compatible stresses show rapid changes as

well (Fig. 10). Consequently, singlets, doublets and triplets

places tight constraints on stress stress magnitudes at low stress

levels.

If sigma-vectors are antipodal to each other, i.e., �σ and −�σ,

the corresponding deviatoric stress tensors are different only in

sign, i.e., T and −T, called opposite stresses. Accordingly, the

complementary relationship of the simultaneous inequalities

(35) and (38) results in their solutions to be opposite stresses.

This is reflected by the opposite patterns in the stereograms of

the compatible stresses of a zeroplet and triplet at D = 1000
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MPa in Fig. 10. The complementary relationship of the simul-

taneous inequalities (36) and (37) results in the opposite pat-

terns in the stereograms of a singet and doublet at D = 1000

MPa as well.

The constraint from a twin datum is smaller than those from

a doublet and a triplet (Figs. 6 and 9). Hence, the discrimi-

nation of n-plets places constraints on stress more tightly than

the simple summation of the constraints from twin and untwin

data. However, paleostress analysis based on this discrimina-

tion is weak to the sampling bias, which is considered in the

next section.

7. Sampling bias

The importance of untwin datum to constrain the upper

bound of D and of the discrimination of n-plets was considered

in the previous sections by means of their information contents.

However, the existence of what you observe is certain, but the

nonexistence of what you do not observe is not. Twin lamellae

subparallel to the thin section are hardly observed especially in

calcite grains with small twin densities, but those perpendicular

to the section are easily observed. This bias may have a dis-

tortive effect to the stress and strain analyses of e-twin lamellae.

A twin set is misclassified as untwinned one by this bias.

The chance to observe a twin lamella increases with the in-

creasing angle between the lamella and the thin section. It is

affected by the number density of twin lamellae as well. The

experimental study by Rybacki et al. (2013) showed that the

density is 10–100 twins/mm for differential stresses of the order

of 10–100 MPa. E-twin data were collected from calcite grains

with the grain sizes of a few hundred microns (e.g., Turner et al.,

1954; Lacombe and Laurent, 1996; Rocher et al., 2004). Thus,

the bias can be serious to determine stress from calcite with low

twin densities. Though the bias depends not only on the angle

but also on the number density and width of twin lamellae, we

concentrate our attention to the geometric factor of the bias.

The probability for the lamella to be observed is proportional

to sin χ (Terzaghi, 1965), where χ is the angle between a twin

lamella and the thin section, and the constant of proportionality

depends on twin spacing, width, etc. However, we assign the

probability, sin χ, for simplicity to the validity for a potential

twin plane to be judged untwinned.

To assess the bias, artificial data sets were generated as fol-

lows. First, ten thousand calcite grains were assumed to have

isotropic lattice fabric: The a- and c-axes were randomly ori-

ented. Since stresses tend to have intermediate stress ratios

(Lisle et al., 2006; Sato and Yamaji, 2006), triaxial stresses with

Φ = 0.5 were applied to the hypothetical calcite aggregate with

differential stresses from 30 to 480 MPa. And, it was judged

whether the condition, τ ≥ τc, was met on each of the three

twin planes of the grains. Since the principal orientations do

not affect the sampling bias, Q was assumed to be equal with I
in Eq. (4). As a result, each plane got the attribute, ‘twinned’

or ‘untwinned.’ In this way unbiased data sets were generated.

Finally, to generate biased data sets, the attribute, ‘twinned,’

was exchanged with ‘untwinned’ for randomly chosen twinned

planes with the probability of 1 − sin χ to simulate misclassifi-

cation by the sampling bias. Fig. 11 shows the results.

The ratio of twinned and untwinned planes increases with

increasing D. The numerical experiment showed that the 20–

25% of twin planes were overlooked by the bias (Fig. 11a),

and that this percentage was relatively insensitive to D. The

twinning incidence is the percentage of grains including twin

lamellae. The positive correlation of this parameter with D was

used to determine differential stress (Rowe and Rutter, 1990).

The percentages of grains with n = 0, 1, 2 and 3 are signif-

icantly affected by the bias (Fig. 11c). Figure 11d shows the

error rate in the classification of n-plets. The error rate is de-

fined as (m−m′)/m, where m and m′ are the numbers of n-plets

in the unbiased and biased cases, respectively. The bias resulted

in the overestimation of the number of zeroplets, and the error

rate of zeroplet increased 6 to 92% with increasing D from 30

to 480 MPa. The bias diminished the numbers of singlets, dou-

blets and triplets. Their error rates were 15–30% for D � 50

MPa. When D was smaller than ∼50 MPa, the error rates of

doublets and triplets were statistically unstable, because dou-

blets and especially triplets were rare at low stress levels. At

the worst, the error rate reached −40%.

8. Discussion

In the first place, do calcite e-twins constrain stress or strain?

Paleostress analysis using calcite e-twins received criticism

in that they inherently indicate strain rather than stress (e.g.,

Groshong, 1972; Groshong et al., 1984). Indeed, e-twinning

leads to a simple shear of the calcite grain that hosts the twin

lamellae (Fig. 1a) (e.g., Groshong, 1972). The strain analysis

of the twin lamellae may be relatively robust to the sampling

bias, because twin sets with low number densities are over-

looked more often than those with high number densities. The

former sets represent strains smaller than the latter ones.

However, there are three-dimensional strains that cannot be

achieved by the simple shear on the three twin planes, because

simple shearing on at least five planes with different orienta-

tions are necessary to achieve arbitrary strain (Reid, 1973, p.

148). For example, shortening along the c-axis cannot be ac-

commodated by e-twinning. It follows that strain compatibility

across grain boundaries is not guaranteed for e-twinning. Strain

field in polycrystalline calcite is heterogeneous (Venkitasubra-

manyan, 1971; Spiers, 1979; Burkhard, 1993). It is not theo-

retically but empirically supported that the microscopic strains

evaluated from twins represent macroscopic tectonic deforma-

tions (e.g., Groshong et al., 1984; Evans and Dunne, 1991). On

the other hand, it was demonstrated empirically that the results

of stress inversion of calcite twin data fault-slip data coincide

satisfactorily (Lacombe et al., 1990, 1992). The methodology

of stress inversion of calcite twin and untwin data should be

pursued.

The constraints from twin and untwin data of calcite e-planes

were measured in this work by means of information contents.

The evaluation was enabled by the fact that the five-dimensional

stress space was defined to fulfill the principle of coordinate

invariance (e.g., Ottosen and Ristinmaa, 2005): Physical laws
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must be formulated in mathematical forms that are independent

from the choice of a coordinate system. As a result, the choice

does not affect geometrical properties including angles and dis-

tances in the five-dimensional space. Fry (2001) was a break-

through paper in that he presented the geometrical interpreta-

tion of the condition of calcite e-twinning, but his stress space

did not fulfill the principle.

The information contents of doublet and triplet are larger

than those of twinned and untwinned e-planes (Figs. 6 and 9).

It means that constraints from doublets and triplets are tighter

than those of twin and untwin data. In addition, the gradient

of the information content of triplet, dI/dD, declines rapidly

when D is smaller than ∼100 MPa and gradually when D is

in the range 100 � D � 200 MPa. Therefore, doublets and

triplets can determine differential stress better than twinned and

untwinned e-planes. However, it is difficult to classify n-plets

accurately due to the sampling bias (Fig. 11).

Differential stress has been estimated from the twin incidence

and from the relative percentages of grains twinned on 0, 1, 2

or 3 twin planes. However, such parameters are inevitably af-

fected by the sampling bias to some extent. At the worst case

this classification has the error rates of 20–30%, corresponding

roughly to the uncertainty of 0.01–0.15 in Jamison and Spang’s

(1976) S 1 parameter, which gives rise to the underestimation

of D by a factor of ∼1/2 (Jamison and Spang, 1976, Eq. 3).

The bias resulted also in the decrease of twin incidence by 5–

17 points (Fig. 11b), giving rise to the underestimation of D by

10–36 MPa according to Eq. (1) of Rowe and Rutter (1990).

Twin and untwin data loose resolution in D if twin lamellae

are formed under stress conditions with D greater than 50–100

MPa. Hence the bias can give rise to a serious error in deter-

mining differential stress. It was shown in §6.1 that doublet

and triplet are formed at their minimum D with Φ = 1. How-

ever, Jamison and Spang (1976) assumed Φ = 0 to estimate D,

resulting in inaccuracy to some extent.

The assumption, Φ = 0, allowed Jamison and Spang (1976)

to evaluate the percentages of n-plets as the functions of D by

measuring the areas of the regions on a unit sphere in three-

dimensional space. That is, since they assumed axial compres-

sion, reduced stress tensor had two degrees of freedom to de-

note the σ1-orientation, which was identified with a point on

the sphere. So, the variation in the orientation compatible with

an n-plet was represented by the area. If they did not assume

a value of Φ, they had to define the unit sphere in the five-

dimensional stress space, S. In this respect, the arguments using

information contents in this paper is an extension of their work,

and the extension was enabled by the principle of coordinate

invariance.

Paleostresses have been estimated from twinned/untwinned

e-planes, twin incidence, and the percentages of n-plets, but

these ratios are easily affected by the sampling bias at differ-

ential stresses greater than ∼100 MPa. This is evidenced by

the graphs in Figs. 11a–c. That is, the gradients of the graphs

asymptote to zero with increasing D, meaning that a small per-

turbation in the ratio (the ordinate of the graph) results in a large

perturbation in D (the abscissa). All the ratios are based on the

determination whether e-planes are twinned or not. This dis-

crimination is naturally affected by the bias. Therefore, it is

important to incorporate not only the determination but also the

orientations of e-planes for the paleostress analysis of calcite

e-twins.

9. Conclusions

The yield condition and yield locus of e-twinning were ob-

tained using the five-dimensional stress space, which satisfies

the principle of coordinate invariance.

The constraints from twinned and untwinned e-planes and

from n-plets were measured by their information contents. Not

only twin but also untwin data are necessary to determine D, but

it was found that the constraints of untwin data are much looser

than those of twin data. The constraints of singlet, double and

triplet become tighter in this order. The constraint of zeroplet

is looser than twinned grains at low differential stresses, but be-

comes tigher than singlet and doublet at D greater than ∼7.5τc

and ∼15.0τc, respectively. The existence of doublet and triplet

places the constraints on the lower bound of D at 2.27τc and

2.52τc, respectively. E-twin lamellae loose the resolution of D
if they were formed under the condition, D � 10τc.

At the worst 25% of twin lamellae are overlooked due to

sampling bias, which gives rise to the misclassification of n-

plets. Especially, triplets tend to be misclassified into doublets

and singlets. Accordingly, the determination of stress magni-

tude using the classification appears inaccurate. The bias gives

distortive effect to the estimation of D using the discrimination

of twinned/untwinned e-planes when twins were formed at D
greater than ∼10τc.
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Appendix A. Minimum differential stress for doublet

The minimum differential stress, Dmin, required for forming

doublet is determined as follows. Suppose that doublets are

formed only in the optimally oriented calcite grains with ver-

tical c-axes and untwinned planes with easterly e-vectors (Fig.

8b). Now, consider the right-handed, rectangular Cartesian co-

ordinates with the eastward and northward pointing first and

second coordinate axes and the vertical third axis. Then, the

twinned plane has

e = (sinα cos 120◦,± sinα sin 120◦,− cosα)T

g = (cosα cos 120◦,± cosα sin 120◦, sinα)T. (A.1)

From the symmetry of the crystal structure and that of stress

tensor, it is obvious that the stress tensor allowing twinning only

on the planes has theσ1- andσ3-axes lying on the E-W trending
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vertical plane. It follows from Eq. (4) that the stress tensor of

this case is represented by

σ =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 + cos 2p 0 sin 2p

0 Φ 0

sin 2p 0 1 − sin 2p

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠D.

where p denotes the westward plunge of the σ1-axis. This ten-

sor has the principal stresses, 0, DΦ and D. Under this stress

condition, the resolved shear stress on the twinned plane along

the gliding direction (Eq. A.1) has the expression,

τc = f (p)Dmin, (A.2)

with

f (p) =
1

16

(
5 sin 2α cos 2p − 3 sin 2α

+ 4 cos 2α sin 2p + 6Φ sin 2α
)
. (A.3)

Since the left-hand side of Eq. (A.2) is a constant, Eq. (A.2)

holds for the p value that maximizes f (p). It is necessary for

this maximization that Φ = 1, because the coefficient of Φ in

Eq. (A.3) is positive in sign. Substituting Φ = 1 into Eq. (A.3),

and solving f ′(p) = 0, we obtain Eq. (34), which gives the op-

timal p value that allows the formation of doublets at the min-

imum differential stress. Once this optimal value is obtained,

Dmin is calculated by Eqs. (A.2) and (A.3).
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Figure and Table Captions

Fig. 1. (a) Schematic illustration of a stress ellipsoid. The

size, shape and attitude of the ellipsoid are described by, D, Φ,

and the angles, φ1, φ2 and φ3, about the coordinate axes. (b)

There are four directions making right angles at every point on

S corresponding to the changes in the four parameters, Φ, φ1,

φ2 and φ3. (c) The section of S along the 12-coordinate plane

(thick line). Stars indicate the points where Φ = 1/2. Epsilon-

vectors exist only at the latter points.

Fig. 2. (a) Schematic illustration showing a sigma-vector (thick

solid arrow) in the five-dimensional parameter space. Thick

line depicts a unit sphere. Solid and open circles on the thick

line indicate the endpoints of the epsilon vectors corresponding

to twin and untwin datum, respectively. Dashed line indicates

the hyperplane perpendicular to �σ at the distance, τc/λD, from

the origin of the stress space, O. (b) Orthogonal projection of

the endpoints of the epsilon-vectors onto the line parallel to the

sigma-vector.

Fig. 3. Ψ versus D for the three cases, Φ = 0, 1/2 and 1.

These graphs are described by Eq. (23). The graph for other

Φ values are plotted between these lines. Open circle in the

inset indicates the intersection of the graph for Φ = 1/2 and

the horizontal line Ψ = 30◦ at D ≈ 2.3τc. Here, the critical

value,τc = 10 MPa, is assumed.

Fig. 4. (a) The regular hexagon illustrating the yield locus of

e-twinning, i.e., the intersection of the yield surface and the π-
plane. In this case, the plane is parallel to the 12-coordinate

plane of the five-dimensional space. Thick line in the hexagon

depicts the intersection of S and the plane. The endpoints

of epsilon-vectors can exist at the points indicated by stars.

Open circles on the hexagon is the intersection of the hexagon

and the rays through the points. Φ changes linearly along the

sides of the hexagon. (b) An analogue of S for illustrating

the compatibility of a sigma-vector (solid circle) and epsilon-

vectors. Closed stars indicate epsilon-vectors in the spherical

cap centered by the sigma-vector. Open stars indicate epsilon-

vectors out of the cap. Stars make lines along the φ1-, φ2-, φ3-

directions, which makes right angles with each other (Fig. 1c),

but a direction perpendicular to a π-plane is illustrated here. (c–

f) Replacement of untwin data by twin ones through increasing

D. Both open and close circles indicate the midpoints of the

sides of the hexagon in (a).

Fig. 5. Schematic illustration for the region on S, which is

defined as the set of the sigma-vectors that compatible with a

given data set. Open circles depict the points represented by

�c (1), . . . , �c (M), which are placed with regular intervals on S. P
in Eq. (27) equals the ratio of the area of this region and S .

And, the right-hand side of Eq. (28) is approximated by the

ratio of the number of the vectors in the region and M. This is

denoted by Eq. (29).

Fig. 6. Probability, P, for a randomly chosen stress with a spe-

cific D value to be compatible with a twin or an untwin datum,

and their information contents, The threshold, τc = 10 MPa,

was assumed to obtain the P and I values.

Fig. 7. (a) Stereogram illustrating the assumed horizontal e-

twin plane with the pole, e, and its eastward gliding direction of

the upper block, g. (b) Paired stereograms (lower hemisphere,

equal-area) indicating the stresses compatible with the twin and

untwin datum shown in (a). The heads of tadpole-like symbols

in the left stereogram indicate their σ1-directions, whereas the

tails of the symbols point the correspondingσ3-axes. The heads

and tails of tadpole-like symbols in the right stereogram have

the opposite roles. Stress ratios are depicted by rainbow colors.

Differential stresses are shown under the pairs, where the value,

τc = 10 MPa, was assumed. (For interpretation of the refer-

ences to color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 8. Lower-hemisphere, equal-angle projections showing the

stress conditions with the smallest differential stresses, Dmin,

required to form singlets, doublets and triplets, the c-axes of

which are assumed to be vertically oriented. Thin white arrows

indicate the gliding directions. Color code and white arrow in-

dicate the |τ| and −s directions on planes with various orienta-

tions, respectively. The stress condition with Φ = 0.5 is shown

in (a), but singlet can be formed at the minimum one regard-

less of Φ as long as both the σ1- and σ3-axes meet the twinned

e-plane at 45◦.

Fig. 9. The information contents of n-plets.

Fig. 10. Lower-hemisphere, equal-area projections showing n-

plets with vertical c-axis and the stresses compatible with them

for several D values. The critical resolved shear stress, τc, is

assumed to be 10 MPa. (For interpretation of the references

to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 11. Sampling bias estimated using artificial data sets. (a)

Ratio of the numbers of twinned and all twin sets. (b) Twinning

incidence. (c) The percentages of n-plets. Solid and dotted

lines indicate the percentages in the unbiased and biased cases,

respectively. (d) Misclassification ratio of n-plets. If m and m′
are the number of true and biased number of n-plets, this ratio

is defined as (m′ − m)/m.
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Table 1. List of symbols. Vectors in the physical space and five-

dimensional space are denoted by boldface letters and arrows,

respective, such that g and �σ.
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