<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>THYROID AND PANCREAS: THYROID FUNCTION OF THE COMPLETELY DEPANCREATIZED DOG TREATED WITH INSULIN</td>
</tr>
<tr>
<td>著者</td>
<td>KANEDA, RYO</td>
</tr>
<tr>
<td>引用</td>
<td>日本外科宝函 31(1): 1-20</td>
</tr>
<tr>
<td>発行日</td>
<td>1962-01-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/204627</td>
</tr>
<tr>
<td>タイプ</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>出版者</td>
<td>publisher</td>
</tr>
<tr>
<td>右記</td>
<td>京都大学</td>
</tr>
<tr>
<td>版面</td>
<td>京都大学</td>
</tr>
<tr>
<td>orte</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>

京都大学学術情報リポジトリ
KURENAI
Kyoto University Research Information Repository
THYROID AND PANCREAS: THYROID FUNCTION OF THE COMPLETELY DEPANCREATIZED DOG TREATED WITH INSULIN

By

RYO KANEDA

From the 2nd Department of Surgery, Kanazawa University, Medical School Kanazawa.
(Director: Prof. Dr. Ichio Honjo)

Received for publication Oct. 26, 1961

Contents

I. Introduction
II. Materials and Methods
III. Results
1. Thyroid Uptake of Radioactive Iodine (Thyroid 131I Uptake)
2. Blood-Plasma Protein-Bound Radioactive Iodine: Conversion Ratio (PB131I C. R.)
3. Serum Protein-Bound Iodine (PBI)
4. TSH-test
5. Weights of the Thyroid Gland
6. Histological Findings
7. Somnolent Metabolism
IV. Discussion
V. Summary

I. INTRODUCTION

In recent years, extensive pancreatectomy against pancreatic cancer has become more popular operative procedure in the field of surgery. Not a few cases require a complete pancreatectomy. Diabetes mellitus which is naturally caused by the complete pancreatectomy can be well controlled without showing the development of life-threatening deficiency symptom by continuous administration of insulin at suitable dose. As to the function of the endocrine system in diabetics, an unanimous theory has not yet been established. Concerning the thyroid function also, one of the endocrine system, in diabetics, there have been much discussed.

It has already been reported by many investigators that temporary hyperglycemia or glycosuria is frequently observed in hyperthyroidism. As early as in 1909, LICINI noticed histologically hyperthyroidism following the total pancreatectomy. HOUSAY observed degeneration in residual Langerhans' islets and development of diabetes mellitus in partially depancreatized dogs when fed by thyroid diet, and named it metathyroid diabetes. In recent years, there is a report of hyperthyroidism due to total pancreatectomy by YOSHIOKA.

Taking into consideration the complexities of diabetes due to total pancreatectomy, it is difficult to assume that the thyroid remains for long in a state of hyper- or hypo-function. Namely, diabetes due to total pancreatectomy is characterized by following features; (1) far smaller dose of required insulin compared to that required in severer cases of internal diabetes commonly seen, (2) progressive loss of body weight, (3) deve-
lofment of fatty liver. YAMAMOTO and OSHITANI have made it clear that the continuous administration of insulin at suitable dose lessens the degree of progressive loss of body weight and prevents the development of fatty liver in early postoperative stage as well as later. In the present experiments, it was revealed that there exist some differences between thyroid function of dogs whose diabetes due to total pancreatectomy is well controlled with insulin of suitable dose and that treated with insulin of insufficient dose.

The present experiment was designed to study the change in thyroid function of completely depancreatized dogs concerning following items; thyroid uptake of radio-active iodine (abbreviated to Thyroid \(^{131}\)I uptake), blood-plasma protein-bound radioactive iodine conversion ratio (abbreviated to PB \(^{131}\)I C. R.), serum protein-bound iodine (abbreviated to PBI), TSH-test, weights of the thyroid gland, histological findings and somnolent metabolism. At the same time, interaction between thyroid and pituitary gland was also studied.

II. MATERIALS AND METHODS

1) Materials
 Adult mongrel dogs weighing 6 to 16 kg were employed, which were fed by well boiled diet consisted of rice, wheat and fish, both pre- and postoperatively.

2) Methods
 i) Anesthesia
 Under the basal anesthesia with intramuscular injection of Cocktelin-H (5mg/kg), Isozol was injected intravenously at a dose of 0.02 to 0.048g per kg body weight.
 ii) Sterilization
 Operation field was sterilized with Mercurochromealcohol solution of 2%.
 iii) Operative procedure
 Laparotomy was performed by the upper median incision. The duodenum was exposed. Reaching the duodenal loop of the pancreas, which is adjoining to the duodenum, the branches of the pancreatic-duodenal vessels were doubly ligated and divided and the pancreas was isolated. Then the branches from the splenic vessels, which are distributed to the free lobe of the pancreas, were ligated and cut. Here the pancreas was completely removed. Before closing the abdomen, 50 to 100ml of chondroitic acid of 1% was poured into the peritoneal cavity, in order to prevent the postoperative adhesion.
 iv) Postoperative management
 The dogs were fed twice a day with well boiled diet of rice, wheat and fish postoperatively. Insulin was injected subcutaneously at a dose of 1 to 3 u./kg, which was administered twice a day after meal. Insulin used was a product of Shimizu Seiyaku Co. 'Isujilin Shimizu'.
 v) Blood samples
 Blood samples were taken chiefly from the femoral vein in the early morning in a fasting state, before the operation and every week from the first to twelveth week postoperatively. In some cases, blood was taken for longer period. The blood sample were immediately used for the examinations.
 vi) Thyroid \(^{131}\)I uptake
Radioactive iodine (131I) was injected into the femoral vein at a dose of 50 to 100 µg. Radioactivity of the thyroid region was measured at 24 hours after the injection by scintillation counter (Kobekogyo Co.). The procedure of the measurement is shown in Fig. 1. In order to exclude the portion of longer wave of gamma rays that misleads the data, the region was shielded by lead, filter A. The counts of background of the body was measured by shielding the thyroid region with filter B. Radioactivity of 131I of the same dose as administered was measured placing it in a phantom made by Kaken. Thyroid 131I uptake was calculated from following formula.

\[
\text{Thyroid } {^{131}}\text{I uptake} = \frac{\text{Dog (A) cpm} - \text{Dog (AB) cpm}}{\text{Phant. (A) cpm} - \text{Phant. (AB) cpm}}
\]

vii) PB131I C. R.

Radioactive iodine, having activity of 50 to 100 µg, was injected into the femoral vein. From the femoral vein of the other side, about 3 ml of blood was taken, which was put into a test tube containing salts of oxalic acid. After mixing the content together, the plasma was separated by centrifugation, 1 ml of which was put into test tube of thick wall and its radioactivity was measured in the well-type scintillation counter. Then, 5cc of 10% acetic acid trichloride was added to the plasma to precipitate protein and the content was centrifugated again. The supernatant was discarded, acetic acid trichloride was added to the precipitate again, and stirred by a glass stick, centrifugated and the precipitate was washed twice. Radioactivity of the precipitate was measured immediately again.

\[
\text{PB } {^{131}}\text{I C. R.} = \frac{\text{Radioactivity of PB } {^{131}}\text{I}}{\text{Radioactivity of total blood-plasma } {^{131}}\text{I}}
\]

viii) PBI

The concentration of serum PBI was assayed by the method of BARKER-HEKI. The procedure is summarized as follows.

Reagents:

All the reagents used were prepared using redistilled water, which had been distilled from once distilled water to which caustic potash was added as 1 to 2%, added in a glass equipment. Reagents of utmost purity were used. Iodine slightly contained in the reagents was eliminated, when necessary.

a. Reagents for deproteinization
 1. 10% zinc sulfate solution
 2. 1/2N caustic soda solution
b. 4N sodium carbonate solution

Sodium carbonate exsiccated of special purity was used for this purpose.
c. 2N hydrochloric acid

d. 7N sulfuric acid

Three to 5cc. of hydrochloric acid was added to 500 cc of concentrated sulfuric acid, which was boiled for 60 minutes. Iodine that may probably be contained was eliminated by gradual cooling.

e. 0.1N sodium arsenite solution

Twenty-five cc of 4% caustic soda was added to 4.95 g of well dried exsiccated arsenious acid and completely solved by heating in water bath. After cooling down 300 cc of water was added and about 4 cc of 7N sulfuric acid added until the reaction showed slight acidity. Water was again added as to make the solution 1000 cc in all.

f. 0.02N ceric acid solution

Ceric acid Ce\(_2\)(SO\(_4\))\(_2\) \cdot 4H\(_2\)O (Merk) of 9.3 g was solved in 500 cc of water. A clear light yellow liquid was obtained by adding 230 cc of 7N sulphuric acid. This was diluted with water to 1000 cc in all. The concentration of cerium solution was accurately adjusted to 0.02N by titration with 0.02N oxalic acid at a temperature of 80°C in water bath.

g. 0.0002M ferroin solution

Ferroin (O-phenanthroline-ferrous complex) solution of 0.025M was diluted 125 times with water at use.

Procedure of PBI level determination.

On the first day, 8 cc of water, 1 cc of 10% zinc sulfate and 0.5 cc of N/2 caustic soda were added in the mentioned order to 1 cc of serum separated from blood sample. These were mixed together adequately and centrifuged for 10 minutes at a frequency of 2000 r. p. m. The supernatant was discarded and the precipitate was washed twice with 25 cc of water for each time. Furthermore, 1cc of 4N sodium carbonate solution was added to twice washed precipitate and mixed together. This was dried in the drier heated to 80 to 90°C.

On the second day, the material was heated and calcinated in the electric furnace for an hour and a half at 600 ± 25°C.

On the third day, after gradual cooling down, 2 cc of 2N hydrochloric acid and 2 cc of 7N sulfuric acid were added to the material, which was diluted by water to 7 cc in all after small bubbles had disappeared that had been seen when hydrochloric acid and sulfuric acid had been added. The material was well mixed and centrifuged for 10 minutes at 2000 r. p. m. Clear supernatant of 3.5 cc was pipetted into a test tube for tintometry.

To the material, 1 cc of sodium arsenite solution was added and put into water bath of 60°C until the temperature was balanced. Then, 2 cc of cerium solution which had been previously heated to 60°C was added to the content of the tube, and at the same time the timer was let work. The tincture of cerium solution gradually fades according to the amount of iodine contained in the material. As the tincture almost faded, 0.3 cc of the material was pipetted into another small tube which contains 0.1 cc of ferroin solution. Here the seconds were counted in which the content of the small tube is tinctured red. Thus the amount of iodine contained in 1 cc of the serum is known from
the standard curve later mentioned. Since only one half of the material was used for determination in this procedure, the value obtained from the standard curve should be duplicated.

Standard curve.

Two cc of 2N hydrochloric acid, 2 cc of 7N sulfuric acid and 2 cc of standard solution of iodine (KI: Merk was used. The solution was adjusted to contain 0.02 to 0.15 gamma of iodine per 1 cc) were added to 1 cc of 4N sodium carbonate solution. After centrifugation for 10 minutes at a frequency of 2000 r. p. m., 3.5 cc of the supernatant was taken and the time was recorded in the same procedure as mentioned above. The standard curve was drawn taking seconds in y-axis and concentration of iodine in x-axis (Fig. 2).

Remark

By heating sodium carbonate to a high temperature as 600°C, time required for the fading of tincture of cerium solution is apt to be slightly shortened. Therefore, at every determination, the time for fading of sodium carbonate alone should be estimated as blank and this must be taken into consideration of the value actually observed.

ix) TSH-test

The test was made following the method of Jefferies.

Method

Radioactive iodine of 10μC was injected into the femoral vein in fasting state and 3 hours later thyroid 131I uptake was measured. At the same time blood sample was taken and serum protein-bound iodine level was determined (3-hour thyroidal 131I uptake and PBI). Immediately after this determination, TSH was injected intramuscularly at a dose of 100 Ms u. On the next day, i.e. 21 hours after the injection of TSH, residual radioactivity of the thyroid region was measured. Radioactive iodine of 10 μC was again injected into the femoral vein and 3 hours later thyroidal 131I uptake and serum PBI level after the administration of TSH was determined. At measuring post-TSH thyroidal 131I uptake, the radioactivity of the thyroid region measured previously to the 2nd injection of radio-active iodine was taken into account and physical diminish of radioactivity was corrected. Pretiron (Schering) was used as TSH. Procedure of TSH-test is briefly summarized in Fig. 3.

x) Weights of the thyroid gland

The animal was slaughtered by intravenous injection of 3 % potassium chloride of 20cc. The thyroid gland was taken out immediately after the death and weighed in the balance.
xi) Histological findings of the thyroid gland

The gland was immediately fixed in 10% formalin solution and stained with hematoxylin and eosin.

xii) Somnolent metabolism

Isozol (0.03 to 0.048/kg) was injected into the femoral vein of the dog that had been starved at least for 12 hours. As the dog fell asleep endotracheal tube with cuff was inserted. The cuff was swollen and the tube was connected to Knipping's apparatus (Ichikawa-Shiseido Co.). After the respiration and pulse had become quiet and gentle, somnolent metabolism was estimated. Respiratory coefficient was calculated from oxygen volume consumed and carbon dioxide volume expired.

III. RESULTS

1. Thyroid ¹³¹I uptake
 i. Before the operation

 Twenty-four-hour thyroid ¹³¹I uptake in adult dogs was measured to be 10.8% on the average, which coincides approximately with the value reported by FREDRICKSON. (Tab. 1)

 ii. Postoperative fluctuation

 As shown in Tab. 1, the average value of 24-hour thyroid ¹³¹I uptake shows a tendency of gradual decrease after the operation, that is, at the 4th postoperative week it ranged 9.0%, at the 8th week 6.2% and at the 12th week 5.8% each on the average.

 As to the correlation between insulin doses administered and thyroid ¹³¹I uptake, in the group of dogs administered with 1 to 2U/kg of insulin, thyroid ¹³¹I uptake showed little change at the 4th week, it showed decreased level at the 8th week and slightly increased level at the 12th week.

 On the other hand, in the group which received 3U/kg of insulin, it increased slightly at 4th postoperative week, then decreased at the 8th week and it decreased on further, at the 12th week. Less cases survived for long in the former group compared to the latter. Accordingly, it can be at least, pointed out that postoperative fluctuation in thyroid ¹³¹I uptake varies according to the dose of insulin administered. (Fig. 4)

2. PB ¹³¹I C. R.

PB ¹³¹I C. R. ranged before the operation 6.8% on the average, which decreased to
3.0% 4 weeks after the operation, maintaining as low a level as 4.6% until the 8th week and it increased up to 6.1% on the average 12 weeks after the operation showing a tendency to get back to the level before the operation. (Tab. 2)

As to the correlation between PB131I C.R. and insulin doses, the similar tendency was observed in all groups, that is, decrease at the 4th week, slight increase at the 8th week and approximate restoration to preoperative level toward the 12th week. (Fig. 5)

3. PBI level

PBI level ranged before the operation 5.8γ/dl on the average, which increased to 6.7γ/dl in the 1st week, then decreased gradually as time went on, that is, 5.4γ/dl at the 4th week, 4.7γ/dl at the 8th week and 4.2γ/dl at the 12th week. (Tab. 3)

As to the correlation between insulin doses and PBI level, PBI level increased in the first week which was followed by a gradual decrease with weeks, showing a similar tendency in all groups. (Fig. 1, 2, 3, 6)

4. TSH-test

The test was carried out after the method of JEFFERIES. Thyroid 131I uptake and serum PBI level were taken as the indication of the thyroid function.

i. TSH-test taking thyroid 131I uptake as an indicator Thyroid 131I uptake increased by the administration of TSH.19

In normal dogs, thyroid 131I uptake ranged from 3.5% to 40.8% with a mean of
Tab. 3 Pre- and postoperative PBI level (γ/ul)

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Ins. u/kg</th>
<th>Preop.</th>
<th>Weeks after Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6.5</td>
<td>7.8</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>6.2</td>
<td>7.2</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5.0</td>
<td>5.6</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>5.3</td>
<td>5.6</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>5.4</td>
<td>6.0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>5.5</td>
<td>6.6</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>6.4</td>
<td>7.4</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>5.9</td>
<td>6.8</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>5.5</td>
<td>6.3</td>
</tr>
</tbody>
</table>

Mean | 5.8 | 6.7 | 5.4 | 5.2 | 5.4 | 5.2 | 5.1 | 4.9 | 1.7 | 4.8 | 4.7 | 4.4 | 4.2 |

Fig. 6 P.B.I. and various insulin doses.

1. Insulin 1. U.

2. Insulin 2. U.

10.4%, which increased by the administration of TSH (100 Ms u.) to 7.5% to 65.3% with a mean of 22.1%. The rate of increase was 133.9% on the average. At the 4th postoperative week, pre-TSH thyroid ^131^I uptake ranged 6.3% to 21.4%, and it increased after the administration to 9.0% to 22.2%. The rate of increase was 27.0% on the average. Among these three cases of negative rate were observed. At the 8th week, pre-TSH thyroid ^131^I uptake ranged from 27% to 8.7%, which increased after the administration to 6.9 to 16.3%. The rate of increase was 98.4% on the average. In short, it is assumed from TSH-test taking thyroid ^131^I uptake as an indication that thyroid reserve diminishes remarkably 4 weeks after the surgery, which shows tendency to appr-
Tab. 4 TSH-test taking thyroid 131I uptake as its indication (%)

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Insl. u/kg</th>
<th>Before Oper.</th>
<th>After Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a*</td>
<td>b**</td>
<td>r. i.***</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>5.5</td>
<td>17.8</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>40.8</td>
<td>65.3</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>15.9</td>
<td>41.3</td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>7.1</td>
<td>14.6</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>5.4</td>
<td>14.0</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>7.9</td>
<td>18.9</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>7.5</td>
<td>17.6</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>3.5</td>
<td>7.5</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>3.6</td>
<td>8.3</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>6.5</td>
<td>15.5</td>
</tr>
</tbody>
</table>

Mean: 10.4 | 22.1 | 133.9 | 11.2 | 14.0 | 27.0 | 5.4 | 10.0 | 98.4 | 4.8 | 9.5 | 96.8

Rate of Increase = $\frac{b-a}{a} \times 100$ (%)

a*: Pre-TSH value b**: Post-TSH value r. i.***: Rate of increase

As to the correlation between insulin doses and the fluctuation of thyroid 131I uptake at TSH-test, the rate of increase of thyroid 131I uptake diminished all 4 weeks after the operation, which showed increase at the 8th week, showing a similar tendency in all groups. This reveals the fact that the thyroid maintains the function to respond to TSH and ability to recover its reserve which once diminished shortly after the operation.

ii. TSH-test taking serum PBI as an indicator.

PBI level increases by the administration of TSH. In normal dogs PBI level ranged from 5.0 to 6.2 γ/dl, with a mean of 5.6 γ/dl, which increased to 5.9 to 7.6 γ/dl, with a mean of 6.9 γ/dl after the administration of TSH (100 Ms u.). The rate of increase was 21.4 % on the average. At the 4th postoperative week, pre-TSH PBI level ranged from lowered level to preoperative one after the 8th week. (Tab. 4)

Fig. 7 Thyroid 131I Uptake and various insulin doses.

Fig. 8 Rate of increase in P.B.I. and various insulin doses.
Tab. 5 TSH-test taking PBI level as its indication (%)

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Ins. PBI level before operation (µg/dl)</th>
<th>After operation (µg/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a*</td>
<td>b**</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td>4th. Week</td>
<td>5th. Week</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>2</td>
<td>6.2</td>
<td>7.5</td>
</tr>
<tr>
<td>10</td>
<td>6.2</td>
<td>7.6</td>
</tr>
<tr>
<td>12</td>
<td>5.9</td>
<td>7.4</td>
</tr>
<tr>
<td>14</td>
<td>5.5</td>
<td>6.3</td>
</tr>
<tr>
<td>13</td>
<td>5.0</td>
<td>6.5</td>
</tr>
<tr>
<td>17</td>
<td>5.5</td>
<td>7.2</td>
</tr>
<tr>
<td>18</td>
<td>5.5</td>
<td>7.0</td>
</tr>
<tr>
<td>22</td>
<td>5.9</td>
<td>7.0</td>
</tr>
<tr>
<td>14</td>
<td>5.3</td>
<td>6.6</td>
</tr>
<tr>
<td>15</td>
<td>5.2</td>
<td>5.9</td>
</tr>
<tr>
<td>Mean</td>
<td>5.6</td>
<td>6.9</td>
</tr>
</tbody>
</table>

Rate of increase = \(\frac{b - a}{a} \times 100 \) (%)

a*: Pre-TSH value b**: Post-TSH value r. i.***: Rate of increase

from 4.4 to 5.9 µg/dl, with a mean of 5.3 µg/dl, which increased after the administration to 4.5 to 6.5 µg/dl, with a mean of 5.8 µg/dl. The rate of increase was 11.5% on the average. At the 8th week, pre-TSH PBI level was 5.0 µg/dl on the average, which increased to 5.7 µg/dl on the average after the administration of TSH. The rate of increase was 15.2% on the average. That is to say, in the fluctuation of serum PBI level at TSH-test, the rate of increase diminished, 4 weeks after the operation, to as low a level as a half of the preoperative level, which showed a slight rise 8 weeks after the operation (Tab. 5). As to the correlation between insulin decrease and the rate of increase in PBI, the rate decreased 4 weeks after the operation being followed by a slight increase at the 8th week, showing the similar tendency in all groups. (Fig. 8).

From this result, it can be assumed, similarly to the above mentioned thyroid \(^{131}\)I uptake, that thyroid reserve restores gradually, which once has diminished after the surgery, and the thyroid maintains the function to respond to the administration of TSH.

5. Weights of the thyroid gland

The thyroid glands were taken out and weighed immediately after animals’ death or slaughter with intravenous injection of 20 cc. of 3% potassium chloride. Thyroid glands in normal dogs weighed from 1.75 to 1.00 g, with a mean of 1.24 g, while in the completely depancreatized dogs, the weight decreased after the surgery, accompanied with body weight loss. The gland weighed 0.53 to 1.10 g, with a mean of 0.78 g within the first week, 0.48 to 0.88 g with a mean of 0.66 g at the 2nd week, 0.35 to 0.75 g, with an average of 0.60 g at the 4th week, 0.70 g to 0.80 g, with a mean of 0.75 at the 5th week, and 0.50 to 0.70 g, with a mean of 0.66 g at the 13th week. Furthermore, the proportion of the weight of the thyroid gland to body weight was 0.0132 in normal dogs, while in the dogs operated on it being 0.0118% at the 1st week, 0.0104%
at the 2nd week, 0.0105 % at the 4th week, 0.0106 % at the 5th week and 0.0104 % at the 13th week, showing an apparent decrease. (Tab. 6, 7)

6. Histological findings

In normal dogs, small follicles and large ones are scattered about at random. The follicle has one layer of epithelial cells, the cells being cubic in their shape and bearing oval or almost circular nuclei situated in the midst of the cytoplasm. (Plate 1. 2.)

One week after total pancreatectomy, the size of the follicles was observed to be remarkably diversified, each follicle being detached from the adjoining ones. There was also observed a proliferation of the connective tissue in the stroma. The histological appearance was featured by diminish of the large follicles and increase in the small ones. In small follicles colloid was not observed. These changes were widely observed in the parenchym of thyroid gland. Where the small follicles are conglomerated, epithelial cells were larger and a little brighter, bearing larger nuclei containing less chromatin compared to those of normal follicle. Nuclear corpuscles were readily observed. (Plate 3. 4.)

Two weeks after the operation, most of the follicles were seemed to have changed small, their epithelial cells being cubic and slightly flattened. Fibrosis of a slight degree could be observed in the stroma. Colloidal content of the follicle included basophilic substance of irregular shape, which was stained partly dark, partly bright. (Plate 5. 6.)

Four weeks after the operation, small follicles increased more conspicuously, accompanied with an increase in the connective tissue in the stroma. In some areas degeneration was observed, containing colloid stained partly dark,
partly bright. (Plate 7. 8.)

Ten weeks after the operation, findings were roughly similar to those observed 4 weeks after the operation, being scattered with Hurthle-like cells here and there. (Plate 9. 10)

Eighteen weeks after the operation large follicles disappeared and were replaced by small follicles and prosperous proliferation of epithelial cells without colloidal content, the masses of epithelial cells being consisted of epithelial cells alone. This conspicuous proliferation of follicular epithelial cells obviously differs from the papillary proliferation protruding to the inner space of the follicles which is commonly observed in cases of so-called hyperthyroidism. (Plate 11. 12)

To summarize these findings, the changes in thyroid gland of completely depancreatized dog are (1) diminish of large follicles, (2) occupation of small follicles all over the parenchyma of the gland after the surgery. Is this increase in the small follicles attributable to the alteration from large follicle or to a newly developed proliferation? This must be assumed to be newly occurred proliferation of the follicles, since the fibrosis is not remarkable, and small follicle proliferates parenchymatously containing imperfect colloid in their inner space and moreover, there can be observed some follicles which has no colloidal content. Furthermore, it is characteristic that the conglomeration of these small follicles occupies parenchymatously all over the gland, which is apparently different from the proliferation commonly observed in hyperthyroidism. According to these findings, it may be presumed that some follicles proliferated compensatorily taking place in the site of atrophy of the parenchyma of the thyroid. Such a diminish in large follicles and an increase in small follicles were also observed in the dogs not treated with insulin as well as in the those treated with it. This change, however, appears shortly after the surgery in the former, while it appears after a long interval in the latter.

7. Somnolent metabolism

As to the rate of metabolism in diabetics, some says accelerated and others declined. OKADA reported that respiratory coefficient diminishes in most cases of serious diabetes.

In normal dogs, respiratory coefficient ranged from 1.04 to 0.70, with a mean of 0.88, while it showed lower rate in completely depancreatized dogs as 0.67 to 0.74, with a mean of 0.72. As to the correlation between insulin doses and the coefficient, it showed small rate irrespective of insulin dose with an exception of a case which shows a slight increase. (Tab. 8)

<table>
<thead>
<tr>
<th>Dog No.</th>
<th>Insulin dose u/kg</th>
<th>Before Operat.</th>
<th>After Operat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1.04</td>
<td>0.72</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.79</td>
<td>0.72</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td>0.70</td>
<td>0.72</td>
</tr>
<tr>
<td>13</td>
<td>2</td>
<td>0.98</td>
<td>0.74</td>
</tr>
<tr>
<td>17</td>
<td>2</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>0.88</td>
<td>0.73</td>
</tr>
<tr>
<td>22</td>
<td>2</td>
<td>0.92</td>
<td>0.67</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>0.98</td>
<td>0.73</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>0.88</td>
<td>0.72</td>
</tr>
</tbody>
</table>
IV. DISCUSSION

It is a problem of utmost importance to consider about the action of the thyroid hormone in the glycometabolism, when one discusses over the thyroid function in diabetes, in which the utilization of glucose in the peripheral tissues is assumed to be disturbed.

Thyroid hormone urges the phosphorization of glucose in the intestinal tract and enhances the absorption of glucose. On the other hand, it accelerates the decomposition of glycogen in the liver. In addition, it urges metabolism in the peripheral tissue and oxydation of glucose, enhancing at the same time decomposition of protein and mobilizing protein and fat in the periphery to provide the material for glucose synthesis in the liver.

The action thyroid hormone in diabetes following complete pancreatectomy if considered to work in mobilizing peripheral protein to provide the material for glucose synthesis in the liver, rather than in the process of glucose absorption, that is, it works in the process in which the peripheral protein is altered into amino acid, judging from the fact that the rate of glucose absorption is not so much lowered as to be estimated and moreover, from the mechanism of active absorption of glucose in the intestinal tract. Accordingly it can be conceived that in diabetes due to the total pancreatectomy, the thyroid participates in glycometabolism playing rather an indirect role as a constituent of anti-insulin system.

In the whole course of the present experiment, attention was paid to improve the utilization of protein, glucose and fat by feeding the dogs with well boiled rice, wheat and fish, what differs from the item of diet in the abroad which is chiefly consisted of raw beef and horse-flesh. In addition, development of fatty liver was fairly prevented by the administration of insulin of suitable dose. Moreover, attentions were paid to lessen the mortality of the operation, and to provide a favorable condition for long survival. In this direction, for instance, the animals were anesthesized with intravenous anesthetics and autonomic nervous system blocking agent was used at the same time in the aim of potential anesthesia, that is, the autonomic nervous system blocking agent was used for its beneficial effect to prevent shock and to depress metabolism of organism and its advantages as it strengthen the effect of barbiturate which does not act as an anodyne, but hypnotics.

As the routine examination of thyroid function, determinations of thyroid 131I uptake, PBI level and basal metabolism are widely carried out. HERTZ, in 1938, first carried out thyroid 125I uptake, assuming it to indicate thyroid function directly. This procedure has become to be carried out more popularly, since he found that radioactive iodine concentrates markedly in the thyroid of animals. It has been assured that radioactive iodine, when injected into an organism, behaves quite similarly to nonradioactive iodine mixing together with it which naturally exists in the body. That is, radioactive iodine, being taken up into the thyroid, participating in synthesis of thyroid hormone, being secreted into blood stream and being consumed in the peripheral tissues. Accordingly, it is possible to know the behavior of iodine in the body by tracing that of radioactive iodine in it. In hyperthyroidism, thyroid 131I uptake is found to be highly elevated and PB 125I also. On the contrary, both thyroid 131I uptake and PB 125I are prominently
decreased in hypothyroidism. These findings reveal the fact that thyroid iodine uptake is increased, and synthesis and release of the hormone is enhanced in hyperthyroidism and reversed in hypothyroidism. Therefore, PB 131I C.R. correlates well with thyroid function, showing higher level in hyperthyroidism and lower level in hypothyroidism. MARUMOTO reported that six cases out of 11 showed 131I excretion pattern of hyperthyroidism in diabetics, and WERNER also reported constant increase in thyroid 131I uptake in diabetics. On the other hand, INA reported that thyroid 131I uptake and PBI level were found to be decreased, with an increase in excretion of radioactive iodine in diabetics treated with insulin. He assured further in albino rats that thyroid 131I uptake was decreased by an administration with insulin.

Thyroid 131I uptake should be taken into account with blood 131I concentration, since blood 131I concentration together with renal function has much to do with thyroid 131I uptake.

It has been reported concerning PBI that it shows higher level in diabetics than in normal men, which, when treated with insulin, shows a decrease. Blood-plasma protein-bound iodine also reflects thyroid function fairly well, showing high level in hyperthyroidism and reversed in hypothyroidism.

To consider the thyroid function of completely depancreatectomized dogs treated with insulin, taking above mentioned findings into account, it is deemed to be declined, judging from decreased uptake of radioactive iodine, decreased PB 131I C.R. and PBI level, i.e. hypothyroidism.

Here a question, however, arises whether the hypothyroidism is primary one or secondary to pituitary insufficiency. TSH-test was carried out to discriminate whether.

It is widely known from the experiments of CHAIKOFF and BECKER using radioactive iodine that the thyroid function is controlled by the pituitary gland through its thyroid stimulating hormone. A number of attempt to estimate thyroid function using TSH have been tried. SCHNEEBERG, JEFFERIES and others attempted to discriminate primary hypothyroidism from hypothyroidism secondary to pituitary insufficiency by the use of TSH. KEATING conceived the existence of two phases in the process in which TSH acts, that is, first a release of thyroid hormone and second an increase in thyroid 131I uptake. STANLEY and WOLF pointed out the fact that there can be observed an increase both in PBI level and thyroid 131I uptake and faculty of release and uptake are similarly stimulated by TSH, though there exists a lag phase between uptake and release. In primary hypothyroidism, in which both thyroid 131I uptake and PBI level were estimated to be decreased, there were no change in these two values after the administration of TSH revealing the findings of atrophy of thyroid gland and degeneration of follicle cells histologically.

As to hypothyroidism secondary to pituitary insufficiency it has been noticed that larger dose of TSH can induce changes in these two values, although usual dose cannot. The thyroid function of completely depancreatectomized dog is deemed to be declined, observing from a stand point of thyroid reserve to TSH, that is, less increase in thyroid 131I uptake and PBI level compared to those of normal dogs. It is thought to be certain that the cause of hypothyroidism of completely depancreatectomized dog consists in the pituitary gland,
since it was impossible to observe histological appearance such as monotonous degeneration of epithelial cells in follicles, and in addition, the appearance chiefly consisted of proliferation of small follicles scattered with focal degeneration. It is already certain experimentally by HASEGAWA that the function of pituitary gland declines when the pancreas is completely removed. Accordingly, it is obviously accepted that the hypothyroidism due to total pancreatectomy has its cause in the pituitary gland, when one considers the fact that there lies so-called feedback mechanism in hypophysis-thyroid system and the pituitary gland and the thyroid perform mutual adjustment to each other through TSH and thyroxin. The decrease in thyroxin secretion should be considered to be an adaptation of organism in the direction to lessen the disturbance of glucose utilization in diabetic, which is due to shortage of insulin following complete pancreatectomy, judging from the fact that thyroxin promotes the degradation of insulin.

Thus the declined thyroid function gradually restores, with the promotion of glucose utilization following administration of insulin of suitable dose.

V. SUMMARY

Thyroid function of completely depancreatized dog was studied, under the administration of insulin at the dose of 1 to 3 u/kg, and following results were obtained.

1) Thyroid 131I uptake showed a tendency of decrease after the surgery with its lowest level at the 8th week. Some cases showed, however, a slight approach to the level before the operation more than 8 weeks after the surgery.

2) PB 131I C.R. also decreased, as well as thyroid 131I uptake, which showed, although it remained in lowered level, an approach to the preoperative level 8 weeks after the operation.

3) Serum PBI level decreased after the surgery as days went on, which showed little change maintaining lowered level more than 8 weeks after the surgery.

4) In TSH-test which takes both thyroid 131I uptake and serum PBI level as indication, it was clarified that thyroid reserve declined indicators showing a tendency of an increase after the 8th postoperative week.

5) Weights of thyroid gland decreased after total pancreatectomy.

6) Histological examination revealed an increase in small follicles and a decrease in large follicles in the thyroid gland. These findings are conceived to be a sign of compensation for decline of the thyroid function due to degeneration such as destruction of some follicles.

7) By the determination of somnolent metabolism, postoperative decrease in respiratory coefficient was recognized.

To summarize all these findings, the thyroid function increases temporarily in the early postoperative stadium which decreases as time goes on being accompanied with later recovery, slight as it is, when the completely depancreatized dog is treated with insulin. The appearance of declined thyroid function is considered to be hypothyroidism secondary to pituitary insufficiency.

(The present study was reported briefly at the 33rd and 34th annual meeting of Japan Endocrinological Society.)
In accomplishing the paper, I express my deepest gratitude to Prof. Dr. Ichio Honjo for his continuous and kind guidance.

I am also deeply indebted to Dr. Hisada and Sadao Michii in Rontogenological Department of the University, Shiro Okuno in Pathological Department of the University and Dr. Mizumoto in our clinic for their kind advices and kind helps throughout the course of the experiment.

References

1) Licini, C.: Der Einfluss der Exstirpation des Pankreas auf die Schilddriise. Deut. Z. Chir. 5-6, 522. 1909.
THYROID FUNCTION OF THE COMPLETELY DEPANCREATIZED DOG

和文抄録
「インシュリン」投与下に於ける腎全摘除の甲状腺機能

金沢大学医学部第二外科教室（指導：本庄一夫教授）
金 田 売

腎全摘除において、術後「インシュリン」投与量を1〜3単位/kgとして、甲状腺機能を観察した。即ち
(1) 甲状腺131I摂取率
術後131I摂取率は4週目では変動少なく、8週目に至り低下する。更に8週目以後では、低下ながら、やや
上昇の傾向を示す。
(2) 血漿蛋白結合ヨード交換率
術後4週目では低下し、8週目より低下ではあるが、上昇傾向を示す。
(3) 血清蛋白結合ヨード
術後日数と共に、PBI値は次第に低下するが、8週目以後では、低値ではあるが、余り変動を認めない。
(4) TSHテスト
① 甲状腺131I摂取率を指標とするTSHテスト
② 血清PBIを指標とするTSHテスト
何れの場合も、増加率より見れば、甲状腺機能の低下は、術後激減するが、8週目より、術前の復帰傾向
を示す。
(5) 甲状腺重量
腎全摘除後は甲状腺重量は減少する。
(6) 組織学的所見
腎全摘除後、大型腺腫の減少、小型腺腫の増加を認める。小型腺腫の増加は、一部腺腫の破壊などの退行性
変化による、代償の現れであるが、全体としては機能低下を示す。
(7) 眼瞼水代謝
腎全摘除後は呼吸高は低下する。
以上を総括すると、腎全摘除に於いて、「インシュリン」を投与した際には、甲状腺機能は、初期にはや
亢進するが、経過と共に低下し、再び低下するが、腎全摘除後の甲状腺機能低下は、下垂体性機能性甲状腺機能低下によるものである。
（尚本論文の要旨は第33、34回日本内分泌学会にて発表した）