高周波誘導法による深部脳実質

破壊法について

京都大学医学部外科学教室第1講座(指導:荒木千里教授)

伊藤

〔原稿受付 昭和37年7月20日〕

隆

DEEP LOCALIZED INTRACRANIAL LESION PRODUCED BY HIGH FREQUENCY INDUCTION METHOD

by

Τακάσηι Ιτο

From the First Surgical Division, Kyoto University Medical School (Director : Prof. Dr. Снізато Акакі)

The method of destroying a circumscribed deep area of intracranial tissue by the use of the high frequency induction is evaluated in this paper.

The principle of this method is thermonecrosis, the thermal energy of which is conveyed by way of high frequency electromagnetic field. In other words, when an electric conductor is inserted into high frequency electromagnetic field, there is generated eddy current within the outside layer of the conductor, resulting a loss of electric power and finally generation of heat, according to the Joule's law. The equivalent circuit of this method can be regarded as a transformer and the material (an electric conductor) which is implanted deep into the brain can be considered as the second order circuit loading resistance R_{\cdot} , the outside layer of which can be regarded as coil L₁. The coil L₁ in the first circuit which deserves the generation of high frequency electromagnetic field is called the inductor.

The characteristics of the high frequency induction unit which was available to us by favor of the Applied Science Research Institute, Kyoto, were as follow : oscillation method gap method, frequency 80 K. C., in put 20 K. V. A. ; inductor one turn coil, inside diameter 9.5 cm, length 5.0 cm.

As the material to implant deep into the brain of experimental animal (cat), a ball with radius of 2.5 mm and in some cases with radius of 2.0 mm and 3.0 mm was made of stainless steel. After implantation the head of the cat was inserted into the inductor which was insulated with mica and glass. Care was taken as far as possible that the implanted steel ball should pass the midpoint of the axis of inductor during the irradiation in the high frequency electromagnetic field.

Results

1) Shape of lesion (1)

深部脳実質破壊法について

The shape of lesion was spherical and its boundary was definite and smooth. This remained the same even in the cases in which the lesion extended to a part of the cortex, white matter or basal ganglia.

2) Relation between the size of lesion and irradiation time

As to the relation between the irradiation time and the mean radius of lesion 3 days after irradiation it was proved that the efficiency of destruction was not proportional to irradiation time but had a certain limit. (If the steel ball with radius of 2.5 mm was used, the efficiency of destruction fell rapidly down after approximately 2 minutes of irradiation.)

3) Change of the size of lesion after irradiation

About a week after irradiation shrinkage of the lesion began and during the 3 rd week the lesion resulting from irradiation for 10 minutes became smaller than that resulting from 4 minutes irradiation.

4) Size of lesion by repeated irradiations

The mechanism of this method shows that so far as the numerical data concerned the lesion can not become larger by repeated irradiations but remains about the same.

But taking into consideration of the phenomenon of shrinkage of the lesion, it would be certain that the repeated irradiations with certain intervals (about a week) should make a physio-anatomically larger lesion.

5) Edema of the brain

Preparations revealed that edema of the brain appeared in all cases. Since after a certain time of irradiation edema became improportionally stronger, it would be wise that irradiation should be limited within a certain time in practical use.

6) Shape of lesion (2)

In some cases the steel ball migrated more or less away from the originally implanted place. It must be concerned with specific gravity of the steel ball.

7) Histological changes

i) The shape of lesion was spherical and well localized, and its boundary was smooth and definite. This might prove that the destructive effect by this method should extend over the same distance from the implanted material regardless of surrounding structures, i. g. nerve cells, fibers, glial cells or vascular elements.

ii) Severe vascular injury could not be recognized. Only slight haemorrhagia per diapedesin could be found within the marginal zone of the lesion, but neither haemorrhagia per rexin nor distinct thrombi could be recognized.

iii) Distinct scar tissue was not observed.

次

8) Influence of high frequency electromagnetic field upon the living body.

High frequency electromagnetic field seemed to be harmless in all respects.

It could be concluded from this experiment that this method might be worth while to be used for producing a deep localized intracranial lesion.

- 目
- 緒言

第1章 高周波誘導法の原理

- 第2章 実験方法
- 第3章 実験結果

第1部 破壊巣の形態及び大きさ

(I) 1回照射群

- 1) 破壊巣の形態
- 2) 破壊巣の大きさと照射時間との関係
- 3) 破壊巣の大きさと照射後飼育期間との関係

734

4) 脳浮腫

- (Ⅱ)反復照射群
 - 1) 破壊巣の形態及び大きさ
 - 2) 再び破壊巣の形態について
- 第2部 組織学的変化
 - 1) 神経細胞の変化
 - 2) 神経線維,特に髄鞘の変化
 - 3) 神経膠細胞及び間胚葉性成分の変化
 - 4) JIS 不銹鋼第5種自体の影響
- 第4章 考按
 - 1) 高周波誘導法一般について
 - 2) 被加熱物体と誘導子
 - 3) 照射時間,破壊巣の形態,大きさ及び反復 照射
 - 4) 組織学的変化
 - 5) 高周波磁界の生体に及ぼす影響
 - 6) 高周波誘電法について

緒

第5章 総括及び結論

言

頭蓋腔内深部組織を限局性に破壊する方法として, 古くより化学的,機械的及び電気的方法が使用され, 更に近年にいたり超音波及び放射能等も利用されるに 到つた.

破壊法を特に治療の目的で使用する場合,破壊巣の 限局性とその形態の均一性,及び大きさの調節性,並 びにその方法の再現性と反復性の有無:即ち頭蓋腔内 深部の或る定点を中心として,限局した一定の形態の 破壊巣を作り,而もその大きさを自由に調節出来るか 否か,又同じ定点を中心として,その破壊効果を任意 の時に,而も何回でも反復して周囲に及ぼし得るか否 かは,その破壊法の価値判断上極めて重要な点であ る.然るに現在に至るも尚上記の条件を同時に,而も 困難な操作を必要とせずして満足する方法は実用に供 されていない.

若しかかる方法があれば、それは次の如きものであ ろう. 1) 破壊の為の外科的侵襲は1回のみにて完 了し、且その時の手術創が完全に縫合閉鎖されること が望ましい.而も再現性及び反復性を確実に、且比較 的簡単な操作で満足さす為には、技術上種々の問題は あるが、頭蓋腔内定点に何物かを挿入埋没する方法が よいと思われる. 2) 次に埋没される物自体は特殊 な破壊作用を有してはならない。このことは調節性及 び反復性の為に必要である.従つて頭蓋腔外より埋没 物体にむけて,破壊効果発生に必要なエネルギーを送 る方法を取らざるを得ない. 3) 更にこのエネルギ ーは埋没物体にのみ吸収され,生体組織に吸収されて はならない.このことは破壊巣の限局性の為に必要で ある.

本研究では、これらの点を理論的にほぼ満足するの ではないかと思われる新しい頭蓋腔内深部組織破壊法 として、高周波誘導法をとりあげ、この方法が果して 臨床上の使用に耐え得るか否か、若し応用出来るなら ば、どの様な点に注意を払うべきかを検討した.

第1章 高周波誘導法の原理

高周波誘導法による破壊とは,高周波磁界内へ金属 の如き電気的良導体を置くと,導体内に渦電流が発生 し,この際一定の電力損失(渦電流損)が起り,これ が熱に変化して導体が熱せられ,この熱によつて隣接 組織を破壊する方法である.

即も高周波磁界を媒介として,破壊に必要なエネル ギーを被加熱物体(導電性物体)に送る方法であり, その等価回路は変圧器と見做すことが出来,被加熱物 体は抵抗 R₂を負荷とする変圧器の2次回路と考え得 る(図 1,2). つまり被加熱物体の表層がコイル L₂に,

高周波誘導法の等価回路 2 次回路に電流 I₂ が 流れると,抵抗 R₂ に はジュールの法則に従つて熱が発生する. L₁ は誘導子とよぶ.

その電気抵抗が R_2 に相当し、回路に電流 I_2 が流れる と、ジュールの法則に従つて R_2 即ち 被加熱物体に熱 が発生するのである. 1 次回路のコイル L_1 は 被加熱 物体に高周波磁界を作用さす役 を 務め、特に誘導子 (Inductor) と呼ばれる.

第2章 実験方法

高周波発振器は,応用科学研究所の好意により,入 力20KVA,周波数80KCのギャップ式のを使用し (図3,9),回路に逓降変圧器を挿入し,誘導子として は内径9.5 cm,長さ5 cmの1巻のコイルを用い,温度 上昇を防ぐ為に中空としてそこに水を通して冷却した (図8).

被加熱物体としては, JIS 不銹鋼第5種(SEC 5, 一 般に18クロム鋼と呼ばれる)で作つた 半径 2.5mm の球 を使用し, 一部の実験には更に半径 2.0 及び3.0mmの鋼 球も用いた.

実験動物には体重 2-4kg の成熟猫を使用した.体重 kg当り50mgのペントバルビタール全身麻酔後,左頭頂 骨を広く露出し,Bregmaより尾方1cm,矢状縫合より 骨表面に沿つて1.5cm 左方の点を中心として,直径約 1cmの骨窓を穿つた.骨窓の中央部の硬脳膜に小切開 を加え,現れたGyrus (大体 Gyrus ectosylvius medialisの後部,又はG.ect.posterior に相当する)の頂点 から,前額面内に於て,矢状面と約15°内下方へ,直 径約0.5mmの硝子棒を脳表面より1.0cm深部迄挿入して 鋼球の通路を穿つた.次に少しづつ太い硝子棒で同様 の操作を行い,埋没する鋼球の直径よりも約0.5mm 細 い棒に至る迄反復した.然る後に鋼球をこの通路を通 して静かに且正確に通路の底迄押しこみ埋没した.操 作は総て無菌的に行い,又出血を防ぐように努めた.

埋没被加熱物体に高周波磁界を作用さすのは(以後 高周波磁界の照射,又は単に照射と記す), 全例 ベン トバルビタール全身麻酔のもとに行い,初回の照射は 鋼球挿入手術後約24時間目に行つた.

照射は誘導子の内面を雲母及び硝子にて絶縁して動 物の頭部を挿入し,埋没鋼球を含む前額面がなるべく 誘導子の軸の中点を通る様な位置に固定して行つた (図6.9).

照射の条件は実験結果の各項で述べる.

脳内破壊巣の拡がりを神経症状で判定することは極 めて困難であり、又不正確であることを知つたので、 破壊巣の部位及び拡がりの検査は全く組織学的方法の みによつた。即ち 脱血屠殺後10% 中性ホルマリン約 500 cc を1m 水柱圧にて総 頸 動脈より注入固定し、 型の如く脳を取出し、鋼球埋没部位を含めて約1cm厚 さの前額切片を作り、再固定後一方より 鋼 球を取出 し,右側(埋没反対側)は図11から32の如く,中央部 の厚さが20.0mmになるように水平切断を行い,標本製 作操作による組織の収縮に大差がある場合にはこれで 補正することにし,セロイジン包埋後厚さ約17μの連 続切片を製作し,20枚毎に Klüver-Barrera 染色を行つ た.又必要に応じては Nissl, ヘマトキシリンーエオ ヂン及びアザン染色も行つた.

第3章 実 験 結 果

照射に際して現れる唯一の神経症状は,全身の軽い 顫えである.これは照射時に高周波発振器のギャップ 間の放電により「ジー」と極めて大きな音が出る為, これに対する反応と見做し得る.何故ならば頭部を誘 導子内に入れなくても起るからである.

初回の照射では,照射後動物は一般に著しく元気が ないが,これは埋没鋼球に発生する熱により破壊巣が 出来ると同時に,その周辺に脳浮腫が生じ,脳圧が亢 進する為であり,高周波磁界が直接脳組織に及ぼす影 響によるものではない.何故ならば鋼球を埋没しない 動物の頭部に照射を行つても全身状態は悪化しないか らである.

脳の検査成績は2部にわける.第1部は破壊巣の粗 大形態及び大きさに,第2部は組織学的変化に関する ものである.

第1部 破壊巣の形態及び大きさ

(肉眼又は20倍での所見)

第1部を更に1回照射群と反復照射群とにわける.

(I) 1回照射群

1) 破壊巣の形態

後述する例外を除いては,初期の破壊巣の任意の断 面は正しい円形をなし,その境界は極めて鮮明である (図10).即ち破壊巣は埋没鋼球を中心として,幾何学 的とも云い得る球形を呈し,判然と限局され,その周 辺正常部位との境界は極めて鮮明であり,滑かであ る.このことは破壊巣が皮質,髄質又は大脳核のいづ れに及んでも同様であり,破壊巣の周辺がこれら2者 に跨る時でも,滑かに円弧を画いて健康部に移行し, 不規則な形態は原則として決してとらない.

2) 破壊巣の大きさと照射時間との関係

この関係を知る為に埋没鋼球の半径及び照射時間を 種々にかえ,照射後3日目の破壊巣(即ち球)の平均 半径を連続切片より求めた.この際照射時間は発振器 の構造上約14分以上は無理であり,又半径3.0mmの鋼 球使用例では8分照射を行つた3例とも6時間以内に 死亡した (図11~19).

実験結果を第1表及び第4図に示す。破壊巣平均半

	使用鋼球半径 (㎜)		
	2.0	2.5	3.0
0	1.52mm	1.75mm	2.17mm
1/4			2.66
1/2			3.04
1	2.65	2.71	3.42
2	3.11	3.04	3.77
4	3.30	3.22 3.28	4.44
6			4.59
8	3.33	3.39	+
		3.52	
10		3.52	
		3.62	
12	3.51	3.75	
14		3.82	

破壊巣平均半径と照射時間 第1表

径と照射時間との関係曲線は、初めは比較的急に上昇 するが,それ以後は漸次ゆるやかになる。従つて効率 よく破壊出来るのは一定の照射時間(例えば半径2.5mm の鋼球を使用した場合は約2分)以内であることがわ かる.

3) 破壊巣の大きさと照射後飼育期間との関係

本実験には半径 2.5mm の鋼球を使用し, 照射時間は 4分及び10分に一定し、照射後の飼育期間は12時間か ら4週間に、1例では96日に及んだ。(12時間以内の 飼育例では、破壊巣の境界が不鮮明な為に破壊巣平均 半径が求め難いので省略した.)(図15,16,20~26).

実験結果を第2表及び第5図に示す. ここで注目す べきは、1) 照射後1週間目位から破壊巣の収縮現 2) 3週目になると10分照射による破 象が初まり, 壊巣の方が、4分照射によるものより小となり、組織 変性の強さを物語つている点である。この破壊巣の収

破壊巣平均半径と照射後飼育期間 第2表

			4	照	射 分	時 10	間分
	1/2	Ħ		2.76m	n		3.54mm
照	1	日		2.96			3.53
射				3.22		·	3.52
後	3	日		3.28			3.52
飼							3.62
育	5	Ħ		3.64			3.52
期	1	週		3.65			3.38
間	2	週		2.82			3.01
	3	週		2.35			2.22
	4	週		2.22			1.95

縮現象は後述の如く反復照射に際して重大な意義を持 つものである。

4) 脳浮腫

本法による破壊巣の周囲には必ず脳浮腫が生じる. それで大略ながら,第3脳室の長軸を通る直線が大脳

第3表	脳浮腫と照射時間
	(照射3日後)
1	使用鋼球半径(㎜)

	2.0	2.5	3.0
0	2°	0°	2°
. 1/4			3
1/2			18
1	9	7	22
2	13	21	19
4	15	20	25
6		19	15
8	18	26	+
10		24	
12	19	27	
14	-	14	
	0 1/4 1/2 1 2 4 6 8 10 12 14	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

第4表 脳浮腫と照射後飼育期間

		i		照	射	時	間	
			4		슜	10	5	4
	1 🖡	詽		0°			8°	
077	3 ⊯	靜	ł.	7			13	
RR A-t-	6 ⊯	間		15			15	
初	12	間		15			11	
飼	1	Ħ		13			15	
育	2	Ħ		13			14	
期	3	Н		15			16	
間	5	日		15			16	
	1	週		14			12	
	2	週		6			8	
-	3	週		6			4	
	4	週		- 1.5			- 4	
	96	日					- 3	

半球間裂を通る直線となす角度で互に比較することに した.

a) まづ I-2 項で使用した群(第1表)について求 めた結果を第3表に示す.こ、で注目すべきは,2.0及 び 2.5mm 半径の鋼求使用群では照射時間が 2 分になる と,又 3.0mm 鋼球群では30秒になると角度が 急に大と なることである.従つて実用に際しては,これらの照 射時間以内で照射を行つた方が破壊巣の大きさに比し て脳浮腫の程度が軽くて賢明である.又この値は図 4 の曲線が,初め比較的急に上昇する部位に相当してい る.

b) 次に I-3 項で使用した群(第2表) について求 めた結果を第4表に示す.これでわかることは,照射 後6~12時間で脳浮腫は最も強くなり,この状態が約 1週間続き,第2週目には著明に弱まり,第4週目に いたり角度は負,即ち正中線の曲り方は逆となること である.この経過は破壊巣の収縮現象の過程とよく一 致している.

(Ⅱ) 反復照射群

本項の主な研究目的は,高周波照射を反復した場合,破壊巣の大きさがどの様に変化するかを知ることである。埋没鋼球には半径2.5mmのを使用し,照射は7日毎に行い,4分を2回から8回,10分を2回から5回照射し,更に照射時間をかえた反復照射群も作つた。全例とも最終照射3日後に屠殺して標本を作つた。

1) 破壊巣の形態及び大きさ

破壊巣の形態は後述する例外を除いては球形を呈し たので,第1群と同じく破壊巣の平均半径を求めて比 較した.

実験結果を第5及び第6表に示す.ここで注目すべ きは値がまちまちなことである.

これは後にも述べるが,被加熱物体の誘導子内に於 ける位置関係を本実験では常に厳密には一定にするこ とが出来なかつた為であり,即ち磁界との関係が各例 によつて異つた為であつて,本法の本質に関係するこ とではない.

この様に単に数値のみから論ずれば、反復照射をし ても破壊巣は必ずしも大とならず、無意味の様に思わ れるが、後述の如く破壊巣の収縮現象を考慮するなら ば、実際に破壊されている脳の生理一解剖学的部位は 大きくすることが出来、従つて反復照射は決して無意 味ではない.

破壊巣平均半径					
			照 射	時	間
		4	分	10	分
			3.22mm		3.52mm
	1		3.28		3.52
反省		1			3.62
服	2		*		*
射回	3		*		*
画数	4		3.25		3.99
	5		3.26		2.74
	8		3.06		

*:破壊巣の形態球形ならず

第6表 異つた時間の反復照射群の 破壊巣平均半径

	照	射 回	数	
	第1回	2 回	3 回	破壞巣平均半径
照	4分	6分		3.67mm
射	4	8		3.29
時	4	10		3.69
間	4	4	8	3.39
	4	4	12	2.86

2) 再び破壊巣の形態について

これ迄は破壊巣の形態が球である例についてのみ述 べてきたが,反復照射例や長期間飼育した例では破壊 巣が球形をなさず,亜鈴形をなす例があり(図27,30), これが極端になると照射による破壊巣と全く異つた場 所に鋼球が埋れていることがあつた(図25,26).この 現象は明かに鋼球がその重さの為に脳実質内で沈降し たためであり,従つて単に被加熱物体全体としての比 重にのみ関係し,これの改良によつて解決され得る問 題である.

第2部 組織学的変化

破壊された部位の広がりを別とすれば,組織学的変 化は4分及び10分照射例で著明な差異は認められない ので,以下共通の所見を構成々分にわけて述べる.

1) 神経細胞の変化

照射後1時間では破壊巣の鋼球に接する部の神経細 胞は内部(核及び細胞形質)構造を殆ど失い, 淡染す る均質性の像として認められる (第1層, Spielmeyers Gerinnungsvorgänge).

周辺部の変化は大体2つに分けられる.先ず或る神 経細胞は鋭三角形又は樹根状に縮小し,細胞形質,核 共に濃染して両者を殆ど区別出来ない(第2層,Zellschrumpfungen,Sklerose).又或るものでは胞体が少し く萎縮し,神経細胞周囲腔は著明に拡張し,ニッスル 氏小体の崩壊が認められ,更に一部の細胞には著明な 空胞形成が起る.又核にも変位,萎縮,濃染等と多彩 な変化が現われる(第3層,Verflüssigungsprozesse). Zellschrumpfungen と Verflüssigungsprozesse は混つて 存在する部位もあるが,一般には Zellschrumpfungen の方が破壊巣中心側に近く位置する傾向を示し,この ことは特に海馬の如く同じ形態の細胞が密に配列する 部位では極めて顕著に認められる(図33).

以後時間と共にこれらの変化は急速に進行し、1日 後(図34)には第1層の細胞は完全に消失し、2日後 には破壊巣内神経細胞の脱落消失はほぼ完了したと見 做して差支えなく、ただ第3層の外周部(少数のZellschrumpfungenを混える)が薄層をなして残るのみと なる.

2) 神経線維,特に髄鞘の変化

(軸索に対しては特殊染色を行わなかつたので,本項 では髄鞘の変化についてのべる)

照射1時間後で,大体神経細胞がZellschrumpfungen を呈する部位より中心側に於ては, 髄 鞘 は断 裂, 蛇 行,染色性の著明な低下等を示すが,その境界はあま り鮮明ではない.

10分照射の例で注目すべきことは、上記の範囲以外 にも変化が及んでいることである.即ち破壊巣に接す る Centrum semiovale 及び Corona radiata は染色性が 低下し,且疎となり,神経細胞の変化の範囲よりもか なり広範囲にわたつて変化が及んでいるが,これに反 し Tractus opticus の中枢側は Corpus geniculatum lateraleと共に破壊されてはいるが,この場合の髄鞘変 化の境界は破壊巣周辺の神経細胞の変化の境界とほぼ 一致している.この様な現象は他の標本でも屢々認め られ,髄鞘の太さによつて破壊作用に対して感受性が 異るものか,又は破壊巣より遠心性に走るもののみが 変化を受けるものか,その機序は不明である.

以後時間と共に局所の染色性は急激に低下し、3時 間後には境界がかなり鮮明となり、6時間後には中心 部は完全に脱髄し、周辺部に蛇行断裂淡染し膠状とな つた髄鞘を認めるのみとなる。

第5表 同一時間の反復照射群の 破壊単平均半径

2日後には周辺のかかる変化層は極めて薄くなり, 破壊巣の脱髄は完了したと見做して差支えない.この 脱髄の境界は神経細胞の破壊第3層とほぼ一致する. 従って神経細胞一髄鞘二重染色標本では,破壊巣の周 辺は一般に滑かな円弧をなして健康組織に移行する (図10).

又破壊巣中心部,即ち鋼球に接する部位に,膨化は しているが比較的染色性の保たれている髄鞘がとり残 されていることがあり,10分照射例では7日後迄認め られる(図23).これは同部の温度上昇が急速且著明で あつた為加熱固定されたと解すべきであり,Cajalの 所謂 "Preserved fiber" に類した現象と思われる.

3) 神経膠細胞及び間胚葉性成分の変化

(本項はヘマトキシリン―エオヂン及びアザン染色標 本による所見である)。

照射1時間後凝固壊死巣内,即ち破壊巣内中心側の 小血管は少し拡張し,赤血球を満すものも所々に認め られる(ホルマリン還流固定の為に健康部位の血管内 腔には全く赤血球を認めない).破壊巣と健康部位と の境界部(以後単に境界部と記す)の小血管は開通す るものが多いが,壁は著明に腫脹し,血管周囲腔には 僅かな多核白血球の浸潤を認める.更に破壊巣内の神 経膠細胞は種々の程度の変性像を示す.

3時間後には上記の多核白血球の浸潤は相当高度と なり,破壊巣内及びその周辺の脳実質に広範に及ぶに いたる.然し乍ら神経膠細胞の増加は未だ認められな い.

6時間後には,上記多核白血球の浸潤に混つて small round cell (その大部分は Lymphocyteと見做し得る)の 浸潤が始まり,且境界部の血管からは赤血球の濾出を 認める.更に神経膠細胞は僅に増加のきざしを見せ始 める.

又破壊巣周辺部には,組織(主に Myelin?)のLiquefaction が起り,その結果生じた空胞が認められる.

12時間後には周辺部の血管は著明に拡張するものが 多く,赤血球を含むもの, 濾出性出血を伴うものが混 在し,破壊巣の境界が血管像からも極めて明かにな る.

この境界線は神経細胞及び髄鞘のそれとほぼ一致 し、互に円弧の一部をなし、それよりも正常側には血 管腔の拡張、血栓形成、出血等の著明な変化は全く認 められず、更に破壊巣内、境界及び隣接部位に於て も、照射による血管破綻に基く大出血――それにより 破壊巣の形態が変化し、周囲組織に重大な破壊作用を 及ぼす様な出血----は全く認められない.

更に境界部にはアストログリアとミクログリアの増 加がはつきりと認められる.

1日後には破壊巣内の多核白血球は極めて多数となり,又上記のグリア増加は益々著明となる.

2 日後には境界部に未だ多核白血球の浸潤を著明に 認め,又 small round cellの浸潤も認める.更に前記の 如く主に Myelin? の Liquefaction の結果生じた空胞 群が益々はつきりと認められる.

3日後(図35)には多核白血球の浸潤は軽くなり, 境界部ではグリア増加が前景に出,更に顆粒細胞も認 められる.然し乍ら結合組織の増殖は未だ認められな い.

5日後(図36)には破壊巣内の細胞成分は殆ど消失 し,境界部のアストログリア及びミクログリアは著明 に増加し,又極めて多数の顆粒細胞を認める.この顆 粒細胞の密度は部位によつて差があり,一般に白質部 より灰白質部に於て大であり,且大脳核部に於て最も 大である.更にこの境界部には多くの血管新生を認 め,この層は大体神経細胞の変性の最外部に一致す る.

1週間後(図37)の変化は5日後のとほぼ同様であ るが、境界部の血管壁の周囲に結合線維が少しく増殖 しているのを認める.

2週間後(図38), 境界部には前記の如く, 空胞, 新生血管, Macrophage に混って結合組織の増殖を認 める. グリア細胞は少し数が減じ,境界部の細胞成分 の主体は顆粒細胞である.

3週後には、細胞成分は2週後のものとほぼ同様で あるが、結合線維の増殖は益々著明となる。

4週後には、細胞成分は少くなり、又特に注目すべ きことは、結合線維と健康部位との間に隙間が出来て いることである(図25,39).

96日後(図26)には,破壊巣の内面を覆う薄層(数 10 μ 程度)には未だグリア細胞及び結合組織の増加が 認められる.然しその程度は極めて軽徴である.

4) JIS 不銹鋼第5種自体の影響

被加熱物体,即ちJIS 不銹鋼第5種自体が隣接脳組 織に及ばす影響を知る為にこの対照実験を行つた。

鋼球は半径 2.5mm を使用し, 照射実験の場合と同一 の術式で脳内へ埋没した.

1時間後既に隣接神経細胞は濃染し,ニッスル氏小体は消失し,空胞が生じ, 髄鞘は断裂するものもあ り,蛇行するものもある.又多核白血球が所々に認め られる. 6時間後には神経細胞は縮小して鋭三角形を 呈するが,鋼球に接する髄鞘はまだ比較的よく染色性 が保たれている. 12時間後には鋼球に隣接するCorona radiata は少し粗となり, 1日後には鋼球に隣接する**本層** (約10 μ) は殆ど脱髄し,多核白血球の浸潤が著明に 認められ,3日後には小血管の新生及び顆粒細胞が認 められる.7日後にはこれらの層が健康部位より離れ 始め,4週後には鋼球に接する約20 μ の,主に結合組 織よりなる薄層を残すのみとなる.即ち4週間後に於 ても,鋼球の錆発生,その周囲の著明な瘢痕形成等は 認められず,従つてJIS不銹鋼第5種は全くinertでは ないにせよ,臨床に充分利用出来るものと思われる.

第4章考 按

高周波誘導法は,別名を誘導加熱法と云う様に,その脳実質破壊作用は埋没物体に生じる"熱"によると 見做して差支えない.

工業方面では現在金属の熱処理(例えば鋼の表面焼 入れ)や溶解炉に広く応用されているが,この方法を 脳実質の破壊に始めて応用したのは Carpenter 及び Whittier(1952)である⁵⁾.彼らは長さ3-7mm,直径0.58 mmの magnetic steeel wire を脳実質内へ埋没し,0.475 メガサイクル;160ミリアンペアの高周波電流で作ら れた磁界を55秒間照射して破壊巣を作り得たと述べて いるが,その高周波工学上の詳細な点は不明であり, 又その結果に関しても,"In size, shape and histologic features these lesions were uniform and seemed appropriate. The configuration was circular and no associated distant tissue injury was apparent. ——It is entirely possible that —— this method would yield valuable data."と述べているのみであつて,其後本法 の詳細な実験報告は今日に至るも見当らない.

本実験は高周波誘導法が頭蓋腔内深部組織を限局性 に破壊する新しい方法として充分応用出来ることを示 し,更に一定の条件の下では頭蓋腔内の任意の定点を 中心として,何回でも反復して破壊効果を周囲に均等 に及ばすことが出き,而もその強さを任意に調節し得 ることがわかつた.以下本法を実用に供した場合に注 意すべき点と思われるものを主として考察を加える.

1) 高周波誘導法一般について

被加熱物体が球であると数式が極めて複雑になるの で,仮りに長軸を誘導子のそれと一致する半径 a, 長 さ1の円柱であるとすると次の式が成立する.

$$W = \frac{A_0^2}{2} \cdot \frac{(4\pi NI_1)^2}{l^2} \cdot \mu f \cdot F(\sqrt{2} a/s) \times 10^{-9}$$

但し:W=単位体積内に消費される電力密度, Ao= コイルの結合係数, N=コイルの総巻数, I₁=1次電 流, μ =比透磁率, f=周波数, $F(\sqrt{2}a/s)$ =特殊函数. k=導電度とすると, s= $1/2\pi\sqrt{\mu kf \cdot 10^{-9}}$ = 滲透厚. 滲透厚とは渦電流の大部分が流れている被加熱物体の 厚さを示すもので,上記の関係から(詳細は略す)有 効な加熱を行う為には,周波数を一定値以上にする必 要があり,この周波数を限界周波数(fc)と称し次式で 表わされる.

$$f_{\rm C} = \frac{128.5 \times 10^6}{\mu \rm ka^2}$$

次に鋼に対する fo を第6図に示す。

この図よりわかる様に、本実験で使用した周波数、 即ち 8×104~ で有効な加熱を行う為には 被加熱物体

本実験で使用した 80KC では,点Aに示す様 に被加熱物体の半径は 約 0.2cm より大でなけ ればならない.

の半径を約0.2cm 以上にしなければならない.本実験 で埋没鍋球の 最小半径を2.0mm としたのはこの為であ る.即ち被加熱物体が小さい程高い周波数が必要であ り,本法を実用に供する場合には,被加熱物体の大き さに応じて第6図から発振器の周波数を決定しなけれ ばならない.

次に発振器の出力について述べれば、出力は大なる 程有利であり、脳浮腫の程度に比して大なる破壊巣を 作り得る.それでは最小出力は如何と云えば、不如意 ながら実験によつて求めるのが一番正確である(計算 でも求め得るが極めて複雑である).

2) 被加熱物体と誘導子

有効な加熱を行う為には、勿論誘導子と被加熱物体 との電気的結合を良くすることが望ましいが、更に大 切なことは全く同一の電気的結合状態を反復して再現 出来るか否かである。若しも電気的結合状態,即ち誘 導子と被加熱物体との位置関係が症例毎に異つたり, 又反復照射毎に変化するならば,発熱効果は全く予測 出来ず,本法の長所は半減するであろう。本実験に於 ては方法が極めて"数学的"であつたにも拘らず,一 部の実験結果がバラバラであつたのは,この電気的結 合状態を各例で必ずしも全く同一にはなし得なかつた 為である。

従つて本法の実用に際しては, i) 照射時に被加熱 物体が常に誘導子内の同じ位置にくること,及び ii) 頭部又は埋没物体の傾き具合によつて磁界に対する関 係が変化しないことが必要である. i)は誘導子の改 良及び照射技術により,又 ii)は被加熱物体を球形と することによつて解決出来る.

即ち被加熱物体として望ましいのは,球形の比較的 大きい物体を1つ埋没することであるが,高周波の波 長を短くすれば極めて小さい物体(例えば粉末)を多 数入れて,全体として球形としたものでもよいかも知 れない.然し乍らこれ以外の場合でも,夫々について 模型実験を行えば破壊される範囲を知ることは出来 る.

破壊巣の再現性に関しては被加熱物体が頭蓋腔内で 移動するか否か、問題となる。即ち被加熱物体と脳実 質,正確には破壊された脳実質との比重が等しければ 移動は起らず,反復照射による破壊巣の中心は完全 に一致する。又不規則な形態の破壊巣が必要な場合に は,被加熱物体の比重を大として,必要な破壊方向に 沈降させて照射すればよいであろう。

次に被加熱物体の材質としては、JIS 不銹鋼第5種

があらゆる方面に於て大体満足出来る.勿論隣接脳組 織に及ぼす化学的影響を更に少くする為に,銀メッキ 等をすることも考えられるが,そうした場合には理論 的に発熱効果が少し低下し,この低下はメッキ層が厚 ければ厚い程,又使用する高周波電流の周波数が高け れば高い程著明となるので充分な注意が必要である.

この不銹鋼で作つた埋没物体の全体としての比重を 調節するのは中空とすることによつて解決出来るが, その場合も埋没物体の壁の厚さは上記滲透の厚さ以上 にすることが必要である.

3) 照射時間,破壊巣の形態,大きさ及び反復照射 について

i) 照射時間

照射時間と破壊巣平均半径との関係図(第4図)か らわかる様に、効率よく破壊を行えるのは一定の照射 時間以内である。更に重大な副作用である脳浮腫の程 度(第3表)を考え合すならば、一定の高周波発振器 及び埋没被加熱物体については、自ら実用に供し得る 最長照射時間が決定される。例えば本実験に於て半径 2.5mmの鋼球を使用した場合には、照射時間は約2分 以内が望ましい。

この様に本法の臨床的応用に際しては,予備実験で 得られた a) 照射時間破壊巣平均半径曲線の形態及 び b) 脳浮腫の程度から最長 照射 時間 を決定し, その範囲内で照射を行うのが賢明であろう.

ii) 破壊巣の形態及び大きさ

前記の如く破壊巣は一般に球形を呈し,その半径は 照射時間の凾数として現わし得る(第1表及び第4 図).これは本法の破壊作用が熱によるものであるこ とを考えるならば,深部脳実質各部位の比熱,熱伝導 度及び熱に対する抵抗に殆ど差がないことを示すも のである.従つて1回の照射で出来る破壊巣の初期の 形態はほ、幾何学的な球形を呈し,その半径は照射時 間の函数として,予備実験で製作したグラフから求め ることが出来る.

iii) 反復照射

それでは反復照射によつて破壊巣の大きさは如何に 変化するであろうか. 本破壊法の 機 序 からわかる様 に,何回照射を反復しても.その照射時間が同一であ れば各照射時に発生する熱量は等しく,従つて破壊巣 の数学的な大きさに変化は現れない.然し乍らこ、で 注目すべきことは,照射約1週間後より破壊巣の "収 縮" なる現象が現れるので(第5図). それ以後に於 ては破壊巣の単なる数値の上での大きさと,実際に破

- 1) 初回照射によつて、半径Rの破壊巣が出 来たとする.
- 2) この破壊巣は時間の経過と共に収縮する.
- 3) 反復照射によつて,又半径Rの破壊巣が 出来る.
- 3)に於けるRは数値上では 1)のRに
 等しいが,生理-解剖学的には 4)のR'
 に等しく,明かに 1)のRより大である.

壊されている脳の生理―解剖学的な部位の大きさとは 必ずしも一致しないことである.即ち初めの照射後約 1週間以上経て再照射を行えば,破壊巣の生理―解剖 学的大きさは,初めのよりも大きくすることが出来, しかも初回の照射と再照射時との間隔が長ければ長い 程,即ち収縮現象が著明になればなる程再照射によつ て破壊巣の生理―解剖学的な広がりを大きくすること が出来る.このことは本法の特色の1つである一定の 範囲内では"反復照射で破壊巣を大きくなし得る"こ とを理解するには極めて大切であるので第7図に模型 図として表した.

4) 紙織学的変化

破壊巣の組織学的変化は大体3期に分けることが出 来る.

第1期は照射直後より2日迄であり、神経細胞の消 失及び脱髄がほ、完了する。第2期は3日より7日頃 迄で、破壊巣周辺で Macrophage の活動が極めて活潑 に行われる。第3期はそれ以後であり、境界部で結合 組織の増殖及び瘢痕化が行われる。 これらの変化は本破壊法に特有のものではなく,一 般に脳実質に損傷が加つた場合に起る変化とほ、同様 であるが,本法を実用に供した場合の特徴は次の3点 に要約される.

i) 破壊巣は球形をなして限局されること.即ち破壊効果は神経細胞,神経線維,神経膠細胞及び血管等に拘りなく,埋没物体よりほゞ等距離迄及び,従つて破壊巣は球形をなし,その境界は鮮明である.

ii) 著明な血管性障碍が生じないこと.

即ち破壊巣周辺部に軽微な濾出性出血が起るのみで あり,破壊巣内部及びその境界部に照射に基く血管破 綻による大出血や血栓形成等,破壊巣の形態を著るし く変化させたり又隣接脳組織に重大な影響を及ぼす様 な血管性障碍は全例に於て認められなかつた.このこ とは破壊巣の大きさと考え合すならば,特に本法の大 きな長所と云つて差支えなかろう.

iii)後に著明な 痕瘢組織が 残らないこと.即ち照 射96日後に認められた神経膠細胞及び結合組織よりな る境界層の厚さは前記の如く数 10µ 程度である.破壊 巣の周囲に瘢痕が生じることは,破壊法の如何を問わ ず,程度の差こそあれ生体反応として必然的に起るこ とであり,本法による破壊の場合に,この層が非常に 薄いことはその特徴の1つにあげてもよかろう.

5) 高周波磁界の生体に及ぼす影響

本実験で使用した周波数80KC,入力20KVAの高周 波磁界そのものは,生体には殆ど無害,少くとも認め 得る変化は与えないと思われる、なぜならば,i)反 復照射群及び10分照射後96日間飼育した例に於て,初 回照射後数日間(この間は破壊巣の周辺に脳浮腫が生 じるので,その為に実験動物は著るしく元気がなくな る)を除いては,全身状態,行動等に何ら異常を認め ず,又標本に於ても破壊巣及びそれに基く2次的変化 以外には瀰漫性の変化は全く認められなかつたこと,

ii) 鋼球を埋没しない実験動物の頭部に照射を行つて も、全身状態は何ら悪化せず、又全く何の神経学的変 化も現れなかつたこと、iii)本実験中照射時に誘導子 内に指を入れても何の感じもなく、又遅延効果と思わ れるものも認められず、更に iv)本法が電熱工学上 現在広く利用されているにも拘らず、高周波磁界によ る職業病がこれ迄に記載されていないからである.

然しながら,極めて強力な高周波磁界内へ頭部を挿 入した場合でも全く無害か否かについては,更に詳細 な検討が必要であろう.

高周波誘電法について

高周波加熱に属する別の方法に誘電法がある.誘導 法が磁界を利用し,導電性物体を対象としたのに反 し,誘電法は"電界"を媒介として"絶縁物体"を熱 するのに用いられる.この方法は合成樹脂の成形加 エ,ベニシリン等薬品の乾燥,高周波調理,殺虫殺菌 等に広く使用されており,物質によつて最も加熱され やすい波長(最適波長)がある.例えば脳脊髄液0.79 m,血液1.77,大脳7.87,小脳10.1である¹⁷⁰.従つて これらとなるべく差のある波長で強く加熱される物体 があれば(若し発見されるならば,多分合成樹脂の類 であろう),高周波誘電法も頭蓋腔内深部組織破壊法 として応用出来るであろう.

第5章 総括及び結論

頭蓋腔内深部組織の新しい破壊法として,高周波誘 導法を利用し,猫の深部脳実質の破壊を試みて次の結 論を得た.

1) 周波数80KC,入力20KVAのギャップ式高周波 発振器を使用し,逓降変圧器を回路に挿入し,誘導子と しては内径9.5 cm,長さ5 cmの1巻のコイルを利用し, 埋没被加熱物体としては半径2.0,2.5及び3.0mmのJIS不 銹鋼第5種で作つた球を用いて破壊巣を作り得た.

 2) 破壊巣は球形をなして限局され,正常組織との 境界は極めて鮮明である。

3) 破壊巣の大きさは照射時間の函数として表し得る.然し乍ら実用に際しては,破壊範囲に比して脳浮 踵等の2次的変化をなるべく小とする為には,照射を 一定時間以内とすべきである.

4) 反復照射により,一定の条件のもとでは,破壊 巣は数値の上では大きくならなくても,生理一解剖学 的な破壊巣の広がりは大きくなし得る.

5) 埋没被加熱物体としては, JIS 不銹鋼第5種が あらゆる方面に於てほ、満足出来る.

6) 本法の破壊作用は熱によるものであり,組織学 的変化よりみて,実用上次の点が有利である:

i) 破壊巣と健康部位との境界に濾出性出血が起る 以外には, 重篤な血管系の障碍が生じないこと.

ii) 後に著明な痕瘢組織が残らないこと。

7) 高周波磁界そのものは, 少くとも 80KC, 入力 20KVA では, 生体に著明な影響を与えない.

従つて本法は,破壊集の限局性,均一性,調節性, 反復性及び再現性を供えた頭蓋腔内深部組織破壊法として,臨床的に充分実用に耐え得るものと思われる. 本論文の要旨は第68回近畿精神神経学会(1960)に 於て発表した。

稿を終るに当り,始終御指導を戴いた本学の恩師荒 木千里教授,半田講師並びに工学部の高田教授及び中 村助教授に深謝致します。

又貴重な高周波発振器を快く使用させていたゞきま した,応用科学研究所長西村博士,同研究部長山崎氏 及び岡本氏に心から感謝致します。

主要文献

- Barnard, J.W., Fry, W.J., Fry, F.J. and Bren nan, J.F. : Small Localized Ultrasonic Lesions in the White and Gray Matter of the Cat Brain. Arch. Neurol. Psychiat., 75, 15-35, 1956.
- Bielschowsky, M. : Histopathology of Nerve Cells. In Cytology and Cellular Pathology of the Nervous System, Section IV, Vol. I. Ed. by. Penfield, W. New York, Paul B. Hoeber, Inc., 1932.
- Bielschowsky, M. : Allgemeine Histologie u. Histopathologie des Nervensystems. In Handbuch der Neurologie, I Band. Ed. by Bumke, O. and Foerster, O. Berlin. Verlag von Julius Springer, 1935.
- Brown, Hoyler and Bierwirth : Theory and Application of Radio Frequency Heating. (電気化学便覧より引用)
- Carpenter, M.B. and Whittier, J.R. : Study of Methods for Producing Experimental Lesions of the Central Nervous System with Special Reference to Stereotaxic Technique. J. Comp. Neurol., 97, 73-132, 1952.
- Caudill, C.M., Smith, G.A., French, L.A., Peyton, W.T. and Moore, G.E. : Experimental Studies on the Effect of Coagulating Currents upon the Brain. J. Neurosurg., 8, 423-434, 1951,
- Del Rio-Hortega, P. : Microglia. In Cytology and Cellular Pathology of the Nervous System, Section X, Vol. II. Ed. by Penfield, W. New York, Paul B. Hoeber, Inc., 1932.
- Bel Rio-Hortega, P. and Penfield, W. : Cerebral Cicatrix : The Reaction of Neuroglia and Microglia to Brain Wounds. Bull. Johns Hop-

kins Hosp., 41, 278, 1927.

- 電熱工学.電気学会編集.東京,コロナ社,昭 和30年.
 第1章 総論,1.2.電気加熱の方式,1.2.4.誘導 加熱,1.2.5.誘電加熱,第7章 高周波誘導表 面加熱.
- Dornfe'd, E.J., Slater, D.W. and Scheffé, H.: A Method for accurate determination of volume and cell numbers in small organs. Anat. Rec., 82, 255--259, 1942.
- Dusser de Barenne, J.B. and Zimmerman, H. H. : Changes in the Cerebral Cortex produced by Thermocoagulation. A Suggestion to Neurosurgery. Arch. Neurol. Psychiat., 33, 123-131, 1935.
- 12) 江藤秀雄. 医学と生物学のための物理学. 共立 全書59. 東京,共立出版株式会社,昭和33年.
- Gottesman, J., Perla, D. and Ziegler, J.M. : The Effects of the Electrocautery on Normal Tissue. Surg. Gynec. Obstet., 51, 667-673, 1930.
- 14) 猪原清. 電気焼灼に因る家兎大脳皮質の神経組 織変化に関する実験的研究. 十全会雑誌 37, 1100-1126, 昭和7年.
- 15) 電気化学便覧. 電気化学協会編. 東京, 丸善出版株式会社, 昭和28年.

12.5 筶見茂夫, 高周波誘導炉.

31.2 石川朝邦,高周波化学.

- Macklin, C.C. and Macklin, M.T.: A Study of Brain Repair in the Rat by the Use of Trypan Blue. Arch. Neurol. Psychiat., 3, 353-405, 1920.
- 17) Pätzold: Z. f. Hochfrequenztechn., **36**, 85, 1930. (共立全書59より引用)
- 18) Penfield, W. : Neuroglia. Normal and Pathological. In Cytology and Cellular Pathology of the Nervous System, Section IX, Vol. II. Ed. by Penfield, W. New York, Paul B. Hoeber, Inc., 1932.
- Ramón y Cajal, S. : Degeneration and Regeneation of the Nervous System. London. Oxford University Press, 1928.
- Silver, M.L. and Walker, A.E.: Histopathology of Thermocoagulation of the Cerebral Cortex. J. Neuropath. Exp. Neurol., 6, 311-322, 1947.
- Sunderland, S. : Production of Cortical Lesions by Devascularization of Cortical Areas. J. Anat., 73, 120, 1938.
- Tsang, V.C.: Vascular Changes following Experimental Lesions in the Cerebral Cortex. Arch. Neurol. Psychiat., 35, 1280, 1936.

744

第8図 照射の近景 I.は誘導子で水を通じて冷却する.T.は逓降変圧器

第10図破壊巣の断面は円形をなす (Klüver-Barrera染色,以第34図迄同じ)

第11図 埋没 鋼 球 半 径 (S) 2.0m, 照 射 時 間 (T) 1分, 照射後飼育期間 (B) 3日, 破壞巣平均半径 (R) 2.65m.

第12図 S = 2.0mm, T = 4分, B = 3日, R = 3.30mm.

第13図 S = 2.0mm, T = 12分, B = 3 日, R = 3.51mm.

第14図 S = 2.5mm, T = 1分, B = 3日, R = 2.71mm.

第15図 S = 2.5mm, T = 4分, B = 3日, R = 3.28mm.

_has

第16図 S = 2.5mm, T = 10分, B = 3 日, R = 3.62mm.

 第17図 S = 3.0nm, T = 15 秒, B = 3 日, R = 2.66nm.
 (RがSよりも小さいのは標本製作時の収縮による)

第18図 S = 3.0nm, T = 2分, B = 3日, R = 3.77nm.

第19図	S = 3.0 mm,	T = 6分,
	B=3日,	R = 4.59mm.

第20図 S=2.5mm, T=4分, B=7日, R=3.65mm.

第21図	S = 2.5 mm,	T = 4分,
	B = 2 週,	R = 2.82mm

第22図 S = 2.5mm, T = 4分, B = 4週, R = 2.22mm.

第23図 S = 2.5nm, T = 10分, B = 7日, R = 3.38nm.

第24図 S = 2.5mm, T = 10分, B = 2週, R = 3.01.

第25図 S=2.5mm, T=10分, B=4週, R=1.95mm. (鋼球は破褒巣から移動す)

第26図 S=2.5mm, T=10分, B=96日. (鋼球は破壊巣から移動す)

 第27図 S=2.5mm, T=4分2回(間隔 1週間以下(第32図迄同じ),最終照射後飼 育期間(B,以下第32図迄同じ)3日.
 (鋼球移動の為,破裏巣は球形でない)

第28図 S = 2.5nm, T B = 3日, F

第29図 S = 2.5mm, T = 4 分 8 回, B = 3 日, R = 3.06mm.

第30図 S = 2.5mm, T = 10分 2 回, B = 3 日. (破壊巣は球形ならず)

第31図 S = 2.5mm, T = 10分 5 回, B = 3 日, R = 2.74mm. (初期に鋼球は移動す)

第32図 S = 2.5mm, T = 4 分 + 4 分 + 12分, B = 3 日, R = 2.86nm. (初期に鋼球は移動す)

第33図境界部(海馬),照射後1時間. L.=破壊巣(以下同じ)

第34図境界部(海馬),照射後1日. 第1層の細胞は完全に消失する

第35図 境界部,照射後3日. グリア細胞の増加を認め,血管の新生が始まる. (ヘマトキシリン-エオヂン染色,以下同じ)

第36図 境界部 (大脳核部), 照射後 5 日. Macrophage の活動盛なり

第37図 境界部,照射後1週.

第38図 境界部,照射後2週.

第39团 境界部,照射後4週.

750