Generalized Hough transform for the stress inversion of calcite twin data
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Abstract

Since the mechanical twinning along calcé#glanes has a critical resolved shear stress, not only principal stress axes but also
differential stress can be determined from the orientations of twin lamellae. Based on the five-dimensional stress space that fulf
the principle of coordinate invariance, it is shown the inversion of twin and untwin data is comparable with fitting a spherical cag
to data points on a unit sphere in the space. The principal stress orientations and stress ratio are indicated by the center of
cap, whereas fierential stress is denoted by the size of the cap. Based on this geometrical interpretation, a new inversion schen
is proposed. The method is demonstrated to be robust to sampling bias, variability in the critical resolved shear stress, and 1
heterogeneity of data.
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1. Introduction 2. Basic equations and inequalities

The present method is based on the mathematical formu-

The stress inversion of calcigetwin data has been used to lation of the accompanying paper (Yamaji, 2015), which was

elucidate paleostresses at the shallow levels of the crust. Tﬂgunded only upon the twinning conditiom, > rc, wherez

inverse methods determine not only the principal stress axes the resolved shear stress along the twin gliding direction of

but also stress ratio andfférential stress from the orientations f”m e-plane andr. is its threshold. However, this critical value

of twinned and untwinned-planes (Etchecopar, 1984; Laurent IS knowp tq depend on temperature at the time of twinning
et al., 1990). Principal stress orientations arftedéntial stress and grain size to some exient (Lacombe, 2010, and references

magnitudes have been determined in various areas edisig) therein). Accordingly, we use not onlyftirential stresd), but

data (e.g., Lacombe, 2010; Amrouch et al., 2010, 2011, Beatﬁlso non-dimensional flerential stress) = D/, to circum-
doin et al ' 2012) ' ' ’ ' ’ vent the uncertainty of the critical value. That isffeiential

stresses are denoted by the multiplesofFor example, when
Recently, Yamaji (2015) reformulated the theories of y Peso b

: o we deal with twin lamellae that were formed with= 10 MPa,
T_a_keshlta e_t al. (19_87_) and Fry (2_001) on the tW|.nn|ng CONthe valueD = 5, indicatedD = 50 MPa. In case the; value is
dition to fulfill the prlnC|pIe_ of coordlnat_e invariance: Phy3|_cal uncertain, the value can be determined from twin data.
laws must be formulated in mathematical forms that are inde- -

pendent from the choice of a coordinate system (e.g., Ottos
and Ristinmaa, 2005). In addition, Yamaji (2015) delineate

the range of stresses constrained by a twin or untwin datum. )
from stress tensor, the resultant quantity called reduced stress

strI;ilr?elélnt?War\] cljr;ti a::]aisrrgg;inngegh?rt]g tZi;?;ﬁ];egf:gLuur?tr: zr%)fg_r}ﬁnsor carries only the information of principal axes and stress
y ' 9 g ratio, ® = (o2 — 03)/(01 — 073). Suppose that the unit vectors

(Ballard, 1981) can detect one or more solutions that explain o) 4@ and ® make a right-hand system in this order; and

given dataset. Therefore, it is straightforward for the transform .
. : are parallel to ther;-, oo- andos-axes, respectively. We use
to detect stresses from heterogeneous calcite twin data. Hercﬁ,
: : .~ the reduced stress tensor of the form,

we propose such an inversion scheme. The next section is de-

?.1. Sigma- and epsilon-vectors
If the information of stress magnitude is abstracted away

voted to explain the parts of the theory essential for introducing 20 0 0
the inversion scheme in Section 3. Then, the method is demon- ¢c= iQ 0 20 -1 0 |qQT, 1)
strated with synthetic data sets to be robust to sampling bias, the 31 0 0 -1

variability of the critical resolved shear stress, and the hetero-
geneity of data. Finally, the present scheme is compared WitfyhereQ is the orthogonal matrix whosgh component is("”

previous ones. and
A= /(D2 - D +1)/3. 2
“Phone:+81 75 753 4266; fax:81 75 753 4189. ¢ is a deviatoric tensor, meaning thag + ¢22 + ¢33 = 0. De-
Email addressyamaji@kueps.kyoto-u.ac. jp (Atsushi Yamaji) viatoric stress tensor is denoted by= ADg¢ (Yamaiji, 2015).
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A has the minimum value (2) at® = 1/2, and the maximal (a)
one (¥ V3 ~ 0.58) at® = 0 and 1. Stress ratio simply indi-
cates the shape of stress ellipsoid, whereadates diferential
stress to equivalent streskz, which is a scalar quantity rep-
resenting the components Bfto predict yielding under multi-
i7

axial stress conditions (Hill, 1950). The quantity is written as
(Yamaji, 2007, Egs. 4.15, 10.37)

Te = /3Ty = V31Dr,, (3)

where the quadratic quantity of the components afe.,

Ti= 3 (T2rToe Th)+ THhe T T3 (4)
is called the second basic invarianflof The values of the com-
ponents themselves arffected by the choice of coordinate ori-
entations, but that of, is invariant under coordinate rotations.
The reduced stress tensor was defined for its second basic in-
variant to satisfy;, = 1: We defined the reduced stress tensor
as Eq. (1) for its second basic invariant to fulfill this condition.
The present method searches for the deviatoric stress tensors
in a five-dimensional parameter space that explain a dataset.
SinceT is a symmetric tensor satisfyifg, + Too+ Tz3 =0, T
has five-degrees of freedom such that

® Epsilon-vector
O corresponding to
a twin datum

O Epsilon-vector

‘o)
o -

b, ~ correqundmg to

S an untwin datum

Figure 1: (a) Schematic illustration for a stress ellipsoid in the physical space,

Ti1 T12 Ti3 the attitude of which is denoted by rotation angles about the coordinatefaxes,
T=|Tp, Tx Tos ¢2 andgs, whereas the shape of the ellipsoid is denotedloy A. (b) Diagram
’ showing the correspondence betwa@emandA. (c) Schematic illustration for
Tiz Taz —Tui—T2

a unit sphere, S, in a five-dimensional space and the five-dimensional position
. L vector, X that represent$. Epsilon-vectors corresponding to twin and untwin
whereT is denoted only by its five componen®,, Tz, Ty, data are represented, respectively, by solid and open circles. The former vectors
T, andTo3. The five components can be used to define a fiveexist in the spherical cap with the centét, and radius)¥, on S. The curves

dimensional parameter space to indicatéor example, by the  defined by the parameters,and¢i, meet at a right angle on S.

Cartesian coordinate3 {1, T1, T13, T22, T23). However, such a

parameter space is known to be inappropriate, because it do@ﬁppendix A). It follows from|@| = 1 thaté represents a point
not fulfill the principle of coordinate invariance. It means that,, 5 ynit sphere, S, in the five-dimensional space, which has
the.results _of computa_ttion can bﬁ_e&:ted by the choice of co- the spherical coordinatess, ¢,, s andA. The first three co-
ordinate orientations in the physical space (Sato and Yamajhginates represent the attitude of stress ellipsoid in the physi-
ZOQGa). Instead, we define the parameter space to have the ¢gy space (Fig. 1)A is called Lode angle in plasticity theory,
ordinates, and represents the shape of the ellipsaidis the function of

A with the periodicity of 120 (Yamaji and Sato, 2006), i.e.,

(T3 Te/2,(Taa+ 2722 = Te9)/2V3 To0 Tow Tiz)- ), 25 Ging(a), [ VBcost(n) + Sint(A)| . wheref(A) = A+30

Let us define the five-dimensional position vector, EIO:V ‘?10;)3 A <30, and{(A) = 90" - A for 30" < A < 90°
ig. 1b).
% = AD&, (6) Similar to the correspondence betwegrand &, twinning
along ane-plane is represented by a unit vectgrjn the five-
where dimensional space. This vector is obtained as follows elagid
g be the unit vectors indicating the pole and gliding direction of
o= ((5‘11 — 633)/2, (—511 + 2622 — §33)/2 V3, 623, 631, 5‘12)~ the plane, respectively. Then, reduced strain tensor is defined

(7)  ase = ge' + ed’, which carries only the information of the di-

By the definition of¢ (Eq. 1),5" is a unit vector; and it follows  rection of strain by twinning, and strain magnitude is abstracted
from Egs. (4) and trac® = O that|X|* = X2 +X3+X3+X5+X2 = away frome. The five-dimensional unit vector representing an
Ty. It means thatx| is invariant under coordinate rotations. e-plane is defined as
SinceT is proportional tag, the components of are equivalent
with Eq. (5). Let us define the non-dimensional versioiX ab €=-— ((811 — £33)/2, 2(—€11 + 2602 — £33)/ V3, £23, €31, 812) ,
X = X/1c. 8)

We call & a sigma-vector. It should be noted thdthas a  and is called an epsilon-vector. We identify this unit vector with
one-to-one correspondence wgthallowing us to identify them a point on S.
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2.2. Spherical cap

Twinning occurs if the resolved shear strasslong the glid-
ing direction exceeds a critical valug,. Since the former sat-
isfies the equation (Yamaiji, 2015),

7=ADd - €,

9)

It can be seen from Eq. (6) that the twinning conditior, ,
is identical witheé - 1D > 7. and

€-X> 1. (20)

A twin or untwin datum denoted by is said to be compatible
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Figure 2: (a) Information contents of a twin datum and an untwin datum. (b)
The codficients of the error propagation froito 2 andD (Egs. 19 and 20).
D is indicated in MPa, and was evaluated by Eq. (13). Double lines indicate

with or explained by the deviatoric stress tensor presented bye exireme cases with= 1/2 and ¥ v/3, which correspond té = 1/2 and
X or T, if the inequality (10) is satisfied. An untwin datum @ = 1/2 + 1/2, respectively.

denoted by is said to be so, if the inequality,

g. )? < TC, (11)

3.1. Inversion scheme

is satisfied. It follows from Eq. (9) that these inequalities are

combined into the expression,

H(xAD&-€ ¥ 7¢) = 1, (12)

where the upper and lower signs correspond, respectively, to the

inequalities (9) and (11), ard is the Heaviside step function,

H(x) = 0 (x<0)
M=11 0<x.

The twinning condition has an important geometrical inter-

pretation in relation to S (Yamaiji, 2015). Sinéeandé are unit
vectors, we have cas = & - € wherey is the angle made by
the vectors. The conditiorr; < 7, can be rewritten in terms of
Eq. (9) astD cosy > 1. It follows thate is on the spherical cap
with the radius of

¥ = cos(1/4D), (13)

if the stressX = AD¢&, explains the twin datung, (Fig. 1c).

3. Inverse method

Let us consider howk is determined from the data. Once
this vector is determined is obtained simply by multiplying
X with an appropriate; value; andT is obtained through the
procedure in Appendix A.

In case the data set is homogeneous (in other words, all twin
lamella were formed under the same stress st@tgtisfies the
simultaneous inequalities,

g .g>1, ...,

eM.g<1, ...,

gt(Nt) X >1

M. <1,

(14)
(15)

That is, X is the solution of this linear system (Laurent et al.,
1981; Fry, 2001). Theéth inequality constrains the possible
region forX to one side of the hyperplane denoteddy- X = 1.

The solution of the system is called the feasible region, which is
a polytope (a high dimensional analogue of a polyhedron) in the
five-dimensional space. It is obvious from Fig. 1 that untwin
data place the upper bound for the size of a spherical cap, which
indicates diferential stress.

An inversion scheme was devised in this work to detect
stress(es) as follows. If a data set is homogeneous and free
from disturbances coming from measurement errors, sampling
bias, etc., the simultaneous inequalities (14 and 15) have a solu-

Based on the inequalities (10) and (11), we demonstrate thgl,,. A feasible region exists. However, disturbances can give
an inversion scheme can be formed to determine the dewatorﬁ‘Se to the non-existence of the solution. Even in this case. the

stress tensors compatible with given twin and untwin data. Thﬂumber of the inequalities satisfied by an arbitrarily chagin

inverse method aims at determining the optimal vecxgg;

from a dataset. Once this vector is obtained, the vector is d‘ﬁ(x’) andny(X

a measure to estimate the fitnesXdbr a given data set. Let
) be the numbers for the twin and untwin data,

composed into the combination of optimal stress axes, stre§agpectively. It would appear that a better solution has a larger

ratio and dfferential stress (Appendix A).

Suppose that we hawg; twin and N, untwin data. We re-
fer N to the total number of dataN = N; + Ny,. The data
are represented by the epsilon-vectde”,..., ™} and
e |, respectively: The subscripts ‘t' and ‘v’ in-
dicate the quantities of twin and untwin data.

glfNu)

cey

the summationn,(X) + n(X), but this is not true. It should be
noted that the inequalities in (14) and (15) hauedéent signif-
icance, because the constrainflofrom a twin datum is always
greater than that from an untwin datum (Yamaji, 2015). Their
difference depends on thefférential stress that should be read
from data. Letl{(D) andly(D) be the constraints, respectively,



as the functions obD. Yamaji (2015) derived the equations,

M
1(D) = - log, [% > H@™M DY - 1)] (16)
m=1

M
(D) = - log, [% D Ha- A““’QUE{“))} .oan

m=1

whereo " is the fourth coordinate of theth of 3, ..., @M,
which denote the uniformly distributdd pointson S > 1),

and AM s derived froma™ through the procedure in Ap-

pendix A. Figure 2a shows the graphsi@gD) andl,(D).
As a result, we use the function,

FRX) = l@)M(X) + 1u(®)Nu(X)

to evaluate the fitness &fto a given data set, whetgD) and
I,(D) are the weights of the numberg(X) andn,(X). The vec-

(18)

3.3. Error propagation

LetsW, 54 andsD be errors in?, 1 andD, respectively. Error
propagation frond¥ to 2 andD is calculated as follows. Dif-
ferentiating co¥ = 1/4D, we have §¥/9d1) sin¥ = (cos?)/A
and g¥/oD) sin¥ = (cos¥)/D. Then, the error propagation is
denoted by the equations,

51 = (1tan?) s¥ (19)
tan¥
=" (/l coskl’) ’ (20)

whereD = 1/AcosY¥ is used. It means that botit andsD
increase rapidly with increasinyj, especially for largé?, and
that error inD is greater than that in by 1.5-2 orders of mag-
nitude. Figure 2b shows thab inflates in the rangel = 10.
This is consistent with Yamaji (2015) who points out that the
orientations of twinned and untwinnegplanes loose the reso-

tor, X, that maximize this function is thought to be the optimallution in D if twin lamellae were formed &b greater than 5-10.
stress for a given data set. This scheme attempts to fit a spheri-

cal cap (Fig. 1) to the distribution of points on S corresponding3.4. Heterogeneous data

to twin and untwin data. Even if the feasible region does no

exist, the best solution is obtained by this scheme. 341 Processing of heterogeneous data

If data are heterogeneous, there may be no x-vector that sat-
3.2. Numerical method isfies all the inequalities in (14) and (15). Even in this case,
o . the vectorX, corresponding to the stresses to be detected from

f Thle gpt;mbal%v(\;as (_jettermged utshmg the Ia;gﬁ nurrbe_;(_)f L,:Q."the heterogeneous dataset satisfy many of the inequalities com-
ormly distributed points on > as the computational gnd in this, ., . 4 14 those corresponding to erroneous stresses. Note that

wqu. An exhaustive search was (_amployed to find the opt.!ma tress is constrained loosely even for= 1. Yamaji (2015,
point among them. The 60,000 points generated by Yamaji anEig. 7) illustrates such a case. Increasing number of data nar-

tShato (2't012) twere used fo{.th's’tﬁ urpo'siz. Eéﬁm o UB(OM)O,ObOe rows the stresses compatible with the dataset. Given a hetero-
NgtéjT;1a¥§(&(;ri;ﬁpggségvlr?t?en Zé’?gf‘ I;.WSO evje : d’enti fy geneous data sd¥(X) has local maxima at.the X-vectors corre-
- . = ; S sponding to the correct stresses. Accordingly, we searched for
Xanq the pair¢? apdg. Itis easy to calculatd from & (Ap- the peaks of(X). To this end, the procedure described above
E/Si:ili); A()j' Ther:etls no r;eti(:r:o Sfra@lsrr:allsirttféan 2, because was applied to a heterogeneous data set, and the x-vector corre-
The gpti?r?iiat?or? (C:Ji:u()?? wai Zoisesthrggghl{thisbrocedure: spon_d ing to the maximum G (X) was regardeq as an optimal
= solution. Then, the twin data that were explained by this solu-
tion were counted out to form the subset of data to which the
procedure was applied again to detect the final optimal solution.

1. Choose thentrial D valuesDW, ..., D™, greater than 2.
2. Repeat the calculatiof, = max!, F(¢(, DY), fori =
L....m
3. Find the maximum among®,..., F™. LetD, and 3.4.2. Separability of stresses
Gopt be the dfferential stress and the sigma-vector corre- The present inverse method attempts to fit a spherical cap to

sponding to the maximum.

the distribution of the points on S corresponding to twin data.

4. Decomposery: into the optimal orientations of stress Two or more spherical caps must be fitted to the distribution,

axes and stress ratio (Appendix A).

when the data set is heterogeneous. If the intersection of the

5. In order to estimate the uncertainty of the optimal onesgspherical caps has a large area compared to the areas of the

find the sigma-vectors satisfyirig(o* (), D) > 0.9Fmax.
6. Decompose the sigma-vectors into the orientations;ef

caps, the separation is not easy (Fig. 3). Itis impossible, if the
larger cap includes the smaller one.

and o3-axes and stress ratios, and plot them on paired Accordingly, we propose a measure of easiness to separate

equal-area projections.

In case the dferential stress to be detected is greater thED0

stresses,

Sp=1- Sin/ min(S®, s®), (21)

MPa,F(X) can have the multiple peaks with the heights similarwhere S® and S®? are the areas of the spherical caps of the

to the maximumFpa = max?, FO. The proximity in their
height is quantitatively defined a& fax — F")/Fmax < 0.1.

two stresses to be separat&}; is the area of of their inter-
section.S® andS®@ were calculated from th¥ values of the

Then, theD values corresponding to the peaks that satisfy thicaps (Appendix B), where&S,; was evaluated numerically.
condition were averaged to gi‘@%pt in the third step, where the The present article has the MATLAB M-files as supplementary
trial D values have regular intervals. materials to calculate Sp (Appendix C).
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Figure 3: Schematic illustration for the explanation of the separability, thie di 75";/»? VS ot
culty measure for the separation of stresses from heterogeneous twin data. The S SN

stresses are represented by Spherical Caps 1 and 2. The separation is easy, if
they do not have an intersection. It idfttult, if the intersection is as large
compared to the size of the smaller spherical cap. The separation is impossible,
if the smaller cone is encompassed by the larger one. The Euclidean and angu-
lar distances between the poiatd) and#® on S are denoted, respectively, by

doL and®.

tween 0 and 1. Spherical caps without intersection have p AR
meaning that the corresponding tensors can be easily separated. :\;g\
The smaller this measure is, the mor#idult the separation is.

If the smaller cap is included by the larger one, the separation
is impossible and Sg 0.

3.5. Dissimilarity between deviatoric stress tensors Figure 4: Tangnet-lineation diagrams (equal-area projections) showing the ex-
We define the dissim”arityj' between assumed and obtained amples of synthetic twin data (solid arrows). The arrows indicate the gliding
- . - irections of the ‘footwalls.” Bold crosses denote the assumed principal orien-
deviatoric stress t?n_sors_ to estimate the accuracy Of the preséﬁfonsw = gp-axis,x = gz-axis. White arrows indicate maximum shearing
method. Let us dBtmgWSh the quantities related with the t\_N(Hirections. In each diagram, 100 data are plotted. Randomly oriented untwin
tensors by the superscripts, gl) and (2). For example, the fivefata are not plotted here for simplicity.
dimensional position vectol,V¢® = 310D 7.3, repre-

sents thdth tensor (Fgs. 3 and 6). We use the Euclidean dis-

tance between the endpoints of the vectors, the stability of the inversion by the increasing number of data,
a few diferent numbers in the range, 75-300, were assigned to
d = [TPe® - TP3®)| = V3{WDWeW - 1ADp@@)| 7, Ng. To simulate the fabric, the-axes of the grains were ori-

ented with uniform angular intervals: The uniform distribution
as the dissimilarity. Sinc& andga are invariant under coordi- was approximated by the generalized spiral set (Rakhamanov et
nate rotations in the physical spades invariant as well. Two  a|., 1994). Thea-axes were randomly rotated about thaxes.
deviatoric stress tensors are identical, if and onlyif 0. The Givenc ande, the g||d|ng direction on aB.p|ane was obtained
dissimilarity increases with increasingfigirences in the prin-  py g « (1 —eg(c—e), where ( —ed is called elementary orthog-
cipal orientations, stress ratios or deviatoric stresses. The nognal projector (Meyer, 2000¢eis the square matrix whosi¢h
dimensionalized dissimilarit)g = d/zc, is also useful in the component ig:‘-'ej’ and the constant of proportiona"ty is deter-

following discussions. mined by the conditiong| = 1.
A homogeneous data set was generated with the set of as-
4. Test sumed stress ratio and stress axes and non-dimensional dif-
ferential stressP,. Given these parameters, we calculated
4.1. Generation of synthetic data sets through Eq. (1). The twinning conditiorr; > 7, is non-

The present inverse method was tested with a number of syilimensionalized adDg - ¢e > 1, thereby we judge whether
thetic data sets, which were generated as follows. Calcite aggré=planes satisfied the twinning condition. The examples of syn-
gate was assumed to haNggrains with isotropic lattice fabric. ~thetic data sets are shown in Fig. 4.

Since each grain has threglanes, we havél = 3Ny. To test A heterogeneous dataset from whikhstress states should
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(a) —_— small-circle girdles fod = 0 or 1. Otherwise, they make more

or less elliptical clusters with orthorhombic symmetry, because
the maximum shearing directions have such symmetry. These
features allow us to detect easily the assumed stresses from the
twin lamellae that were formed at low afidirential stress. In
contrast, when dierential stress is large (e.@, = 10), those
features become unclear, and manglanes with unfavorably
orientede and g vectors are allowed to be twinned. As a result,

it is not easy to invert the data from twin lamellae that were
formed at a high dferential stress.

100

The present inverse method was applied, first, to three ho-
mogeneous datasetlf = 100) that were generated with the
same deviatoric stress tensoig, (= 5.0, N-S trendingr;-axis
(b) and verticabrz-axis) except for thei® values (0.0, 0.5 and 1.0)

(Fig. 5). As a resultF showed the maximum @Opt =51,5.6

and 5.8. The optimal principal orientations were determined

within several degrees from the assumed ones. The dataset that

were generated witdg = 0.0 and 1.0 had the smallest and

largest dfferences between assumed and optiinahlues. The

Dp=0.0 ®y=0.5 Do=1.0 dissimilarity between the assumed and optimal deviatoric stress

tensors was of the order of/100. It means that the assumed
stress conditions were detected with satisfactory accuracy, be-
cause the dissimilarity was much smaller than the uncertainty
(d) 0.04 of 7 value itself.

0.03 The dissimilarity between the assumed and optimal devia-
00 & toric stress tensors showed that the accuracy of the solutions
0.01 Te was independent from the assumgdvalues (Fig. 5d). The
’ same test was done with the thrég values not only for
0.00 D, = 5.0 but alsoD, = 2.5 and 7.5. As a result, the accuracy
of the solutions was independent frabg values. Accordingly,
we use the valuady = 0.5, in the following tests.

A series of numerical experiments was performed using the
Figure 5: The results of the present method applied to the three homogeneo&ssumed deviatoric stress tensors with common stress ratio and
datasets that were generated with assuming the sffieeetlitial stress except  principal orientations but with dierentDO values. As a result,

for the stress ratioshg at 0.0, 0.5 and 1.0. (&) versusD showing the assumed
(dashed line) and optimal (triangleB)values. (b) Equal-area projections show- it was found that (X) had a clear peak Wh@o was smaller

ing the assumed and optimal principal orientations. (c) The assumed and opﬂih‘?In ~3. The graph ofF(X) had multiple pea_ks f(_)Qo 23
mal ® values. (d) Dissimilarities of the assumed and optiméiedéntial stress ~ (Fig. a). And, the peak became a plateau with zig-zag top for

tensors normalized bi. D, 2 7, giving rise to the numerical instability @opt- This
means that the determination of stress magnitude was accurate

be separated was formed by the following procedure. First, thgnly for the data sets that were generated with loffedential

Stresses.
resolved shear stresses along eaplane under the assumgd
stresses were calculated. We refér. . ., 7€ to them. Second, D,y Showed a significant scatter for the data sets ith
if at least one of the inequalities! > r,..., 7 > 7., is satis-  greater than 50-70 MPa, but it was found that the relationship
fied, thee-plane was judged to be twinned. This judgment wasoetweerD, andD,,, is approximated by the equation,
done for alle-planes to make a heterogeneous dataset.

K or-axis (assumed) = 0-axis (obtained)
¥ o3-axis (assumed) = 03-axis (obtained)

(© 1.0

Dopt 0.5

0.0 0.5 1.0 0.0 0.5 1.0
[ON) Dy

10910 Dy = 109192 + (D, — 2)/2 (22)
4.2. Homogeneous data

The twinning conditionr > 7, requiresD > 2. When dif-  whereais the constant that depends Np (Fig. b). This equa-
ferential stress is low (e.gD, = 2.5), twinning occurs only tion can be used to caIibra@Opt with the diterential stress that
along thee-planes that are more or less favorably oriented withshould be determined from a data set. The regression analy-
respect to the stress axes and that have the gliding directioses of the data in Fig. 6b yielded the valuesagh Eq. (22):
subparallel to the maximum shearing directions (Fig. 4). In ada = 6.82 for Ny = 300,a = 5.76 for Ny = 150 anda = 4.52
dition, the poles to the twinneelplanes make clusters or girdles for Ng = 75. AIthoughQOpt became unstable fdd, 2> 7, the
depending on thé value. The symmetry of the clusters reflects present method accurately determined the stress ratio and stress
that of assumed deviatoric stress tensor. That is, they makaxes from the data sets generated with lddgealues (Fig. 6¢).
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Figure 6: (a)F versusD for the synthetic data sets generated with the vertigaland E-W trendingrz-axes,® = 0.5 andNg = 300. The numbers attached with
lines denote th®, values. (b)D, versusD, for the data sets with fierentNgy values. Gray lines depict the regression lines (Eq. 22). (c) Paired equal-area
projections showing the optimal stress axes and stress ratios determined from the data $&ts-v@@0. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

4.3. Biased data W ﬁ calcite grain
X twin lamella  ,; ;
The incorporation of untwin data is essential for stress in- —= : thin section
version of the orientations @ftwin lamella to place the upper M
bound of diferential stress. However, the sampling bias gives

rise to the misclassification of twin data into untwin ones, lead-

Ing pOSS|ny to erroneous results of stress inversion. The blal—slgure 7: Schematic illustrations for the sampling bias of twin data. The twin

depends on several factors including the anglebetween a  |amellae in these pictures have the same widths and spacings, but those meeting
thin section and a twin lamella (Fig. 7), width and spacing ofat a low angle with a thin section tend to be overlooked under a microscope.

twin lamellae, etc. Yamaji (2015) showed that at the worst case
the 20-25% of twin data are misclassified into untwin ones.

Here, we test the present inverse method using a biased ddt#pution between 0 and 1 for each twin datum. Second, if the
set. Following Yamaji (2015), only the geometrical factor of random number was smaller than the Terzaghi factoyy,saf
the bias is taken into account. Twin lamellae were assumed téie datum, the attribute of the datum was kept as ‘twin.’ If, on
be observed in mutually perpendicular three thin sections. Théhe other hand, the random number was greater than the fac-
possibility of correct classification of each twin datum was astor, the attribute was switched to ‘untwin.” The thin section in
sumed to be sip (Terzaghi, 1965): Twin lamellae were over- Which twins were observed was assumed to be horizontal.
looked at the probability of 2siny. The rejection method (e.g.,  As a result, 60 twin data were misclassified as ‘untwinned,
Press et al., 2007) was employed to generate a biased datasmid we gotN; = 186 andN, = 714. Fig. 8a shows the Mohr
That is, a random number was, first, drawn from a uniform dis-diagram of the data. The symbols of twin and untwin data are
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Figure 8: The ffect of sampling bias. (a) Lower-hemisphere, equal-angle

projection showing the synthetic data, which were generated Mgtk 300,

® = 0.5, D, = 6, and the stress axes depicted by crosses. (b) Mohr diagram

showing the assumed stress for generating the data set. Sixty twin data welrégure 9: Hfect of the variation of critical resolved shear stress. (a) The as-
misclassified as untwinned ones, which are plotted above the horizontal line &!med probability density function (PDF) and cumulative distribution function
7/7¢ = 1. (c) The total score versis (d) Paired lower-hemisphere, equal-area (CDF) of 7c. (b) Lower-hemisphere, equal-angle projection showing the syn-
projections showing the optimal solution. Crosses indicate the assumed streiigtic data, which were generated wiy = 300, ® = 0.5, D, = 6, and the

axes. (For interpretation of the references to color in this figure legend, thétress axes depicted by crosses. (c) Mohr diagram showing the assumed stress
reader is referred to the web version of this article.) for generating the data set. The graph ‘PDF’ show the probability density func-
tion of r¢. (d) The total score versi3. (e) Paired lower-hemisphere, equal-area
projections showing the optimal solution. Crosses indicate the assumed stress
axes. (For interpretation of the references to color in this figure legend, the

mixed above the horizontal line af7c = 1 in the diagram, reader is referred to the web version of this article.)

indicating the misclassificatiorf (X) showed the maximum at
D, = 5.7, which was smaller than the assunizdalue by 5%
(Fig. 8b). The paired equal-area projections in Fig. 8c showintwin data, among which 11 twin data and the same number
the principal orientations and stress ratio of the optimal stress;f untwin data were generated withsmaller than and greater
The assumed stress axes and stress ratio were successfully figgn 10 MPa, respectively. Figure 9a shows the Mohr diagrams
covered. The non-dimensionalfidirential stress calibrated by of the data set. Theffect of variabler. is clearly shown in
Eq. (22) was 6.98, about 1.0 greater than the assumed one. the Mohr diagram in this subfigure: Symbols representing twin
and untwin data are mingled around the horizontal line at 10

4.4. Variation of critical resolved shear stress MPa. Figure 9b shows the graph®x), which has the peak at

It is known that the critical resolved shear stregsdepends Doy = 50 MPa. The dierential stress calibrated by Eq. (22)
weakly on a few factors including temperature and grain sizeis 55.1 MPa, about 5 MPa smaller than the assumed one. The
Strain hardening by-twinning itself dfectst; as well. La- paired equal-area projections in Fig. 9¢ show that the assumed
combe (2010) summarized that the range,= 10+ 4 MPa, stress axes and stress ratio were successfully recovered by the
was appropriate for paleo stress analysis of cateitgins. present inverse method. As a result, we found that the variable

To take into account the variation of the critical value, we re-7¢ did not have a harmfulféect on the inversiond = ...
garded that calcite grains havefdrentr. values, which were
assumed to obey the normal_ distribution with lthe mean at 1Q Heterogeneous data
MPa and the standard deviation of 1.6 MPa (Fig. 9a). As a re-
sult, it was expected that the potential twin planes witly 6 Finally, the present method was tested with heterogeneous
MPa were unlikely twinned, but those withg, 14 MPa were  data sets, in particular, to see whether the method can separate
twinned with a high probability, depicted by the graph of thestresses from them. Three stresses A, B and C (Table 12) were
cumulative distribution function in Fig. 10a. The sampling assumed to generate two data sets: A data set was generated
bias was not applied to this dataset to observe ffeeeof vari-  with Stresses A and B, and another with Stresses A and C. The
abler; values. As a result, the data set had 245 twin and 658ritical resolved shear stress, was assumed to be constant;
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Therefore, Stress A was detected, first, by the present method.
The 297 twin data that were explained by the detected stress
were counted out to form a data subset, to which the present
inverse method was applied to test whether the method could
detect Stress B. Fig. 11f shows the object function as a function
of D for this subset. The function had a prominent peak at
D = 45 MPa, smaller than the assuni@dalue only by 5 MPa.
The optimal solution aDop = 45 MPa is shown in the paired
equal-area projections in Fig. 11g. The solution hadtheand
oz-axes at 09901° and 194/86°, respectively, and = 0.48,
which were close to the assumed parameters of Stress B. The
calibrated diferential stresses are 128.2 and 46.5 MPa.

500

400

300

200

(d)

4.5.2. A djficult case
The second data set is shown in Figs 12a—c. The graph of
F(X) had a plateau between 40 and 90 MPa, but had the max-
imum at 77 MPa, which was smaller than the assurbeof
Stress A by 23 MPa (Fig. 12d). Except for this underestima-
tion, the assumed stress axes and stress ratio were successfully
o1 o3 recovered (Fig. 12e). The optimal solution had the and
TR o3-axes at 00384° and 270/000, respectively, and = 0.54.
0 1020 The 305 twin data that were explained by the detected stress
= were counted out to form the data subset, which was inverted
to determine the second significant stress. As a reBiK)
Figure 10: Homogeneous data by Stress A (a) and Stress B (b). (c) Heterog€Xhibited peaks between 30 and 40 MPa, and had the maximum
neous data, in which asplane was judged to be twinned if it was compatible at Dopr = 33 MPa. At this diferential stress, the optimal stress
with either of the stresses. (d) The results of the present inverse method appligfas determined to have the - and oz-axes at 18301° and
to the heterogeneous data set in (c).R€)) versusD the peak ab = 75 MPa. _ . .
(e) Paired equal-area projections showing the solutidh at75 MPa. Crosses 0937/16", and(,l) =0.19. Stre,SS axes was SatISf,aCtO”ly accurate,
indicate the assumed stress axes. The twin data compatible with the solutidUt Stress ratio was not. Sinéewas underestimated by 23%
were counted out to form the subset for the second processing to detect the seghen Stress A was detected, only 305 twin data were explained
ond solution. (f) The object function for the subset showing the pedk-a#t5 by the stress determined from the entire data set, which involved
MPa. (g) Paired equal-area projections showing the solution at tfiésetitial 03 twin data. That i 100 twin dat ined i
stress. (For interpretation of the references to color in this figure legend, thé win data. atls, some In data were rema'ne In
reader is referred to the web version of this article.) the subset, and made the problem to detect StressfiBudi.
The calibrated dierential stresses are 137.1 and 31.0 MPa.

and the sampling bias was not considered when the heterog 6
neous dataset was generated. The assumed 300 calcite grains
were assumed to have random lattice fabric. This is consistent with the discussion by Yamaji (2015) based
The spherical caps corresponding to Stresses A, B and C ha@® the quantification of the constraints from twin and untwin

the areas of about 9.26, 5.68 and 5.68, respectively. Since thogata. This is also consistent with the error propagation illus-
of Stresses A and B do not have an intersection, we have Sptrated in Fig. 2b. GiverD = 10,1 = 0.5 andd'¥ of the order

1, indicating the separation of the stresses is easy. In contra&if 1° ~ 0.018 radians, it follows from Eq. (20) thaD ~ 1.

the intersection of the caps of Stresses A and C has the aréacase ofD = 5, we havesD ~ 2. Therefore, if twins were

of ~3.64. Accordingly, we have Sp 0.360, meaning that the formed under the dierential stresses of the order o1z,
separation of Stresses A and C is mordiilt than the that of Dy, has errors of the order of 18 If twins were formed at

. Interpretation

Stresses A and B. hundreds of MPa, the errors are at least of the order bM®a.
Consequently, the present method was robust to the sampling
4.5.1. An easy case bias.

The present method was applied to the entire data (Fig. 11c), The mean or representative value of the variables deter-
and obtained the satisfactorily accurate parameters of Stressrined by the inversion. In this numerical experiment, we as-
except for the underestimation Bf The object functionF(X), sumed the mean and standard deviation at 10 and 1.6 MPa, re-
peaked aDgp = 75 MPa (Fig. 11d). The optimal solution had spectively, to realize the rangenfvalues that was summarized
the o-1- and o-3-axes at 00384° and 270/00C, respectively, by Lacombe (2010). It means that the uncertainty of the actual
and® = 0.54 (Fig. 11e). Since Stress A had largeffeliential 7. value at 16% leads to the same percentage oDthalue
stress than Stress B, tHevalue of Stress A was larger than that estimated by the inversion. This uncertainty is a few points
of Stress B. Accordingly, the number of twin data compatiblesmaller than that of Lacombe (2010, p. 826) at 20%. However,
with Stress A was significantly greater than that of Stress Bthe uncertainty oD comes form not only the uncertainty of
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the diference in their detectability.
Figure 11: Homogeneous data by Stress A (a) and Stress C (b). (c) Heterogé- Let D Ee ;he n:'.)I:-C(ijlTetr;]SIC:Eallzzq%‘{I;(fétﬂtlal Srt]rthSD -
neous data. (d) The results of the present inverse method applied to the h _-O—/TC’ which is related (o the the radius roug € equa-
erogeneous data set in (c). ()X) versusD. (e) Paired lower-hemisphere, tion, cos¥ = 1/4D. It follows from Eq. (B.1) that the area of

equal-area projections showing the solutiorDat= 77 MPa. Crosses indi- the capC, is
cate the assumed stress axes. The twin data compatible with the solution were

counted out to form the subset for the final processing to detect the second so- o2 1 3

lution. (f) The object function for the subset showing the pedR at 33 MPa. C=—|—-—+2

(9) Paired equal-area projections showing the solution at tHisrdntial stress. 3 (/lD)3 AD ]

(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.) Therefore, we have the ratio of the areas of the caps correspond-

ing to axial @ = 1/ V3) and triaxial § = 1/2) stresses,

the actual value but also the instability of inversion schemes caa  3p%-3v3D2+3V3
and the limited information contents of twin and untwin data Ctiaxial —  2(D3-3D2 +4)
themselves. Yamaji (2015) pointed at that the orientations of =~ ] ] .
twinned and untwinned calcite e-planes lost the resolutidd of Which is a decreasing function for 2 D, and has verti-

e ) ; ; ial j~triaxial  _
if twin lamellae were formed at fierential stresses greater than €@l @nd horizontal asymptotes, lm,, C*%?/CT®% = co

_ and limp_,e = . erefore, is always
50-100 MPa. dl C.aX|.aI/Ctr|a><|aI 3/2 Th f Ca)qal | y
However, the summation places a very loose constraint Olarger tharC™®, If the same number of data points are dis-
differential 1stress by the foIIoSvin reasong The feasible re io?{ibmed on the spherical caps that correspond to axial and triax-
) y 9 ' - 9oty stresses, the points on the former cap are sparser than those
is usually elongated along the line through the origin of the ) :
. . . ; . on the latter cap. It means that axial stresses are determined less
five-dimensional space (Fig. 12) unless a small spherical ca . .

. ; . S recisely than triaxial stresses to some extent.

representing the solution of the inversion is fringed by man
epsilon-vectors of untwin data. It follows from Eqg. (6) that
|X| = AD =~ D/2. Therefore, the resolution @ depends on 5. Discussion
that of| X|, which is the distance of a point from the origin. The

shape of the feasible region gives rise to the loose constraint dnl. Dificulty measure for the separation of stresses

D, ifthe cap is large. The separability of stresses from calatevin data was stud-

The detection of axial stres®(= 0 or 1) is slightly easier ied by Gagata (2009) who used Orife and Lisle’s (2003) stress
than that of triaxial stress witth = 1/2, because the area of differencedo., to evaluate the dliculty. The Euclidean dis-
the spherical cap corresponding to the axial stress is larger thaance between the points on S corresponding to the reduced
that corresponding to triaxial stress By0%. It means that stress tensors to be detected equdds (Yamaji and Sato,
the number ofe-planes allowed by axial stress to make twin 2006). The points are the centers of the spherical caps that stand
lamellae is larger than that allowed by triaxial stress, leading tdor the deviatoric stress tensors to be detected. However, it is
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obvious from Fig. 3 that not only the distance between stresses (2) Om
but also the radii of the caps are indispensable for the evaluation

of the dificulty. That is, if the caps have a large intersection, 37
the separation is not easy. The definition of Sp takes indirectly B /f
into account thed values of the stresses to be compared. Since “’Tams‘\oﬁé .’9\/\45" 30°F ”
the radius of a spherical caj, is the monotonously increasing &3“%@ 5 Omax Range of
function of D (Eq. 13) (Yamaji, 2015, Fig. 3), the spherical &%= by 150| misfit angle
caps of the stresses with lar@evalues tend to have a large & (b) e T |
intersection, which reduces their separability. 20max | 20max O l

It might appear that the Euclidean distance between the five- \/n\/l %) 01 00 161 102
dimensional x-vectors of stresses is a measure of the separabil- / et i“ \* D

ity of the stresses. The distance is related withBDhealues of
the stresses. However, the distance is not appropriate for the
separability measure. Suppose the deviatoric stress teffsors Figure 13: (a) Shematic illustration showing the range of misfit angles between
andKT (k > 0). If their differential stresses are greater thag 2 1€ 9liding and maximum shearing directions oneplane. (b) Mohr circle

. . with the radius ofD/2. Thick line indicates the set of points that represents
they can form twin |6}me"ae- HOW_ever: th? corresponding VECthe range in (a). (c) Maximum misfit angle versus non-dimnensional deviatoric
tors, X andkx, are colinear, and their spherical caps are concenstress.
tric with each other. That is, the stresses are indistinguishable

from the orientations of twin lamellae, even if the Euclidean

distance between the pointsX - X, is large. data, because the method is robust to the heterogeneity of data.
However, when natural data are dealt with, the accuracy and
5.2. Comparison with fault-slip analysis precision of the method depends on the heterogeneity of the

Several researchers adopted the graphical or numerical metlata. The present method was demonstrated to be robust to
ods of fault-slip analyses to calcietwin data (Pfifner and ~ sampling bias and variable;. However, the separation of
Burkhard, 1987; Nemcok et al., 1999; Jaya and Nishikawastresses from heterogeneavin data is not easy, more dif-
2014). Although the techniques cannot determirfiedéntial  ficult than from fault-slip analysis. This fliculty comes from
stress, they are useful to to determine paleostressesdftthia the tolerance. The Wallace-Bott hypothesis places a constraint
lamellae were formed at a lowfiérential stress.

In case we have twin lamellae formed under a low stress
level, the twin data can be regarded as noisy fault-slip data.
To see this, consider the misfit angle between the maximum
shearing direction and the gliding direction of eplane (Fig.
13a). It can be seen from the Mohr circle in Fig. 13b
that the maximum misfit angl&max is a function ofD, and
that O/2)siN(90 — 20max) = 7c. It follows that Opmax =
(1/2) cos*(2/D). The graph of this function is shown in Fig.
13c. Indeedfmax is as small asg 30, if differential stress is
as low asg 5tc. This tendency was obvious already in Fig. 4.
The Wallace-Bott hypothesis—the basis of fault-slip analysis—
says that the misfit angle associated with faulting must be zero.
It means that the methods of fault-slip analysis are useful to
detect reduced stress tensors from the twin lamellae that were
formed under low stress levels.

The right-dihedra method (Angelier and Mechler, 1977),
which was applied by Rfiner and Burkhard (1987) and Nem-
cok et al. (1999) to calcite-twins, assumes that a so-called
beachball pattern depicts the possible andos-orientations
compatible with a twin datum. However, the twinning condi-
tion, T > 7, places a tighter constraint than the pattern The
constraint from a twin lamella formed under a low stress level
1S t|ght¢r than the CO_nStramt from the pattern, V\{hereas the OF?figure 14: Multiple inverse method applied to the synthetic data of caeite
posite is true for a twin lamella formed under a high stress levelyin, which were generated withy = 300 and the assumed streds= 0.5,
(Yamaiji, 2015, Fig. 7). vertical o1- and E-W trendingrz-axes. Crosses in these paired equal-area

On the other hand, Jaya and Nishikawa (2014) employed th@ojections ir_1dicate the optimal stress axes determined by the method. The

. . .. . h optimal solutions for the cases Bf = 50 and 200 MPa ha# = 0.52 and 0.51,
multlple_ mver_se method (Yamaji, 2000) to estimate P“ocenges ectively. Lower-hemisphere, equal-area projections. (For interpretation of
stress field. Figure 14 demonstrates that the method succeedgé references to color in this figure legend, the reader is referred to the web
in detecting the stresses that were assumed to generate twigrsion of this article.)
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on stress more tightly than a twin datum. = ma>{i“1 IS)- Then, the optima#® is determined by mini-
mizing Etchecopar’s object function,

5.3. Laurent et al’s (1981) inversion scheme

Ny
Laurent et al. (1981) adopted a mathematical technique of Fe(@) = Z (2 = ") H (20 = 7).
linear programming to determine the range of deviatoric stress i=1

tensors compatible with twin and untwin data. Their method ) ) ) o on®
is identical with obtaining the feasible region of the inequal-TﬂiE right-hand side of this equ.atl%n IS tﬂiﬁ summatiom 0f-
ities (14) and (15). Given a data set free from heterogeneitft Ny for the untwin data witir’ > 7. Given a homo-
and measurement errors, the region is denoted by the equatidfEneous data free from d'St“rbaanS (e.g., sampling bias, mea-
n(X) = n(X) + ny(X) = N. Unfortunately, this scheme does not Surement errors, etc.), we hatig(s) = 0 at the correct.
have good resolution in determinimy(Subsection 3.1). Once the opumaﬁ- is obtained successfully) is constrained
The feasible region exists, only if the maximummgi) is ~ ToM the condition,
equal toN. In other case, the data set has anomaly such as het- max . Tc min
erogeneity, measurement errors, sampling bias, etc. When the o< <h o (24)
solution did not exist, They proposed ad hoc to shift the hyper- ] ]
planes defined by the inequalities (14) and (15) (Fig. 12). AndWhereA is calculated from the optimat. It follows that
they determined the optimal range of deviatoric stress tensor by - e
minimizing the sum of the shifting distances. However, such Trmax > D> i
a scheme cannot cope appropriately with heterogeneous data - =t

to separate stresses, though it may be able to determine valid|t js opvious from this equation th&(¢?) takes into account
solutions from homogeneous but somewhat noisy data. only the untwin data with greater tharz[“i“. Only the epsilon-
Unlike Laurent et al. (1981), we do not take notice of theyectors of untwin data in the hatched region on S in Fig. 15a
existence of the feasible region of the inequalities (14) and (15kontribute toFg(¢?); and remaining data are not incorporated in
but regardX at the global and local maxima &f(X) as possible  the function. As the trial* approaches the sigma-vector to be
solutions. In addition, not the range Bfbut the optimal value  detected, the number of such untwin data decreases and goes
of D is determined by our method. to zero. Therefore, only a few or one data point that have the
It is another weakness of their scheme that it deal with tWirborresponding eps“on_vectors around the margin of the Spher-
and untwin data equally despite of theitfdrent significance ical cap to be detected have strong influence on the optimal
on stress (Fig. 2a). Given a homogeneous data set, the epsilafieaning that the inversion scheme is unstable.

vectors of twin data are confined in a hemisphere of Sngis, The instability can make the solution of the scheme inaccu-
usually larger thamy. Their solution tends to be influenced by rate when it deals with twin lamellae that were formed with var-
untwin data more than twin ones. iousT. values. Suppose that the values are scattered around the
mean,7.. Then, the epsilon-vectors corresponding to twin and
5.4. Etchecopar’s (1984) inversion scheme untwin data are intermingled around the margin of the spherical

ofeP to be detected (Fig. 15b). The data points of twin and un-

method of calcitee-twin stress analysis, and has been usedwin data are intermingled as well in the Mohr diagram in Fig.
’ c. Thereforez™" is given by the outlier, i.e., by the twin

in many areas (Lacombe, 2010, and references therein). T I ith the mini
method has clear geometrical interpretation in terms of our pa—ame ae with the minimunae. . .
The sampling bias can spoil the optimalvalue, even if?*

rameter space, where the limitation of the method is unveiled.. . ) ) o
In order to explain the interpretation, we utilize the non-'> cor.rectly determmed. nge of twin data are mlsclassmgd by
dimensional resolved shear stress along the twinning directioﬁ1e bias as untvvm ones (.F|g. 15C). Ti‘mae}lues of some untwin
of ane-plane, ata are intermingled with those of twin _data. Tourneret and
Laurent (1990) reported that such anomalies are common when
z=1/4D. (23) actual data are processed with Etchecopar’s method, though
Note thatr is normalized byiD instead ofr.. It follows from  they attributed it to the heterogeneity of data and variable
Egs. (9) and (23) that = €- & = cosy, where€ is the epsilon-  In case the sampling bias is not negligible, we have
vector of thee-plane, andy is the angle made byandd (Fig.

The inversion scheme of Etchecopar (1984) is a recogniz

T

15a). Sincée?| = 1, €- ¢ is the length of the orthogonal projec- ﬁ < 7N < gmax
tion of € onto the line parallel té*. If € andd make an obtuse
angle,r is negative in sign (Yamaji, 2015). instead of the inequality (24). From this condition, we can de-

Etchecopar’s method attempts, first, to separate twin and urtermine only the lower bound d asD > TC//II{”‘“. It should
twin data plotted on a line parallel to the trial sigma-vector,be noted that some of untwin data are in fact twin ones, but it
& (Fig. 15a). Suppos¢r™,..., 7™} and (z®,..., ™)}  is unknown which untwin data are misclassified. It means that
be the sets of non-dimensional resolved shear stresses aloﬂgi” is in fact smaller than its value determined by the inver-
twinned and untwinned-planes, respectively. Their minimum sion. Accordingly, only the lower bound &f is determined by
and maximum elements are denotedg?@ = miniN‘lgﬁ') and  Etchecopar’s inverse method, if the bias is not negligible.
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Figure 15: Schematic illustrations for the explanations of the methods of Etchecopar (1984) and Laurent et al. (1990). Solid and open circles depict the epsilc
vectors corresponding to twin and untwin data, respectively. (a) The relationshiaraf the angle between epsilon- and sigma-vectors. (b) Closed circles exist

on the spherical cap centered &#§°"° which should be detected. Given a tril the orthogonal projection of the epsilon-vectors onto the line parallel to this
vector yields the sets{;ﬁ”, e IfN‘)} and{zf,l), e 18\'“)}. The minimum value among the former set is denotea_ltrﬂy (c) If twin lamellae had dferentr¢ values

with the meartr, the epsilon-vectors corresponding to twin and untwin data are intermingled around the margin of the spherical cap. gt @iesampling

bias, which replaces twin data with untwin ones. Triangles depict the misclassified data. (e) Heterogeneous data—an unfavorable case for Etchecopar’s invers
scheme. (f) Schematic illustration for the scheme of Laurent et al. (1990). Their object fufgt{@) takes into account the epsilon-vectors in the hatched regions

on S. In contrast, our object functioR(X) does the epsilon-vectors in the regions that are not hatched in this picture.

Even in the case of Sp 0, it would be dificult for Etcheco-

data, respectively. And, the summatieh,(x) = 2N, F(x),

par's scheme to separate stresses. Fig. 15d illustrates suctwas minimized to determine the optinl This function indi-
case, where the spherical caps of the stresses have a small inteate how muckX fails to fulfill the inequalities (14) and (15).

section. However, the elements of the $&f;., ..., 7™}, make

Given homogeneous data without anomaly such as sampling

a single cluster on the number line (one-dimensional space) dfias and measurement errors, this scheme works well. The
7 no matter how the tria¥# is oriented. The same is true for the epsilon-vectors that contribute to this function is confined in
elements of the sefz(l), ..., {}; and the two clusters always the hatched regions in Fig. 15e. The regions reduce and finally

have an overlapping range on the number line. It fBalilt to

disappear as the spherical cap of the trial tensor approaches the

recognize the spherical caps separately in the one-dimensiorsgpherical cap to be detected. Therefore, this inversion scheme

space.

5.5. Laurent et al.s’ (1990) inversion scheme
Laurent et al. (1990) regarded

FO(X) = (e(i) X — TC)ZH($e(i) X ‘rc)

as the misfit of the trial deviatoric stress tensor foritheatum,

is weak to variabler.

Another problem of this scheme is that it deals with twin and
untwin data equally, though they haveffdrent significance.
The significance of a twin datuniy(D), is always greater than
that of untwin datumiy(D). The former is about ten times great
than the latter at low stress levels (Fig. 2a). As a result, the so-
lution of Lauren et al's scheme is influenced by untwin data
more than twin ones.

where the upper and lower signs correspond to twin and untwin Laurent et al. (1990) noticed that natural data sets are usually



heterogeneous. They defined a threshold value ad hoc to screemetrical entities in the five-dimensional space incliiand

out the outliers witH:L') greater than the threshold to detect the ¥, both of which are important for the analysis of twin data.

optimal X. The multimodality of the functiornk_(X), is though The present method separated stresses from heterogeneous

to be the indication of the heterogeneity, and it is advised to usdata one by one by counting out twin data compatible with

other sources of geological data to deal with heterogeneous dgpeeviously separated stresses (Subsection 4.5). This procedure

(Laurent et al., 1990, p. 381). For example, it may biailt  has a problem. Since a twin datum can be explained by many

for this scheme to separate stresses in the case of Fig. 15d. stresses, the counting out reduces the information contents of
the data set. As a result, the second solution becomes inaccu-

5.6. Robustness of the present method rate. There is another unsolved problem. Th_e present method
successfully detect stresses one by one, provided that the spher-

Why is the present method robust to sampling bias, variablgcal caps of the stresses havefelient numbers of epsilon-

7¢, and the heterogeneity of twin data? The method attempts tgectors. If the caps have completely the same number of the

fita spherical cap to the distribution @,..., €™} onS,and  vectors, the present method detects neither of the stresses. In

simultaneously attempts to fit the complementary region of theiddition, the present and previous methods that aim at detecting

cap on S to the distribution ¢&", ..., &™}. Note thai(X)is  stresses from heterogeneous data have a common weak point.

the number of epsilon-vectors of twin data in the intersection ofrhat is, fuzzy clustering should be applied to twin data to de-

the spherical caps corresponding to the stress to be detected aggt the stresses by whiekplanes were twinned. However, the

to the trial stress tensor (Fig. 15e). Amg(X) is the number of  method apply crisp clustering of the data, giving rise to the de-

epsilon-vectors of untwin data in the complimentary region ofcreasing number of twin data and to the diminishing accuracy

the union of the spherical caps. As the spherical cap of the triagjuring the detection of the second and following solutions. This

deviatoric tensor approaches the spherical cap to be detectad,llustrated by the inaccuracy of the second solution of the dif-

bothn(X) andny(X) in Eq. (18) increases. This is in marked ficult case in Figs. 11c and d. It is beyond the scope of this

contrast to the decrease of the number of data that contributgsticle to solve those problems.

the object functions of Etchecopar (1984) and Laurent et al.

(1990). The increase of(X) andn,(X) stabilizes our inversion

scheme, and makes our scheme robust. Acknowledgments
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that the voting with diierent weights improves the technique

(Davies, 1987). Likewise, the votes from twin and untwin dat

were weighted with;(D) andl (D) in this study to improve the

resolution ofD in Eq. (18). Given a five-dimensional position vectot, representing a

The weakness of previous inversion schemes comes Ultisyeqs state, the corresponding deviatoric stress tehssrde-
mately from the fact that they payed attention only to the 0negj e 45 follows. First, we obtain the sigma-vector correspond-
dimensional distribution of (Etchecopar, 1984; Gagata, 2009) ing to X as = %/IX|. It follows from ¢11 + ¢22 + ¢33 = 0 and

or of the diferencez. — v (Laurent et al., 1990). Since devia-

) ) Eq. (7) that
toric stress tensor has five degrees of freedom, the tensor can be
identified with a point in five-dimensional space. Previous in- . 1 2 . N
version schemes looked at the shadows of the entities that wefét = (@)1~ %(0)2’ $22 = %(0)2’ ¢33 = (7)1~ V3(@)2,
cast onto one-dimensional space. Suppose that two lumps of
clouds at diferent altitudes cast shadows on the ground. Even

if the shadows overlap each other, the clouds can be easily dig;, .o @) is theith component of%. Second, solving the
tinguished in the three-dimensional space. Separation of Ol?e'igenprobllem of¢, we have the eig.envaluesl’ < and cs
jects is generally easier in a high dimensional space than in @ > ¢, > ¢3); and the corresponding eigenvectors indicate

. . . . 1
I(_)w d|.men5|.onal one. Treatment of deV|ator.|c stress tensors a[ﬁe stress axes. Stress ratio is giveriby (s> — ¢3)/(s1 — <3),
five-dimensional vectors makes the separation problem easy. which yields. through Eq. (2). Finally, we obtaiB = [x]/1,
In this respect, Fry (2001) was a breakthrough paper iréndT ~ ADg.
that he showed the geometrical interpretation of stress inver-
sion. However, his five-dimensional parameter space violates
the principle of coordinate invariance (Sato and Yamaji, 2006aAppendix B. The area of a spherical cap on S
Yamaiji, 2015), giving rise to the fliculty of considering angles
and distances in the five-dimensional space not tdfleet@d by Let o1, 2, 3 andy, be the angular coordinates on S. Then,

the choice of a coordinate system in the physical space. The géhe area element on S is (3ipy Sirf ¢, Sings)dp1dpadpsdes
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aAppendix A. Transformation from Xto T

§23 =632 = (0)3, 631 = 613 = (74, 12 = §21 = ()5,
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