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Abstract

Many algorithms in machine learning rely on a notion of similarity between input objects
to carry out inference. In most cases, the performance of algorithms improves when such a
similarity measure between objects of interest is learned, rather than simply chosen a priori.
Among such objects of interests, histograms – the normalized representation for bags-of-
features (BoF) – play a fundamental role since they appear in many research fields such
as computer vision, natural language processing, and speech processing. Ample empirical
evidence shows that the Euclidean geometry is not the best choice to measure similarity
between histograms in the simplex – the set of nonnegative and normalized vectors. In this
thesis, we propose new methodologies within the framework of metric learning and kernel
methods to quantify adaptively similarity for histograms.

This thesis proposes first to learn a metric for histograms by generalizing a family
of embeddings proposed by Aitchison (1982). These embeddings map histograms in the
probability simplex onto a suitable Euclidean space. Instead of relying on a few mappings
defined by a priori, such as those proposed in Aitchison (1982), we provide algorithms to
learn such maps using labeled histograms by building upon previous work in metric learning.
These algorithms lead to representations that outperform alternative approaches to compare
histograms in a variety of contexts.

This thesis proposes next to learn a Riemannian metric on the simplex using only
unlabelled histograms. We follow the approach of Lebanon (2006), who proposed to estimate
such a metric within a parametric family by maximizing the inverse volume of a given
data set of points under that metric. The metrics we consider on the simplex are the Fisher
information metrics parameterized by Aitchison’s transformations in the simplex. We propose
an algorithmic approach to maximize the inverse volume using sampling and contrastive
divergences. We also provide experimental evidence that the metric obtained under our
proposal outperforms alternative approaches.

Finally, this thesis proposes a kernel that measures similarity between images using the
BoF model approach for representation. We build upon spatial pyramid matching, an efficient
extension of the BoF model. This method partitions images into increasingly fine sub-regions,
and measures similarity between these sub-regions by applying the BoF model, which is
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limited in its capacity to quantify similarity between sets of unordered features. We propose
a hierarchical spatial matching kernel that uses a coarse-to-fine model for the sub-regions to
obtain better similarity measure. In experiments, our proposed kernel improves performances
of the spatial pyramid matching kernel on many benchmark datasets.

In conclusion, learning algorithms for general vectors may not work well in practice when
dealing with input structured data such as metric learning for histograms. Each structured
data has its own geometry. So, geometry-aware learning algorithms for structured data is a
promising direction for future work, for example, metric learning for structured data such as
trees, graphs, strings, time series, molecules or materials. Additionally, in metric learning
for histograms, some traditional distances for histograms such as the c

2 distance and the
transportation distance are used instead of the Mahalanobis distance in metric learning for
general vectors. Therefore, a fruitful direction for future work is to explore an appropriate
distance or divergence for a given structured data in metric learning.
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Chapter 1

Introduction

In this chapter, we give an introduction about histogram representation, metric learning and
kernel functions. We introduce the bag-of-features representation for complex objects, which
is popular in many research fields. Then, we review metric learning and kernel functions,
which are our approaches to quantify adaptively similarity for histogram data.

1.1 Histograms

1.1.1 Bag of Features Representation

The bag of features is a popular representation for complex objects in many different research
fields such as computer vision (Julesz, 1981; Sivic and Zisserman, 2003; Perronnin et al.,
2010; Vedaldi and Zisserman, 2012), natural language processing (Salton and McGill, 1983;
Salton, 1989; Joachims, 2002; Blei et al., 2003; Blei and Lafferty, 2006, 2009), speech
processing (Doddington, 2001; Campbell et al., 2003; Campbell and Richardson, 2007) and
bioinformatics (Erhan et al., 1980; Burge et al., 1992; Leslie et al., 2002). For each object of
interest, we extract a set of features. Then, we count occurrences of each type of features to
form a count vector for each object representation. Another way to represent each object is
that, from the set of features, we compute a frequency for each type of features to form a
histogram vector to represent each object of interest. However, if the set of all features has
a very large cardinality, we need to quantize the space of features into a small discrete set
since the cardinality of the set will be the dimension of the histograms. Then, we can form a
histogram of frequencies for these quantized features to represent each object of interest. A
histogram is a vector which has nonnegative elements and which sums to 1.

In the next subsections, we list two main fields, natural language processing and computer
vision, where histograms are popularly used to represent objects of interest (Julesz, 1981;



2 Introduction

Fig. 1.1 An illustration of a word cloud – a visual representation of text data – for this thesis’s
abstract. The more frequently a word appears, the more prominently it is displayed.

Salton and McGill, 1983; Salton, 1989; Joachims, 2002; Blei et al., 2003; Sivic and Zisserman,
2003; Blei and Lafferty, 2006, 2009; Perronnin et al., 2010; Vedaldi and Zisserman, 2012).

1.1.2 Histograms in Natural Language Processing

In natural language processing, objects of interest are text documents. A simple way to
represent a document is to discard the order of words in the document, gather all words into a
bag, and then compute a histogram vector of word frequencies to construct a representation for
the document. This approach is known as the bag of word representation for text documents
(Salton and McGill, 1983; Joachims, 2002). In this approach, words are considered as
features. For example, Figure 1.1 illustrates a word cloud, which is a visual representation of
text data, for this thesis’s abstract. The more frequently a word appears, the more prominently
it is displayed. Typically, the number of words in a dictionary is more than tens of thousands.
Consequently, a histogram, representing a document, has a high dimension that equals to the
number of different words.

To embed histograms in a low-dimensional space, we need a higher-level feature than
words. An idea is to represent text documents by a mixture of topics, which are each a
distribution of words. Intuitively, we can consider that each word in a document is generated
by one of the document’s topics. This research problem is known as topic model, studied
for instance in the Latent Dirichlet Allocation (LDA) approach (Blei et al., 2003; Teh et al.,
2006; Newman et al., 2007; Hoffman et al., 2010). The number of topics is usually much
smaller than the number of words. Therefore, the dimension of a histogram of topics is
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Topics! Documents!
Topic proportions and 

assignments!
!
gene       0.04!
dna         0.02!
genetic    0.01!
…!

!
life           0.02!
evolve     0.01!
organism 0.01!
…!

!
brain        0.04!
neuron     0.02!
nerve       0.01!
…!

!
data         0.02!
number    0.02!
computer 0.01!
…!

Fig. 1.2 An illustration of using topic modeling to represent a document as a histogram
of topics. Topic is a distribution of words such as the yellow box (genetics), the blue box
(computer science), the purple box (ecology) and the green box (neuroscience). Each word
in a document is assumed to be generated either of these topics. We can also represent each
document as the histogram of topics inferred by the topic model. (Edited from David Blei’s
figure.)

much smaller than that of a histogram of words. Figure 1.2 is an illustration of using the
topic model to represent a document as the histogram of topics. In this illustration, we have
some topics such as genetics (the yellow box), computer science (the blue box), ecology (the
purple box) and neuroscience (the green box). Each word in a document is assumed to be
generated either of these topics. We can also obtain each document representation as the
histogram of topics, inferred by the topic model.

1.1.3 Histograms in Computer Vision

In computer vision, objects of interest are images (videos can be considered as sequences of
images). Researchers in this area have adapted the bag of words representation in natural
language processing to propose the bag of visual words representation (Julesz, 1981; Sivic
and Zisserman, 2003; Perronnin et al., 2010; Vedaldi and Zisserman, 2012) for images. For
each image, they extract features such as color, SIFT (Lowe, 2004) or SURF (Bay et al.,
2006). Then, each image can be considered as a set of features. They use a histogram of
features to represent each image, such as a histogram of pixel colors illustrated in Figure 1.3.

In practice, a space of features is usually very large, the researchers in this area quantize
the space into a much smaller discrete set. For example, they use k-means to cluster all
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(a)! (b)! (c)!

Fig. 1.3 An illustration of a histogram of colors representation for an image. From the given
image (a), we discard the location of pixel colors and consider it as a set of pixel colors (b).
Then, we compute a histogram of pixel colors frequencies to represent the image (c).

(a)! (b)! (c)!

Fig. 1.4 Illustration of building visual words in the bag of visual words representation. From
a set of images (a), features are extracted from each image such as SIFT or SURF (b). Each
feature is considered as a high-dimensional data point. We can use a clustering method such
as k-means to cluster all features extracted from the set of all images. Then, each centroid is
regarded as a visual word (c).
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(a)!

(b)!

(c)!

(d)!

Fig. 1.5 Illustration of a histogram of visual words representation for an image. For each
given image (a), we extract features (b). Each feature is then approximated by its nearest
centroid (visual word). So, each image can be regarded as a set of visual words (c). Then, we
can compute a histogram of visual words frequencies to represent each image (d).
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features in an image dataset. Each centroid of k-means is regarded as a visual word. This
procedure of building visual words is illustrated in Figure 1.4. Then, the features in each
image can be approximated by their nearest centroid (visual word). Therefore, they can
construct a histogram representation for each image by computing frequencies of visual
words as illustrated in Figure 1.5.

1.2 Metric Learning for General Vectors

1.2.1 Motivation of Metric Learning

Many algorithms in machine learning rely on a distance between data points such as k-means,
k-medoids in clustering or k-nearest neighbors in classification. However, choosing a right
distance is difficult when input data are complex. So, distances should be adaptively learned
from dataset, rather than simply chosen a priori.

Consider a toy dataset as in Figure 1.6(a), there are two features for each data point. The
first feature is color and the second one is shape. We would like to cluster the toy dataset into
two groups by using the squared Mahalanobis distance. Recall that the squared Mahalanobis
distance between two vectors x and z is

d2
M (x,z) = (x� z)T M(x� z) , (1.1)

where M is a positive semidefinite matrix. d2
M is equal to the squared Euclidean distance

when M is the identity matrix. For the first scenario, we would like to obtain a result of
clustering as in Figure 1.6(b). Or, we want to cluster the toy dataset by only focusing on the
color feature (the first feature). A suitable value of matrix M is

M =

 
1 0
0 e

!
,

where e is a very small positive real value. Therefore, only the first feature (color) affects the
result of clustering while the second feature (shape) does not affect it much. For the second
scenario, we would like to obtain a result of clustering as in Figure 1.6(c) where we only
focus on the second feature (shape) and do not want an effect of the first feature (color) on
the clustering result. A suitable value of M, in this case, is

M =

 
e 0
0 1

!
.
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M
=

✓ 1
0

0
�

◆

M
=

✓
�

00
1

◆(a)!

d2
M (x, z) = (x � z)T M (x � z)

(b)!

(c)!

Fig. 1.6 An impact of distance on a result of clustering algorithms such as k-means or
k-medoids. Consider a dataset as in (a), there are two features for each data point: color
(the first dimension) and shape (the second dimension). We would like to cluster the data
into two groups following their color feature (b) or shape feature (c) by using the squared
Mahalanobis distance d2

M. We can obtain those goals by learning a suitable value for the
matrix M.
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? ?

(a)! (b)!

Fig. 1.7 An impact of distance on a result of k-nearest neighbors classification (k = 3). Given
a dataset and a query data point, a result of the query data point is depend on a metric used
in k-nearest neighbors classification. In the case (b), the query data point is assigned by the
blue circle while in the case (c), the result is the green triangle.

Furthermore, as in Figure 1.7, we illustrate an impact of distances on a result of k-
nearest neighbors classification where we consider k = 3. With different metrics to identify
nearest neighbors of a query sample, we can obtain very different results. For the metric in
Figure 1.7(a), the query sample is assigned as a blue circle label, but as a green triangle one
for the metric in Figure 1.7(b).

1.2.2 Metric Learning Approaches

There are two different settings for metric learning: supervised and unsupervised ones.

Supervised Metric Learning
In the supervised setting, a distance will be learned from labeled data points. Most of

supervised metric learning algorithms are based on a simple and intuitive framework of the
Mahalanobis distance. The matrix M in the Mahalanobis distance (Equation (1.1)) is learned
from labeled data.

Intuitively, we would like a distance between a pair of samples small if they have a same
label and large if they have different labels. Furthermore, we can also consider a triplet
of samples. For example, a triplet may be formed as two samples in a same class and the
other sample in a different class. Thus, we would like a distance between the two samples in
the same class is smaller than a distance between samples in different classes. Figure 1.8
illustrates these basic ideas for constraints on pairs and triplets in supervised metric learning.
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There are many proposed algorithms for supervised metric learning (Xing et al., 2002;
Schultz and Joachims, 2003; Kwok and Tsang, 2003; Goldberger et al., 2004; Shalev-
Shwartz et al., 2004; Globerson and Roweis, 2005; Weinberger et al., 2006; Davis et al.,
2007; Weinberger and Saul, 2008, 2009; Kunapuli and Shavlik, 2012; Jain et al., 2012;
Trivedi et al., 2014). Particularly, it seems that the Large Margin Nearest Neighbors (Wein-
berger et al., 2006; Weinberger and Saul, 2008, 2009) and the Information-Theoretic Metric
Learning (Davis et al., 2007) approaches have risen as popular tools in this setting.

Unsupervised Metric Learning
In the unsupervised setting for metric learning, a distance is learned from unlabelled data

points. We can use some basic intuitions about a distance to form criteria. For example,
paths go through dense data points should be shorter than relative paths going through sparse
data points. A geodesic distance should go through dense data point to capture a geometry of
data.

Most of proposed algorithms in metric learning are in the supervised setting. Only a few
approaches in metric learning use the unsupervised setting such as (Lebanon, 2002, 2006;
Wang et al., 2007).

1.2.3 Limitations and Advantages of Metric Learning

Metric learning aims to learn adaptive distances with respect to a given dataset. Thus, it
can better measure similarity between data points to improve performances of algorithms.
However, for different tasks with different settings such as metric learning for ranking (McFee
and Lanckriet, 2010), multi-task metric learning (Parameswaran and Weinberger, 2010; Yang
et al., 2013), domain transfer metric learning (Zhang and Yeung, 2010), multi-modal metric
learning (Xie and Xing, 2013) or metric learning for structured data (Norouzi et al., 2012;
Kedem et al., 2012; Cuturi and Avis, 2014), a general metric learning may not work well in
practice. A suitable learning strategy should be studied for a specific task.

Moreover, metric learning can be interpreted to learn an apt embedding for data points.
For example, the Mahalanobis metric learning is equivalent to learn a linear mapping since

dM (x,z) =
q

(x� z)T M(x� z)

=
q

(x� z)T LT L(x� z)

=
q

(Lx�Lz)T (Lx�Lz)
= k(Lx�Lz)k2 ,
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(a)! (b)!

Fig. 1.8 An illustration for constraints on pairs and triplets in metric learning. (a) For a pair
of samples, a distance between them should be small if they have a same label and large if
they have different labels. (b) Furthermore, a triplet may be formed by two samples having
a same label and the other sample has a different label. A constraint on a triplet is that
a distance between two samples having the same label should be smaller than a distance
between samples having different labels.

where M = LT L by using the Cholesky decomposition, or singular value decomposition. For
nonlinear embeddings, there are some approaches such as kernelized metric learning (Chat-
patanasiri et al., 2008; Jain et al., 2012) and local metric learning (Frome et al., 2007;
Weinberger and Saul, 2008, 2009; Noh et al., 2010; Wang et al., 2012). Furthermore, deep
metric learning is also considered to learn deep embeddings for data points (Chopra et al.,
2005; Hu et al., 2014).

However, metric learning still has some limitations such as scalability and robustness.
Most of proposed metric learning algorithms can not handle large-scale datasets. There
are some attempts to tackle this issue such as online metric learning and batch metric
learning (Shalev-Shwartz et al., 2004; Jain et al., 2009). Additionally, Lim et al. (2013) try to
deal with robustness limitation of metric learning for noisy data.

1.3 Metric Learning for Histograms

1.3.1 Distances for Histograms

In this subsection, we review some tradition distances for histograms such as the Hellinger
distance, the c

2 distance, the transportation distance (also known as the earth mover’s
distance) and the Fisher’s information metric.
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Hellinger distance
The Hellinger distance between two histograms x and z is

dH (x,z) =
r

Â
i

�p
x(i)�

p
z(i)

�2
, (1.2)

where we denote x(i) for the ith coordinate of a vector x.

Transportation distance
The transportation distance between two histograms x and z is defined as

dG(x,z) = min
X1=x,XT1=z

X�0

hX,Gi ,

where 1 is a vector of ones and G is a ground metric matrix,

Gi j � 0,Gii = 0,Gi j Gik +Gk j,8i, j,k.

c

2 distance
The c

2 distance between two histograms x and z is

c

2 (x,z) =
1
2 Â

i

�
x(i)� z(i)

�2

x(i) + z(i)
. (1.3)

In case, there is an ith coordinate where x(i) = z(i) = 0, we can eliminate that coordinate
for both two histograms before compute the c

2 distance between them. This is consistent
with histograms since x and z are still histograms after eliminated the ith coordinate if
x(i) = z(i) = 0.

Fisher’s information metric
The Fisher’s information metric between two histograms x and z is computed as

d (x,z) = arcos

 

Â
i

p
x(i)z(i)

!
.

The Fisher’s information metric is also known as the pull-back metric from the Euclidean
metric in a positive sphere through the Hellinger transformation, which is an element-wise
square root function for histograms (x 7!

p
x).
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1.3.2 Metric Learning Approaches for Histograms

Most of metric learning algorithms are based on a simple and intuitive framework of the
Mahalanobis distances. However, when the input data are histograms, metric learning based
on Mahalanobis distance is not the best choice. Empirical evidence shows that Euclidean
distance or its general Mahalanobis distance does not work well for histograms in practice
since histograms belong to the simplex which is the set of nonnegative and normalized
vectors.

Researchers recently try to tackle metric learning for histograms. For instance, Cuturi
and Avis propose to learn the ground matrix in the transportation distance framework (2011;
2014), namely ground metric learning (GML). In computer vision, Wang and Guibas (2012)
also propose a very similar approach to Cuturi and Avis (2011), which is built upon the GML
and the successful Mahalanobis framework large margin nearest neighbor (LMNN). Another
approach is the work of Kedem et al. (2012). The authors propose to learn a linear mapping
L for histograms from and onto the simplex (x 7! Lx), where

L1 = 1 and L� 0,

and applies the c

2 distance for those mapped points c

2 (Lx,Lz).

There are also a few unsupervised metric learning approaches for histograms. Notably,
Lebanon proposes to learn a Riemannian metric on the simplex from unlabelled histogram
data (2002; 2006). This approach can be interpreted that Lebanon learns a transformation
from and onto the simplex for histogram data and then applies the Fisher’s information metric
for those mapped points. Another work is (Wang et al., 2007). The authors propose to learn
a general Dirichlet distribution for histograms to form a ground matrix. Then, they plug it
into the transportation distance framework to quantify distance between histograms.

1.4 Kernel Functions

1.4.1 Kernel Functions for Histograms

In this subsection, we review some traditional kernels for histograms such as the histogram
intersection kernel, the c

2 kernel and the Bhattacharyya kernel.
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Histogram intersection kernel
The formulation of the histogram intersection kernel between two histograms x and z is

kHIK (x,z) = Â
i

min
�
x(i),z(i)

�
.

c

2 kernel
The c

2 kernel is computed as

k
c

2 (x,z) = Â
i

2x(i)z(i)

x(i) + z(i)
.

If there is an ith coordinate where x(i) = z(i) = 0, we can eliminate that coordinate for both
two histograms before compute the c

2 kernel between them as in the case of computing the
c

2 distance (Equation (1.3)).

Bhattacharyya kernel
The Bhattacharyya kernel is

kB (x,z) = Â
i

p
x(i)z(i),

which trivially related to the better-known Hellinger distance (Equation (1.2)) by dH (x,z) =p
2�2kB (x,z).

1.4.2 Kernel Functions for Images Using the Bag of Features Repre-
sentation

In this subsection, we review some kernel functions for images using the bag of features
(BoF) representation in computer vision such as spatial pyramid matching kernel (Lazebnik
et al., 2006) and pyramid match kernel (Grauman and Darrell, 2005).

Spatial Pyramid Matching Kernel
One of the main weak points for the BoF approach is that it discards spatial information of

an object of interest. However, the spatial information especially plays an important role for
some objects of interest such as images in computer vision. To tackle this issue, Lazebnik
et al. (2006) propose the spatial pyramid matching kernel (SPMK) to embed the spatial
information for the BoF. Lazebnik et al. (2006) use a sequence of grids to partition an image
into fixed sub-regions as illustrated in Figure 1.9, and then compute the bag of visual words
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Fig. 1.9 An illustration of a sequence of grids to partition an image into fixed sub-regions in
spatial pyramid matching kernel. Spatial pyramid matching kernel use a sequence of grids
2`⇥2` where ` = 0,1,2 to partition the image into 1, 4 and 16 sub-region respectively.

for each sub-regions. Finally, these histograms for the sub-regions are weighted by some
priori constants, and then concatenated to form a representation for the image. Empirical
evidence shows that SPMK should be applied with some traditional kernels for histograms to
obtain good performances as in the BoF. Furthermore, instead of using some priori constants
to weight for the histograms of the sub-regions, Wang and Wang (2010) propose a multiple
scale learning framework which employs the multiple kernel learning method to learn the
optimal weights for those histograms of the sub-regions.

Pyramid Matching Kernel
Another approach to improve similarity measure between images using the BoF repre-

sentation approach is the pyramid match kernel proposed by (Grauman and Darrell, 2005).
The authors propose to use a sequence of different resolutions for an image as illustrated
in Figure 1.10, and then apply the bag of visual words for each image resolution. Finally,
these histograms for the image resolutions are also weighted by some prior constants, and
concatenated to represent the image. This approach also gives a good performance if applied
with some traditional kernels for histograms as well.

1.5 Outline of This Thesis

This thesis is organized as following:

Chapter 2:
In this chapter, we consider metric learning for histograms in a supervised setting. Learning
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Fig. 1.10 An illustration of a sequence of different resolutions for an image in pyramid match
kernel. Pyramid matching kernel considers the image in a sequence of different resolutions:
2�r⇥2�r with r = 0,1,2 scale of the original resolution.

distances for histogram data in the simplex has recently attracted the attention of the machine
learning community. Learning such distances is important because the bags of features are
popularly used to represent complex objects in many research fields, rather than simple
vectors. Ample empirical evidence suggests that the Euclidean distance in general and
Mahalanobis metric learning in particular may not be suitable to quantify distances between
points in the simplex. We propose in this chapter a new contribution to address this problem
by generalizing a family of embeddings proposed by Aitchison (1982) to map the simplex
onto a suitable Euclidean space. We provide algorithms to estimate the parameters of such
maps by building on previous work on metric learning approaches. The criterion we study is
not convex, and we consider alternating optimization schemes as well as accelerated gradient
descent approaches. These algorithms lead to representations that outperform alternative
approaches to compare histograms in a variety of contexts. The results presented in this
chapter are published in [J1, P1].

Chapter 3:
In this chapter, we deal with metric learning for histograms in an unsupervised setting.

Many applications in machine learning handle bags of features or histograms rather than
simple vectors. In that context, defining a proper geometry to compare histograms can be
crucial for many machine learning algorithms. While one might be tried to use a default
metric such as the Euclidean metric, empirical evidence shows this may not be the best choice
when dealing with observations that lie in the simplex. Moreover, it might be desirable to
choose a metric adaptively based on data. We consider in this chapter the problem of learning
a Riemannian metric on the simplex given unlabeled histogram data. We follow the approach
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of Lebanon (2006), who proposed to estimate such a metric within a parametric family by
maximizing the inverse volume of a given data set of points under that metric. The metrics
we consider on the multinomial simplex are pull-back metrics of the Fisher information
parameterized by operations within the simplex known as Aitchison (1982) transformations.
In this chapter, we propose an algorithmic approach to maximize inverse volumes using
sampling and contrastive divergences. We provide experimental evidence that the metric
obtained under our proposal outperforms alternative approaches. The results presented in
this chapter are published in [P2].

Chapter 4:
In this chapter, we consider to improve similarity measure for images in computer vision

which use the bag of features representation. We build upon the spatial pyramid matching
proposed by Lazebnik et al. (2006) which is an effective extension for bag of features
representation. This method partitions an image into increasingly fine sub-regions and
compute histograms of features at each sub-region. Although spatial pyramid matching is the
efficient extension of the bag of features image representation, it still measures the similarity
between sub-regions by applying the bag of features model. Thus, it is limited in its capacity
to quantify similarity between sets of unordered features. To overcome this limitation, we
propose in this chapter a hierarchical spatial matching kernel that uses a coarse to fine model
for the sub-regions to obtain better similarity measure. Our proposed kernel can robustly deal
with unordered feature sets as well as a variety of cardinalities. In experiments, the results of
hierarchical spatial matching kernel outperformed those of spatial pyramid matching kernel
and led to state of the art performance on several well-known benchmark databases in image
categorization. The results presented in this chapter are published in [J2].

Chapter 5:
In this chapter, we summary our contributions in this thesis and discuss about some

directions for future work.



Chapter 2

Generalized Aitchison Embeddings for
Histograms

In this chapter, we propose a new approach for metric learning in a supervised setting when
the input data are bags of features.

�(x) 7!
P�(x)x

7!
�(
x)

 
Our proposed embeddings: 

 
 
 

x 7! P�(x)

(1) 
(2) 

Fig. 2.1 Illustration for our general framework. There are 2 main components: (1) the
embedding from the simplex into a suitable Euclidean to take into account geometrical
constraints from the simplex, (2) metric learning to improve the performance of classification
algorithms based on distance. We unify those 2 components into a compact framework by
proposing a family of embeddings.
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2.1 Overview

Defining a distance to compare objects of interest is an important problem in machine learning.
Many metric learning algorithms were proposed to tackle this problem by considering labeled
datasets, most of which exploit the simple and intuitive framework of Mahalanobis distances
(Xing et al., 2002; Schultz and Joachims, 2003; Kwok and Tsang, 2003; Goldberger et al.,
2004; Shalev-Shwartz et al., 2004; Globerson and Roweis, 2005). Within these contributions,
two algorithms are particularly popular in applications: the Large Margin Nearest Neighbor
(LMNN) approach described by Weinberger et al. (2006; 2008; 2009), and the Information-
Theoretic Metric Learning (ITML) approach proposed by Davis et al. (2007).

Among such objects of interest, histograms – the normalized representation for bags of
features – play a fundamental role in many applications, from computer vision (Julesz, 1981;
Sivic and Zisserman, 2003; Perronnin et al., 2010; Vedaldi and Zisserman, 2012), natural
language processing (Salton and McGill, 1983; Salton, 1989; Baeza-Yates and Ribeiro-Neto,
1999; Joachims, 2002; Blei et al., 2003; Blei and Lafferty, 2006, 2009), speech processing
(Doddington, 2001; Campbell et al., 2003; Campbell and Richardson, 2007) to bioinformatics
(Erhan et al., 1980; Burge et al., 1992; Leslie et al., 2002). Mahalanobis distances can be used
as such on histograms or bags-of-features, but fail however to incorporate the geometrical
constraints of the probability simplex (non-negativity – all elements in histograms are
nonnegative – and normalization – sum of all elements in histograms is equal to 1) in their
definition. Given this issue, Cuturi and Avis (2014) (2011) and Kedem et al. (2012) have very
recently proposed to learn the parameters of distances specifically designed for histograms,
namely the transportation distance and a generalized variant of the c

2 distance respectively.
We propose in this chapter a new approach to compare histograms that builds upon older

work by Aitchison (1982). In a series of influential papers and monographs, Aitchison (1980;
1982; 1985; 1986; 2003) proposed to study different maps from the probability simplex onto
a Euclidean space of suitable dimension. These maps are constructed such that they preserve
the geometric characteristics of the probability simplex, yet make subsequent analysis easier
by relying only upon Euclidean tools, such as Euclidean distances, quadratic forms and
ellipses. Our goal in this chapter is to follow this line of work and propose suitable maps
from the probability simplex to a Euclidean space of suitable dimension. However, rather
than relying on a few mappings defined a priori such as those proposed in (Aitchison, 1982),
we propose to learn such maps directly in a supervised fashion using Mahalanobis metric
learning.

This chapter is organized as follows: after providing some background on Aitchison em-
beddings in Section 2.2, we propose a generalization of Aitchison embeddings in Section 2.3.
In Section 2.4, we propose algorithms to learn the parameters of such embeddings using
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training data. We also review related work in Section 2.5, before providing experimental
evidence in Section 2.6 that our approach improves upon other adaptive metrics on the
probability simplex. Finally, we provide some observations on the empirical behavior of our
algorithms in Section 2.7 before giving a summarization for this chapter in Section 2.8.

2.2 Aitchison Embeddings

We consider the probability simplex of n coordinates,

Pn�1
def
=
�

x 2 Rn �� xT 1 = 1 and x� 0
 

,

throughout this chapter. Aitchison (1982, 1986, 2003) claims that the information reflected in
histograms lies in the relative values of their coordinates rather than on their absolute value.
Therefore, Aitchison makes the point that comparing histograms directly with Euclidean
distances is not appropriate, since the Euclidean distance can only measure the arithmetic
difference between coordinates. Given two points x and z in the simplex, Aitchison proposes
to focus explicitly on the log-ratio of x(i) and z(i) for each coordinate i, which can be
expressed as the arithmetic difference of the logarithms of x(i) and z(i),

log
x(i)

z(i)
= logx(i)� logz(i).

2.2.1 Additive log-ratio Embedding

The first embedding proposed by Aitchison (1982, p.144, 2003, p.29) is the additive log-ratio
map (alr) which maps a vector x from the probability simplex Pn�1 onto Rn�1,

alr(x)
def
=

2

666664

log
x(1)+e

x(n)+e

log
x(2)+e

x(n)+e

...
log

x(n�1)+e

x(n)+e

3

777775
2 Rn�1,

where e > 0 is small. The alr map for x 2 Pn�1 can be reformulated as:

alr(x) = U log(x+ e1n) , (2.1)



20 Generalized Aitchison Embeddings for Histograms

where

U =

2

64
1 · · · 0 �1
... . . . ...

...
0 · · · 1 �1

3

75 2 R(n�1)⇥n,

1n 2 Rn is the vector of ones, and logx is the element-wise logarithm of x. The formula
of the alr map is related to the definition of the logistic-normal distribution (Aitchison and
Shen, 1980; Blei and Lafferty, 2006) on Pn�1. The density of a logistic normal distribution
at any point in the simplex is proportional to the density of the multivariate normal density
on the image of that point under the alr map. The alr map is an isomorphism between
(Pn�1,�,�) and

�
Rn�1,+,⇥

�
where � and � are the perturbation (Aitchison, 2003, p.24)

and power (Aitchison, 2003, p.26) operations in the probability simplex respectively, but not
isometric since it does not preserve the distance between them.

2.2.2 Centered log-ratio Embedding

The second embedding proposed by Aitchison (2003, p.30) is the centered log-ratio embed-
ding (clr), which considers the log-ratio of each coordinate of x with the geometric mean of
all its coordinates,

clr(x)
def
=

2

6666666666664

log
x(1)+e

n

s
n
’
j=1

(x( j)+e)

log
x(2)+e

n

s
n
’
j=1

(x( j)+e)

...
log

x(n)+e

n

s
n
’
j=1

(x( j)+e)

3

7777777777775

2 Rn. (2.2)

The clr map can be also expressed with simpler notations in matrix form:

clr(x) =

✓
I� 1n⇥n

n

◆
log(x+ e1n) .

Here, I and 1n⇥n stand for the identity matrix and the matrix of ones in Rn⇥n respectively.
The clr map is not only an isomorphism, but also an isometry between the probability simplex
Pn�1 and Rn. Note that the clr map spans the orthogonal of 1n in Rn.
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2.2.3 Isometric log-ratio Embedding

Egozcue et al. (2003) proposed to project the images of the clr map onto Rn�1, to define the
isometric log-ratio embedding (ilr). The ilr map is defined as follows:

ilr(x)
def
= Vclr(x) = V

✓
I� 1n⇥n

n

◆
log(x+ e1n) , (2.3)

where V 2 R(n�1)⇥n is a matrix whose row vectors describe a base of the null space of 1T
n in

Rn. The ilr map is also an isometric map between both spaces in Aitchison’s sense.
Aitchison’s original definitions do not consider explicitly the regularization coefficient

e (1982; 1986; 2003). In that literature, the histograms are either assumed to have strictly
positive values or the problem is dismissed by stating that all values can be regularized by a
very small constant (Aitchison, 1985, p.132; 1986, Section 11.5). We consider explicitly this
constant e here because it forms the basis of the embeddings we propose in the next section.

2.3 Generalized Aitchison Embeddings

Rather than settling for a particular weight matrix – such as those defined in Equations (2.1), (2.2)
or (2.3) – and defining a regularization constant e arbitrarily, we introduce in the defini-
tion below a family of mappings that leverage instead these parameters to define a flexible
generalization of Aitchison’s maps. In the following, S+

n is the cone of symmetric positive
semidefinite matrices of size n⇥n.

Definition 1. Let P be a matrix in Rr⇥n and b be a vector in the positive orthant Rn
+. We

define the generalized Aitchison embedding a(x) of a point x in Pn�1 parameterized by P
and b as

a(x)
def
= P log(x+b) 2 Rr. (2.4)

Vector b in Equation (2.4), can be interpreted as a pseudo-count vector that weights the
importance of each coordinate of x. Figure 2.2 illustrates how larger pseudo-count values
tend to smoothen the logarithm mapping. A large value for b(i) directly implies that the map
for the coordinate described in bin number i is nearly constant, thereby canceling the impact
of that coordinate in subsequent analysis. Smaller values for b(i) denote on the contrary
influential coordinates.

We propose to learn P and b such that histograms mapped following a can be efficiently
discriminated using the Euclidean distance. The Euclidean distance between the images of
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Fig. 2.2 Impact of variable pseudo-count values in the logarithm function.

two histograms x and z under the embedding a is:

da(x,z) def
= d(a(x) ,a(z))
= kP log(x+b)�P log(z+b)k2

=

����log
✓

x+b
z+b

◆����
Q

, (2.5)

where the division between two vectors is here considered element-wise and we have
introduced the positive semidefinite matrix Q = PT P, along with the Mahalanobis norm
k·kQ

def
=
p

·T Q ·. Our goal is to learn both Q 2 S+
d (we may also consider P directly) and the

pseudo-count vector b to obtain an embedding that performs well with k-nearest neighbors.
We also give an illustration for our general framework in Figure 2.1.

2.4 Learning Generalized Aitchison Embeddings

2.4.1 Criterion

Let D = {(xi,yi)1im} be a dataset of labeled points in the simplex, where each xi 2 Pn�1

and each yi 2 {1, · · · ,L} is a label. We follow Weinberger et al.’s approach to define a
criterion to optimize the parameters (Q,b) (2006; 2009). Weinberger et al. propose a large
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margin approach to nearest neighbor classification: given a training set D , their criterion
considers for a single reference point xi the cumulated distance of its closest neighbors that
belong to the same class, corrected by a coefficient which takes into account whether points
from a different class are in the immediate neighborhood of xi. Taken together over the
entire dataset, these two factors promote metric parameters which ensure that each point’s
immediate neighborhood is mostly composed of points that share its label.

These ideas can be formulated using the following notations. Let k be an integer. Given
a pair of parameters (Q,b), consider the geometry induced by da. For each point xi in the
dataset, there exists k neighbors of xi which share its label. We single out these indices
by introducing the binary relationship j i for two indices 1  i 6= j  m. The notation
j i means that the j-th point is among those close neighbors with the same class (namely
yi = y j). The set of indices j such that j i is called the set of target neighbors of the i-th
point. Note that j i does not imply i j.

Next, we introduce the hinge loss of a real number t as [t]+
def
= max(t,0), to define the

margin between three points: given a triplet (i, j,`) of distinct indices, the margin Hi j` is
derived as:

Hi j`
def
=
⇥
1+d2

a

�
xi,x j

�
�d2

a(xi,x`)
⇤
+ .

This margin is positive whenever the distance between the i-th and `-th points is not larger
than the distance between the i-th and j-th points plus an offset of 1. If, for instance, the i-th
and j-th points share the same class but the `-th point comes from a different class, Hi j` will
be positive whenever the `-th point is not far enough from the i-th point relative to where the
j-th point stands. Figure 2.3 gives an illustration for the approach of large margin nearest
neighbor framework (Weinberger et al., 2006; Weinberger and Saul, 2009).

Using these definitions, we can define the following metric learning problem:

min
Q,b

F
def
= Â

i, j i
d2
a

�
xi,x j

�
+ µ Â

i, j i
Ầ(1� yi`)Hi j` +lkbk2

2

s. t. Q⌫ 0,

b > 0n, (2.6)

where yi` is equal to 1 if yi = y` and 0 otherwise, and µ > 0,l > 0 are two regularization
parameters. The first term in the objective favors small distances between neighboring points
of the same class, while the second term ensures no points with a different label are in the
neighborhood of each point, complemented by a regularization term.

2.4.2 Alternating Optimization
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(xi, yi)1,2,...,m

Fig. 2.3 Illustration for the approach of the large margin nearest neighbor framework. Con-
sidering a sample xi, x j is target neighbor of the sample xi. The goal is to push x`, having
different labels to xi, farther and simultaneously pull the target neighbor x j, having same
label as xi, closer to xi.

Unlike the original LMNN formulation, optimization problem (2.6) is not convex because
of the introduction of a pseudo count vector b. Although the objective is still convex with
respect to Q, it is non-convex with respect to b. We consider first a naive approach which
updates alternatively Q and b. This approach is summarized in Algorithm 1 and detailed
below.

When b is fixed, optimization problem (2.6) is equivalent to the Mahalanobis metric
learning problem: indeed, once each training vector x is mapped to log(x+b), problem (2.6)
can be solved with a LMNN solver.

When Q is fixed, we can use a projected subgradient descent to learn the pseudo-count
vector b. Defining

gi j(b)
def
= d2

a

�
xi,x j

�
,

we can compute the gradient of gi j as:

—gi j(b) = 2
✓

Q log
xi +b
x j +b

◆
•
✓

1
xi +b

� 1
x j +b

◆
,

where • is the Schur product – element-wise product – between vectors or matrices. Since
only terms such that Hi j` is positive contribute to the gradient, a subgradient g for the objective
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Algorithm 1 Alternating optimization (AO) Approach for Problem (2.6)
Input: data (xi,yi)1im, neighborhood size k , intialization b0,Q0.
Set t  0.
repeat

Find k target neighbors for each point xi with da as in Equation (2.5) at (Qt ,bt).
Compute Qt+1 using the LMNN algorithm initialized with Qt and training data
{(log(xi +bt) ,yi)1im}.
Update target neighbors for each vector xi using parameters (Qt+1,bt).
Compute bt+1 using Algorithm 2 initialized with bt , on {(xi,yi)1im} and Qt+1.
Update the objective Ft+1  F(Qt+1,bt+1).
t  t +1.

until t < tmax or insufficient progress for Ft .
Output: matrix Qt , pseudo-count vector bt .

function F at bt can be expressed as

g = Â
i, j i

0

@—gi j(bt)+ µ Â
`|Hi j`>0

�
—gi j(bt)�—gi`(bt)

�
1

A+2lbt . (2.7)

This formula results in the following update for bt using a preset step size t0p
t :

bt+1 = Y
✓

bt�
t0p

t
g

◆
,

where Y(x) is the projection of x on the positive orthant offset by a small minimum threshold
e = 10�20, namely the set of all vectors whose coordinates are larger or equal to 10�20. A
pseudo-code of this approach is summarized in Algorithm 2. We can set the initial point
Q0 to be equal to PT P where P can be selected among the linear embeddings originally
considered by Aitchison presented in Section 2.2. We initialize the pseudo-count vector to
the uniform smoothing term 1n/n.

2.4.3 Projected Subgradient Descent with Nesterov Acceleration

We propose in this section a more straightforward approach to the problem of minimizing
Problem (2.6) which bypasses the cost associated with running many iterations of the LMNN
solver. We consider a projected subgradient descent using Nesterov acceleration scheme
(Nesterov, 1983, 2004) to optimize the parameters (Q,b) in Problem (2.6) directly. Our
experiments show that this approach is considerably faster and equally efficient in terms of
classification accuracy.
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Algorithm 2 Subgradient Descent Update of b when Q is fixed.
Input: data (xi,yi)1im, a matrix Q, a subgradient step size t0, an initial vector b0.
Set t  0.
Set bt  b0.
repeat

Compute a subgradient g at bt following Equation (2.7).
Compute bt+1  P

⇣
bt� t0p

t g

⌘
.

Update the objective Ft+1  F(Q,bt+1).
Set t  t +1.

until t < tmax or insufficient progress for Ft .
Output: a pseudo-count vector bt .

Analogously to the previous section, we consider the distance d2
a

�
xi,x j

�
as a function

hi j(Q,b) of Q and b . Gradients of hi j with respect to Q and b are, introducing the notation
ui j below:

—hi j(Q,b)|Q =

✓
log

xi +b
x j +b

◆✓
log

xi +b
x j +b

◆T
= ui juT

i j,

and

—hi j(Q,b)|b = —gi j(b).

At iteration t +1, a subgradient of the objective F with respect to b was given in Equation
(2.7). We derive similarly a subgradient G with respect to Q:

G = Â
i, j i

0

@ui juT
i j + µ Â

`|Hi j`>0

�
ui juT

i j�ui`uT
i`
�
1

A .

Nesterov acceleration scheme builds gradient updates using a momentum that involves two
iterations. bt and Qt can be updated analogously as follows:

bnes
t�1 = bt�1 +

t�2
t +1

(bt�1�bt�2) ,

bt = Y
✓

bnes
t�1�

t0p
t

∂F

∂b
�
Qt�1,bnes

t�1
�◆

.

and

Qnes
t�1 = Qt�1 +

t�2
t +1

(Qt�1�Qt�2) ,

Qt = pS+
d

✓
Qnes

t�1�
t0p

t
∂F

∂Q
�
Qnes

t�1,bt�1
�◆

.
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The projection pS+
d

of a matrix onto the cone of positive semidefinite matrices is carried out
by thresholding its negative eigenvalues.

2.4.4 Low-Rank Approaches

Torresani and Lee (2006) have proposed to learn low-rank embeddings for LMNN. We include
this variation here, which is beneficial in terms of computational speed, since it only involves
storing a low-rank Cholesky factor P 2 Rr⇥n of Q where r < n is a predetermined parameter.
This gain comes at the cost of losing convexity when the problem is parameterized by Q.
The subgradient of F with respect to P is:

∂F

∂P
= 2P ∂F

∂Q
2 Rr⇥n.

When using a descent expressed in terms of P, we obtain the updates

Pnes
t�1 = Pt�1 +

t�2
t +1

(Pt�1�Pt�2) ,

Pt = Pnes
t�1�

t0p
t

∂F

∂P
�
Pnes

t�1
�
.

Since no constraints hold on P, we do not need a projection step.

2.4.5 Adaptive Restart

The projected subgradient descent with Nesterov acceleration presented in Section 2.4.3 does
not guarantee a monotone decrease of the objective value. Indeed, it has been observed that
Nesterov acceleration scheme may create ripples in the objective value curve when plotted
against iteration count. This phenomenon happens when the momentum built from Nesterov
acceleration scheme becomes higher than a critical value (the optimal momentum value
described by Nesterov (1983; 2004)), and thus damage convergence speed. To overcome this,
we adopt the heuristic of O’Donoghue and Candès (2013), which sets the momentum back to
zero whenever an increase in the objective is detected. Whenever Ft > Ft�1 at some point
in time t, the idea of this heuristic is to erase the memory of previous iterations, reset the
algorithm counter to 0 and use the current iteration as a warm start.
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2.5 Related Work

Notwithstanding Aitchison’s work, the logarithm mapping has been consistently applied in
information retrieval to correct for the burstiness of feature counts (Salton, 1989; Baeza-Yates
and Ribeiro-Neto, 1999; Rennie et al., 2003; Lewis et al., 2004; Madsen et al., 2005), using
the mapping

x 7! log(x+a1d), (2.8)

for an unnormalized histogram of feature counts x, where a > 0 is a constant in R+ typically
set to a = 1. This embedding can be directly applied to the original histograms or used
on term-frequency inverse-document-frequency (TFIDF) and its variants (Aizawa, 2003;
Madsen et al., 2005). These logarithmic maps can be interpreted as particular cases of the
embeddings we propose here.

In addition to the logarithm, Hellinger’s embedding, which considers the element-wise
square-root vector of a histogram (x 7!

p
x) is particularly popular in computer vision

(Perronnin et al., 2010; Vedaldi and Zisserman, 2012). This embedding was also considered
as an adequate representation to learn Mahanlanobis metrics in the probability simplex as
argued by Cuturi and Avis (2014, Section 6.2.1). Some other explicit feature maps such as
c

2, intersection and Jensen-Shannon are also benchmarked in Vedaldi and Zisserman (2012).

2.6 Experiments

2.6.1 Experimental Setting and Implementation Notes

Datasets
We evaluate our algorithms on 12 benchmark datasets of various sizes. Table 3.1 displays

their properties and relevant parameters. These datasets include problems such as scene
classification, image classification with a single label or multi labels, handwritten digit and
text classification. We follow recommended configurations for these datasets. If they are not
provided, we randomly generate 5 folds to evaluate in each run. Additionally, we also repeat
the experiments at least 3 times to obtain averaged results, except for PASCAL VOC 2007
and MirFlickr datasets where we use a predefined train and test set.

Parameters of the Proposed Algorithms
We set the target neighborhood size k = 3 as a default parameter setting of the LMNN

solver1. We note that the number of target neighbor k is not necessary to be equal to

1http://www.cse.wustl.edu/⇠kilian/code/lmnn/lmnn.html
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Table 2.1 Properties of datasets and their corresponding experimental parameters.

Dataset #Train #Test #Class Feature Rep #Dim #Run
MIT Scene 800 800 8 SIFT BoF 800 5
UIUC Scene 1500 1500 15 SIFT BoF 800 5
DSLR 409 89 31 SURF BoF 800 5
WEBCAM 646 149 31 SURF BoF 800 5
AMAZON 2262 551 31 SURF BoF 800 5
OXFORD Flower 680 680 17 SIFT BoF 400 5
CALTECH-101 3060 2995 102 SIFT BoF 400 3
Pascal Voc 2007 5011 4952 20 Dense Hue BoF 100 1
MirFlickr 12500 12500 38 Dense Hue BoF 100 1
MNIST 5000 5000 10 Normalized Intensity 784 5
20 News Group 600 19397 20 BoW LDA 200 5
Reuters 500 9926 10 BoW LDA 200 5

parameter k in k-nearest neighbor classification. In our experiments, k is a fixed number
while k varies. We also set the regularization µ = 1 as in LMNN (Weinberger and Saul,
2009) while the regularization l is set to kN (recall that N is the size of the training set),
guided by preliminary experiments. For the step size t0 in the subgradient descent update,
we choose from the set 1

kN {0.01,0.05,0.1,0.5} via cross validation. For the alternating
optimization (Algorithm 1), we set tmax = 20 iterations (in our experiments, we observe
that this number is generous, since usually 6 to 10 iterations suffice for most datasets, as
shown in Figure 2.8 and Figure 2.9). For the projected subgradient descent with Nesterov
acceleration (PSGD-NES), the algorithm takes less than 500 iterations for converge (usually
about 300 iterations, illustrated in Figure 2.12 and Figure 2.13). So, we set tmax = 500 for
the PSGD-NES algorithm.

Dense SIFT Features for Images
Dense SIFT features are computed by operating a SIFT descriptor of 16⇥ 16 patches

computed over each pixel of an image as in (Le et al., 2011) instead of key points (Lowe,
2004) or a grid of points (Lazebnik et al., 2006). Additionally, before computing the dense
SIFT, we convert images into gray scale ones to improve robustness. We obtained dense
SIFT features by using the LabelMe toolbox2 (Russell et al., 2008).

2http://new-labelme.csail.mit.edu/Release3.0/browserTools/php/matlab_toolbox.php
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Fig. 2.4 Classification on scene (MIT Scene & UIUC Scene), handwritten digit (MNIST)
and text (20 News Group & Reuters).

2.6.2 Metrics and Metric Learning Methods

We consider LMNN metric learning for histograms using: their original representation; the ilr
representation (Section 2.2, Equation (2.3)); their Hellinger map. We also include the simple
Euclidean distance in our benchmarks. To illustrate the fact that learning the pseudo-count
vector b results in significant performance improvements, we also conduct experiments with
an algorithm that learns Q through LMNN but only considers a uniform pseudo-count vector
of a chosen in {0.0001,0.001,0.01,0.1,1} by cross validation on the training fold. We call
this approach Log-LMNN.

2.6.3 Scene Classification

We conduct experiments on the MIT Scene3 and UIUC Scene4 datasets. In these datasets,
we select randomly 100 train and 100 test points from each class. Histograms are obtained
by using dense SIFT features with bag-of-feature representation (BoF) where the number of

3http://people.csail.mit.edu/torralba/code/spatialenve-lope/
4http://www.cs.illinois.edu/homes/slazebni/research/
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Table 2.2 Averaged percentage of zero-elements in a histogram (sparseness) of single-label
datasets.

Dataset Sparseness
MIT Scene 20.04%
UIUC Scene 20.33%
DSLR 39.58%
WEBCAM 64.44%
AMAZON 83.20%
OXFORD Flower 1.12%
CALTECH-101 13.15%
MNIST 80.68%
20 News Group 98.01%
Reuters 98.00%

visual words is set to 800. We repeat experiments 5 times on each dataset and split randomly
onto train and test sets.

The two leftmost graphs in Figure 2.4 shows averaged results with error bars on these
datasets. The performance of the proposed embedding improves upon that of LMNN on the
original histograms by more than 15% and is slightly better than LMNN combined with the
Hellinger map. These graphs also illustrates that Hellinger is an efficient embedding for
histograms. The performance of k-NN seeded with the Hellinger distance is even better than
that of LMNN in these datasets. The performances of all alternative embeddings with LMNN
are better than those with Euclidean distance respectively.

2.6.4 Handwritten Digits Classification

We also perform experiments for handwritten digits classification on the MNIST5 dataset. A
feature vector for each point is constructed from a normalized intensity level of each pixel.
We randomly choose 500 points disjointly from each class for train and test sets, repeat 5
times for averaged results. The middle graph in Figure 2.4 illustrates that the generalized
Aitchison embedding also outperforms other alternative embeddings.

5http://yann.lecun.com/exdb/mnist/
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2.6.5 Text Classification

We also carry out experiments for text classification on 20 News Groups6 and Reuters7 (the
10 largest classes) datasets. In these datasets, we calculate bag of words (BoW) for each
document, and then we use topic modelling (LDA) to reduce the dimension of histograms
using the gensim toolbox8. We obtain a histogram of topics for each document (Blei et al.,
2003; Blei and Lafferty, 2009). We randomly choose 30 points and 50 points from each
class in 20 News Groups and Reuters datasets for training, and use the remaining points for
testing respectively. We randomly generate 5 different train and test sets for each dataset and
average results.

The two rightmost graphs in Figure 2.4 show that the proposed embedding improves
the performance of LMNN by more than 10% on each dataset. It also outperforms the
ilr and Hellinger representations on these datasets, except for the Reuters dataset where
their performances are comparable. Moreover, as in Table 2.2 which illustrates averaged
percentages of zero-elements in a histogram (sparseness), these datasets are very sparse.
There are averaged more than 98% zero-elements in a histogram in these datasets. Therefore,
the proposed algorithm may have advantages for very sparse datasets.

2.6.6 Single-label Object Classification

DSLR, AMAZON and WEBCAM
These datasets9 are split into 5 folds. Each point is a histogram of visual words obtained

by BoF representation on SURF features (Bay et al., 2006) where the code-book size is set to
800. We repeat experiments 5 times on each dataset with different random splits and average
results.

The three leftmost graphs in Figure 2.5 illustrate that the performance of the proposed
embedding outperforms that of LMNN on these datasets and even improves about 30%, 25%
and 10% on DSLR, WEBCAM and AMAZON dataset respectively. Our proposed algorithm
also improves the performances of Log-LMNN about 7%.

OXFORD FLOWER
We randomly choose 40 flower images of each class for training and use the rest for testing

6http://qwone.com/⇠jason/20Newsgroups/
7http://archive.ics.uci.edu/ml/datasets/Reuters–21578+Text+Categorization+Collection
8http://radimrehurek.com/gensim/
9http://www1.icsi.berkeley.edu/⇠saenko/projects.html
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Fig. 2.5 Single-label object classification on DSLR, AMAZON, WEBCAM, OXFORD
FLOWER and CALTECH-101.

for Oxford Flower dataset10. We construct histograms using a BoF representation with 400
visual words on a dense SIFT feature and repeat experiments 5 times on different random
splits to obtain averaged results. The fourth graph in Figure 2.5 shows that the proposed
embedding outperforms that of histograms more than 30%, and also improves about 15%
comparing to the ilr embedding as well as the Hellinger representation with LMNN. As
showed in Table 2.2, this dataset is highly dense since there are only about 1% zero-elements
in a histogram. This suggests that our approaches might work better with dense datasets.

CALTECH-101
We randomly choose 30 images for training and up to 50 other images for testing. We use

BoF representation with 400 visual words on a dense SIFT feature to construct histograms
for each image. The rightmost graph in Figure 2.5 shows averaged results on 3 different
random splits of the CALTECH-10111 dataset, illustrating again the interest of our approach.

10http://www.robots.ox.ac.uk/⇠vgg/data/flowers/17/
11http://www.vision.caltech.edu/Image_Datasets/Cal-tech101/
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Fig. 2.6 Multi-label object classification on PASCAL VOC 2007 & MirFlickr.

2.6.7 Multi-label Object Classification

We evaluate the proposed method on multi-label image categorization using the PASCAL
VOC 200712 and MirFlickr13 datasets. We follow the guidelines to define the train and test
sets. Histograms for each image are built in these datasets based on BoF representation with
100 visual words on a dense hue feature. Then, we employ a one-versus-all strategy for k-NN
classification and calculate averaged precisions for each dataset. Figure 2.6 illustrates that
the proposed embedding outperforms original, ilr, and Hellinger representation with LMNN
again. Additionally, the performance of Hellinger distance is better than that of LMNN and
comparative with that of Log-LMNN in these datasets.

2.6.8 Low-Rank Embeddings

We conduct experiments for the low-rank version of our algorithm, where the dimension is set
to {80%, 60%, 40%, 20%} of the original dimension of the single-label datasets. Figure 2.7
indicates that reducing rank can be carried out to accelerate computations, but this speed up
can come, depending on the dataset, at the expense of a degradation in performance.

12http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2007/
13http://press.liacs.nl/mirflickr/
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Fig. 2.7 Classification results for low-rank generalized Aitchison embedding.

2.7 Experimental Behavior of the Algorithm

2.7.1 Convergence Speed

Figure 2.8 and Figure 2.9 illustrate the convergence of the objective with respect to compu-
tational time on a log-log scale. We consider the naive alternating optimization approach
(Section 2.4.2), a standard projected subgradient descent, projected subgradient descent with
Nesterov acceleration (Section 2.4.3), and a version with adaptive restart (PSGD-NES-AR in
Section 2.4.5). We use the LMNN solver directly and measure raw time using a single core.
Gaps in that curve indicate the value of the objective before and after running the LMNN
solver.

The naive alternating optimization has computational cost that is about one order of
magnitude larger than that of a direct application of LMNN. This factor appears because we
run the LMNN solver multiple times. The burden of optimizing the pseudo-count vector
is small due to the fact that the gradient has a closed-form solution for each pair in the
objective function. We only need to run a few iterations of the LMNN algorithm using a warm
start when alternating. Our experiments show that we only need to run 6 to 10 alternating
iterations for these datasets, but each iteration is costly. These results show the interest of
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Fig. 2.8 Log-log plot illustration for the relation between behavior of the objective function
and computational time in the proposed algorithms on DSLR, AMAZON, WEBCAM,
OXFORD FLOWER and CALTECH-101.

using Nesterov acceleration scheme here, and even suggest adopting the adaptive restart
heuristic of O’Donoghue and Candès (2013).

2.7.2 Sensitivity to Parameters

Target Neighbors
Figure 2.10 and Figure 2.11 illustrate the effect of the number of target neighbors k on the

results of our algorithms. We evaluate for k = {1,3,5,7,9} for single-label datasets, except
k = {7,9} for DSLR and k = 9 for WEBCAM due to the size of the smallest class in these
datasets. These results suggest that the number of target neighbors has a large impact and
should remain low, both from a computational viewpoint and performances of the algorithm.
Figure 2.10 and Figure 2.11 also show that 3-target-neighbor setup is an appropriate choice
for those evaluated datasets.

Average Test Accuracy over Iteration Count
Figure 2.12 and Figure 2.13 show the average test accuracy over iteration count. The
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Fig. 2.9 Log-log plot illustration for the relation between behavior of the objective function
and computational time in the proposed algorithms on scene (MIT Scene & UIUC Scene),
handwritten digit (MNIST) and text (20 News Group & Reuters).

curves of average test accuracy value seem to increase monotonically with the iteration count,
therefore suggesting that our algorithms do not overfit training data in these evaluations.

2.8 Summary

We have shown that a generalized family of embeddings for histograms coupled with different
procedures to estimate its parameters can be effective to represent histograms in Euclidean
spaces. Our variations outperform other common approaches such as the Hellinger map
or Aitchison’s original embeddings. Rather than using an alternative optimization scheme
and use LMNN solvers, our results indicated that a simple accelerated subgradient method
provides the best results both in performance and computational time. Other variations, such
as learning a low-rank embedding or using adaptive restart heuristic for PSGD-NES, can also
prove beneficial, depending on the datasets.
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Fig. 2.10 Illustration for the effect of target neighbors in the PSGD-NES on DSLR, AMA-
ZON, WEBCAM, OXFORD FLOWER and CALTECH-101.
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Fig. 2.11 Illustration for the effect of target neighbors in the PSGD-NES scene (MIT Scene
& UIUC Scene), handwritten digit (MNIST) and text (20 News Group & Reuters).
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Fig. 2.12 Illustration for the average test accuracy over iteration count of the PSGD-NES to
indicate that the algorithm do not overfit to training data on DSLR, AMAZON, WEBCAM,
OXFORD FLOWER and CALTECH-101.
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Fig. 2.13 Illustration for the average test accuracy over iteration count of the PSGD-NES to
indicate that the algorithm do not overfit to training data scene (MIT Scene & UIUC Scene),
handwritten digit (MNIST) and text (20 News Group & Reuters).





Chapter 3

Unsupervised Riemannian Metric
Learning for Histograms

In this chapter, we propose a new approach to learn a metric for histograms from unlabeled
data.

J

Pn S+
n

H(x) =
p

xG

F = H � G

dJ(x, z) = arcos(hF (x), F (z)i)
Fig. 3.1 Illustration for the Riemannian metric in the simplex considered in this chapter –
the Fisher information metric J under the transformation G on the simplex Pn. It is also
known as a pull-back metric of the Euclidean metric on the positive sphere S+

n through a
transformation F = H �G.

3.1 Overview

Learning distances to compare objects is an important topic in machine learning. Many
approaches have been proposed to tackle this problem, notably by making the most of
Mahalanobis distances in a supervised setting (Xing et al., 2002; Schultz and Joachims,
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2003; Goldberger et al., 2004; Shalev-Shwartz et al., 2004; Globerson and Roweis, 2005;
Weinberger et al., 2006; Davis et al., 2007; Weinberger and Saul, 2008, 2009).

Among such objects of interest, histograms – the normalized representation for bags of
features – are popular in many applications, notably computer vision (Julesz, 1981; Sivic
and Zisserman, 2003; Vedaldi and Zisserman, 2012), natural language processing (Salton
and McGill, 1983; Salton, 1989; Joachims, 2002; Blei et al., 2003; Blei and Lafferty, 2009)
and speech processing (Doddington, 2001; Campbell and Richardson, 2007). Mahalanobis
distances can be used as such on histograms, but are known to perform poorly because
they do not take into account the inherent constraints that histograms have (non-negativity
and normalization). Cuturi and Avis (2014) and Kedem et al. (2012) proposed recently
two supervised metric learning approaches in the simplex. Kedem et al.’s contribution is
particularly relevant to this chapter’s approach: they proposed to compare two histograms
r and c by using the c

2 distance, c

2(Lr,Lc) between Lr and Lc, where L is a linear map
from and onto the simplex. This map L is learned by using labeled data and the large
margin nearest neighbor framework (Weinberger et al., 2006; Weinberger and Saul, 2008,
2009). Our approaches also build on the idea of learning a map from and onto the simplex to
parameterize a family of distances.

An even stronger influence on this chapter lies in the work of Lebanon (2002, 2006) who
proposed to learn a Riemannian metric for histograms using unlabeled data. The family of
Riemannian metrics considered in these works can be seen as the standard Fisher information
metric (instead of the c2 distance) using a particular family of transformations in the simplex.
Cuturi and Avis (2014, Section 5.3) noticed that these transformations were defined in earlier
references by Aitchison (1982, 1986, 2003) who called them simplicial perturbations.

Our contribution in this chapter is two-fold: (1) we extend Lebanon (2006)’s original
approach to more general Aitchison transformations in the simplex; (2) we propose a new
approach to solve a key step in Lebanon’s procedure, namely the maximization of the inverse
volume of a Riemannian metric.

This chapter is organized as follows: after providing short reminders of Aitchison’s
tools and Riemannian geometry in Section 3.2, we proceed with the description of Fisher’s
information metric for histograms and show how all these elements can be used to form a
parameterized family of Riemannian metrics in the simplex in Section 3.3. In Section 3.4,
we propose a new algorithm to learn such metrics in an unsupervised way. In Section 3.5, we
propose to use locally sensitive hashing to approximate k-nearest neighbors for our metrics
to apply for large datasets. We study connections of this work with related approaches in Sec-
tion 3.6, before providing experimental evidence in Section 3.7, and giving a summarization
of this chapter in Section 3.8.
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3.2 Preliminary

We provide in this section a self-contained review of Aitchison’s geometry as well as elements
of Riemannian geometry that will be useful to define our methods.

3.2.1 Aitchison Geometry

(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)
(a)! (b)!

Fig. 3.2 Illustration for the perturbation operator in the simplex P2 where blue dots are
input histograms and red dots are images of the perturbation operator on blue dots. (a) for
l = [0.3,0.3,0.4] and (b) for l = [0.28,0.34,0.38] .

We consider the n-simplex Pn, defined by

Pn
def
=
�

x 2 Rn+1 �� x� 0 and xT 1 = 1
 

,

where 1 is a vector of 1 and write intPn for its interior. Aitchison (1982, 1986, 2003) claims
that the information reflected in histograms lies in the relative values of their coordinates
rather than on their absolute value. Therefore, Aitchison proposes dedicated binary operations
to combine two elements x and z in the interior of the simplex. Given g 2R, the perturbation
and powering operations, denoted by � and �, are respectively defined as

x� z def
= C(x• z) 2 intPn,

and
g� z def

= C(zg) 2 intPn,
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where we denote • for element-wise product – Hadamard product – between 2 vectors and
C (x) = x

xT 1 is the closure or normalization operator. Figure 3.2 and Figure 3.3 illustrate the
action of the perturbation and powering operators respectively for histograms in the simplex
P2. Additionally, a definition for the difference between x and z is naturally defined as:

x z = x� (�1� z) = C
⇣x

z

⌘
2 intPn,

where x
z is element-wise division for 2 vectors x and z. Note that the difference of two

elements in the simplex with these operations remains in the simplex, unlike the results
obtained in with the usual Euclidean geometry.

(a)! (b)!

Fig. 3.3 Illustration for the powering operator in the simplex P2 where blue dots are input
histograms and red dots are images of the powering operator on blue dots. (a) for t = 0.6 and
(b) for t = 2.

3.2.2 Riemannian Manifold

A Riemannian metric g on a manifold M is a function which assigns to each point x 2M an
inner product gx on the corresponding tangent space TxM. Consequently, we can measure
the length of a tangent vector v 2 TxM as

kvkx =
p

gx (v,v).

Let c : [a,b] 7!M be a curve in M. Its length is defined as

L(c) =
Z b

a

q
gc(t) (c0(t),c0(t))dt,
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where c0(t) belongs to Tc(t)M. The geodesic distance d (x,z) between two points x and z in
the manifold M is defined as the length of the shortest curve connecting x and z,

d (x,z) = inf
c2f(x,z)

L(c) ,

where f(x,z) is a set of differential curves which connect x and z on M.
One way to specify a Riemannian metric on M is by using pull-back metrics. Let

F : M 7! N be a diffeomorphism that maps the manifold M onto the manifold N, and write h
for a Riemannian metric on N. Let TxM, TzN be the tangent spaces on the manifold M and N
at x and z respectively. We can define a pull-back metric F⇤h on M as follows:

F⇤hx (u,v) = hF(x) (F⇤u,F⇤v) ,

where F⇤ is the push-forward map which transforms a tangent vector v 2 TxM to a tangent
vector F⇤v 2 TF(x)N. Thus, F is an isometric mapping between the manifold M and N:

dF⇤h (x,z) = dh (F(x),F(z)) .

3.3 Fisher Information Metric for Histograms

d(x, z) = arcos(
p

x
T p

z)

Pn S+
n

H(x) =
p

x

Fig. 3.4 Illustration for the Fisher information metric in the simplex.

In information geometry, the Fisher information metric is a particular Riemannian metric,
defined on the simplex. It is well-known that the Fisher information metric can be described
as a pull-back metric from the positive orthant of the sphere S+

n ,

S+
n

def
=
�

x 2 Rn+1 �� x� 0 and xT x = 1
 

.
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The diffeomorphism mapping H : Pn 7! S+
n is defined as the Hellinger mapping,

H (x)
def
=
p

x,

where the square root is an element-wise function. The mapping H pulls-back the Euclidean
metric on the positive sphere S+

n to the Fisher information metric on the simplex Pn. Thus,
the geodesic distance d (x,z) between two histograms x,z in the simplex Pn under the Fisher
information metric is equivalent to the length of the shortest curve on the positive sphere S+

n

between H(x) and H(z),

d (x,z) = arcos(hH(x),H(z)i) = arcos
�⌦p

x,
p

z
↵�

, (3.1)

where h·, ·i is the Euclidean inner product. We also give an illustration for the Fisher
information metric in the simplex in Figure 3.4.

Let G : intPn 7! intPn be a transformation inside the simplex. The Fisher information
metric under the transformation G on the simplex Pn, denoted as J, is a pull-back metric of
the Euclidean metric on the positive sphere S+

n through a transformation F = H �G. The
geodesic distance that results by using J between x,z 2 Pn is thus

dJ(x,z) = arcos(hF(x),F(z)i) .

We illustrate for this metric in Figure 3.1. Therefore, we have a family of pull-back metrics
J on the simplex Pn, parameterized by the transformation G inside the simplex Pn. In the
next section, we will present a way to learn a suitable pull-back metric J based on a family
of transformations G using only unlabeled data.

3.4 Unsupervised Riemannian Metric Learning for Histograms

3.4.1 Aitchison Transformation

We consider a family of transformations G on the simplex that can be defined using Aitchison
elementary perturbation and powering operations presented in Section 3.2.1. Firstly, we
generalize the powering operation for a histogram and a vector, denoted as ⌦, so that we can
have exponents that can vary for each coordinate:

a⌦x def
= C(xa) 2 intPn,
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(0, 0, 1)

(1, 0, 0) (0, 1, 0)

(0, 0, 1)

(1, 0, 0) (0, 1, 0)
(a)! (b)!

Fig. 3.5 Illustration for the generalized powering operator in the simplex P2 where blue dots
are input histograms and red dots are images of the generalized powering operator on blue
dots. (a) for a = [1,1,0.5] and (b) for a = [1.3,1,0.5].

where the power function is element-wise between vector x and vector a . Figure 3.5 shows
an action of the generalized powering operator for histograms in the simplex P2.

The transformation we consider is parameterized by a vector a in the strictly positive
orthant Rn+1

+ , and by l 2 intPn:

G(x) = a⌦x�l 2 intPn. (3.2)

Or, we have
G(x) = C(xa •l ) 2 intPn.

We note that a ⌦ (x�l ) = (a ⌦ x)� (a ⌦l ). So, for the transformation G(x), we can
interpret that vector l under operator � may be considered as a translation, and vector a

under operator ⌦ has a role as a linear mapping for a histogram x in the simplex. We also
give an illustration for the generalized Aitchison transformation for histograms in the simplex
P2 in Figure 3.6.

Additionally, we can express the transformation F(x) as the element-wise square root for
G(x):

F(x) = H �G(x) =
p

C(xa •l ) 2 S+
n .

Hence, we have a closed form for the geodesic distance under Riemannian metric J – the
pull-back metric of the Euclidean metric on the positive sphere S+

n through a transformation
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(0, 0, 1)

(1, 0, 0) (0, 1, 0)

Fig. 3.6 Illustration for the generalized Aitchison transformation in the simplex P2 where
blue dots are input histograms and red dots are images of the generalized powering operator
on blue dots with a = [0.5,1,2] and l = [0.2,0.35,0.45].

F = H �G,

dJ(x,z) = arcos(hF (x) ,F (z)i) = arcos
⇣Dp

C(xa •l ),
p

C(za •l )
E⌘

. (3.3)

3.4.2 Criterion

Let D = {xi,1 i m} be a dataset of unlabeled histograms in the interior of the simplex.
We will learn a Riemannian metric from a family of pull-back metrics J on the simplex as
described in Section 3.3. Since J is parameterized by Aitchison transformation G, defined in
Equation (3.2), we equivalently learn an Aitchison transformation on the simplex.

The volume element of the Riemanian metric J at point x is defined as:

dvolJ(x)
def
=
p

detG (x),

where G (x) is the Gram matrix, whose components

[G ]i j = J(∂i,∂ j),

where {∂i}1in is a basis of a tangent space TxPn of the simplex Pn at point x. Intuitively,
the volume element dvolJ(x) summaries the size of metric J at x in a scalar. Paths over areas
with smaller volume will tend to be shorter than similar paths over areas with higher volume.
Lebanon (2002, 2006) propose to maximize inverse volume to obtain shorter curves across
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!!

xi

xj

Fig. 3.7 Illustration for the intuition of a geodesic distance which should go through dense
data points. The geodesic distance between xi and x j should go like the red curve instead of
the green line to capture the structure of the data.

densely populated regions of the simplex Pn. Therefore, the geodesic distances will also tend
to pass densely populated regions. It matches with an intuition about distance which should
be measured on the lower dimensional data submanifold to capture intrinsic geometrical
structure of data as illustrated in Figure 3.7. We note that volume element dvolJ(x) is a
homogeneous function, normalization for inverse volume is necessary to bound its quantity
in optimization.

Following these intuitions, we consider a metric learning problem:

max
a,l

F
def
=

1
m

m

Â
i=1

log
dvolJ�1(xi)R

Pn
dvolJ�1(x)dx

� µ

2
klogak2

2

s. t. l 2 intPn, a 2 Rn+1
+ , (3.4)

where loga is an element-wise function and µ > 0 is a regularization parameter. We apply
the logarithm function to the normalized inverse volume element in the criterion to simplify
our learning procedure. We regularize this objective by the `2-norm of the element-wise
logarithm a , that tends to avoid 0 values for our exponents. We do not regularize l since
l 2 intPn or klk1 = 1.



50 Unsupervised Riemannian Metric Learning for Histograms

3.4.3 Volume Element

We recall that the volume element of the Riemannian metric J at a point x is defined as

dvolJ(x) =
p

detG (x),

and [G ]i j = J(∂i,∂ j) where {∂i}1in is a basis of a tangent space of the simplex TxPn,
described as rows of the matrix

U =

2

64
1 · · · 0 �1
... . . . ...

...
0 · · · 1 �1

3

75 2 Rn⇥(n+1).

The Gram matrix G is provided by Proposition 1 while its determinant is studied in
Proposition 2. The proofs for these two propositions are given in the Appendix A.

Proposition 1. Let T be a n⇥ (n + 1) matrix whose rows are {F⇤∂i}1in, I is an identity
matrix in R(n+1)⇥(n+1), D is a diagonal matrix in R(n+1)⇥(n+1) where

diag(D) =
x a

2�1 •a •
p

l

2
q

(xa •l )T 1
,

b and h are column vectors in Rn+1 where

b = xa�1 •a •l

and
h =

x
a

1
(xa •l )T 1

.

We have T = U(I�bh

T )D, and the Gram matrix is given by

G = T T T = U(I�bh

T )D2(I�bh

T )TUT .

Proposition 2. Let ’(x) be a function of product of all elements in vector x. The determinant
of the Gram matrix G is

detG µ

⇣� x
a

�T 1
⌘2

’
�
xa�2�

⇣
(xa •l )T 1

⌘n+1
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Algorithm 3 Gradient Ascent using Contrastive Divergence

Input: data (xi)1im, gradient step size ta

0 and tl

0 , initial vectors a0, l 0 and a tolerance
e .
Set t  1.
Set at  a0.
Set lt  l0.
repeat

Use Metropolis-Hasting sampling algorithm where its proposal distribution is logistic
normal distribution to transform training data (xi)1im into data drawn from p(x).
Compute gradient of the objective function with respect to a , l using Proposition 3.
Update at+1  Y

⇣
at +

ta

0p
t

∂F
∂a

⌘
.

Update lt+1  C


lt • exp
✓

tl

0p
t

∂F
∂l

◆�
.

Set t  t +1.
until (t > tmax) or (kat�at�1k< e) or (klt�lt�1k< e).
Output: vectors at and lt.

3.4.4 Gradient Ascent using Contrastive Divergences

The main obstacle of our optimization problem is the normalization term of the inverse
volume element since it is not known in closed form. However, we can bypass this factor to
compute a partial derivative of the objective function F with respect to a and l as given in
Proposition 3. Its proof is given in the Appendix A.

Proposition 3. Let E(·)X denote the expectation of · given the data distribution X, and a
distribution,

p(x) =
dvolJ�1(x)R

Pn
dvolJ�1(z)dz

. (3.5)

The partial derivative of the objective function F with respect to a , l in the optimization
problem are:

∂F

∂a

=
1
m

m

Â
i=1

∂ logdvolJ�1(xi)

∂a

�E
✓

∂ logdvolJ�1(x)

∂a

◆

p(x)
�µ

loga

a

where

∂ logdvolJ�1(x)

∂a

=
n+1

2(xa •l )T 1
(xa •l • logx)+

1
� x

a

�T 1

⇣ x
a •a

⌘
� 1

2
logx
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and
∂F

∂l

=
1
m

m

Â
i=1

∂ logdvolJ�1(xi)

∂l

�E
✓

∂ logdvolJ�1(x)

∂l

◆

p(x)

where
∂ logdvolJ�1(x)

∂l

=
n+1

2(xa •l )T 1
xa ,

where logx, xz and x
z are element-wise logarithm, power and division functions respectively.

We propose to approximate the expectation E(·)p(x) that appears in Proposition 3 by
drawing samples from the distribution p(x). Since the partition function

R
Pn

dvolJ�1(z)dz is
not known in closed form, we can not draw samples directly from p(x). However, we can
use Markov Chain Monte Carlo (MCMC) sampling methods to draw such samples. Because
we only need to compute the ratio of two probabilities, p(x)/p(z) an approximation for the
partition function itself is not required. Moreover, Hinton (2002) suggests that only a few
cycles of MCMC can provide in certain settings a useful approximation. The intuition is
that the data have moved from the target distribution – training data – towards the proposed
distribution p(x) after a few iterations.

We propose to use a Metropolis-Hasting sampling method with a logistic normal distribu-
tion (Aitchison and Shen, 1980) proposal. We note that the logistic normal distribution is also
a by-product of Aitchison’s simplicial geometry. We apply contrastive divergences (Hinton,
2002) to compute approximations of the partial derivative of F as shown in the proof of the
Proposition 3.

We propose to use a gradient ascent to optimize for the metric learning problem following
the results in the Proposition 3. At iteration t, we can update a , l using preset step size ta

0p
t

and tl

0p
t respectively, as follow

at+1 = Y
✓

at +
ta

0p
t

∂F

∂a

◆
,

and

lt+1 = C

 
lt • exp

 
tl

0p
t

∂F

∂l

!!
,

where Y(x) is the projection of x on the positive orthant offset by a small minimum threshold
e = 10�20, namely the set of all vectors whose coordinates are larger or equal to 10�20,
and • is the Schur product – element-wise product – between vectors or matrices, and the
exp operator is here applied element-wise. Since we have a constraint l 2 intPn in the
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optimization problem (3.4), we use an exponentiated gradient update for l (Kivinen and
Warmuth, 1997).

We recall that computing the normalization term for a specific transformation in (Lebanon,
2002, 2006) takes O(n2 logn) by careful dynamic programming. So, our proposal is more
efficient and general than Lebanon’s approach. A pseudo-code for the projected gradient
ascent algorithm is summarized in Algorithm 3.

We also note that the optimization problem (3.4) can be interpreted as maximizing log-
likelihood for the probabilistic model on the simplex (Equation (3.5) and Proposition 2)
which assigns probabilities propositional to the inverse Riemannian volume element, with a
regularization.

3.5 Locally Sensitive Hashing to Approximate k-Nearest
Neighbors Search

We recall that our proposed family of distances (Equation (3.3) in Section 3.4.1) is the
pull-back metric of the Euclidean metric on the positive sphere through a composition
transformation of Hellinger mapping and Aitchison transformation. Equivalently, it can
be considered as measuring the angle between two mapped vectors from the composition
transformation. So, we can apply the Locally Sensitive Hashing family proposed by Charikar
(2002) to approximate k-nearest neighbors search.

For two histogram vectors x,z 2 intPn , we have the corresponding mapped vector

x̄ = F(x), z̄ = F(z) 2 S+
n

via the composition transformation F . Charikar (2002) defines a hash function

hr(x̄) = sign(rT x̄),

where r is a random unit-length vector in Rn+1. The hash function can be considered as a
randomly chosen hyperplane to partition the space into two half-spaces. The probability of
collision is as follow

Pr [hr(x̄) = hr(z̄)] = 1� dJ(x,z)
p

.

For a random vector r, we have a hash-bit hr(·) for each histogram x in a database. We
use b random vectors for a total b hash functions to obtain hash keys (b hash bits) for each
histogram. For a query histogram z, we apply the same b hash functions, and then use
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Table 3.1 Properties of datasets and their corresponding experimental parameters.

Dataset #Samples #Class Feature Rep #Dim #Run
MIT Scene 1600 8 SIFT BoF 200 100
UIUC Scene 3000 15 SIFT BoF 200 100
OXFORD Flower 1360 17 SIFT BoF 200 100
CALTECH-101 3060 102 SIFT BoF 200 100
20 News Group 10000 20 BoW LDA 200 100
Reuters 2500 10 BoW LDA 200 100
MNIST-60K 60000 10 Normalized Intensity 784 4
CIFAR-10 60000 10 BoW SIFT 200 4

the approximated similarity search method in (Charikar, 2002) which requires to search
O(m1/(1+e)) histograms for k = 1 approximated nearest neighbor.

3.6 Related Work

Lebanon’s use of Aitchison’s perturbation operator provided the main inspiration for the
metric learning approach advocated in this work (2002; 2006). We propose to extend this idea
to other operations in the simplex. We also propose to adapt the contrastive divergence method
for the purpose of computing a gradient to maximize inverse volumes, whereas Lebanon
uses an approximation for the partition function which only applies to the perturbation
transformation. We also show in the experimental section that our approach can also be used
in Lebanon’s original setting.

In chapter 2, this thesis proposes the generalized Aitchison embeddings to learn metrics
for histograms. Rather than using Aitchison transformations, in chapter 2, we focus on
a different family of tools, Aitchison maps, that can map points in the simplex onto a
Euclidean space Rd . We recall that we propose, in chapter 2, to learn simultaneously the
parameters of such maps and the metric (a Mahalanobis metric) on Rd that will be used on
such representations. This is related, although very different, from the approach we propose
here that learns in an unsupervised way a map from and onto the simplex, to be used with
Fisher’s information metric.



3.7 Experiments 55

3.7 Experiments

3.7.1 Clustering application with k-medoids

Datasets and Experimental Setting

We use the k-medoids clustering algorithm seeded with different metrics and compute their
clusters. We set the number of clusters k equal to the number of classes in corresponding
datasets. To evaluate the adequacy of a metric for given data, we check that these clusters
agree with a class typology provided for these points1. We test our method on 6 benchmark
datasets. Table 3.1 displays their properties and parameters. These datasets include different
kinds of data such as scene images in MIT Scene2 and UIUC Scene3 datasets, flower images
in Oxford Flower4 dataset, object images in CALTECH-1015 dataset and texts in Reuters6

and 20 News Group7 datasets.

Implementation Notes

For image datasets, we compute dense SIFT features by operating a SIFT descriptor of
16⇥16 patches computed over each pixel of an image. We also convert images into gray
scale ones before computing dense SIFT to improve robustness. We use the LabelMe
toolbox8 for computing dense SIFT features. Then, we use bag-of-features (BoF) to represent
for each image as a histogram, the size of dictionary for visual words is set 200.

For text datasets, we calculate bag of words (BoW) for each document, and then compute
topic modelling to reduce the dimension of histograms using the gensim toolbox9. Each
document can be thus described as a histogram of topics (Blei et al., 2003; Blei and Lafferty,
2009).

1In this setting for clustering application, we process with unlabelled data (for both learning the distance
and applying to k-medoids clustering method). Labels are only used to evaluate the clustering results. We use
k-medoids clustering algorithm instead of a traditional k-means since it is not trivial to compute a mean with
respect to a specific distance (i.e our proposed distance).

2http://people.csail.mit.edu/torralba/code/spatialenve-lope/
3http://www.cs.illinois.edu/homes/slazebni/research/
4http://www.robots.ox.ac.uk/⇠vgg/data/flowers/17/
5http://www.vision.caltech.edu/Image_Datasets/Cal-tech101/
6http://archive.ics.uci.edu/ml/datasets/Reuters–21578+Text +Categorization+Collection
7http://qwone.com/⇠jason/20Newsgroups/
8http://new-labelme.csail.mit.edu/Release3.0/
9http://radimrehurek.com/gensim/
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We use the PMTK3 toolbox10 implementation of the k-medoids algorithm. For each
metric, we performs k-medoids algorithm 100 times with different random initializations,
resulting in box-plots for our error statistics.

We may use a0 = [1,1, · · · ,1] and l0 = C[a0] for initialization since our proposed
distance (Equation (3.3) in Section 3.4.1) is equivalent to the Fisher Information Metric
(Equation (3.1) in Section 3.3) at these values for a and l . We also propose to use an
internal criterion - Davies-Bouldin index (Davies and Bouldin, 1979) to select parameters
via applying k-medoids clustering algorithm. We choose gradient step size ta

0 and tl

0 from
the sets 1

k ∂F
∂a

(a0,l0)k2
{.001, .005, .01, .05, .1, .5} and 1

k ∂F
∂l

(a0,l0)k2
{.001, .005, .01, .05, .1, .5}

respectively and µ from {0.1,1,10}. We set maximum iterations tmax = 10000 and a tolerance
e = 10�5. We also set 5 cycles for Metropolis-Hasting sampling algorithm to transform
training data into data drawn from p(x). The logistic normal distribution is used as the
proposal distribution for Metropolis-Hasting algorithm where its mean is training data point,
and its covariance is set 0.01I where I is an identity matrix.

Metrics and Metric Learning Baseline Method

We use usual metrics on the simplex such as the Euclidean, the total variation, c

2 and
Hellinger distances. We recall that the Hellinger distance between two histograms x and z in
the simplex Pn is

dHellinger (x,z) =
�p

x�
p

z
�T �px�

p
z
�
,

where
p

x is an element-wise square root for vector x. We also consider the cosine similarity
as suggested in (Lebanon, 2002, 2006) and the most popular of Aitchison mappings, known
as isometric log-ratio (ilr) (Egozcue et al., 2003; Le and Cuturi, 2013, 2014). Additionally,
we compare our proposal with the work of (Lebanon, 2002, 2006) implemented using our
algorithm to maximize inverse volumes, denoted as pFIM.

F
b

measure

We use the F
b

measure to compare results of k-medoids clustering with different metrics
(Manning et al., 2008). The intuition is that a pair of histograms is assigned to the same
cluster if and only if they are in the same class and otherwise11. So, a true positive (TP)
decision assigns a pair of histograms in the same class to the same cluster while a true
negative (TN) one assigns a pair of histograms in the different classes to the different clusters.

10https://github.com/probml/pmtk3
11We note that the class label yi corresponding for a histogram xi, for all 1 im, is only used for evaluation.

In training procedure, only histograms (without labels) are available.
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We have two types of errors. A false positive (FP) decision assigns a pair of histograms of
different classes to the same cluster, and a false negative (FN) one assigns a pair of histograms
of the same class to different clusters. Therefore, we can measure the precision

P =
T P

T P+FP

and recall
R =

T P
T P+FN

.

Since we have more pairs of histograms in different classes than in the same class, we need to
penalize false negative more strongly than false positives. F

b

measure can take into account
of that idea through a scalar b > 1 as

F
b

=

�
b

2 +1
�

PR
b

2P+R
.

By replacing P and R into F
b

, we note that F
b

penalizes false negative b

2 times more than
false positives. So, let D and S be sets of pairs of histograms in different and same classes of
a dataset respectively, we can set

b =

s
|D|
|S|

where | · | denotes a cardinality of a set.

Results

Figure 3.8 illustrates F
b

measure for k-medoids clustering on 6 benchmark datasets where
we denote CHI2 for c

2 distance, HEL for Hellinger distance, L1 for total variation distance,
COSINE for cosine similarity, L2 for Euclidean distance, ILR for isometric log-ratio mapping
- the most popular Aitchison mapping and pFIM for Fisher information metric pameterized
by a perturbation transformation (Lebanon, 2002, 2006). It shows that the Euclidean distance,
which fails to incorporate the geometrical constraints in the simplex, does not work well
for histogram data. Some popular distances for histograms such as total variation distance,
c

2 distance and Hellinger distance as well as the Aitchison mapping - ilr give better results
than the simple Euclidean distance. Cosine similarity (or angular distance) has a better or
comparative performance to these popular distances for histograms, except on MIT Scene
and UIUC Scene datasets. The performances of Riemannian metric learning using Aitchison
transformations is significantly better, notably on the UIUC Scene, Oxford Flower, 20 News
Group and Reuters datasets.
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Fig. 3.8 F
b

measure for K-medoids clustering.
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3.7.2 k-Nearest Neighbors Classification with Locally Sensitive Hash-
ing

We also carry out k-nearest neighbors classification with locally sensitive hashing. We use
2 large datasets MNIST-60K12 and CIFAR-1013. Each dataset consists of 60000 images,
we randomly choose 50000 images as a database and use the rest 10000 images for queries.
Table 3.1 displays their properties and parameters.

To handle large datasets, we propose a variance of Algorithm 3 by using a mini-batch
stochastic gradient (Bengio, 2007). Instead of using the whole samples at each iteration
to compute gradients, we randomly choose a small subset of the order of 10 samples as
suggested in (Bengio, 2007) to speed up the learning procedure.

As baselines, we consider the Euclidean, a Mahalanobis distance learned by using Large
Margin Nearest Neighbors (LMNN) Weinberger et al. (2006); Weinberger and Saul (2009)
algorithm. We also consider Hellinger distance and Hellinger mapping with a Mahalanobis
distance learned by using LMNN, denoted as HELLINGER-LMNN, as well as the approach of
(Lebanon, 2002, 2006) as mentioned in Section 3.7.1.

Figure 3.9 illustrates our results on MNIST-60K and CIFAR-10 datasets. Our approach
outperforms other alternative distances except HELLINGER-LMNN which should be ex-
pected, given that it is a state of the art supervised metric learning approach for histograms.
Figure 3.9 also shows that Euclidean distance and a straightforward application of LMNN do
not work well for histogram data. We insist that HELLINGER-LMNN uses labels to learn a
Mahalanobis matrix while our approach do not consider them.

3.8 Summary

We propose a new unsupervised metric learning approach for histograms that leverages
Aitchison transformations for histograms in the simplex. These transformations are learned
with the maximum inverse volume framework of Lebanon (2006). We provide a new
algorithm to carry out such a maximization using contrastive divergences which solves the
key obstacle - the partition function for a general case. We show empirically that our proposal
can learn effectively histogram metrics for unlabeled data. It outperforms alternative popular
metrics for histograms such as c

2, Hellinger, total variation, Euclidean distance, cosine
similarity and an Aitchison map (ilr) in clustering problem on many benchmark datasets.

12http://yann.lecun.com/exdb/mnist/
13http://www.cs.toronto.edu/⇠kriz/cifar.html
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Fig. 3.9 Performances of k-Nearest neighbors with locally sensitive hashing on CIFAR-10 and
MNIST-60K datasets, averaged over 4 repetitions where we denote L2 for Euclidean distance,
HELLINGER for Hellinger distance, LMNN for Mahalanobis distance learned by Large
Margin Nearest Neighbor Weinberger et al. (2006); Weinberger and Saul (2009) algorithm,
HELLINGER-LMNN for LMNN learned from data mapped by Hellinger transformation and
pFIM for Fisher information metric pameterized by a perturbation transformation (Lebanon,
2002, 2006). For figure Accuracy vs Number of bits - b, we set e=0.5. For figure Accuracy
vs e-value, we set b=200. All figures are reported with k=7, since in our experiments, the
relative performance of these classifiers does not vary with k.
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Additionally, it also improves the performances of k-nearest neighbors classification with
locally sensitive hashing for large datasets.





Chapter 4

Hierarchical Spatial Matching Kernel

In this chapter, we propose a new kernel, namely hierarchical spatial matching kernel for
images which use the bag of features approach for representation.

4.1 Overview

Image categorization is the task of classifying a given image into a suitable semantic category.
The semantic category can be defined as the depicting of a whole image such as a forest, a
mountain or a beach, or of the presence of an interesting object such as an airplane, a chair
or a strawberry. Among existing methods for image categorization, the bag of features (BoF)
model is one of the most popular and efficient. It considers an image as a set of unordered
features extracted from local patches. The features are quantized into discrete visual words,
with sets of all visual words referred to as a dictionary. A histogram of visual words is
then computed to represent an image. One of the main weaknesses in this model is that
it discards the spatial information of local features in the image. To overcome it, spatial
pyramid matching (SPM) proposed by Lazebnik et al. (2006), an extension of the BoF model,
uses the aggregated statistics of the local features on fixed sub-regions. It uses a sequence
of grids at several different levels of resolution to partition the image into sub-regions, and
then computes a BoF histogram for each sub-region at each level of resolution. Thus, the
representation of the whole image is the concatenation vector of all the histograms.

Empirically, it is realized that to obtain good performances, the BoF model and SPM
have to be applied together with specific nonlinear Mercer kernels (Boughhorbel et al.,
2004) such as the intersection kernel or c

2 kernel. When the kernel function is proved to
be positive definite, Mercer kernels guarantee the optimal solutions in learning algorithms.
Intersection kernel for BoF histogram can be used in Support Vector Machine (SVM) based
image categorization and object recognition tasks. The Pyramid Match Kernel proposed
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Fig. 4.1 An illustration for hierarchical spatial matching kernel (HSMK) applied to images X
and Y with L = 2 and R = 2 (a). HSMK first partitions the images into 2`⇥2` sub-regions
with ` = 0,1,2 as spatial pyramid matching kernel (SPMK) (b). However, HSMK applies
the coarse-to-fine model for each sub-region by considering it on a sequence of different
resolutions 2�r⇥2�r with r = 0,1,2 (c). The weight set notes

⇣
a j

i ,b
j
i ,r

j
i

⌘
, where i = 0,1,2

and j = 1,2, . . . ,16. The Equation (4.3) with the weight vector achieved from the uniform
combination of basic kernels – a special case of multiple kernel learning where the weights
are uniform – is applied to obtain better similarity measurement between sub-regions instead
of using the bag of words model as in SPMK.

by Grauman and Darrell (2005) is suitable for discriminative classification with unordered
sets of local features. This means that a kernel-based discriminative classifier is trained
by calculating the similarity between each pair of sets of unordered features in the whole
images or in the sub-regions. It is also well known that numerous problems exist in image
categorization such as the presence of heavy clutter, occlusion, different viewpoints, and
intra-class variety. In addition, the sets of features have various cardinalities and are lacking
in the concept of spatial order. SPM embeds a part of the spatial information over the whole
image by partitioning an image into a sequence of sub-regions, but in order to measure the
similarity between corresponding sub-regions, it still applies the BoF model, which is known
to be confined when dealing with sets of unordered features.

In this chapter, we propose a new kernel function based on a coarse to fine approach and
we call it a hierarchical spatial matching kernel (HSMK). HSMK allows not only capturing
spatial order of local features, but also accurately measuring the similarity between sets of
unordered local features in sub-regions. In HSMK, the coarse to fine model on sub-regions is
realized by using multi-resolutions, and thus our feature descriptors capture not only the local
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details from fine resolution sub-regions, but also global information from coarse resolution
ones. In addition, matching based on our coarse-to-fine model involves a hierarchical process.
This indicates that a feature that does not find its correspondence in a fine resolution still has
a possibility of having its correspondence in a coarse resolution. Accordingly, our proposed
kernel can achieve a better similarity measurement between sub-regions than SPM.

4.2 Related work

The BoF models are popular and powerful method for image categorization and generic
object recognition. This framework works by extracting local image features, quantizing them
according to typical clustering method such as k-means vector quantization, accumulating
histograms of the visual word over the input image, and then, classifying the histograms
with simple classifiers such as an SVM and Boosting. However, the traditional BoF model
discards the context information for spatial layout of an image. Many recent methods have
been proposed to improve the problems of traditional BoF model.

Boiman et al. (2008); Fei-Fei et al. (2004) used generative methods for quantization of
local image descriptors, and modeled the co-occurrence of visual words. While Moosmann
et al. (2008); Yang et al. (2008) introduced extremely randomized clustering forests to
generate discriminative visual words using clustering decision trees. Mairal et al. (2009);
Yang et al. (2009) modeled data vectors as sparse linear combinations that is called sparse
coding methods. They improved the visual dictionary in terms of discriminative ability or
lower reconstruction error instead of using the quantization by k-means clustering.

On the other hand, Lazebnik et al. (2006) proposed SPM method that can capture the
spatial layout of features ignored in the BoF model. The SPM is particularly effective as
well as being easy and simple to construct. It is used as a major part in many state-of-the-art
frameworks in image categorization (Gehler and Nowozin, 2009). Grauman and Darrell
(2005) proposed a fast kernel function called the pyramid match using multi-resolution
histograms. The pyramid match hierarchically measures similarity between histograms
which consist of sets of features extracted from the finest resolution to the coarsest one.
The proposed kernel approximates the optimal partial matching by computing a weighted
intersection over multi-resolution histograms for classification and regression tasks. Wang
and Wang (2010) proposed a multiple scale learning (MSL) framework in which multiple
kernel learning (MKL) is employed to learn the optimal weights instead of using predefined
weights of SPM. The multiple scale learning method can determine the optimal combination
of base kernels constructed in different image scales for visual categorization.
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SPM is often applied with a nonlinear kernel such as the intersection kernel or c

2

kernel. This requires high computation and large storage. Maji et al. (2008) proposed
an approximation to improve efficiency in building the histogram intersection kernel, but
efficiency can be attained merely by using pre-computed auxiliary tables which are considered
as a type of pre-trained nonlinear support vector machines (SVM). To give SPM the linearity
needed to deal with large datasets, Yang et al. (2009) proposed a linear SPM with spare
coding (ScSPM), in which a linear kernel is chosen instead of a nonlinear kernel due to the
more linearly separable property of sparse features.

Our proposed kernel concentrates on improvement of the similarity measurement between
sub-regions by using a coarse to fine model instead of the BoF model used in SPM. We
consider the sub-regions on a sequence of different resolutions as the pyramid matching
kernel (PMK) (Grauman and Darrell, 2005). Furthermore, instead of using the priori weight
vector for basic intersection kernels to penalize across different resolutions, we reformulate
the problem into a uniform combination of basic kernels – a special case of multiple kernel
learning where the weights are uniform – to obtain it more effectively. In addition, our
proposed kernel can deal with different cardinalities of sets of unordered features by applying
the square root diagonal normalization (Schölkopf and Smola, 2001) for each intersection
kernel, which is not considered in PMK.

4.3 Hierarchical Spatial Matching Kernel

In this section, we first describe the original formulation of SPM and then introduce our
proposed HSMK, which uses a coarse to fine model as a basic for improving SPM.

4.3.1 Spatial Pyramid Matching

Each image is represented by a set of vectors in the n-dimensional feature space. Features are
quantized into discrete types called visual words by using k-means clustering or sparse coding.
The matching between features turns into a comparison between discrete corresponding types.
This means that they are matched if they are in the same type and unmatched otherwise.

SPM constructs a sequence of different scales with ` = 0,1,2, . . . ,L on an image. In each
scale, it partitions the image into 2`⇥2` sub-regions and applies the BoF model to measure
the similarity between sub-regions. Let X and Y be two sets of vectors in the n-dimensional
feature space. The similarity between two sets at scale ` is the sum of the similarity between
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all corresponding sub-regions:

k`(X ,Y ) =
22`

Â
i=1

I(X `
i ,Y `

i ),

where X `
i is the set of feature descriptors in the ith sub-region at scale ` of the image vector

set X , and I is the intersection kernel between X `
i and Y `

i , formulated as:

I(X `
i ,Y `

i ) =
V

Â
j=1

min(HX`
i
( j),HY `

i
( j)),

where V is the total number of visual words and H
a

( j) is the number of occurrences of the
jth visual word which is obtained by quantizing feature descriptors in the set a . Finally, the
SPM kernel (SPMK) is the sum of weighted similarity over the scale sequence:

k(X ,Y ) =
1
2Lk0(X ,Y )+

L

Ầ
=1

1
2L�`+1k`(X ,Y ).

The weight 1
2L�`+1 associated with scale ` is inversely proportional to the sub-region width

at that scale. This weight is used to penalize the matching since it is easier to find the matches
in the larger regions. We remark that all the matches found at scale ` are also included in a
finer scale `�z with z > 0.

4.3.2 The proposed kernel: Hierarchical Spatial Matching Kernel

To improve efficiency in achieving the similarity measurement between sub-regions, we use a
coarse to fine model on sub-regions by mapping them into a sequence of different resolutions
2�r⇥2�r with r = 0,1,2, . . . ,R as in (Grauman and Darrell, 2005).

X `
i and Y `

i are the sets of feature descriptors in the ith sub-regions at scale ` of image
vector sets X , Y respectively. At each resolution r, we apply the normalized intersection
kernel kr using the square root diagonal normalization method to measure the similarity as
follows:

kr(X `
i ,Y `

i ) =
I(X `

` (r),Y
`
i (r))q

I(X `
i (r),X `

i (r))I(Y `
i (r),Y `

i (r))
, (4.1)

where X `
i (r), Y `

i (r) are the sets X `
i , Y `

i at the resolution r respectively. Note that the histogram
intersection between X and itself is equivalent with its cardinality. Thus, letting NX`

i (r) and
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NY `
i (r) be the cardinality of sets X `

i (r) and Y `
i (r), the Equation (4.1) is rewritten as:

kr(X `
i ,Y `

i ) =
I(X `

i (r),Y `
i (r))q

NX`
i (r)NY `

i (r)

. (4.2)

The square root diagonal normalization of the intersection kernel not only satisfies Mercer’s
conditions (Schölkopf and Smola, 2001), but also penalizes the difference in cardinality
between sets as in Equation (4.2).

To obtain the synthetic similarity measurement of the coarse-to-fine model, we define the
linear combination over a sequence of local kernels, each term of which is calculated using
Equation (4.2) at each resolution. Accordingly, the kernel function k between two sets X `

i
and Y `

i in the coarse-to-fine model is formulated as:

k(X `
i ,Y `

i ) =
R

Â
r=0

qrk
r(X `

i ,Y `
i )

where
R

Â
r=0

qr = 1,qr � 0,8r = 0,1,2, ...,R.

Moreover, when the linear combination of local kernels is integrated with SVM, it can
be reformulated as a MKL problem where basic local kernels are defined as Equation (4.2)
across the resolutions of the sub-region as:

min
w

a

,w0,x ,q

1
2
(

N

Â
a=1

q

a

��w
a

��
2)

2 +C
m

Â
i=1

x i

s.t. yi(
N

Â
a=1

q

a

hw
a

,F
a

(xi)i+w0)� 1�x i, 8i = 1,2, . . . ,m,

ÂN
a=1 q

a

= 1,q � 0,x � 0,

where xi is an image sample, yi is the category label for xi, m is the number of training
samples, (w

a

, w0, x ) are parameters of SVM, C is a soft margin parameter defined by users
to penalize training errors in SVM, q is a weight vector for basic local kernels, N is the
number of the basic local kernels of the sub-region over the sequence of resolutions, q � 0
means that all elements of vector q is nonnegative, F(x) is the function that maps the vector
x into the reproducing Hilbert space and h·, ·i denotes the inner product. MKL solves the
parameters of SVM and the weight vector for basic local kernels simultaneously.

These basic local kernels are analogously defined across resolutions of the sub-region.
Therefore, the redundant information among them is high. The experiments in Gehler and
Nowozin (2009) and especially Kloft et al. (2008) have shown that the uniform combination
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of basic kernels – a special case of MKL where the weights are uniform – which is an
approximation of MKL into traditional nonlinear kernel SVM, is the most efficient for
this case in terms of both performance and complexity. Thus, Equation (4.3) with linear
combination coefficients obtained from the uniform combination of basic kernels method
becomes:

k(X `
i ,Y `

i ) =
1

R+1

R

Â
r=0

kr(X `
i ,Y `

i ). (4.3)

Figure 4.1 illustrates an application of HSMK with L = 2 and R = 2. HSMK also maps
the sub-regions into a sequence of different resolutions for PMK to obtain better measurement
of similarity between them. Additionally, the weight vector is achieved from the uniform
combination of basic kernels – a special case of MKL where the weights are uniform. Thus,
it is more efficient than prior one in PMK. Furthermore, applying the square root diagonal
normalization allows it to robustly deal with differences in cardinality that are not considered
in PMK. HSMK is formulated based on SPM in the coarse-to-fine model, which is efficient
with sets of unordered feature descriptors, even in the presence of differences in cardinality.
Mathematically, the formulation of HSMK is as follows:

k(X ,Y ) =
1
2L k0(X ,Y )+

L

Ầ
=1

1
2L�`+1k`(X ,Y )

with k`(X ,Y ) =
22`

Â
i=1

k(X `
i ,Y `

i )

=
1

R+1

22`

Â
i=1

R

Â
r=0

kr(X `
i ,Y `

i ).

Briefly, HSMK uses the kd-tree algorithm to map each feature descriptor into a discrete
visual word, and then the normalized intersection kernel by the square root diagonal method is
applied to the histogram of V bins to measure the similarity. We have N feature descriptors
in the n-dimension space, and the kd-tree algorithm costs O(logV ) steps to map feature
descriptors. Therefore, the complexity of HSMK is O(nM logV ) with M = max(NX ,NY ).
We note that the complexity of the optimal matching approach (Kondor and Jebara, 2003) is
O(nM3).

4.4 Experimental results

Most recent approaches use local invariant features as an effective means of representing
images, because they can well describe and match instances of objects or scenes under a
wide variety of viewpoints, illuminations, or even background clutter. Among them, SIFT
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(a)

(c)

(b)

Fig. 4.2 Example images of various datasets used in experiments: (a) Oxford flower dataset.
(b) Caltech 101 dataset. (c) Scene Categorization dataset.

(Lowe, 2004) is one of the most robust and efficient features. To achieve better discriminative
ability, we use the dense SIFT by operating a SIFT descriptor of 16⇥16 patches computed
over each pixel of an image instead of key points (Lowe, 2004) or a grid of points (Lazebnik
et al., 2006). In addition, to improve robustness, we convert images into gray scale ones
before computing the dense SIFT. Dense features have the capability of capturing uniform
regions such as sky, water or grass where key points usually do not exist. Moreover, the
combination of dense features and the coarse-to-fine model allows images to be represented
more exactly since feature descriptors achieves more neighbor information across many
levels in resolution. We performed unsupervised k-means clustering on a random subset of
SIFT descriptors to build visual words. Typically, we used two different dictionary sizes V in
our experiment: V = 400 and V = 800.

We conducted experiments for two types of image categorization: object categorization
and scene categorization. For object categorization, we used the Oxford Flower dataset
(Nilsback and Zisserman, 2006). To show the efficiency and scalability of our proposed
kernel, we also used the large scale object datasets such as CALTECH-101 (Fei-Fei et al.,
2004) and CALTECH-256 (Griffin et al., 2007). For scene categorization, we evaluated the
proposed kernel on the MIT scene (Oliva and Torralba, 2001) and UIUC scene (Lazebnik
et al., 2006) datasets. Example images of datasets used in experiments are shown in Fig. 4.2.



4.4 Experimental results 71

Table 4.1 Classification rate (%) with a single feature comparison on Oxford Flower dataset
(with NN that denotes the nearest neighbor algorithm)

Method Accuracy (%)
HSV (NN) (Nilsback and Zisserman, 2008) 43.0
SIFT-Internal (NN) (Nilsback and Zisserman, 2008) 55.1
SIFT-Boundary (NN) (Nilsback and Zisserman, 2008) 32.0
HOG (NN) (Nilsback and Zisserman, 2008) 49.6
HSV (SVM) (Gehler and Nowozin, 2009) 61.3
SIFT-Internal (SVM) (Gehler and Nowozin, 2009) 70.6
SIFT-Boundary (SVM) (Gehler and Nowozin, 2009) 59.4
HOG (SVM) (Gehler and Nowozin, 2009) 58.5
SIFT (MSL) (Wang and Wang, 2010) 65.3
Dense SIFT (HSMK) 72.9

Table 4.2 Classification rate (%) comparison between SPMK and HSMK on Oxford Flower
dataset

Kernel V = 400 V = 800
SPMK 68.09 69.12
HSMK 71.76 72.94

4.4.1 Object categorization

To access the efficiency of the proposed HSMK for object categorization, we compared the
classification accuracy with that of conventional SPM in Oxford Flowers dataset and Caltech
datasets.

Oxford Flowers dataset
This dataset contains 17 classes of common flowers in the United Kingdom, collected by

Nilsback and Zisserman (2006). Each class has 80 images with large scale, pose and light
variations. Moreover, intra-class flowers such as irises, fritillaries and pansies are also widely
diverse in their colors and shapes. There are some cases of close similarity between flowers
of different classes such as that between dandelion and Colts’Foot. In our experiments, we
followed the set-up of Gehler and Nowozin (2009), randomly choosing 40 samples from
each class for training and using the rest for testing. Note that we did not use a validation set
as in (Nilsback and Zisserman, 2006, 2008) for choosing the optimal parameters.

Table 4.1 shows that our proposed kernel achieved a state-of-the-art results using single
image feature. We use various classifier for comparison results such as Nearest Neighbour
(NN), SVM, and Multi-scale learning (MSL) (Wang and Wang, 2010) method. The HSMK
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Table 4.3 Classification rate (%) comparison on CALTECH-101 dataset

# training samples (each class) 5 10 15 20 25 30
Grauman and Darrell (2005) 34.8 44 50.0 53.5 55.5 58.2
Wang and Wang (2010) - - 61.4 - - -
Lazebnik et al. (2006) - - 56.4 - - 64.6
Yang et al. (2009) - - 67.0 - - 73.2
Boiman et al. (2008) 56.9 - 72.8 - - 79.1
Gehler and Nowozin (2009) (MKL) 42.1 55.1 62.3 67.1 70.5 73.7
Gehler and Nowozin (2009) (LP-b ) 54.2 65.0 70.4 73.6 75.7 77.8
Gehler and Nowozin (2009) (LP-B) 46.5 59.7 66.7 71.1 73.8 77.2
Our method (HSMK) 50.5 62.2 69.0 72.3 74.4 77.3

Table 4.4 Classification rate (%) comparison between SPMK and HSMK on CALTECH-101
dataset

# training samples (each class) 5 10 15 20 25 30
SPMK (V = 400) 48.18 58.86 65.34 69.35 71.95 73.46
HSMK(V=400) 50.68 61.97 67.91 71.35 73.92 75.59

SPMK (V = 800) 48.11 59.70 66.84 69.98 72.62 75.13
HSMK(V=800) 50.48 62.17 68.95 72.32 74.36 77.33

using dense SIFT gives 72.9% that outperformed not only SIFT-Internal (Nilsback and
Zisserman, 2008) of 70.6%, the best feature for this dataset computed on a segmented image,
but also the same feature on SPMK with the optimal weights by MSL of 65.3%. Table 4.2
shows that the performance of our HSMK outperformed that of conventional SPMK when
using a single SIFT feature.

Caltech datasets
To show the efficiency and robustness of HSMK, we also evaluated its performance on

large scale object datasets, i.e., the CALTECH-101 and CALTECH-256 datasets. These
datasets feature high intra-class variability, poses, and viewpoints. On CALTECH-101,

Table 4.5 Classification rate (%) comparison on CALTECH-256 dataset

# training samples (each class) 15 30
Griffin et al. (2007) (SPMK) 28.4 34.2
Yang et al. (2009) (ScSPM) 27.7 34.0
Gehler and Nowozin (2009) (MKL) 30.6 35.6
SPMK 25.3 31.3
Our method (HSMK) 27.2 34.1
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we carried out experiments with 5, 10, 15, 20, 25, and 30 training samples for each class,
including the background class, and used up to 50 samples per class for testing. Table
4.3 compares the classification rate results of our approach with other ones. As shown,
our approach obtained the comparable result with that of state-of-the-art approaches even
using only a single feature while others used many types of features and complex learning
algorithms such as MKL and linear programming boosting (LP-B) (Gehler and Nowozin,
2009). Table 4.4 shows that the result of HSMK outperformed that of SPMK in this case as
well. It should be noted that when the experiment was conducted without the background
class, our approach achieved a classification rate of 78.4% for 30 training samples. This
shows that our approach is efficient in spite of its simplicity.

On the UIUC Scene dataset, we followed the experiment setup described in (Lazebnik
et al., 2006). We randomly chose 100 training samples per class and the rest were used for
testing. As shown in Table 4.7, the result of our proposed kernel also outperformed that of
SPMK (Lazebnik et al., 2006) as well as SPM based on sparse coding (Yang et al., 2009) for
this dataset.

On CALTECH-256, we performed experiments with HSMK using 15 and 30 training
samples per class, including the clutter class, and 25 samples of each class for testing. We
also re-implemented SPMK (Griffin et al., 2007) but used our dense SIFT to enable a fair
comparation of SPMK and HSMK. As shown in Table 4.5, the HSMK classification rate was
about 3 percent higher than that of SPMK.

4.4.2 Scene categorization

We also performed experiments using HSMK on the MIT Scene (8 classes) and UIUC Scene
(15 classes) dataset. In these datasets, we set V = 400 as the dictionary size. On the MIT
Scene dataset, we randomly chose 100 samples per class for training and 100 other samples
per class for testing. As shown in Table 4.6, the classification rate for HSMK was 2.5 percent
higher than that of SPMK. Our approach also outperformed other local feature approaches
(Johnson, 2008) as well as local feature combinations (Johnson, 2008) by more than 10
percent, and was better than the global feature GIST (Oliva and Torralba, 2001), an efficient
feature in scene categorization.

4.5 HSMK with Sparse Coding

As in section 4.4, hierarchical spatial matching kernel is proved as an efficient and effective
kernel. However, it is still a nonlinear kernel due to the fact that an intersection kernel is used
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Table 4.6 Classification rate (%) comparison on MIT Scene (8 classes) dataset

Method Accuracy (%)
GIST (Oliva and Torralba, 2001) 83.7
Local features (Johnson, 2008) 77.2
Dense SIFT (SPMK) 85.8
Dense SIFT (HSMK) 88.3

Table 4.7 Classification rate (%) comparison on UIUC Scene (15 classes) dataset

Method Accuracy (%)
Lazebnik et al. (2006) (SPMK) 81.4
Yang et al. (2009) (ScSPM) 80.3
SPMK 79.9
Our method (HSMK) 82.2

as a basic kernel to build it. So, it is difficult to apply HSMK to deal with large-scale datasets
effectively in term of time consuming. To help HSMK overcome this issue, we exploit a
sparse coding approach and max spooling strategy to make data linear instead of using a
vector quantization method by k-means. Therefore, we can replace the intersection kernel
by a linear kernel as a basic kernel to construct HSMK based on the linear property of this
kind of data. It is worthwhile noting that the performance will become much worse when we
apply the linear kernel as a basic kernel in HSMK in case of utilizing the vector quantization
method.

We conducted the same configuration as in section 4.4 for the experiments of HSMK
with sparse coding, but we set dictionary sizes V = 800. For sparse coding, we apply `1

regularization instead of other regularization constraint like `0 or `2 norm, because `1 norm
regularization is known as the best choice for image categorization problem (Raina et al.,
2007; Yang et al., 2009). After that, we follow an efficient algorithm proposed by Lee et al.
(2006) to achieve the solution for sparse coding problem.

Table 4.8 and table 4.9 show the comparison of applying between vector quantization
and sparse coding with HSMK on Oxford Flower and CALTECH-101 dataset respectively.
They are proved that sparse coding is an efficient method to make HSMK linear, it can keep
the performance of HSMK as in case of utilizing an intersection kernel as basic kernels. The
performance of HSMK with linear kernel just decreases about 1.62% and 1.07% on Oxford
Flower and CALTECH-101 dataset respectively in comparison with HSMK with intersection
kernel while it is about 10% in case of using vector quantization.

We can explore from the results in table 4.8 and table 4.9 that the performance of HSMK
with intersection kernel is better than one of HSMK with linear kernel for both vector
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Table 4.8 Classification rate (%) comparison between HSMK with vector quantization and
HSMK with sparse coding on Oxford Flower dataset

HSMK Vector
Quantization

Sparse
Coding

Linear kernel 63.53 73.38
Intersection kernel 72.94 75.00

Table 4.9 Classification rate (%) comparison between HSMK with vector quantization and
HSMK with sparse coding on CALTECH-101 dataset with 30 training samples

HSMK Vector
Quantization

Sparse
Coding

Linear kernel 65.28 78.93
Intersection kernel 77.33 80.60

quantization and sparse coding in Oxford Flower and CALTECH-101 dataset. Additionally,
it is different with the case of spatial pyramid kernel which in (Yang et al., 2009) whose
authors claimed that SPK with linear kernel was also better than SPK with nonlinear kernel
when we used sparse coding.

Note that the results of sparse coding for HSMK with intersection kernel in table 4.8 and
table 4.9 are state of the art results for Oxford Flower and CALTECH-101 dataset respectively.
Therefore, HSMK with sparse coding is an effective approach for image categorization and
especially the performance of HSMK with linear kernel can achieve comparative results with
HSMK with nonlinear kernel in case of utilizing sparse coding.

4.6 Summary

In this chapter, we proposed an efficient and robust kernel that we call the hierarchical spatial
matching kernel (HSMK). It uses a coarse-to-fine model for sub-regions to improve spatial
pyramid matching kernel (SPMK) and thus obtains more neighbor information through a
sequence of different resolutions. In addition, the kernel efficiently and robustly handles sets
of unordered features as SPMK and pyramid matching kernel as well as sets having different
cardinalities.

Combining the proposed kernel with a dense feature approach was found to be sufficiently
effective and efficient. It enabled us to obtain at least comparable results with those by existing
methods for many kinds of datasets. Moreover, our approach is simple since it is based
on only a single feature with nonlinear support vector machines, in contrast to other more



76 Hierarchical Spatial Matching Kernel

complicated recent approaches based on multiple kernel learning or feature combinations. In
addition, it is more effective when we combine HSMK with sparse coding.

In most well-known datasets of object and scene categorization, the proposed kernel was
also found to outperform SPMK which is an important component such as a basic kernel in
multiple kernel learning. This means that we can replace SPMK with HSMK to improve the
performance of frameworks based on basic kernels.



Chapter 5

Conclusion

5.1 Summary of the Contributions

In this thesis, we contribute to metric learning for histograms in both supervised and unsuper-
vised settings. We leverage the Aitchison geometry in the simplex to do so. Additionally,
we propose the hierarchical spatial matching kernel for images using the bag of features
approach for representation. We use a coarse to fine model, realized by multi-resolutions to
achieve better similarity measure.

In chapter 2, we propose the generalized Aitchison embeddings which map histograms
from the simplex into a suitable Euclidean space. These maps not only preserve the geometric
properties of the simplex, but they also make the following analysis easier since we can
rely on enormous Euclidean tools such as Euclidean distance, quadratic forms and ellipses.
Instead of using a few predefined maps such as those proposed by Aitchison (1982), we
provide algorithms to learn such maps from labeled data by adapting the large margin
nearest neighbor framework, which is one of the most popular Mahalanobis metric learning
frameworks. We illustrate that our proposal outperforms alternative approaches on a variety
of contexts from image, handwritten digit, flower to text classification. Furthermore, we give
an empirical analysis about the behaviour of our proposed algorithms such as convergence
speed and parameter sensitivity.

In chapter 3, we propose to learn a Riemannian metric on the simplex from unlabeled
histogram data. We follow the maximizing inverse volume framework proposed by Lebanon
(2006). This framework provides us a way to estimate such the metric within a parametric
family. The metrics we consider on the simplex are pull-back metrics from the Euclidean
metric on a positive sphere through a composition transformation of the Hellinger mapping
and Aitchison transformation (Aitchison, 1982) within the simplex. This approach can be
also interpreted to learn the Aitchison transformation within the simplex for the Fisher’s
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information metric. We propose a new algorithmic approach to maximize inverse volumes
of a given dataset of points under the metric in a general case by using sampling and
contrastive divergences. Empirical evidence shows that the metric obtained under our
proposal outperforms alternative approaches for clustering and classification tasks on many
benchmark datasets.

In chapter 4, we propose a kernel for images represented by the bag of features in
computer vision. We build upon the spatial pyramid matching kernel (Lazebnik et al.,
2006) which plays an important role to embed spatial information into the bag of features
representation for images. Lazebnik et al. use a sequence of grids to partition an image into
fixed sub-regions. However, the authors still applies bag of features for each subregion which
is limited in its capacity to measure similarity between sets of unordered features. In the
chapter, we leverage a coarse to fine model for each subregion to improve optimal matching
approximation. Empirical evidence shows that our proposed hierarchical spatial matching
kernel outperforms spatial pyramid matching kernel on several benchmark datasets in image
categorization.

5.2 Future work

Similarity learning is one of the most popular problems in machine learning. However, when
input data are a bag of features (histogram), the traditional metric learning approaches based
on the Mahalanobis distance or a linear mapping do not work well in practice. Additionally,
the bag of features are widely used in many research fields such as computer vision, natural
language processing and speech processing. Therefore, metric learning for histograms is
essential.

Some traditional distances for histograms have been recently used to replace the Maha-
lanobis distance in metric learning for histogram data such as the c

2 distance, the Fisher’s
information metric and the transportation distance (also known as the earth mover’s distance).
Therefore, one of further research directions is to explore other distances or divergences
for histograms such as the Hellinger distance, the Kullback-Leibler divergence, the Jensen-
Shannon divergence (a symmetrized version of the Kullback-Leibler divergence) or general
divergences such as the f -divergence or the Bregman divergence. Additionally, traditional
frameworks for the Mahalanobis distance may be not appropriate for those distances and
divergences for histograms. For example, metric learning based on Mahalanobis distance
can be formulated as a convex problem. However, when we replace Mahalanobis distance by
those traditional distances for histograms, the optimization problem usually turns into non-
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convex. Seeking an appropriate framework for those histogram distances and divergences is
also necessary.

It is easy to collect unlabelled data, but it takes much time to build a labeled dataset.
Additionally, most of metric learning approaches use the supervised setting. There are only
a few unsupervised metric learning approaches for unlabeled data. So, metric learning for
histograms in the unsupervised setting are indeed needed more explorations.

We can also explore metric learning for other structured data types such as trees, graphs,
strings, time series, molecules or materials. Since each data type has its own geometry and
traditional metric learning may not work well in practice, geometry-aware metric learning
for those structured data is also a promising direction for future work.
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Appendix A

Proof for the Propostions in Chaper 3

Proof for the Proposition 1

TxPn

Pn S+
n

F

TF (x)S+
n

F� : TxPn ! TF (x)S+
n

v 7! �F (x)|v

Fig. A.1 The push forward map a tangent vector v on the tangent space of the simplex TxPn
into a tangent vector F⇤v on the tangent space of the positive sphere TF(x)S+

n .

The jth component of the tangent vector of the positive sphere, mapped by a push-forward
map F⇤ on a tangent vector v 2 TxPn as illustrated in Figure A.1

[F⇤v] j =
d
dt

s �
x j + tv j

�
a j

l j

Ân+1
i=1 (xi + tvi)

a i
l i

�����
t=0

,

For simplify, let denote:
fi(t) = (xi + tvi)

a i
l i,
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and
hi(t) =

d fi(t)
dt

= (xi + tvi)
a i�1

l ia ivi.

So, we have:

[F⇤v] j =
h j(t)Ân+1

i=1 fi(t)� f j(t)Ân+1
i=1 hi(t)

2
r

f j(t)
Ân+1

i=1 fi(t)

�
Ân+1

i=1 fi(t)
�2

��������
t=0

Since at t = 0,
fi(0) = xa i

i l i

and
hi(0) = xa i�1

i l ia ivi,

we have

[F⇤v] j =
1
2

x
a j
2 �1

j a jv jl
1
2
j

 
n+1

Ầ
=1

xa`
` l `

!� 1
2

� 1
2
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a j
2

j l

1
2
j

Ân+1
`=1 xa`�1

` a`v`l `
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Ân+1

`=1 xa`
` l `

� 3
2

.

Let apply v = ∂i, 1 i n, the basis of the tangent space of the simplex TxPn

[F⇤∂i] j =
1
2

x
a j
2 �1

j a jl
1
2
j

 
n+1

Ầ
=1

xa`
` l `

!� 1
2�

d j,i�d j,n+1
�

�1
2

x
a j
2

j l

1
2
j

xa i�1
i a il i�xan+1�1

n+1 an+1l n+1
�
Ân+1

`=1 xa`
` l `

� 3
2

,

where d j,i = 1 if j = i and d j,i = 0, otherwise.

Hence, we have
T = U(I�bh

T )D.

Moreover, the metric on the positive sphere S+
n is Euclidean. So, we have

J(∂i,∂ j) =
⌦
F⇤∂i,F⇤∂ j

↵
.

Consequently, we have the Gram matrix:

G = T T T = U(I�bh

T )D2(I�bh

T )TUT .

So, we have the proof for the Proposition 1.
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Proof for the Proposition 2

Let consider matrix bh

T 2 R(n+1)⇥(n+1), and vector v such that

h

T v = 0.

So, v is a eigenvector of bh

T with eigenvalue 0. There are n independent vectors {vi}1in
such that

h

T vi = 0.

Moreover,

tr
�
bh

T�=
n+1

Â
i=1

b ih i = 1,

or sum of the eigenvalues of bh

T is 1.

So, the last of (n+1) eigenvalues is 1. On the other hand,

�
bh

T�
b = b

�
h

T
b

�
= b ,

or b is a eigenvector of bh

T with eigenvalue 1.

In summary, we have {(vi,0)1in,(b ,1)} are eigenvectors and corresponding eigenval-
ues of bh

T . Let V be a matrix in R(n+1)⇥(n+1) whose columns are {v1,v2, · · · ,vn,b}.

So, we may express V as follow:

V =

2

66664

�x2a1
a2x1

· · · �xn+1a1
an+1x1

xa1�1
1 a1l 1

1 · · · 0 xa2�1
1 a2l 2

... . . . ...
...

0 · · · 1 xan+1�1
n+1 an+1l n+1

3

77775
.

Let L is a diagonal matrix in R(n+1)⇥(n+1) where Lii = 0, for all 1 i n, and L(n+1)(n+1) =

1. We have
bh

T = V LV�1.

Consequently, we have
I�bh

T = V (I�L)V�1.

Since
I�L = diag(1,1, · · · ,1,0)
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and
I�L = (I�L)2,

we may express
I�bh

T = eV gV�1,

where eV 2 R(n+1)⇥n is the matrix V whose last column is removed, and gV�1 2 Rn⇥(n+1) is
the matrix V�1 whose last row is removed.

Thus, we can express the Gram matrix G as follow:

G = UeV gV�1D2(eV gV�1)TUT

= (UeV )(gV�1D2gV�1
T
)(UeV )T

We also note that UeV and gV�1D2gV�1
T

are matrices in Rn⇥n.

So, we have
detG = det2(UeV )det(gV�1D2gV�1

T
).

Compute det(UeV ): Since, we have

UeV =

0
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.

Therefore,

det(UeV ) = (�1)n a1

x1

n+1

Â
i=1

xi

a i
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Compute det(gV�1D2gV�1
T
): Let consider a (n+1)⇥ (n+1) matrix

W =

0

BBBB@

� r2
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· · · � rn+1
r1
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We have its inverse:

W�1 =
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,

where vector r = (r1,r2, · · · ,rn+1) and vector c = (c1,c2, · · · ,cn+1) are in Rn+1.

Now, we apply for the matrix V where ri =
xi
a i

and ci = xa i�1
i a il i, for all 1 i (n+1),

and remove the last row to form gV�1.

For simplicity, we denote a diagonal matrix P 2 Rn⇥n where Pii = xa i+1�1
i+1 a i+1l i+1, for

all 1 i n and matrix Q 2 Rn⇥(n+1) as follow:
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So, we have
gV�1 =

1
n+1
Â
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xa i

i l i

PQ.
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Then, we can compute
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Consequently, we have:
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T
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where bQ is a diagonal matrix in Rn⇥n, bQii =
n+1
Â
j=1

x
a j
j l j
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and 1n⇥n is a matrix of 1 in Rn⇥n.

Moreover,
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following Lemma 2 of Lebanon (2005).

Hence, we have:
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Consequently, we have

det
✓
gV�1D2gV�1

T
◆

=
1

4n
✓

n+1
Â

i=1
xa i

i l i

◆2n det2 (P)det( bQ�1n⇥n).

Since

det(P) =
n+1

’
j=2

xa j�1
j a jl j,
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we have:

det
✓
gV�1D2gV�1

T
◆

=

⇣
x1
a1

⌘2
✓

n+1
’
i=1

xa i�2
i a

2
i l i

◆

4n
✓

n+1
Â

i=1
xa i

i l i

◆n+1 .

Hence, we have:

detG =

✓
n+1
Â

i=1

xi
a i

◆2✓n+1
’
i=1

xa i�2
i a

2
i l i

◆

4n
✓

n+1
Â

i=1
xa i

i l i

◆n+1 .

So, we have the proof for the Proposition 2.

Proof for the Proposition 3

The partial derivative of the objective function F with respect to l is:

∂F

∂l

=
1
m

m

Â
i=1

∂ logdvolg�1(xi)

∂l

�E
✓

∂ logdvolg�1(x)

∂l

◆

p(x)

Since we have

∂ log
R
Pn

dvolJ�1(x)dx
∂l

=
1R

Pn
dvolJ�1(x)dx

∂

R
Pn

dvolJ�1(x)dx
∂l

=
1R

Pn
dvolJ�1(x)dx

Z

Pn

∂dvolJ�1(x)

∂l

dx

=
1R

Pn
dvolJ�1(x)dx

Z

Pn
dvolJ�1(x)

∂ logdvolg�1(x)

∂l

dx

=
Z

Pn

dvolJ�1(x)R
Pn

dvolJ�1(z)dz
∂ logdvolg�1(x)

∂l

dx

= E
✓

∂ logdvolJ�1(x)

∂l

◆

p(x)
.

and
∂ logdvolJ�1(x)

∂l

=
n+1

2
n+1
Â

i=1
xa i

i l i

h
xa j

j

i

1 jn+1
.

So, we have the proof for ∂F
∂l

.
Similarly, we also obtain the proof for ∂F

∂a

.
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