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Gpr176 is a Gz-linked orphan G-protein-coupled
receptor that sets the pace of circadian behaviour
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G-protein-coupled receptors (GPCRs) participate in a broad range of physiological functions.

A priority for fundamental and clinical research, therefore, is to decipher the function of over

140 remaining orphan GPCRs. The suprachiasmatic nucleus (SCN), the brain’s circadian

pacemaker, governs daily rhythms in behaviour and physiology. Here we launch the SCN

orphan GPCR project to (i) search for murine orphan GPCRs with enriched expression in the

SCN, (ii) generate mutant animals deficient in candidate GPCRs, and (iii) analyse the impact

on circadian rhythms. We thereby identify Gpr176 as an SCN-enriched orphan GPCR that sets

the pace of circadian behaviour. Gpr176 is expressed in a circadian manner by SCN neurons,

and molecular characterization reveals that it represses cAMP signalling in an agonist-

independent manner. Gpr176 acts independently of, and in parallel to, the Vipr2 GPCR, not

through the canonical Gi, but via the unique G-protein subclass Gz.
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I
n mammals, the principal circadian pacemaker governing
daily rhythms in behaviour and physiology resides in the
suprachiasmatic nucleus (SCN) of the hypothalamus1,2.

Most tissues outside the SCN also contain local clocks (the
so-called peripheral clocks), and their rhythms are synchronized,
harmoniously, by an array of direct or indirect signals from the
SCN2,3. Thus, the SCN lies at the top of a hierarchical,
multioscillator system distributed across the body4,5.

Malfunction of the circadian clock has been linked to the
pathogenesis of a wide variety of diseases6, including sleep-wake
disorder, tumorigenesis, obesity, diabetes and hypertension. Drug
efficacy and toxicity are also under circadian regulation7. These
lines of evidence support the potential value of developing drugs
that target the circadian clock, and pioneer studies have already
identified synthetic compounds that selectively target the key
intracellular clock components, cryptochromes (Cry1 and Cry2)8

and REV-ERBa and b9. Because their targets are distributed
across the body, these compounds can modulate both the central
and peripheral clocks equally8,9. In contrast, the development of
drugs that specifically target the SCN remains an unfulfilled
opportunity for circadian pharmacology4,7.

G-protein-coupled receptors (GPCRs) constitute the largest
family of cell surface receptors, participating in a broad range of
physiological functions. It has been appreciated that GPCRs are
the most common target of pharmaceutical drugs: more than 30%
of clinically marketed drugs target GPCR function10. Intriguingly,
there are still 4140 orphan GPCRs whose cognate ligands are not
known, and deciphering their physiological function remains
a priority for both clinical and fundamental research11–15.
We speculated that some orphan GPCRs, whose physiological
functions have remained unknown, might exist in the SCN and
function as potential modulators of the circadian system.

Structurally, GPCRs possess two different conformations,
active and inactive. Agonists lock the receptor structure in its
active form, antagonists block agonist action, and inverse agonists
stabilize the receptor in its inactive form. In the absence
of ligands, GPCRs spontaneously interchange between the
two conformations; active and inactive, generating agonist-
independent baseline activity16–18. Although the magnitude of
this spontaneous activity differs strikingly between GPCRs, some
of the orphan GPCRs exhibit significant levels of intrinsic
activity19,20.

Depending on the type of G-protein to which the GPCR is
coupled, a variety of downstream signalling pathways can be
activated. Circadian fluctuation of cAMP signal is crucial for the
maintenance of circadian clock function in the SCN21. In this
context, the Vipr2 GPCR for vasoactive intestinal peptide (Vip) is

a positive regulator of cAMP22,23 and demonstrated to be
necessary for SCN time-keeping24,25. Yet, much less is known
about the molecular identity of GPCR that negatively regulates
cAMP production in the SCN.

cAMP synthesis is positively or negatively regulated by Gs or
Gi family members, respectively. While the Gs family contains
two subtypes (Gs1 and Gs2), the inhibitory members include
three Gi (Gi1, Gi2, and Gi3) and one Gz. All Gi members,
except Gz, are substrates of pertussis toxin (PTX). PTX mediates
ADP ribosylation at the carboxyl terminal cysteine residue
(� 4 position), inhibiting Gi activity. Because Gz lacks this
cysteine residue, it can inhibit adenylyl cyclase activity in a
PTX-insensitive manner26. Differing from Gi, Gz is expressed
mainly in the brain27,28, but its roles in the brain are not
understood.

In the present study we surveyed all known orphan GPCRs
expressed in the SCN, and identified three SCN-enriched genes:
Gpr176, Gpr19 and Calcr. We generated knockout mice for each
of them and demonstrated that Gpr176 is a unique orphan GPCR
that can set the pace of circadian behaviour. Gpr176 is expressed
mainly in the brain, with prominent expression in the SCN, and
its protein abundance fluctuates in a circadian fashion. Molecular
characterization further revealed that this orphan receptor has an
agonist-independent basal activity to repress cAMP production.
Notably, the unique G-protein subclass Gz, but not the canonical
Gi, is required for the activity of Gpr176. We show that
Gpr176 (negative regulator of cAMP) acts independently of, and
additively with, the Vipr2.

Results
The SCN-orphan GPCR project identifies Gpr176. We first
constructed a list of GPCR genes that are potentially enriched in
the SCN (Fig. 1a). Using SCN microarray data29 we surveyed all
known mouse non-odorant GPCR genes and rank-ordered them
based on their relative levels. The list of the top 100 genes
(Fig. 1a) identified 23 orphan GPCRs, whose in vivo functions
remain unknown. The receptors with known key functions in the
SCN are also included in this list, for example, Adcyap1r1
(refs 30,31), Prokr2 (refs 32,33), Avpr1a (refs 34,35) and Vipr2
(refs 24,25), suggesting the relevance of the screen.

The genes highlighted in blue in Fig. 1a were further analysed
by in situ hybridization. These include all listed orphan GPCRs
(Gpr37l1, Lphn1, Gpr37, Gprc5b, Gpr85, Darc, Gpr176, Lphn3,
Lphn2, Gpr48, Gpr56, Gpr19, Gpr123, Gpr83, Ackr3, Gpr125,
Gpr22, Gpr153, Gpr45, Gpr68, Gpr6, Cckar and Gpr75) and three
selected GPCRs whose roles in the SCN are not known (Ntsr2,
Oprl1, and Calcr). To specify their histological distribution, we

Figure 1 | Gpr176 is an SCN-enriched orphan GPCR that sets the pace of circadian timing. (a) The SCN-GPCR project leading to the identification of

Gpr176. The bar graph shows the rank order of expression of the top 100 GPCRs (classes A, B, and C) detected in the SCN microarray analysis (GEO

accession number: GSE28574). Red bars are the receptors known to be expressed in the SCN. The horizontal line indicates the threshold of statistical

significance of expression. The genes highlighted in blue, which include all listed orphan GPCRs, were characterized further by in situ hybridization using

radiolabeled gene-specific probes. Arrows indicate robust positive SCN signals for Gpr176, Calcr and Gpr19. (b) Snake-plot representation of the mouse

Gpr176. The residues highlighted in yellow indicate the DRYxxV motif located at the cytoplasmic end of the transmembrane helix III. (c) Northern blotting

for Gpr176 with a mouse multiple-tissue blot (Clontech). (d) Representative mouse coronal brain section immunolabeled for Gpr176. Scale bar, 1 mm.

(e) Schematic representations of the mouse Gpr176 gene, targeting construct, and the resulting mutant allele. A genomic region downstream of the start

codon (ATG) of Gpr176 was deleted. Grey box: probe used for Southern blot. (f) Southern blot of KpnI-digested DNA from Gpr176þ /þ , Gpr176þ /�

and Gpr176� /� mice. Genomic fragments from the wild-type (7.8 kb) and mutant (12.3 kb) alleles are indicated. (g) Immunohistochemical confirmation of

Gpr176 deficiency in the SCN of Gpr176� /� mice. Scale bar, 100mm. oc, optic chiasm; v, third ventricle. (h) Representative locomotor activity records of

C57BL/6J-backcrossed Gpr176þ /þ and Gpr176� /� mice. Mice were housed in LD and then transferred to DD. Periods of darkness are indicated by grey

backgrounds. Data are shown in double-plotted format. Each horizontal line represents 48 h; the second 24-h period is plotted to the right and below the

first. (i) Circadian periods of free-running activities in DD. Periods of individual mice are plotted. Bars indicate mean±s.e.m. (n¼ 12, for each genotype).

***Po0.001, Student’s t-test. (j) Representative Per1-luc bioluminescence records from organotypic SCN slices of Gpr176þ /þ (light and dark blue traces)

and Gpr176� /� (red and orange traces) mice. (k) Periods of Per1-luc rhythm in Gpr176þ /þ and Gpr176� /� SCN slices (means±s.e.m., n¼4 for each).

**Po0.01, Student’s t-test.
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labelled mouse brain sections with gene-specific probes, and
relatively strong, SCN-specific signals were observed for Gpr176,
Gpr19 and Calcr (Fig. 1a). On the other hand, the remaining
genes were either only faintly expressed in the SCN or located
more broadly in the regions outside of the SCN. Thus, based on

this intensity and regionality, we selected Gpr176, Gpr19 and
Calcr as candidates of interest.

We generated knockout mice for Gpr176, Gpr19 and Calcr
(Fig. 1e,f, see also Methods). Homozygous deletion of each of
them did not cause any gross abnormalities, lethality or infertility,
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allowing for circadian locomotor activity tests on respective adult
mutant mice. Animals were entrained on a 12-h light:12-h dark
(LD) cycle for 2 weeks and then transferred to constant darkness
(DD) to monitor the endogenous SCN-driven locomotor activity
rhythm. We found that whereas Gpr176-deficient mice exhibited
a significantly shorter circadian period compared with wild-type
littermate mice, mice lacking Gpr19 or Calcr did not show any
significant difference in period by genotype (circadian periods
(h), mean±s.e.m. (n¼ 6 for each genotype); for Gpr176þ /þ ,
23.78±0.04; Gpr176� /� , 23.36±0.04 (Po0.01); for Gpr19þ /þ ,
23.79±0.04; Gpr19� /� , 23.92±0.07 (P40.1); for Calcr þ /þ ,
23.84±0.03; Calcr � /� , 23.86±0.04 (P40.1); Student’s t-test).
Importantly, Gpr176 mutant mice that had been backcrossed to
the C57BL/6J background over 10 generations also had a similarly
short-period phenotype (Fig. 1h; period (w2 periodogram)±s.e.m:
Gpr176� /� , 23.39±0.03 h; Gpr176þ /þ , 23.77±0.02 h (n¼ 12,
both genotypes); Fig. 1i, Po0.001, Student’s t-test). On the other
hand, as shown in Supplementary Fig. 1, Gpr176-deficient mice
were normal for light-induced phase resetting; their resetting
response to early- and late-night light pulses were indistinguish-
able from wild-type mice. Thus, Gpr176 is not likely to be a light
signal-related receptor for the SCN. Rather, this orphan receptor
appears to be involved in the determination of intrinsic period of
the SCN.

To complement the data on circadian behaviour, we performed
real-time bioluminescence imaging of cultured SCN slices
from wild-type and Gpr176� /� mice carrying a Per1-
promoter-luciferase (Per1-luc) reporter gene36 (Fig. 1j,k).
Crucially, bioluminescence rhythm of the Gpr176� /� SCN
slice had a shorter period than that of the wild-type
control (Gpr176þ /þ ¼ 25.11±0.14 h; Gpr176� /� ¼ 24.39±0.16 h;
mean±s.e.m., n¼ 4 for each, Po0.01, t-test); the short-period
phenotype of behaviour is thus ascribable to the SCN. In
contrast, the short period was not observed for their lung slices
(Gpr176þ /þ ¼ 24.76±0.09 h; Gpr176� /� ¼ 24.81±0.31 h; n¼ 4
for each), suggesting that the effect of Gpr176 deficiency may be
specific to the central oscillator.

Of note, northern blot analysis with different tissues (Fig. 1c;
Supplementary Fig. 2a,b) revealed that Gpr176 messenger RNA
(mRNA) is expressed chiefly in the brain. In situ hybridization
was therefore further conducted to map the neural expression
from the forebrain to the medulla oblongata (Supplementary
Fig. 2c). Notably, the highest expression of Gpr176 was observed
within the SCN. Relatively strong and restricted expression was
also seen in the subfornical organ (SFO), organum vasculosum of
the lamina terminalis (OVLT) and cerebellar flocculus (Fl),
among other regions, suggesting that Gpr176 in extra-SCN sites
may contribute to different brain functions that we have not yet
systematically investigated.

Clock-controlled circadian expression of Gpr176 in the SCN.
Gpr176 encodes a class A orphan GPCR37(Fig. 1b), whose in vivo
function is unexplored. To further investigate its role in the
circadian system, we profiled temporal expression of Gpr176 in
the SCN (Supplementary Fig. 2d). To do this, we performed
quantitative in situ hybridization, using mice housed either in LD
or DD, their brains being collected at 4-h intervals across 24-h
cycles. Notably, in both LD and DD, the SCN had a time-of-day-
specific expression of Gpr176 (Supplementary Fig. 2d). In LD,
Gpr176 was highest at night at ZT16 (ZT represents Zeitgeber
time; ZT0 denotes lights-on and ZT12 lights-off) and lowest in
the early morning at ZT0 (Po0.01, peak versus trough, one-way
analysis of variance (ANOVA) with Bonferroni post hoc test).
Similarly, in DD, Gpr176 was highest in the subjective night at
CT16 (CT represents circadian time; CT0 denotes the beginning
of the subjective day and CT12 the beginning of the subjective

night) and lowest in the subjective morning at CT4 (Po0.01,
peak versus trough). Furthermore, we found that the subjective-
night peak expression of Gpr176 was severely damped in mice
deficient in the core clock components Cry1 and Cry2, which
completely lack a functional circadian clock38,39 (Supplementary
Fig. 2e), indicating that the SCN clockwork controls Gpr176 gene
expression. A light pulse given at night did not cause any acute
change in Gpr176 expression in the SCN (Supplementary Fig. 2f).
Thus the SCN appears to direct Gpr176 expression independently
of light.

Characteristic distribution of Gpr176 across the whole SCN.
We developed an affinity-purified rabbit polyclonal antibody
against Gpr176 and performed immunohistochemistry.
Coronal brain sections from wild-type mice (Fig. 1d) revealed
marked SCN-specific immunoreactivity to Gpr176 (see also
Supplementary Fig. 3a), while little or no immunostaining was
observed for Gpr176� /� SCN (Fig. 1g; Supplementary Fig. 3a).

The SCN is composed of anatomically heterogeneous sub-
regions1,40. We thus studied the topographical distribution of
Gpr176 by staining serial coronal brain sections covering the
whole rostral-caudal extent of the SCN (Supplementary Fig. 3c).
Positive immunostaining of Gpr176 was widely observed from
the rostral to caudal extremities of the SCN. Moreover, we
noticed that the immunoreactivity to Gpr176 was relatively
strong in the dorsomedial area of the SCN, a region also referred
to as the SCN ‘shell’41. This characteristic distribution profile was
reminiscent of the Vipr2 receptor for Vip42. Interestingly, anti-
Vipr2 immunoreactivity in the SCN, revealed by rabbit polyclonal
antiserum, was widespread, extending from the rostral to caudal
margins, and more intense in the dorsomedial than the
ventrolateral region of the SCN (Supplementary Fig. 3b,c)42.

Immunolocalization of Gpr176 was also compared with that of
neuropeptide markers in the SCN. We performed double-label
confocal immunohistochemistry (Supplementary Fig. 4) and
found that the two non-overlapping SCN populations, Vip- and
vasopressin (AVP)-ergic neurons, both appear to express Gpr176.
Interestingly, Vipr2 is also expressed in both populations42.

Histological relationship between Gpr176 and Vipr2. The
resemblance of immunohistological distribution of Gpr176 to
that of Vipr2 attracted our attention. Vipr2 is a class C GPCR that
serves as a Vip receptor in the SCN and has already been shown
to play a key role in circadian pacemaking24,25. We thus clarified
whether Gpr176 colocalizes with this important receptor.

To visualize Vipr2 expression in the SCN, we generated
anti-Vipr2 chicken polyclonal antibody, for which we confirmed
specific SCN staining and its absence in mice lacking Vipr2
(Supplementary Fig. 5). Dual-label immunofluorescence micro-
scopy (Fig. 2a) revealed markedly overlapping immunoreactivities
for Gpr176 (red) and Vipr2 (green). Both signals tended to be
more intense in the dorsomedial than ventrolateral area of the
SCN (Fig. 2a). Moreover, high-magnification images showed that
both receptors were expressed in almost all individual cells with
comparable subcellular locations (Fig. 2b). Dual-labelled cells
were also observed when the SCN neurons were dispersed in
culture (Fig. 2c), confirming the colocalization of Gpr176 and
Vipr2.

Circadian expression profiles of Gpr176 and Vipr2 in the SCN
were then compared. Brains were collected from mice at six time
points in DD. Because of widespread distribution of Gpr176 and
Vipr2, expression levels of each receptor were evaluated as a
sum of the whole immunoreactivity from the rostral to caudal
extremities of the SCN (10 sections per brain; n¼ 6 mice for each
data point). The results revealed that Gpr176 immunoreactivity
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was highest in the subjective night at CT16 and lowest in the
subjective day at CT4 (Po0.01, peak versus trough, one-way
ANOVA with Bonferroni post hoc test; Fig. 2d). This protein
cycle is almost in phase with its mRNA expression that peaks
at CT16 (Supplementary Fig. 2d,e). In comparison, Vipr2

immunoreactivity displayed an opposite circadian cycle, char-
acterized by a robust decrease in the subjective night at
CT16 (Fig. 2d) as reported previously42. These results illustrate
that circadian profiles of Gpr176 and Vipr2 in the SCN
are antiphasic.
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Figure 2 | Characterization of histological and genetic relationships between Gpr176 and Vipr2. (a) Double-label immunofluorescence of Gpr176 and

Vipr2 in the mouse SCN. Coronal brain sections were immunolabeled with antibodies against Gpr176 (rabbit polyclonal) and Vipr2 (chicken polyclonal).

Representative confocal pictures are shown, with a merged image of Gpr176 (red) and Vipr2 (green). Scale bar, 100mm. (b) Enlargement of the boxed area

in (a). Merge shows combined images for Gpr176 (red), Vipr2 (green), and DAPI-based nuclear staining (blue). Scale bar, 20mm. (c) Immunofluorescence

and phase contrast (P.C.) images of dispersed SCN neurons. Cells were immunolabelled for Gpr176 and Vipr2. Merge shows combined images of Gpr176

(red), Vipr2 (green), and DAPI (blue). Scale bar, 20mm. (d) Antiphasic circadian expression profiles of Gpr176 and Vipr2 in the SCN. Values

(mean±s.e.m.) indicate relative immunoreactivities of Gpr176 and Vipr2 at 6 time points in DD (n¼ 6 brains for each data point). Representative images of

the immunolabeled SCN sections are shown on the top. Scale bar, 200mm. (e–g) Representative double-plotted actograms and w2 periodograms of

locomotor activity rhythms of mice carrying wild-type, Gpr176� /� and Vipr2� /� alleles. Vipr2� /� mice exhibit a single (e) or multiple (f) circadian

periods in DD, while all wild-type and Gpr176� /� mice had a single, stable circadian period (g). Diagonal line on periodogram shows significance at

Po0.001. See also Supplementary Fig. 6. (h) Percentage of mice expressing a single dominant circadian period (black) or multiple circadian periods (grey).

n¼ 8� 12 for each genotype. (i) Group data showing individual and combined effects of Gpr176� /� and Vipr2� /� on circadian period of locomotor

activity rhythms. Values (mean±s.e.m.) indicate free-running periods of mice with a single dominant period in DD (n¼ 5�8). ***Po0.001, one-way

ANOVA with Bonferroni post hoc test.
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Genetic relationship between Gpr176 and Vipr2. We next
sought to understand the relationship between Gpr176 and Vipr2
(Fig. 2e–i). To do this, we generated double deficient mice
(Gpr176� /� ; Vipr2� /� ). By crossing double heterozygous
mice (Gpr176þ /� ;Vipr2þ /� ), we obtained genetic background
(C57BL/6J)-matched male wild-type (n¼ 8), respective single
(n¼ 8 for Gpr176� /� , n¼ 11 for Vipr2� /� ), and double
knockout (n¼ 12) mice, and compared their behavioural rhythms
in DD. As observed above, all single Gpr176 knockout mice
(Gpr176� /� ; Vipr2þ /þ ) had shorter periods than those of
control mice (Gpr176þ /þ ;Vipr2þ /þ ) (Fig. 2i; Supplementary
Fig. 6a,b). Vipr2� /� mice had altered circadian rhythms as
documented previously25,43 (Fig. 2e–g), displaying either greatly
reduced or multiple circadian periods in DD. About half of
Vipr2� /� mice (6 of 11) had a single, short-circadian period
(Fig. 2e), whereas the other half (5 of 11) simultaneously

expressed two or more statistically significant circadian periods
(Fig. 2f; Actograms of all individual mice are available in
Supplementary Fig. 6). Concomitant deletion of Gpr176 and
Vipr2 (Gpr176� /� ;Vipr2� /� ) did not change this mixed
phenotype (Fig. 2e,f): about half of doubly deficient mice
(6 of 12) still had a single short-circadian period (Fig. 2h),
indicating that Gpr176 is not involved in the penetrance of this
phenotype. Under these conditions, we compared period length
between genotypes (Fig. 2i) and found that the deletion of Gpr176
could induce further significant shortening of the circadian period
length in Vipr2� /� background: the circadian period of
double knockout mice (Gpr176� /� ;Vipr2� /� ) in DD was
22.20±0.03 h (w2 periodogram, mean±s.e.m.), which was
significantly shorter than that of Gpr176 wild-type, Vipr2
knockout mice at 22.63±0.05 h (Po0.001, one-way ANOVA
with Bonferroni post hoc test). Thus, the shortening effect of
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(Fsk)-stimulated cAMP accumulation in Flp-In TREx293-Gpr176(tet-on)/Vipr2 cells. Cells of the same batch were cultured in parallel with or without Dox
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Gpr176� /� was not masked by, and acted additively with, the
absence of Vipr2.

Gpr176 basal activity antagonizes Vip–Vipr2–cAMP signalling.
To explore potential functional interaction between Gpr176 and
Vipr2 we developed a heterologous expression system (Fig. 3a).
Agonist-independent constitutive function has been assigned to a

number of orphan GPCRs. Thus, in the absence of a known
ligand, we looked for a constitutive action or influence
of Gpr176 on Vip–Vipr2-mediated signalling (Fig. 3a). We
employed the Flp-In TREx293 cell system and established a clonal
cell line that expressed Vipr2 constitutively (Fig. 3b,c, middle)
and Gpr176 in a doxycycline-dependent, inducible manner
(Fig. 3b,c, upper; see Methods for details). Confocal microscopy
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revealed markedly increased plasma membrane-localized
immunofluorescence of Gpr176 in induced cells. On the other
hand, constant membrane localization was observed for Vipr2.

Induction of Gpr176 led to an attenuation of Vip–Vipr2-
mediated cAMP signalling (Fig. 3d): Vip-promoted cAMP
accumulation was significantly reduced by doxycycline treatment
(Po0.01, versus nontreatment control) at any of the dosages of
Vip used for stimulation (100, 10, and 1 nM). This was not due to
a difference in cell viability or cell number between doxycycline-
and control-treated groups, the growth rate of the cells being
equivalent in the two groups. Furthermore, we assayed the same
number of cells (Fig. 3d) resuspending 3� 105 viable cells in
serum-free assay buffer for stimulation with Vip.

Neither plasma membrane localization nor total protein
amount of Vipr2 changed appreciably with doxycycline treatment
(Fig. 3b,c). Moreover, 125I-labelled Vip binding was almost
identical between doxycycline-treated and non-treated cells
(Fig. 3e). Thus, attenuation of Vip signalling by Gpr176 induction
is likely to arise from changes in the downstream pathway.
In accordance with this notion, forskolin-stimulated cAMP
accumulation was also blunted by the induction of Gpr176
(Fig. 3d). Forskolin is a cell-permeable drug that directly activates
adenylyl cyclases. Thus, the mode of action of Gpr176 does not
necessarily depend on the integrity of Vip–Vipr2. Consistent with
this, Gpr176 exhibited similar basal activity when expressed alone
in Flp-In TREx293 cells without concomitant expression of Vipr2
(Supplementary Fig. 7a–c).

Contrasting to the overt effect on cAMP, induction of Gpr176
did not bring about any significant change in inositol phosphate
IP1 formation (Supplementary Fig. 7d). Thus, the downstream
action of Gpr176 activity appears to be linked specifically to
cAMP regulation.

Gpr176 contains a conserved Asp–Arg–Tyr–X–X–Val
(DRYxxV) motif at the cytoplasmic end of transmembrane
domain III (Figs 1b and 3f). Generally, this motif is important for
coupling of GPCRs to the partner G-proteins. We thus wondered
whether this motif is required for generation of the basal activity
of Gpr176. In other GPCRs, including the related orphan receptor
Gpr161 (ref. 19) as well as the other class A non-orphan GPCRs
such as Cxcr1 (ref. 44) and Adra1b (ref. 45) a single point
mutation of the valine residue located following the DRY triplet
sequence led to a drastic loss of the receptor-mediated signalling.
We therefore established a mutant Gpr176 inducible cell line
where the homologous valine of this protein was mutated to
arginine (V145R; Fig. 3f). Notably, regardless of the type of
stimuli (Vip or forskolin), mutant Gpr176 did not yield any
noticeable reduction of cAMP (Fig. 3g), although the induction of
protein levels was similar to that of the wild-type (Fig. 3f),
suggesting that the V145R mutation blocks Gpr176 activity. As an
alternative mutation, the DRY sequence was changed to RDY
(Fig. 3f)46, but this mutation caused a loss of detectable Gpr176
expression and as a result no associated cAMP reduction was
observed (Fig. 3f,g). Thus, the DRYxxV motif seems important
for both protein activity and stability of Gpr176. We generated
additional mutants on the DRY triplet sequence and tested their
activities using a cAMP GloSensor assay, and the results further
support this conclusion (see Supplementary Fig. 8).

Pertussis toxin (PTX) has been widely used to test the
involvement of Gi signalling. This toxin is able to inactivate all
Gi/o family members except Gz. Importantly, PTX displayed a
strong inhibitory effect on Gi-coupled sphingosine-1-phosphate
(S1P) receptor signalling in TREx293 cells47 (Supplementary
Fig. 9). However, we could not detect any noticeable effect of PTX
on the Gpr176-mediated signalling (Fig. 3g; Supplementary
Fig. 7c): Gpr176 still had an essentially unimpaired capacity to
reduce cAMP accumulation even after PTX treatment

(100 ng ml� 1, 16 h). Thus, PTX-insensitive G-protein might
mediate the downstream action of Gpr176.

Gpr176 couples to Gz. Gz is a unique Gi/o subfamily member
that can repress adenylyl cyclases in a PTX-insensitive manner26,
and its expression is known to be high particularly in the
brain27,28 and in several specific tissues or cells in the periphery48.
Microarray data indicate that the gene encoding Gz (Gnaz) is also
expressed in the human embryonic kidney (HEK)293 cells49, a
parental cell line of Flp-In TREx293 cells. We performed in situ
hybridization and confirmed that the gene encoding Gz (Gnaz) is
expressed in the mouse SCN (Fig. 4a; Supplementary Fig. 10).
Gnaz was also found to be expressed in Flp-In TREx293 cells with
abundance comparable to that of the other Gi family members
(Fig. 4b). By contrast, the mouse embryonic fibroblast NIH3T3
cells did not express Gz (Fig. 4b,f) despite displaying high-level
expression of various Gi. Akin to Gpr176, Gz is conserved among
vertebrates (see http://ensembl.org/Multi/GeneTree/).

To test the hypothesis that Gz might be a mediator of Gpr176
signalling, we performed siRNA-mediated knockdown of the
endogenous Gz protein in Flp-In TREx293 cells (Fig. 4c), using
two different siRNA mixtures, both of which reduced the
endogenous Gz protein expression levels to o10% of those
observed for control siRNA treatment (NC) or nontransfection
(NT) control (Fig. 4c). There was no off-target effect on the levels
of Gi (Fig. 4c). Notably, both siRNAs against Gz abrogated
Gpr176 activity, while negative control (NC) siRNA did not
(Fig. 4c). We also used the regulator of G-protein signalling
(RGS) protein family member RGSZ1, which selectively inhibits
Gz50,51. We observed that lentiviral expression of this protein
prevented the suppression of cAMP levels by Gpr176 (Fig. 4d).
Similarly, overexpression of a dominant negative Gz (DN-Gz)
protein52 resulted in a loss of the Gpr176-mediated cAMP
reduction (Fig. 4e). Furthermore, to test this activity in a different
cell system, we developed doxycycline-inducible NIH3T3 cell
lines expressing Gpr176 (Fig. 4f). Because of the deficiency of Gz
in NIH3T3 cells (Fig. 4b), Gz was stably introduced into the cells
at levels comparable to those of Flp-In TREx293 cells (Fig. 4f,
Gz(þ )). Under these conditions Gpr176 displayed its effect
(Fig. 4g): a significant reduction of forskolin-stimulated cAMP
accumulation was observed when the cells were treated with
doxycycline. In agreement with the unique property of Gz, PTX
did not inhibit this reduction (Fig. 4g). Moreover, without
exogenously expressed Gz, the cells did not elicit any noticeable
activities of Gpr176, confirming that Gpr176 requires Gz for its
activity (Fig. 4g, Gz(� )).

Gpr176 is a negative modulator of cAMP synthesis in the SCN.
The data thus far in cell culture suggest that Gpr176 is a negative
regulator of cAMP signalling. Finally, we examined cAMP con-
tent in the SCN from wild-type and Gpr176� /� mice (Fig. 4h).
In agreement with the above in vitro data, we observed that the
deletion of Gpr176 leads to increased cAMP content in the SCN
(Fig. 4h): The effect of the deletion of Gpr176 is more evident and
significant at CT16 than CT4 (Po0.001 for CT16, two-way
ANOVA with Bonferroni post hoc test), while even at CT4 there
is a similar trend towards increased cAMP levels in Gpr176� /�

SCN. Based on these data, we conclude that Gpr176 can act as a
cAMP suppressor not only in vitro but also in vivo in the SCN.

Discussion
In the hope of identifying a new GPCR that tunes the central
clock, we searched for orphan GPCRs whose expression is
enriched in the SCN. Gene knockout studies of candidate genes of
interest revealed that Gpr176 is an SCN-enriched orphan GPCR
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required for normal circadian behaviour. Nearly all SCN neurons
express Gpr176, and its abundance fluctuates in a circadian
manner. Molecular characterization revealed that this orphan
receptor has an agonist-independent basal activity to repress
cAMP production. Notably, the unique G-protein subclass Gz,
but not the canonical Gi, is required for the activity of Gpr176.

In the SCN, Gpr176 colocalizes with Vipr2. Given this
overlapping expression, together with the ability of Gpr176 to
compete with the Vip–Vipr2–cAMP signal, we surmise that the
nighttime cAMP repression mediated by Gpr176 may serve as a
part of the cAMP repressing mechanism that could counteract
the Vip-Vipr2 axis in the SCN. As an additional feature of
importance, Gpr176 is expressed mainly in the brain, with
prominent expression in the SCN. This region specificity suggests
that, as a putative target for circadian therapeutics, Gpr176 might
possess the advantage of specificity, compared with broadly
expressed neurotransmitter receptors, clock gene products and
general modulators of second-messenger signalling such as
phosphodiesterases. Thus, the results not only reveal a new
signalling module, Gpr176/Gz, in the control of SCN circadian
time-keeping, but also provide, thereby, a new class of GPCR
signalling as a potential drug target to modulate the central clock
in the brain.

In the present study, we focused on genes enriched in the SCN.
The rationale for this tissue-specific approach is, first, the SCN is
responsible for circadian behaviour, the ultimate and definitive
arbiter of daily life53. Second, we considered that specificity for
local mechanisms is required because the SCN differs from the
peripheral clocks in phasing. In rodents, for example, the
molecular clockwork of the SCN phase-leads that of peripheral
clocks by 7 to 11 h (ref. 54). Any drug targeting common
circadian mechanisms would be able to affect or reset all the
clocks simultaneously, and this might be deleterious for keeping
the adaptive phasic order between the tissues (unless such drugs
were to be delivered to the target tissue selectively—a very
demanding regimen). We thus reasoned that pursuing the
molecular mechanisms that underpin the specificity of the SCN
would be a valuable alternative way to search for potential drug
targets in the central clock. Third, and last, the SCN-GENE
selection strategy can be biased for ‘druggable’ targets. In the
current study we found Gpr176 by focusing on the GPCR family,
but the project readily lends itself to other target categories, for
example, ion channels, suggesting the continued relevance of this
screening method, in conjunction with others, for the discovery of
clock gene modulators in the SCN.

Agonist-independent basal activity has been observed for a
number of ‘physiologically relevant’ orphan GPCRs: for example,
Gpr3, an orphan GPCR endowed with constitutive Gs signalling
activity, protects oocytes from ageing20 and modulates amyloid-b
production in neurons55. The orphan receptor Gpr161, which
participates in Sonic Hedgehog (Shh) signalling during neural
tube development, also displays constitutive activity19. Agonist-
independent intrinsic activity is also implicated in non-orphan
GPCRs’ physiological function. The odorant receptors (ORs),
which are GPCRs, possess an intrinsic activity and—in the
absence of activating odorant—regulate axonal projection of
olfactory neurons56. Thus, by analogous inference, intrinsic
activity of Gpr176 could underlie its effect in vivo. Indeed,
there may be no endogenous ligand, in which case the main
regulatory control of activity would be via the level of protein
expression, which for Gpr176 was highly circadian in the SCN.
Consistent with its negative effect on cAMP, Gpr176 protein
increased at night, a phase when cAMP levels in the SCN were
decreased to the circadian nadir levels21,29. The absence of
Gpr176, in turn, led to reduced suppression of cAMP level in the
night, supporting the hypothesis. Nevertheless, the presence of

unidentified endogenous ligands is always difficult to exclude for
receptors with constitutive action. In this respect, it is worth
noting that even without a known natural ligand, surrogate
ligands can be developed for the orphan GPCRs11,17, highlighting
the druggable feature of this protein family.

Previous studies demonstrated that pharmacological inhibition
of cAMP synthesis in the SCN leads to longer circadian period of
behavioural rhythm21,29. Compatible with this, the loss of the
cAMP suppressor Gpr176 leads to the opposite phenotype, period
shortening. In agreement with the reduced suppression of cAMP
signal during the night, we observed that circadian rising phase of
Per1-luc activity was significantly accelerated in the Gpr176� /�

SCN slices (see Supplementary Fig. 11; waveform analysis of
Fig. 1j), implying that the deletion of the suppressive signal from
Gpr176 allows early rising of Per1 expression and thereby
shortens circadian period. A simple explanation for the possible
underlying mechanism may involve cAMP signal-mediated
regulation of Per1 transcription through a cAMP-responsive
element on its promoter57. However, the mechanism(s) through
which the circadian fluctuation of cAMP signal is integrated to
the core clock machinery is still unclear in the literature and
needs further exploration. In addition, a cohort of double
deficient mice for Gpr176 and Vipr2 (Gpr176� /� ; Vipr2� /� )
were still rhythmic in DD, albeit with a severely shortened period
of circadian locomotor activity rhythms. These data raise the
possibility of potential compensatory mechanisms, perhaps
through alternative GPCRs in the SCN, as previously
suggested58. A complete understanding of circadian regulation
of cAMP signalling in the SCN, and of the concerted roles of
Gpr176 (repressor) and Vipr2 (activator) will be a challenge of
future study.

Unlike Gi, Gz does not serve as a substrate for PTX because the
consensus cysteine residue in the fourth position from the
C terminus of Gi proteins is replaced with isoleucine. We showed
that Gpr176 links preferentially to Gz. It is generally considered
that Gz shares the same receptor coupling profile with the
Gi subtypes, but there are some exceptions. For example,
Smoothened (smo), which is an orphan G-protein-linked seven-
transmembrane protein that mediates Hedgehog signalling, has
been shown to activate Gz more drastically than Gi59. The
mechanism of specificity remains unclear but may involve the
different amino-acid sequence of the C-terminal region between
Gi and Gz. Because the C-terminal region of G proteins is
important for physical interactions with upstream receptors60,
slightly higher hydrophobicity of isoleucine (Gz) over cysteine
(Gi) may affect this selectivity. Finally, as a critical difference
between Gz and Gi, Gz is expressed predominantly in the brain.
The brain distribution of Gz is more widespread than Gpr176,
implying that additional Gz-linked orphan GPCRs may remain to
be identified in the brain.

Gpr176 is an evolutionally conserved, vertebrate class A
orphan GPCR, initially cloned by Hata et al.37 from a human
brain cDNA library. Amino-acid sequence analysis reveals that
Gpr176 contains four putative glycosylation sites at the
N-terminal part37. A relatively large, C-terminal domain of
about 200 amino acids (the exact sequence is omitted in the snake
plot presentation in Fig. 1b) also characterizes Gpr176. Of
interest, this C-terminal cytosolic region is highly conserved
among Gpr176 genes in different species, yet does not show
homology to any other annotated protein sequences, thus
implying a unique feature characterizing this GPCR. Within its
seven transmembrane domains, Gpr176 does not have an aspartic
acid at position 2.50 (BW numbering), a feature also rarely
observed for class A GPCRs. Understanding how these structural
features affect molecular functions of Gpr176 will be a topic of
future study.
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In summary, we described here that Gpr176 is an
SCN-enriched orphan GPCR that can set the pace of circadian
behaviour. This is the first report to assign a function of this
orphan receptor in physiology. We revealed that Gpr176 is a
previously uncharacterized Gz-linked orphan GPCR that bears
intrinsic activity to reduce cAMP production. The discovery of
the functional orphan GPCR with a novel mode of action within
the SCN would be of help to understand the mechanism that
underpins the SCN and thereby facilitate searching for a potential
specific drug target to modulate the central clock.

Methods
Mouse strains. Gpr176� /� mice (Acc. No. CDB0672K: http://www.cdb.riken.jp/
arg/mutant%20mice%20list.html) were generated in the RIKEN CDB (Kobe,
Japan) and backcrossed to C57BL/6J for 10 generations. Then, Gpr176þ /� mice
were intercrossed to produce homozygous null and wild-type progenies for
behavioural tests. Vipr2� /� mice24 were bred on C57BL/6J background58.
A cohort of Gpr176� /� ;Vipr2� /� mice and control siblings was produced by
crossing double heterozygotes (Gpr176þ /� ;Vipr2þ /� ) using in vitro fertilization.
Cry-null mice (Cry1� /� ;Cry2� /� ) were bred as described previously38,39,61.
Targeted mutant mice for Gpr19 (Gpr19tm1Dgen) and Calcr (Calcrtm1Dgen) were
obtained from the Mutant Mouse Regional Resource Center at the University of
North Carolina with a mixed genetic background involving 129P2/OlaHsd�
C57BL/6J (https://www.mmrrc.org/). All animal experiments were performed
under protocols approved by the Animal Care and Experimentation Committee of
Kyoto University.

Behavioural activity monitoring. Single-caged adult male littermate mice (8- to
15-week old) were housed individually in light–tight, ventilated closets within a
temperature- and humidity-controlled facility. The animals were entrained on a
12-h light (B200 lux fluorescent light):12-h dark (LD) cycle for at least 2 weeks
and then transferred to DD. Locomotor activity was detected with passive
(pyroelectric) infrared sensors (FA-05 F5B; Omron) and the data were analysed
with ClockLab software (Actimetrics) developed on MatLab (Mathworks)29.
Free-running circadian period was determined with w2 periodogram, based on
animal behaviours in a 21-day interval taken 3 days after the start of DD condition.
Fast Fourier transform (FFT) spectral analysis of the activity records was
conducted with MATLAB Signal Processing Toolbox 6.2 (Mathworks). To extract
long-term locomotor activity trends, we applied a moving average with a 3.67-h
window size three times to the original locomotor activity data collected every
20 min. Then, FFT spectrograms were created through ‘specgram’ command, with
window size 512, overlap set to 506, and sampling set to 72 cycles per day. For
light-pulse-induced shift experiments, mice put in DD were exposed to a 15-min
light pulse at either CT14 or CT22. Phase shifts (delay at CT14, advance at CT22)
were quantified as the time difference between regression lines of activity onset
before and after the light application, using ClockLab software.

Per1-luc organotypic tissue slice culture. Per1-luc transgenic mice carry a firefly
luciferase reporter gene linked to a 7.2-kb genomic DNA fragment covering the
50-upstream region of the mouse Per1 gene62. Per1-luc-Gpr176� /� mice were
generated by crossing Per1-luc mice with Gpr176� /� mice. The SCN slices were
prepared according to our standard method36 and kept at 35 �C in a sealed 35 mm
Petri dish with 1 ml of the culture medium containing 1 mM D-luciferin.
Bioluminescence from the cultured SCN was measured with a highly sensitive
cryogenic CCD camera (800S: Spectral Instruments) equipped with a microscope
(Axiovert 200: Carl Zeiss). Recording was performed every 20 min. Observed data
of images were filtered through a median filtre to eliminate cosmic-ray-induced
background noise using ImageJ (http://imagej.nih.gov/ij). For period
determination, the bioluminescence values of whole SCN in the image sequence
were exported into Excel (Microsoft), where values were detrended by subtraction
of baseline bioluminescence based on a running average from 12 h before to 12 h
after each time point. Then, the baseline-subtracted data were curve fitted to a
modified damped sine wave in Prism (Graphpad software) using the following
equation: Y¼Amplitude� exp(�K�X)� sin ((2� p�X/Period)� Phase� 2�
p/Period), where K is the damping constant, and the period was determined based
on the best-fit results. As for lung explant culture, culture was performed according
to a published method63 with slight modifications. In brief, lungs taken from
5-day-old pups were sliced into a small piece (B2� 2� 0.3 mm3), placed on a
Millicell membrane (PICMORG50, Millipore) with 800 ml of DMEM medium
(Sigma), supplemented with 10 mM HEPES (pH 7.2), 2% B27 (Invitrogen),
25 units ml� 1 penicillin, 25 mg ml� 1 streptomycin, and 1 mM luciferin, in
35-mm dish, and air sealed. Bioluminescence was continuously monitored without
interruption for 45 d immediately upon placement in culture with a dish-type
photon countable luminometer (Kronos Dio, ATTO) at 35 �C. Period of circadian
luminescence was determined as described for the SCN.

Radioisotopic in situ hybridization. In situ hybridization was performed with
free-floating brain sections (30-mm thick), using [33P]-labelled cRNA probes for
Gpr176 (nucleotides 3321–3746, NM_201367), Ntsr2 (1001–1480, NM_008747),
Gpr37l1 (1368–1849, NM_134438), Lphn1 (7617–8072, NM_181039), Oprl1
(1513–2006, NM_011012), Gpr37 (2056–2528, NM_010338), Gprc5b (2269–2837,
NM_022420), Gpr85 (1942–2440, NM_145066), Darc (695–1103, NM_010045),
Lphn3 (5451–5771, NM_198702), Lphn2 (5213–5697, NM_001081298), Calcr
(670–1168, NM_007588), Gpr48 (4320–4803, NM_172671), Gpr56 (1844–2334,
NM_018882), Gpr19 (250–748, NM_008157), Gpr123 (3955–4486, NM_177469),
Gpr83 (1518–2057, NM_010287), Ackr3 (931–1392, NM_007722), Gpr125
(3919–4377, NM_133911), Gpr22 (2501–3002, NM_175191), Gpr153 (3205–3689,
NM_178406), Gpr45 (1165–1722, NM_053107), Gpr68 (2670–3170, NM_175493),
Gpr6 (1406–1747, AK139367), Cckar (2182–2593, NM_009827), and Gpr75
(2269–2739, NM_175490). All fragments were sequenced to verify their identity,
and antisense riboprobes were generated.

Digoxigenin in situ hybridization. Digoxigenin in situ hybridization was
performed according to our standard method64 with two different probes for Gnaz
(NM_010311), a 50UTR probe (296 bp, nucleotides 151–446) and a 30UTR probe
(232 bp, nucleotides 1,919–2,150), the sequences of which are divergent from those
of the other Gi/o family members.

Northern blotting. Northern blot analysis was performed with the following
probes for Gpr176 (NM_201367): 50 probe (289 bp, nucleotides 132–420) and
30 probe (426 bp, nucleotides 3,321–3,746). Both fragments were labelled with [32P]
deoxycytidine triphosphate by random priming and hybridized with the mouse
MTN blots (Clontech) to which poly(A)þ RNA fractions from various tissues
were transferred (2 mg for each tissue).

Microarray analysis. Microarray data have been deposited in the Gene Expression
Omnibus under accession code GSE28574 (ref. 29). To identify genes that are
enriched in the SCN, SCN punches taken from 10 animals at CT2 and 10 animals
at CT14 were pooled together and analysed with a GeneChip Mouse Genome
430 2.0 (Affymetrix)29. The data were normalized with the MAS5 (GCOS 1.4)
algorithm, using the default analysis settings and global scaling for normalization.
For statistical analysis of the microarray data, we transformed the values into log2
format for ease of comparison and data representation. We then obtained values of
13 probes for the seminal proteins (Svs3, Svs5, Svs6, Sva, Svp2, Sval1 and Sval2)
that were unlikely to be expressed in the SCN. We determined the mean and s.d. of
these values. We took this mean value to represent zero expression and subtracted
it from the value for each receptor for which we obtained a signal. The value of two
s.d. was then considered to be the threshold or baseline for our receptors of interest
as any values at this level or higher would be considered statistically significant
(95% confidence that the true mean of the seminal protein expression would fall
within this threshold value)49.

Laser microdissection of the SCN. Coronal brain section (30-mm thick)
containing the SCN was prepared using a cryostat microtome (CM3050S, Leica)
and mounted on POL-membrane slides (Leica). Sections were fixed for 3 min in an
ice-cold mixture of ethanol and acetic acid (19:1), rinsed briefly in ice-cold water,
stained for 30 seconds in ice-cold water containing 0.05% toluidine blue, followed
by two brief washes in ice-cold water. After wiping off excess water, slides were
quickly air dried at room temperature. As soon as moistures in the sections
decreased enough for laser-cutting, cells in the SCN were microdissected using a
LMD7000 device (Leica) and lysed in Trizol reagent (Invitrogen), and total RNA
was purified using the RNeasy micro kit (Qiagen).

qRT–PCR. qRT–PCR analysis was performed as described previously with a
standard curve method65,66. The data were normalized with Rplp0. The primer sets
used were following: for mouse, Gpr176 (NM_201367), Fw: 50-CATCTTCATTGG
CTCGCTAC-30 , Rv: 50-CGTATAGATCCACCAGCAAC-30 ; Gnaz (NM_010311),
Fw: 50-CAGCCGTGCTTAGAAACATCG-30 , Rv: 50-TCTAGTGACACTCCACC
TCC-30; Gnai1 (NM_010305), Fw: 50-AAGCTGACTCGCCTTCCCAG-30 , Rv:
50-GTAGTTTACAGTTCTCCACACG-30 ; Gnai2 (NM_008138), Fw: 50-TGCCTT
GAGTGTGTCTGCGTG-30 , Rv: 50-CTCAGTGACGTTGGCAGTTG-30 ; Gnai3
(NM_010306), Fw: 50-GTGCAGTCCGTGTACAAGAG-30 , Rv: 50-GATGAATGG
ATCCGAGCCAC-30 ; Per1 (NM_011065), Fw: 50-TGGCTCAAGTGGCAATGA
GTC-30 , Rv: 50-GGCTCGAGCTGACTGTTCACT-30 ; and Rplp0 (NM_007475),
Fw: 50-CTCACTGAGATTCGGGATATG-30 , Rv: 50-CTCCCACCTTGTCTCCA
GTC-30 ; and for human, GNAZ (NM_002073), Fw: 50- CTACGAGGATAACCA
GAC-30 , Rv: 50-TACGTGTTCTGGCCCTTG-30 ; GNAI1 (NM_002069), Fw:
50-CATCTCTGACCTTGTTTCAGC-30 , Rv: 50-CTTCAACCCAGTGACAAC
ACG-30 ; GNAI2 (NM_002070), Fw: 50-ACTCCGTGCCTTGAGTGTG-30 , Rv:
50-TTGTCTGGAACAGCCCTTGG-30 ; GNAI3 (NM_010306), Fw: 50-GGAAAG
TTACGTTCACTTCAACC-30, Rv: 50-TTGGACCCCAAAAGGCACTG-30 ; and
RPLP0 (NM_053275), Fw: 50-ATGCAGCAGATCCGCATGT-30 , Rv: 50-TTGCGC
ATCATGGTGTTCTT-30 .
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Antibodies to Gpr176 and Vipr2. Gpr176 antibody was raised in rabbit using a
glutathione-S-transferase-fused Gpr176 mouse protein fragment (amino acids (a.a.)
311–515). The raised antibodies were affinity-purified using a maltose-binding
protein (MBP)-fused Gpr176 fragment (a.a. 311–515). Vipr2 antibody was raised
in chicken with a keyhole-limpet hemocyanin (KLH)-conjugated synthetic peptide
mapping a C-terminal region of the mouse Vipr2 (a.a. 418� 437). The antibodies
were affinity-purified using the antigen peptide. Rabbit antiserum against Vipr2
was purchased from Abcam (ab28624).

Immunohistochemistry. Free-floating immunohistochemistry was performed
with 30-mm-thick serial coronal brain sections. To minimize technical variations in
immunostaining, sections from different CTs were immunolabelled simulta-
neously. The primary antibodies used were anti-Gpr176 (final concentration,
0.6 mg ml� 1), anti-Vipr2 rabbit antiserum (Abcam, 1:1,000), and anti-Vipr2
purified chicken polyclonal antibody (0.17 mg ml� 1). Immunoreactivities were
visualized with a peroxidase-based Vectorstain Elite ABC kit (Vector Laboratories)
using diaminobenzidine chromogen. For brightness and contrast, photo-
micrographs were processed identically with ImageJ. For quantitative analysis, data
were normalized with respect to the difference between signal intensities in equal
areas of the SCN and the corpus callosum. Normalized values were summed from
the rostral to the caudal margins of the SCN (10 sections per brain), and the
sum was considered a measure for the amount of protein in the SCN. Values
are expressed as means±s.e.m. (n¼ 6, for each time point). For dual-label
immunofluorescence, free-floating sections were stained with anti-Gpr176
(rabbit polyclonal, final concentration, 0.6 mg ml� 1) together with either anti-
Vipr2 (chicken polyclonal, 0.17 mg ml� 1), anti-Vip (Abnova, guinea pig polyclonal,
PAB16648, 1:1,000), or anti-Avp-associated neurophysin II (Santa Cruz, goat
polyclonal, sc-27093, 0.2 mg ml� 1) antibody. We visualized immunoreactivities
using Alexa594-conjugated anti-rabbit IgG (1:1,000; Life Technologies) and
Alexa488-conjugated anti-chicken, guinea pig, or goat IgG (1:1,000; Life
Technologies). Nuclei were visualized by staining with 40 ,60-diamino-2-
phenylindole (DAPI).

Immunocytochemistry of dispersed SCN neurons. For colocalization analysis of
Gpr176 and Vipr2, dissociated SCN neuronal cultures were used. SCN punches of
15 pups (C57Bl/6) of 4–5 days of age were pooled and incubated for 40 min at
37 �C in Ca2þ /Mg2þ -free Hanks’ balanced salt solution (HBSS, Life Technologies)
containing 0.06% papain, 0.02% L-cysteine, and 1 kU ml� 1 DNaseI (Sigma).
Following the addition of fetal bovine serum to the solution, cells were further
dissociated through trituration with a fire-polished Pasteur pipette. The dispersals
were then filtered through a 100-mm nylon cell strainer (BD Falcon) and
resuspended in Neurobasal medium (Life Technologies) containing B27 supple-
ment (Life Technologies) with 2 mM glutamine, 8 mM glutamate, 100 U ml� 1

penicillin, and 100 mg ml� 1 streptomycin. Cell viability was 85–95%. Viable cells
were plated on polylysine-coated coverslips in 48-well culture plates at a density
of 2,000 cells per mm2. One-half of the culture medium was exchanged with
fresh medium every 3 days. After 8 days culture, cells were fixed with 4%
paraformaldehyde and double-labelled for Gpr176 and Vipr2 using published
methods67. We stained cultures with anti-Gpr176 (purified rabbit polyclonal,
final concentration 0.15 mg ml� 1) and anti-Vipr2 (purified chicken polyclonal,
0.15 mg ml� 1) followed by Alexa594-conjugated antirabbit IgG (1:1,000;
Life Technologies) and Alexa488-conjugated antichicken IgG (1:1,000; Life
Technologies). Nuclei were visualized using DAPI staining.

Stable cell lines. Flp-In TREx293-Gpr176 cells were generated by stable
transfection of Flp-In T-Rex-293 cells (Life Technologies) with a pcDNA5/FRT
vector (Life Technologies) containing the untagged full-length coding sequence of
the mouse Gpr176 (NM_201367). Similarly, Flp-In TREx293-Vipr2 cells were
established with the mouse Vipr2 full-length coding sequence (NM_009511).
To develop Flp-In TREx293-Gpr176(tet-on)/Vipr2 cells, we constructed a modified
pcDNA5/FRT vector carrying Vipr2 and Gpr176 under different promoters:
while Gpr176 was cloned into a proprietary pcDNA5/FRT cloning site for tet-on
induction, Vipr2 was cloned separately into a different position of the vector
(at a unique PciI site) in conjunction with a tetracycline-insensitive CMV
promoter. Point mutations for Gpr176RDY and Gpr176V145R were introduced into
the corresponding constructs with a standard sequential PCR method68. For stable
expression of DN-Gz mutant (G204A/E246A/A327S)52, we established Flp-In
TREx293-Gpr176(tet-on)/DN-Gz cells by using the modified pcDNA5/FRT vector
as mentioned above. For infection of RGSZ1, lentiviruses carrying the
hemagglutinin (HA)-tagged full-length coding sequence of RGSZ1 (NM_003702)
in tandem with IRES-GFP (HA-RGSZ1-IRES-GFP) were generated with pCSII-EF-
MCS-IRES-hrGFP vector69, and the cells were infected with an empirical titre of
virus that resulted in nearly 100% infection as determined by GFP expression.
Stable clonal NIH 3T3 cell lines expressing Gpr176 (NIH3T3 Tet-on 3G-Gpr176)
were generated via transfection of NIH3T3 Tet-On 3G cells (Clontech) with a
pTRE3G vector (Clontech) containing Gpr176. The established cells were further
transfected with a pEF vector (Addgene) containing Gz (NM_010311) along with
Linear Puromycin Marker (Clontech) to generate NIH3T3 Tet-on 3G-Gpr176
(tet-on)/Gz double stable cell clones. Cells were cultured in DMEM containing 10%

fetal bovine serum with an appropriate mixture of antibiotics that the
manufacturers recommend for the maintenance of the cell clones.

Immunoblot. To avoid high-temperature-induced protein aggregation of GPCR,
cell lysates were denatured on ice in Laemmli buffer and subjected to SDS–PAGE
at 4 �C. Immunoblotting was performed using our standard method29 with
affinity-purified antibodies against Gpr176 (rabbit polyclonal, final concentration,
0.6 mg ml� 1) and Vipr2 (chicken polyclonal, 0.4 mg ml� 1). To detect Gz,
the plasma membrane fractions were lysed in standard RIPA buffer and
immunoprecipitated with anti-Gz antibody (Santa Cruz, sc-388, 1 mg per
immunoprecipitaion), and immunoblots were probed with the rabbit antisera
against Gz (2919) provided by Dr Manning48,70 (1:100 dilution). Commercially
available antibodies against Gi (Abcam, ab3522, 1 mg ml� 1) and a-tubulin (Sigma,
T6199, 1 mg ml� 1) were used as a control. Blot images have been cropped for
presentation. Full size images are presented in Supplementary Fig. 12.

Measurements of cAMP and IP1. After 24 h of treatment with Dox (1 mg ml� 1)
or vehicle, cells were removed from culture dish with Versene solution (Life
Technologies) and dissociated into single cells through gentle trituration. After
filtration with a 100-mm cell strainer (BD Falcon), cells were resuspended in HBSS
containing 5 mM HEPES (pH 7.5), 0.1% bovine serum albumin, and 0.5 mM
3-isobutyl-1-methylxanthine (IBMX, a non-selective phosphodiesterase inhibitor).
Cells in suspension were incubated at 37 �C for 1 h in 24-well plates at a density of
3� 105 cells per well, followed by stimulation with forskolin (Nacalai Tesque)
or Vip (Peptide Institute Inc.) at the indicated concentrations for 15 min. The
reactions were stopped by adding ice-cold perchloric acid (1 N, final solution)
containing 4 mM theophylline (Sigma). After 1 h at 4 �C, the mixtures were cen-
trifuged, and the supernatants were neutralized with ice-cold 0.72 M KOH/0.6 M
KHCO3. Following removal of salt precipitants, the extracts were assayed for
cAMP concentrations with a cAMP-specific enzyme immunoassay kit (Cayman
Chemical)29. Assays with PTX-treated cells were also done with the same protocols,
except that the cells were cultured in the presence of PTX (100 ng ml� 1, Bio
Academia) for 16 h before assay. When specified, 100mM sphingosine-1-phosphate
(Enzo Life Sciences) was added together with forskolin, to confirm whether
Gi-mediated signalling was blocked efficiently by the PTX treatment. For IP1 assay,
cells in suspension were incubated in IP stimulation buffer (Cisbio; 10 mM HEPES
(pH 7.4), 1 mM CaCl2, 0.5 mM MgCl2, 4.2 mM KCl, 146 mM NaCl, 5.5 mM glucose
and 50 mM LiCl) for 1 h at 37 �C in 24-well plate at a density of 4� 105 cells
per well. The reaction was stopped by adding Lysis reagent (Cisbio). The
concentrations of IP1 were determined by enzyme immunoassay with IP-One
ELISA kit (Cisbio) according to the manufacturer’s protocol.

[125I]-Vip binding assay. To prepare membrane fractions, Flp-In TREx293-
Gpr176(tet-on)/Vipr2 cells were lysed in hypotonic lysis buffer (25 mM HEPES,
pH 7.5, 1 mM EDTA, 1 mM DTT) with protease inhibitors, and passed through a
27-gauge needle 10 times. The lysed cells were centrifuged at 700 g for 5 min to
remove nuclei and debris. The supernatant was centrifuged at 20,400g for 30 min.
Then, the pellet (membrane fraction) was resuspended in HBSS containing 5 mM
HEPES (pH 7.5). For the binding reaction, the membranes (10 mg of protein) were
incubated with 1, 10 or 100 nM of [125I]-labelled Vip (PerkinElmer; NEX192) in
HBSS binding buffer containing 5 mM HEPES (pH 7.5) and 0.1% bovine serum
albumin for 60 min at 4 �C. Incubation was performed in a 1.5-ml siliconized tube
(Sarstedt). At the termination of incubation, membrane-bound [125I]-Vip was
separated from free peptide by centrifugation. The membrane pellets were washed
three times with HBSS/5 mM HEPES/0.1% bovine serum albumin, and the washed
membranes were assayed for [125I] radioactivity with a 1470 automatic gamma
counter (PerkinElmer). Specific binding was calculated by subtracting the
radioactivity detected for un-transfected (parental) Flp-In TREx293 cells.

siRNAs. To knockdown Gz, two independent pools of Gz-specific silencer select
siRNAs (#1 and #2), each containing three different siRNA duplexes directed
against the Gz coding sequence (#1: s5898, s5900 and s499632; #2: s499631,
s500931 and s500937; Life Technologies), were introduced into B30% confluent
Flp-In TREx293-Gpr176 cells using Lipofectamine 2000 (Life Technologies)
according to the manufacturer’s instructions. As a control, we also transfected the
cells with negative-control siRNA (catalog number 4390846, Life Technologies) at
the same concentration as the #1 and #2 mixtures (1.8 nmol siRNA per 10-cm
dish). Medium was replaced 6 h after transfection. Four days later, cells were
treated with Dox (1 mg ml� 1) or vehicle for 24 h and removed from dishes with
Versene solution (Life Technologies) to be subject to cAMP assays. For each
experiment, we took a fraction of cells and confirmed by qRT–PCR that Gz mRNA
accumulation was diminished to o5% by RNA interference.

SCN punch for cAMP measurement. The microdissection of the SCN was
performed as described with modifications. Animals kept in DD were killed by
cervical dislocation, and the eyes were removed under a safety red light. The brain
was then isolated from the skull under room light and frozen immediately on dry
ice. Coronal brain section (300-mm thick) containing the SCN was prepared using a

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10583 ARTICLE

NATURE COMMUNICATIONS | 7:10583 | DOI: 10.1038/ncomms10583 | www.nature.com/naturecommunications 11

http://www.nature.com/naturecommunications


cryostat microtome (CM3050S, Leica) and mounted on a silicon rubber stage at
� 17 �C. Under a magnifying glass, the bilateral SCN was punched out from
the frozen section using a blunt 20-gauge syringe needle whose edge had been
sharpened by filing. The microdissected SCN (one punch per assay) was then
immediately sonicated at 4 �C (Bioruptor, COSMO BIO) in 0.1 N HCl solution
containing 0.5 mM IBMX. Lysates were clarified by centrifugation, and the protein
content was determined with a Bradford assay (Nakarai). The amount of extracted
cAMP was measured using an enzyme immunoassay kit for cAMP (Cayman
Chemical). To increase the sensitivity of the assay, samples were acetylated
according to the manufacturer’s instruction (Cayman Chemical).

GloSensor cAMP assay. We generated additional Gpr176 mutants on the DRY
triplet sequence (Supplementary Fig. 8; DAY, AAY, and AAA) and tested their
basal activities using the cAMP GloSensor system (Promega), which allows tran-
sient transfection-based GPCR assay for cAMP signal. Flp-In TREx293 cells were
plated on 35-mm dishes at 1.2� 106 cells per dish with a CO2-independent DMEM
medium (Sigma) containing 10 mM HEPES (pH 7.2), 10% FBS, 100 units ml� 1

penicillin, 100 mg ml� 1 streptomycin at 37 �C. In the next day, the cells were
transfected with a DNA mixture containing 1 mg of pGloSensor-22F plasmid
(Promega) and 1.5 mg of pcDNA3.1 expression plasmid (Life Technologies)
encoding either the untagged wild-type Gpr176 or its respective DRY mutants,
using Lipofectamine LTX/Plus reagent (Life Technologies). Four hours after the
transfection, the medium was refreshed to the medium with 1 mM luciferin, and
the cells were further cultured at 37 �C for 14 h. Following 2-h incubation at 28 �C
for equilibrium, GloSensor activities in the cells were measured using a dish-type
luminometer (Kronos Dio, ATTO) at 28 �C. Recording was performed every 1 min
with 2 s of integration. After detection of baseline luminescence activities for
10 min, Fsk was added to the culture medium at the final concentration of 10 mM.
Recording was stopped at 30 min after the Fsk stimulation. Then the cells were
immediately lysed into Laemmli buffer for western blot analysis.
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