<table>
<thead>
<tr>
<th>Title</th>
<th>Immunological Response in the Mouse Brain II. Experimental Immunotherapy Model Against Transplanted Mouse Lymphoma in the Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>KEYAKI, ATSUSHI; HANDA, HAJIME; YAMASHITA, JUNKOH; KURIBAYASHI, KAGEMASA; MASUDA, TOHRU</td>
</tr>
<tr>
<td>Citation</td>
<td>日本外科宝函 (1988), 57(3): 202-214</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988-05-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/203950</td>
</tr>
<tr>
<td>Right</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Immunological Response in the Mouse Brain:
II. Experimental Immunotherapy Model Against
Transplanted Mouse Lymphoma in the Brain

ATSUSHI KEYAKI, HAJIME HANDA, JUNKOH YAMASHITA, KAGEMASA
KURIBAYASHI and TOHRU MASUDA

Department of Neurosurgery and Institute for Immunology, Kyoto University
Medical School, Kyoto, Japan
Received for Publication, Feb. 1, 1988

Abstract

An experimental model of immunotherapy for intracranially transplanted mouse lymphoma is described. In Winn-type neutralization assays in the brain, slight efficiency of immune lymphocytes was observed, on the other hand, the nude mice with intracranially transplanted mouse lymphoma were successfully treated by a single intravenous transfer of immune lymphocytes. This effect was totally eliminated by the treatment of lymphocytes with anti Thy-1 antibody and complement before transfer, whereas the passage through a nylon-wool column had no effect on tumor rejection. By the treatment with anti Lyt antibodies and complement, Lyt-2+ cytotoxic T lymphocytes appeared to be responsible for the effector T-cell subpopulations in a systemic transfer study. The effectiveness of tumor-specific cytotoxic T-cell lines, which were established and maintained without added IL-2 and mainly consisted of Lyt-2+ T-cells, was demonstrated not only in the Winn neutralization test in the brain, but also in the adoptive transfer study. On the other hand, the noncytotoxic cell line that entirely consisted of Lyt-1+ T-cells had no such effect.

In conclusion, the rejection of mouse lymphoma in athymic nude mice was considered to be mediated by Lyt-2+ cytotoxic T lymphocytes.

Introduction

In several syngeneic animal tumor models, the adoptive transfer of tumor sensitized lymphocytes can cause total regression of established tumors and permanently cure the animals of disease. The immunity to allografts or syngeneic tumor cells has been shown to be mediated mainly by T cells, referred to as cytotoxic T lymphocyte (CTL). Passive transfer of immunity

Key words: Brain tumor, Experimental tumor, Immunity, Intracerebral, Immunotherapy.

The abbreviations used are: CM, complete medium; Con A, concanavalin A; FCS, fetal calf serum; HBSS, Hanks' balanced salt solution; IC, intracranial; ID, intradermal; IL-2, interleukin 2; MLTC, mixed lymphocyte-tumor cell culture; TCGF, T-cell growth factor.

Present address: Department of Neurosurgery, Tenri Hospital, 200 Mishimacho, Tenri, Nara 632, Japan.
for the treatment of cancer in animals and man has been attempted. Functional subclasses of T lymphocytes on Lyt antigens have been extensively studied and CTLs have been found to express the Lyt-2+ antigen. CTL had been considered to be the main effector cell population in both allograft and syngeneic tumor rejection, because of its capacity to kill tumor cells directly in vitro, and the generation of these cells during rejection. Therefore, the activation and expansion of the CTL population has been attempted and numerous CTL clones have been successfully established using interleukin 2 (IL-2). However, contrary to our expectations, there have been few reports indicative that IL-2-dependent CTL clones are effective in protecting against the allo- or syngeneic tumor growth in vivo studies. On the other hand, recent observations have demonstrated that allografts or syngeneic tumors are rejected by systemic transfer of Lyt-1+ cells, but not by Lyt-2+ CTL populations. Therefore, the determination of an effector T lymphocyte subpopulation is essential to promote adoptive immunotherapy against malignancies in humans.

Although several experimental models have been reported dealing with adoptive immunotherapy to intraperitoneally or subcutaneously transplanted tumors, few studies have dealt with the intracranial tumor model of central nervous system (CNS). Recently, the authors demonstrated a slightly low but detectable immunological response in the brain using transplanted mouse lymphoma in the comparative experiments with extracranial immunological responses. In the present study experimental immunotherapy to intracranially transplanted mouse lymphoma is described, and the importance of CTL as the effector cells in tumor rejection is also demonstrated.

Materials and Methods

Mice: Breeding pairs of nude mice and their heterozygous littermates with BALB/c and C57BL/6 backgrounds respectively, were originally purchased from Clea Japan Inc., Tokyo, Japan and nude or their heterozygous (BALB/c × C57BL/6)F1 mice, denoted CB6F1 or CB6F1-nu/nu, were raised and maintained under specific pathogen free conditions in the Facilities of Experimental Animals, Faculty of Medicine, Kyoto University. Male and female mice were used between 6 and 12 weeks of age.

Tumors: RL, together with RL and RL (kindly provided by Dr. Nakayama, The Center of Adult Disease, Osaka, Japan), is a radiation-induced leukemic cell line of BALB/c origin which has been maintained in BALB/c mouse in its ascitic form. Other tumors used in the present study were P815 (methylcholanthrene-induced mastocytoma of DBA/2 origin), and EL-4 (dimethylbenzanthracene-induced leukemia of C57BL/6 origin). P815 and EL-4 cells were maintained in the corresponding syngeneic strain of mice in their ascitic forms.

In Vivo Immunization: The procedures with RL have been previously described. In brief, 6 to 8-wk-old male and female CB6F1-nu/+ mice received intradermal (ID) injections on their backs with 5 x 10^6 RL cells in a volume of 0.1 ml Hanks' balanced salt solution
The tumor grew to 5-10 mm in diameter in about 2 weeks and then regressed spontaneously in the following 4 weeks. This is in accordance with the previous observation. After complete regression of the tumor, the mice were boosted three times with increasing numbers of viable RL cells up to 5×10^7 cells at an interval of two weeks. Three weeks after the last immunization, spleen cells were used as donors of responding cells in mixed lymphocyte-tumor cell culture (MLTC), or as effector immune spleen cells for the study either of Winn-type neutralization assay or for adoptive transfer studies.

Intracranial Transplantation of Tumors: RL cells (10^4) suspended in a volume of 0.01 ml of HBSS were injected under sterile conditions through the right frontal cranial bone to a depth of 2 mm with a 0.05 ml glass microsyringe (Hamilton Co., Reno, NA) and a 27-gauge Yaot needle.

Preparation of Effector Cells: Spleens of CB6F1-nu/ mice that had been immunized against RL in vivo were aseptically removed, pooled and crushed gently with a loose-fitting glass homogenizer in HBSS. After removing large cell clumps and debris with cotton wool, the spleen cells obtained were washed three times and resuspended in HBSS.

Details for generation and maintenance of cytotoxic and noncytotoxic cell lines, CTLL-D4 and D4f, have been previously described. Briefly, MLTC was performed between the RL-immune CB6F1-nu/+ spleen cells as responders and 10,000 R-irradiated RL cells as stimulators in 2 ml of complete medium (CM) in 24-well multidish culture plates (Corning Glass Works, Science Products Division, Corning, NY). CM used in this experiment was composed of RPMI-1640 (Grand Island Biological Co., Grand Island, NY) supplemented with 10% FCS (Flow Laboratories, Inc., Rockvile, MD), 5×10^{-5} M 2-mercaptoethanol, 10 mM HEPES, 100 U/ml penicillin and 0.1 mg/ml streptomycin. The cultures were incubated for 5 days at 37°C in a humidified atmosphere of 5% CO$_2$ in air. After incubation, the cells were harvested, washed and then resuspended in RPMI-1640 supplemented with 10% FCS and assayed for cytotoxic activity by chromium release assay. An aliquot of MLTC cells was used further for the secondary in vitro micro-MLTC on the same day and this was prepared in CM to which 5% (vol/vol) IL-2 was added. Thus, each culture contained 5×10^5 MLTC cells as responders, 5×10^4 irradiated (2,000 R) CB6F1-nu/+ spleen cells as feeders and 5×10^4 irradiated (10,000 R) RL cells as stimulators in a final volume of 0.2 ml per well of a flat-bottomed 96-well microculture plate (Corning Glass Works). Cytotoxic cell lines against RL were derived from the secondary micro-MLTC were selected on day 14 after the initiation of culture, and transferred to and maintained in 2 ml cultures that contained 5×10^4 feeder cells and 5×10^5 stimulator cells in CM. After transferring the proliferating cells from microculture, no IL-2 was added to the culture. After the initial expansion, CTL lines were passed after 7 to 14 days by transferring 1×10^5 cells to the well of a 24-well culture plate together with both feeder and stimulator cells. Among the CTL lines able to proliferate in culture, CTLL-D4 was chosen for its high proliferative response and specific cytotoxic activity against RL. A noncytotoxic cell line, D4f, was obtained by culturing CTLL-D4 only with the splenic feeder cells. D4f cells thus prepared completely lost its cytotoxic activity against RL. Cytotoxic activity of CTLL-D4 and D4f
cells against RL < 1 measured by a 5-hr chromium release assay was about 50–60% and 0%, respectively, at the effector to target cell ratio of 1:1. CTLL-D4 cells consisted of mixed populations with regard to Lyt phenotype expression; 15–25% Lyt-1+23-, 10–15% Lyt-1-23- and 60–75% Lyt-1+23+ cells. D4f cells consisted entirely of Lyt-1+23- cells.

Treatment of Lymphocytes: An anti Thy-1.2 monoclonal antibody (HO-13.4), originally supplied from the Cell Distribution Center, Salk Institute of Health, San Diego, CA, was used for depletion of Thy-1+ cells at a 1/100 dilution. Anti Lyt-1.2 and anti Lyt-2.2 monoclonal antibodies supplied from Meiji Institute of Health Science, Tokyo, Japan, were used at a 1/50 dilution. Immune spleen cells were prepared as described above and adjusted to a concentration of 2 × 10^7 cells/ml in Medium-199 (GIBCO) containing the desired concentration of the antibody. Cells were incubated for 60 min at 4°C with intermittent agitation, and they were then centrifuged and resuspended with preselected nontoxic rabbit serum as complement (C) source for 30 min at 37°C with occasional shaking. After treatment, the cells were washed three times and resuspended at a desired concentration in HBSS.

IL-2: SD rat spleen cells (2.5 × 10^6) were incubated for 24 hrs at 37°C in 5% CO2 in the presence of 5 μg/ml Concanavalin A (Con A). The resulting culture supernatants were harvested, centrifuged and passed through 0.45 μm filters (Millipore Corp., Bedford, MA). One lot of the rat Con A supernatants was selected and used for TCGF.

Winn-type Neutralization Assay: The Winn-type neutralization assay was carried out using CB6F1-nu/nu mice as recipients. The effector cells, prepared as described above and adjusted to the desired concentration, were mixed with an equal volume of tumor cells (2 × 10^6/ml). The mixture was injected intracranially in a volume of 0.01 ml as described above. The mice which survived for more than 60 days after inoculation were considered as cured. The control mice, intracranially injected with 0.01 ml HBSS or effector cells only, also survived for more than 60 days after injection.

In Vivo Assays of Adoptive Immunotherapy: CB6F1-nu/nu mice were also used as the recipients in this assay. Various numbers of effector cells in 0.5 ml of sterile HBSS were intravenously transferred into the tail vein of CB6F1-nu/nu mice, which had been inoculated with 1 × 10^4 tumor cells intracranially 3 days earlier. The mice which survived for more than 60 days after tumor inoculation were considered cured of tumor. The control mice, intravenously injected with 0.5 ml HBSS or effector cells only, also survived for more than 60 days after injection.

Results

IC Neutralization Assay: Injection of a mixture of either 5 × 10^4 (E/T = 5:1) or 2 × 10^5 (E/T = 20:1) normal spleen cells with 1 × 10^4 RL < 1 cells into the IC site of CB6F1-nu/nu mice resulted in no effect on survival time compared with the injection of tumor cells alone (Fig. 1). Mixed-inoculation of immune spleen cells and tumor cells had a significant effect on survival time (E/T = 5:1 p < 0.05, 20:1 p < 0.02), however, no mouse was cured permanently. In this sense, the neutralizing effect of immune spleen cells is limited. As shown in Fig. 2, the cytotoxic
Fig. 1. Intracranial neutralization assay using spleen cells. CB6F1-nu/nu mice were injected with either 1×10^4 RL Δ 1 cells (■), or admixtures of RL Δ 1 and effector cells in a volume of 0.01 ml, respectively. Effector cells are: normal CB6F1-nu/+ spleen cells E/T=20:1 (▲); 5:1 (▲); RL Δ 1-immune CB6F1-nu/+ spleen cells E/T=20:1 (○); 5:1 (●). Each group consisted of eight to ten mice.

T-cell line, CTLL-D4, had a neutralizing effect. The mice that received an admixture of CTLL-D4 and RL Δ 1 cells, at an E/T ratio of 20:1, were cured except for one mouse. This effect of CTLL-D4 is reduced in proportion to the decrease in the E/T ratio. On the other hand, the noncytotoxic cell line, D4f, had no effect on survival time in the Winn-type neutralization assay.

The cytotoxic activities of immune and normal spleen cells used in this study were 30–40% and 10–20%, respectively, at an E/T ratio of 20:1 in the 5-hr 51Cr-release assay, whereas the cytotoxic activity of CTLL-D4 cells was approximately 50–60% at an E/T ratio of 2:1. In this experiment, the cytotoxic activity in vitro correlates well with an in vivo effect on survival. However, the neutralizing effect of CTLL-D4 cells is not complete enough to cure the mice permanently, whereas the admixture of CTLL-D4 and RL Δ 1 injected intradermally could cure the mice permanently\(^2\). Specific effects on the neutralization of the tumor were also studied (Table 1). Various tumor cells, RL Δ 6, RL Δ 9 and EL-4, were inoculated together with CTLL-D4 cells at an E/T ratio of 20:1. The effect on survival was only seen when CTLL-D4 cells were inoculated together with RL Δ 1 cells. The present results are in agreement with the specific

![Fig. 2. Intracranial neutralization assay using cultured cell lines. CB6F1-nu/nu mice were injected with admixture of RL Δ 1 and effector cells at various E/T ratios. Effector cells are CTLL-D4, E/T=20:1 (○), 10:1 (▲), 5:1 (□), 1:1 (▲), and D4f, E/T=20:1 (●). Each group consisted of five to fifteen mice.](image-url)
Cytotoxic effect of CTLL-D4 cells in vitro and that found in an in vivo subcutaneous neutralization assay.

Adoptive Transfer of Effector Cells: In order to investigate the effector mechanisms in IC tumor rejection, various numbers of effector cells were adoptively transferred into CB6F1-nu/nu mice which had been inoculated with 1×10^4 tumor cells intracranially 3 days earlier.

To examine the dose of spleen cells that cured the mice (Table 2), the mice transplanted intracranially with 1×10^4 RL 6 1 cells received different numbers of spleen cells. All the mice that had received more than 1×10^8 immune spleen cells were cured, whereas the mice that had received either normal spleen cells or less than 1×10^8 immune spleen cells were not cured completely. The mice that had received more than 1×10^8 immune spleen cells were resistant to an additional IC challenge of RL 6 1 cells, and were cured permanently (data not shown).

The specific effect of immune spleen cells on IC tumor rejection after intravenous transfer was also investigated (Table 3). The mice, which were transplanted intracranially with the tumors, RL 6 1, RL 6 6, RL 8 9 or EL 4, were treated with a single intravenous injection of 1×10^8 RL 6 1-immune spleen cells. The results showed that only the mice inoculated with RL 6 1

Table 1. Specific effect of CTL line on winn-type neutralization assay.

<table>
<thead>
<tr>
<th>Tumor</th>
<th>MST±SD</th>
<th>Number of mice rejected/tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 6 1</td>
<td>>60</td>
<td>7/7</td>
</tr>
<tr>
<td>RL 6 6</td>
<td>14.3±3.1</td>
<td>0/8</td>
</tr>
<tr>
<td>RL 8 9</td>
<td>15.2±2.3</td>
<td>0/7</td>
</tr>
<tr>
<td>EL-4</td>
<td>13.2±2.9</td>
<td>0/6</td>
</tr>
</tbody>
</table>

CTLL-D4 cells (2×10^8) were admixed with various tumor cells (1×10^4), and then injected intracranially with a volume of 0.01 ml.

Median survival time in days.

Table 2. Dose response of spleen cells necessary to reject IC injected tumors in nude mice after IV transfer.

<table>
<thead>
<tr>
<th>Number of cells transferred</th>
<th>MST±SD</th>
<th>Number of mice rejected/tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>No transfer</td>
<td>15.3±1.2</td>
<td>0/10</td>
</tr>
<tr>
<td>(Immune spleen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2×10^8</td>
<td>17.6±2.4</td>
<td>0/9</td>
</tr>
<tr>
<td>0.5×10^8</td>
<td>19.8±3.5</td>
<td>7/11</td>
</tr>
<tr>
<td>1.0×10^8</td>
<td>>60</td>
<td>12/12</td>
</tr>
<tr>
<td>1.5×10^8</td>
<td>>60</td>
<td>10/10</td>
</tr>
<tr>
<td>(Normal spleen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5×10^8</td>
<td>15.8±2.4</td>
<td>0/8</td>
</tr>
<tr>
<td>1.0×10^8</td>
<td>16.1±2.1</td>
<td>0/9</td>
</tr>
</tbody>
</table>

Various doses of CB6F1-nu/+ spleen cells immunized against RL 6 1 in vivo were intravenously transferred into CB6F1-nu/nu mice bearing 3-day RL 6 1 (1×10^4) tumors.

Median survival time in day.
Table 3. Specific effect of immune spleen cells on tumor rejection after IV transfer in nude mice^a.

<table>
<thead>
<tr>
<th>Tumor<sup>b</sup></th>
<th>MST<sup>c</sup>±SD</th>
<th>Number of mice rejected/tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>RL 1</td>
<td>>60</td>
<td>8/8</td>
</tr>
<tr>
<td>RL 6</td>
<td>13.4±1.3</td>
<td>0/8</td>
</tr>
<tr>
<td>RL 9</td>
<td>14.8±1.7</td>
<td>0/9</td>
</tr>
<tr>
<td>EL-4</td>
<td>12.6±2.1</td>
<td>0/8</td>
</tr>
</tbody>
</table>

^a Spleen cells of CB6F1-nu/+ mice immunized against RL 1 were used for effector cells at a dose of \(1 \times 10^8\).

^b Various kinds of tumor cells \((1 \times 10^4)\) were intracranially injected in CB6F1-nu/nu mice 3 days before IV transfer of immune spleen cells.

^c Median survival time in days.

were cured. The adoptive transfer of RL 1-immune spleen cells had no effect on the growth of other tumor cells.

Analysis of Effector Populations in Immune Spleen Cells: In order to clarify the effector population necessary to reject the tumor in an adoptive transfer study, immune spleen cells were treated before transfer into CB6F1-nu/nu mice (Table 4). The complement dependent cytotoxicity test was carried out to eliminate desired effector subsets. The effect of immune spleen cells to cure the mice were totally eliminated by the treatment with anti Thy-1.2 Ab and C. The results indicated that Thy-1.2 positive cells, grossly identical with T cells, were necessary to reject the tumors. In the reciprocal experiment, the immune spleen cells were passed through a nylon-wool column to enrich the non-B cells and non-adherent cells. This treatment had no effect on the capacity of immune spleen cells to cure the mice after adoptive transfer. The mice that received the spleen cells treated with anti Lyt-2.2 Ab and C were not cured, whereas two out of six mice that received spleen cells treated with anti Lyt-1.2 Ab and C were cured. Therefore, we can conclude that the Thy-1.2 positive T cells were necessary, and that especially Lyt-2 positive cells play a major role in curing the mice with intracranially transplanted lymphoma.

The T-cell mediated tumor rejection was further examined in vivo. Either the cytotoxic

Table 4. Effect of treatment of immune spleen cells on tumor rejection.

<table>
<thead>
<tr>
<th>Treatment<sup>a</sup></th>
<th>MST<sup>b</sup>±SD</th>
<th>Number of mice rejected/tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>>60</td>
<td>12/12</td>
</tr>
<tr>
<td>anti Thy-1.2+C</td>
<td>15.8±1.5</td>
<td>0/10</td>
</tr>
<tr>
<td>anti Lyt-1.2+C</td>
<td>24.6±4.8</td>
<td>2/6</td>
</tr>
<tr>
<td>anti Lyt-2.2+C</td>
<td>16.1±2.1</td>
<td>0/6</td>
</tr>
<tr>
<td>NWP<sup>c</sup></td>
<td>>60</td>
<td>8/8</td>
</tr>
</tbody>
</table>

^a Treatment of immune spleen cells was performed before IV transfer \((1 \times 10^8)\) in nude mice bearing 3-day tumors.

^b Median survival time in days.

^c Nylon wool passage \((5 \times 10^7)\).
Table 5. Effect of cell lines on tumor rejection after IV transfer.

<table>
<thead>
<tr>
<th>Effector cells*</th>
<th>Cell number</th>
<th>MST(^{b)}±SD</th>
<th>Number of mice rejected/tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>No cell transfer</td>
<td>15.3±1.2</td>
<td>0/10</td>
<td></td>
</tr>
<tr>
<td>D4f (noncytotoxic)</td>
<td>14.3±2.5</td>
<td>0/8</td>
<td></td>
</tr>
<tr>
<td>CTLL-D4 (cytotoxic)</td>
<td>15.1±3.1</td>
<td>0/7</td>
<td></td>
</tr>
<tr>
<td>2×10(^{5})</td>
<td>24.4±5.6</td>
<td>2/7</td>
<td></td>
</tr>
<tr>
<td>1×10(^{5})</td>
<td>19.5±4.7</td>
<td>0/6</td>
<td></td>
</tr>
</tbody>
</table>

* Effector cells were intravenously transferred into CB6F\(_1\)-nu/nu mice bearing 3-day RL\(_3\) tumors.

Discussion

In the present study, two types of successful immunotherapy models, both local tumor neutralization and systemic transfer of effector cells, were demonstrated in IC tumor transplanted mice, and Lyt-2\(^+\) CTL populations were strongly suggested to play a major role in this type of tumor rejection.

Numerous reports indicate that it is possible to obtain regression of established immuno- genic murine or rats tumors by the passive transfer of T cells from tumor-immune donors\(^2\).\(^6\)\(^J\). In most of these studies, however, immunotherapy had to be accompanied by chemotherapy\(^7\),\(^23\),\(^39\) or by irradiation of the host\(^19\) in order to be successful, and the tumors used were invariably immunogenic to the host\(^42\),\(^43\),\(^44\). These tumor systems, therefore, are only partially representative of the situation occurring in humans, since human tumors are only weakly or not immunogenic\(^1\),\(^3\).

The advancement in immunology has enabled us to use monoclonal antibodies\(^22\) and IL-2\(^22\) to investigate the details of an immune system, and to promote the clinical application of immunotherapy to malignancies\(^9\),\(^27\). Since the discovery of IL-2, the elucidation of the in vivo function of CTL and the establishment of an efficient immunotherapeutic method were expected to follow because many CTL clones with different functions could be easily established and maintained\(^11\),\(^13\),\(^40\),\(^50\),\(^52\). However, few studies have shown such IL-2-dependent clones to be effective on protecting against the allo- or syngeneic tumor growth in in vivo systemic transfer assays\(^11\),\(^52\). Several explanation for such in vivo inefficiency of exogenous IL-2-dependent CTL clones or lines are possible: 1) CTL is not actually an effector subset\(^19\),\(^21\),\(^34\),\(^39\), 2) the life span of such CTL clones are altered in vivo due to the extremely low level of TCGF\(^13\), or the presence of an inhibitor to IL-2\(^26\), 3) the loss of normal migration pattern caused by long-term
culture in IL-2\(^{10}\), and 4) loss of specificity in the CTL clone\(^{49}\). CTLL-D4 cells belong to an oligoclonal cell line, and consisted of a mixed population of Lyt-1\(^+\)23\(^-\), Lyt-1\(^-\)23\(^+\) and Lyt-1\(^+\)23\(^+\), producing IL-2 in the culture supernatant stimulated with irradiated tumor cells in the presence of splenic feeder cells\(^{33}\). Although long-term culture of bulk MLTC cells without addition of TCGF has been considered to be impossible, we obtained CTLL-D4 cells by limiting dilution methods under 500 cells/well condition. This oligoclonal CTL line had in vivo efficiency because the addition of exogenous IL-2 is not necessary, and cell-cell interaction between helper T cells and cytotoxic T cells played a major role in in vivo tumor rejection\(^{29}\).

Recently, the importance of administration of IL-2 together with the CTL clone to enhance and maintain the cytotoxic activity has been stressed\(^{8,14,41}\). However, experimental studies on immunotherapy have been carried out using subcutaneously or intraperitoneally transplanted tumor models, probably because of the peculiar immunological response in the central nervous systems (CNS)\(^{19}\). The brain has been thought to be an "immunologically privileged site" because of its incapability of inducing allograft or even xenograft reactions\(^{36}\). Recent observations, however, suggest that an immunological response can be built to intracranial tumors\(^{31,42,47}\). We have already demonstrated the occurrence of immunological responses in the mouse brain, and concluded that the resistance in the brain against transplanted lymphomas is not essentially different from that in the periphery\(^{36}\).

CTL generated in vitro has been shown to be effective against murine tumors in a neutralization assay in the brain. Romani et al.\(^{43}\) reported that the intracerebral growth of a highly immunogenic murine lymphoma in an immunologically depressed host can be impaired by means of local adoptive immunotherapy. Systemic adoptive immunotherapy showed that CTL obtained from a secondary in vitro culture is as effective as that generated in a primary in vitro sensitization culture, whereas cultured normal lymphocytes or freshly harvested spleen cells have no therapeutic activity, the crucial points being the number of CTL injected and time of CTL administration\(^{44}\).

Shibuya et al.\(^{48}\) reported on the systemic adoptive transfer of immunity by using gliosarcoma T9 cells in rat. Rejection of IC T9 challenge was obtained after transfer, in recipients of "hyperimmune" spleen cells, but was less (60% maximum) than that noted after ID challenge (100%). Their explanations for this difference were that: 1) IC tumor growth is more rapid than growth in ID site and is less rapidly inhibited, 2) immune cells, such as CTL, cannot reach the IC site in sufficient numbers as easily as they reach ID growing tumors, and 3) the brain is relatively deficient of antigen presenting cells.

Yamasaki et al.\(^{52}\) succeeded in adoptive immunotherapy using tumor specific CTL clone for mouse malignant gliomas, and stressed the importance of dependency on dose and time of intravenous administration of CTL clone. They speculated that the increased intracranial pressure due to the tumor growth could be a cause of the incomplete efficiency of adoptive immunotherapy. It is conceivable that the mice may not be cured because of the increased intracranial pressure due to the rapid growth of the tumor. Nevertheless an immune reaction strong enough to regress the tumor can be produced in the CNS.
In our model using a radiation-induced leukemia RL61, the intracranially-transplanted tumors killed the mice even when the mice were injected with only one thousand tumor cells (data not shown). In the Winn-type neutralization assay, as shown in Fig. 1 and Fig. 2, a few mice were not cured by the admixture of RL61 cells with highly cytotoxic cells, CTLL-D4, although most of the mice survived for more than 60 days after mixed-inoculation, which is in contrast to the previous report that all the mice were cured by intradermal mixed-inoculation of CTLL-D4 cells and RL61, even at the E/T ratio of 1:129. This discrepancy might be due to: 1) spread of injected cells to remote sites via the subarachnoid space, since the brain parenchyma is easily damaged by mechanical injection, and 2) increased intracranial pressure due to the growth of tumor cells.

Thus, although many problems remain to be solved, the present study opens a new perspective for therapeutic application of immunotherapy against brain tumors.

Acknowledgments

This paper was presented in part at the Annual Meeting of the American Association of Neurological Surgeons, Atlanta, Georgia, April 21-25, 1985.

We would like to thank Professor H. CRAVIOTO, Department of Pathology, New York University Medical Center, for his critical review of the manuscript.

References

和文抄録

マウス脳内における免疫応答

2. 脳内移植腫瘍モデルにおける実験的免疫療法

京都大学医学部 脳神経外科

植 篤*, 半田 肇, 山下 純宏

同 免疫研究施設

栗林 景容, 増田 徹

*現籍 天理よるつ相談所病院 脳神経外科

BALB/C マウスに放射線で誘発された白血病細胞 RLα1 を用い、(BALB/cXCS7BL6)F(CB6F1) マウスを免疫して得たリンパ球を抗 Thy-1, 抗 Lyt 抗体と配合により処理し、CB6F1-nu/nu マウスを recipient として、腫瘍中和および移植実験をおこなった。その結果、Lyt-2+ T 細胞が移植同系腫瘍の拒絶に必要なエフェクター細胞であることが判明した。また、RLα1 に特異的な細胞障害性を有し、かつ T 細胞増殖因子(IL-2) の添加なしで長期継代培養可能な Lyt-2+ 2+ より成る T 細胞株を作製した。そして、あらかじめ RLα1 を脳内に移植した CB6F1-nu/nu マウスに経静脈的に細胞株を移植したところ、抗腫瘍効果が確認された。