Host Resistance against Cancer after Removal of Primary Tumor

by

RYUJI MIZUMOTO and ICHIO HONJO*

From 2nd Department of Surgery, Kanazawa University, Medical School

Received for Publication Aug. 21, 1964

Unexpectedly early recurrence or metastasis in the cases of seemingly early operation and fairly long survival or sometimes spontaneous cure in the cases of mere palliative operation have been observed, which has given strange impression to clinicians.

The fact that there can be observed marked fluctuation in the course of tumor arising in an organism can be better explained by possible fluctuation of host resistance than to conceive some alteration in malignancy of the tumor itself. Recently, cancer has come to be investigated under the concept of host-tumor relationship. We also have studied this problem based upon several experiments and clinical experiences.

MATERIALS AND METHODS

1. Experimental animal and experimental tumor: Albino rats of random bred Gifu-strain weighing 100 to 150 gr. were used. Ascites hepatoma AH 130 or Sarcoma Yoshida (from Sasaki Institute, Tokyo) of approximately 5×10^6 cells was implanted subcutaneously in the back or foot-back.

All the animals died of progressive tumor development when the ascites hepatoma AH 130 reached $6 \times 7 \times 8$ mm. in the foot and 10 mm. of diameter in the back within 10 days. In Sarcoma Yoshida, more rapid development was observed.

2. New congo-red index: Concentration of congo-red in serum of 4 minutes after the injection / Concentration of congo-red in serum of 60 minutes after the injection (Adler-Reimann-Sugiyama), and splenic uptake of colloidal radiogold (Stern and Duwelius).

3. Cytotoxic activity of the serum: O’GORMAN’S method was followed. Well rinsed tumor cells were suspended in a cell density of 30000/mm³ in serum of normal rats diluted to 5 times with Ringer’s solution. A series of successive double dilution of the serum to be investigated was prepared with the same solution, which was then mixed with dilution of complement of guinea pig and incubated for an hour at 37°C. Trypan blue-Tyrode solution of 0.05% was then added to the mixture. After several minutes’ staining, cell count of stained cells was performed, which was represented in the term of percentage.

4. Phoretic study of serum protein: Paper electrophoresis was performed.

5. Tanned cell hemagglutination: The antigen for coating tanned cells was prepared following the method of Zilber and his associates. Namely, homogenate of human cancer tissue was subjected to extraction for an hour with water of pH 7.6 in a freezer. Supernatant was adjusted to pH 6.0 and its precipitant was discarded. Supernatant

* Professor of Surgery, Kanazawa University
was again adjusted to pH 4.0 and its precipitant was dried in a desiccator. Saline solution of 0.015 to 0.02% of the substance was used.

6. Microscopic preparation: Materials were embedded in paraffin and stained doubly with hematoxylin and eosin.

RESULTS

Experiment 1.: Reticuloendothelial function of tumor-bearing animals. Reticuloendothelial function was examined with new congo-red index in subcutaneous inoculation of ascites hepatoma AH 130 in the back of the animals (Tab. 1). Utmost hyperactivity of reticuloendothelial function was observed 8 to 10 days after the inoculation, which gradually fell thereafter until final death of the animals. In other words, reticuloendothelial function is activated in relatively early period of tumor growth, and it is lowered in parallel with development of the tumor thereafter.

<table>
<thead>
<tr>
<th>No. of animals</th>
<th>Control</th>
<th>Days after Inoculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Splenic uptake of 198Au-colloid</td>
<td>0.38 (0.21-0.64)</td>
<td>0.39 (0.31-0.53)</td>
</tr>
<tr>
<td>Congo-red index</td>
<td>1.78 (1.11-2.51)</td>
<td>2.07 (1.29-3.05)</td>
</tr>
</tbody>
</table>

Experiment 2.: Period of metastasis establishment in the regional lymph nodes. In subcutaneous inoculation of ascites hepatoma AH 130 in the back of the foot, it was 10 days after the inoculation that metastasis in the regional lymph nodes was observed constantly (Tab. 2), while in the inoculation of Sarcoma Yoshida, it was 4 days after the inoculation (Tab. 3).

<table>
<thead>
<tr>
<th>Time of slaughter</th>
<th>No. of case</th>
<th>No. of metastasis</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 days after inoculation</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>7 days after inoculation</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>9 days after inoculation</td>
<td>10</td>
<td>9</td>
</tr>
<tr>
<td>10 days after inoculation</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12 days after inoculation</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Experiment 3.: Behavior of metastasized regional lymph nodes after the excision of primary growth. As metastasis in the above, initial metastasis in the regional lymph nodes was constantly observed 10 days after the inoculation of ascites hepatoma AH 130, which, at the same time, corresponds to the period of utmost hyperactivity of reticuloendothelial function. The primary tumor was removed at this stage and the behavior of metastasized
lymphnodes was pursued thereafter (Chart 1). Regression of metastatic tumor was observed in amazingly high percentage as 25%, histological study of which revealed a characteristic appearance, that is, tumor cells were surrounded by newly appearing reticulum cells (Fig. 1) and finally the former was displaced with the latter (Fig. 2), whereas in control animals no reactive finding was observed, allowing progressive growth of tumor cells (Fig. 3). The regression occurred in 9.5% (2/21) when the primary tumor was removed 13 days after the inoculation, what was more, these 2 cases of regression were those of retarded development of the primary tumor.

In the similar experiment using Sarcoma Yoshida, if the primary tumor was removed 4 days after the inoculation, when the initial metastasis was observed constantly in the regional lymphnodes, regression of the metastasized lymphnodes occurred in 20.7%. If the excision was performed 6 days after the inoculation, all the animals died of tumor growth, showing no regression of the metastatic tumor (Chart 2).

Experiment 4.: Cytotoxic activity of the serum after the excision of the primary tumor and its fraction. When the primary tumor was removed 10 days after subcutaneous inoculation of ascites hepatoma AH 130 in the back, cytotoxic activity showed higher value and maintained for long in the group of regression in metastatic tumor which then restored to normal as it regressed further, whereas, in control animals and in the animals died of overwhelming growth of metastatic tumor despite the excision of the primary tumor, the activity remained within normal range until the death (Chart 3).

Phoretic study of the serum revealed an increase in gammaglobulin in the former serum, and this increase had a close correlation between cytotoxic activity (Chart 4).

Experiment 5.: Change in antibody titer in tanned cell hemagglutination of human serum after excision of the primary tumor. In most of cancer patients, antibody could
Cytotoxic Activity of Serum after Removal of Primary Tumor (Subcutaneous inoculation of ascites hepatoma AH 130 in the back. Mean value.) Solid line represent animals showed regression, broken line animals died of tumor. Normal range (0 to 3.2%).

not be detected or, if any, showed only low titer in the serum by the use of tanned cell hemagglutination with coating of extract from autochthonous tumor. However, in some cases of relatively favorable prognosis, elevation of antibody titer was sometimes observed after the operation, among which the antibody could be detected to be more than 1000 times dilution (Tab. 4).

Table 4 Tanned Cell Hemagglutination

<table>
<thead>
<tr>
<th>Degree of cancer development*</th>
<th>Postoperative course**</th>
<th>Before operation</th>
<th>After operation***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1st wk.</td>
</tr>
<tr>
<td>IV</td>
<td>death</td>
<td>5</td>
<td>45</td>
</tr>
<tr>
<td>IV</td>
<td>death</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>IV</td>
<td>death</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>III</td>
<td>death</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>favorable</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>favorable</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>favorable</td>
<td>45</td>
<td>405</td>
</tr>
<tr>
<td>I</td>
<td>favorable</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>III</td>
<td>unknown</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>II</td>
<td>unknown</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>II</td>
<td>unknown</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

* Bill of J. S. S. to indicate degree of tumor development.
** Prognosis within 2 years after operation.
*** Numbers indicate dilution of serum. All cases treated here are stomach cancer.

Experiment 6.: Reticuloendothelial function of cancer patient. R. E. S. activity in cancer patient, examined by congo-red test, showed hypofunction as is easily presumed.
There was, however, some cases which showed almost normal level (Tab. 5).

Table 5 New Congo-Red Index in Stomach Cancer

<table>
<thead>
<tr>
<th>Degree of cancer development*</th>
<th>New congo-red index</th>
<th>Control</th>
<th>New congo-red index</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>1.44</td>
<td>Appendicitis</td>
<td>1.41</td>
</tr>
<tr>
<td>IV</td>
<td>1.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>1.34</td>
<td></td>
<td>1.32</td>
</tr>
<tr>
<td>IV</td>
<td>1.32</td>
<td></td>
<td>1.47</td>
</tr>
<tr>
<td>IV</td>
<td>1.18</td>
<td></td>
<td>1.42</td>
</tr>
<tr>
<td>III</td>
<td>1.28</td>
<td>Cholelithiatis</td>
<td>1.31</td>
</tr>
<tr>
<td>III</td>
<td>1.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1.45</td>
<td></td>
<td>1.31</td>
</tr>
<tr>
<td>II</td>
<td>1.39</td>
<td>Gastritis</td>
<td>1.58</td>
</tr>
<tr>
<td>II</td>
<td>1.39</td>
<td></td>
<td>1.13</td>
</tr>
<tr>
<td>II</td>
<td>1.25</td>
<td></td>
<td>1.39</td>
</tr>
<tr>
<td>II</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>1.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>1.31</td>
<td>Mean</td>
<td>1.37</td>
</tr>
</tbody>
</table>

* Degree of cancer development is shown similarly to Table 4.

Experiment 7: Lymphnode reaction in cancer patient. The regional lymphnode and the mesenteric lymphnode, which is considered to react well at intraabdominal change, although this cannot be assumed to be regional ones in patients of stomach cancer, were studied histologically. Early death could be observed even in cases in which active lymphatic reaction was demonstrated in the non-metastasised regional lymphnodes (Fig. 4), leading us to the disapproval of the assertion of Black. On the other hand, prognosis seemed to be worse in the cases in which the reaction had spread as far as the mesenteric nodes any way (Tab. 6), while prognosis seemed to be favorable in the cases in which lymphatic structure was preserved relatively intact in the mesenteric nodes.

Case report: Reduction of general resistance and tumor growth. A 54 year old man had a cancer of the size of child's head in lesser curvature of the stomach, at the same time having 2 small metastatic foci in the left lobe of the liver and metastasis in the mesocolon of the transverse colon. He received total gastrectomy, left lobectomy of the liver and resection of the transverse colon. Mitomycin C of 48 mg. in all was administered pre- and postoperatively. One week after the final injection of Mitomycin C (32th post-operative day), epistaxis was observed. Platelet count was 13700. Petechia appeared gradually all over the body (Fig. 5). Prednisolone was at once administered 20 mg. for 3 days, 10 mg. for 3 days and 5 mg. thereafter everyday. At the same time amino acid preparation and fresh blood was administered intravenously. Platelet count increased to 30000 after 1 week, 70000 after 2 weeks and petechia formation ceased. Then a tumor became palpable in the right hypochondric region, which was not observed at laparotomy, and enlarged progressively. Although more 1 week later platelet count became 100000, the tumor enlarged as large as child’s head and the patient was driven to cachexy. He died 56 days after the operation.
Table 6 Lymphnode Reaction in Postoperative Early Death (Stomach Cancer)

<table>
<thead>
<tr>
<th>Degree of cancer development*</th>
<th>Interval between opt. and death</th>
<th>Lymphnode reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>2 month</td>
<td>Metastasis**</td>
</tr>
<tr>
<td>IV</td>
<td>2 month</td>
<td>Reticulosis-Foliculosis</td>
</tr>
<tr>
<td>III</td>
<td>4 month</td>
<td>Metastasis**</td>
</tr>
<tr>
<td>IV</td>
<td>2 month</td>
<td>Reticulosis</td>
</tr>
<tr>
<td>IV</td>
<td>1 month</td>
<td>Reticulosis</td>
</tr>
<tr>
<td>IV</td>
<td>7 month</td>
<td>Metastasis**</td>
</tr>
<tr>
<td>II</td>
<td>14 month</td>
<td>Fibrosis</td>
</tr>
<tr>
<td>IV</td>
<td>3 month</td>
<td>Reticulosis</td>
</tr>
</tbody>
</table>

* Degree of cancer development is shown similarly to Tab. 4, 5.
** Metastasis means that metastasis was found in all the lymphnodes that could be studied.

Experiment 8.: An attempt to activate R. E. S. of tumor-bearing animals. The spleen was extirpated from tumor-bearing rats subcutaneously inoculated in the back with ascites hepatoma AH 130 at the period of reticuloendothelial hyperfunction. The spleen was homogenized and injected in the other tumor-bearing rats. Hereupon, regression of the tumor was observed in considerable frequency (Tab. 7). By the way, it was ascertained by cytotoxic activity test that the homogenate itself had no immediate effect upon tumor cells.

Table 7 Inhibitory Effect of Spleen Homogenate
(Subcutaneous Inoculation of Ascites Hepatoma AH 130)

<table>
<thead>
<tr>
<th>Experimental group</th>
<th>No. of inoculation</th>
<th>No. of take</th>
<th>No. of no take</th>
<th>No. of death</th>
<th>No. of regression</th>
<th>Rate of regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>54</td>
<td>44</td>
<td>10</td>
<td>34</td>
<td>10</td>
<td>22.7%</td>
</tr>
<tr>
<td>Injection of spleen homogenate from normal animals</td>
<td>54</td>
<td>44</td>
<td>10</td>
<td>35</td>
<td>9</td>
<td>20.4%</td>
</tr>
<tr>
<td>Injection of spleen homogenate from tumor-bearing animals</td>
<td>54</td>
<td>38</td>
<td>16</td>
<td>9</td>
<td>29</td>
<td>76.3%</td>
</tr>
</tbody>
</table>

DISCUSSION

Recently Old reported based on his studies on reticuloendothelial function of tumor-bearing animals that reticuloendothelial function is most activated at the time when the inoculum becomes slightly palpable and the same tendency was observed in artificially induced tumor as well as in spontaneous primary one. In our Experiment 1 and 2 also, reticuloendothelial function was most heightened 8 to 10 days after the inoculation when the early metastasis was observed in the regional lymphnodes, and the function declined gradually thereafter. When the primary tumor was, however, removed in the stadium of
utmost hyperfunction of the R. E. S., regression was observed in metastasized lymphnodes in considerable frequency, as was seen in Experiment 3.

It has long been assumed that operative aggression enhances the development of residual tumor cells\(^{9,14,49}\) and this is frequently ascertained by clinical experiences that abrupt development of the tumor was seemingly caused by exploratory laparotomy. On the other hand, it is difficult to assume that microscopically viable tumor cells or small metastasis did not remain in all of more than 30% of 5 year survivors of gastrectomized cancer patients. In fact Kallenbach\(^{29}\) pointed out according to the findings of autopsy performed within 6 postoperative weeks that tumor cells were left in 1/2 to 1/3 of cases, which were radically operated on and died of some other causes. And there are also many investigators reporting spontaneous regression of human cancer\(^{15,24,18}\). The findings of our Experiment 3 can be interpreted to be demonstrating a possibility of regression of metastatic tumors, which might be caused by excision of the primary tumor in the stadium of utmost hyperactivity of R. E. S., with resulting predominance of host resistances to residual tumor cells. This was also ascertained, as seen in Experiment 4, by higher and longer lasting serum cytotoxic activity in the group of regression compared with that of normal range in control group, suggesting a favorable influence of removal of the primary tumor on the host.

As has been discussed by Southam\(^{43}\), among serological factors in cancer immunity, there exist some factors in the serum of cancer patients deemed to be non-specific, such as inhibitory effect upon tumor cells or lowering of properdin level\(^{38,47}\), as emphasized recently, which can be also seen in the serum of normal man. It is difficult to presume an establishment of immunity against malignant tumor from the concept of "antigen loss" of Green\(^{22}\). However, it would be of utmost importance to take a concept of postnatal appearance of antigenicity into account, when one intends to interpret a series of autoimmune diseases, recently studied deliberately by Witebsky\(^{49}\), by the aid of clonal selection theory of Burnet\(^{11}\). Hence, presence or absence of specific antibody against tumor is an important problem in association to that of antigenicity of tumor. In fact, there are not a few investigators who ascertained the existence of specific antigenicity and antibody in tumor\(^{13,17}\).

Hsu\(^{25}\) reported that no particular effect could be observed in serum, even in cases in which the resistance could be improved by vaccination. Grace\(^{19}\) studied intradermal allergic reaction, using an extract of autochthonous tumor. Graham\(^{23}\) found antibody in serum by means of complement fixation test against extract of autochthonous tumor.

Finney\(^{16,17}\) successfully detected antibody against an extract of autochthonous tumor, using tanned cell hemagglutination. He put emphasis upon nuclear fraction in cancer and microsome fraction in sarcoma as the antigen\(^{12}\).

It is considered difficult to demonstrate antibodies against tumor, because of its extraordinarily small amount, if any. It is not, however, impossible to assume that demonstration of the antibodies becomes feasible, when the equilibrium is altered and the amount of antibodies comes to surpass that of the antigen by excision of the tumor.

Hereupon, antibodies were detected in serum of cancer patients before and after the removal of the tumor, using tanned cell hemagglutination, which has been employed fre-
quently to demonstrate antibodies in autoimmune diseases because of its subtle sensitivity. There were observed some cases which showed elevation of antibody titer after operation, among those cases of relatively favorable prognosis. In some cases, particularly, antibodies could be demonstrated in the dilution of more than 1000 times postoperatively. These findings roughly come to accordance with those in experiments in animals. Furthermore, the existence of incomplete antibodies against extract of autochthonous tumor in serum have been detected by the authors, using Coombs serum after the SINDO's method as in tuberculosis. This has been impossible up to present.

Even though the time of operation can be decided according to the utmost hyperactivity of R. E. S. in experimental tumor, it is very difficult to expect much from operation in human cancer, when the development of cancer has come to impair reticuloendothelial function of the host. According to the findings of our reticuloendothelial function test in cancer patients (Experiment 6), in considerable number of cases reticuloendothelial function remained in normal range, although there were naturally some cases of hypofunction. It is a matter of fact that favorable prognosis cannot be expected merely from almost normal reticuloendothelial function. However, there is a considerable difference in host resistance regardless of the degree of tumor development revealed at surgery.

Concerning the cases of breast cancer, BLACK reported that prognosis was favorable in those without metastasis in regional lymphnodes and at the same time revealing an appearance principally consisted of sinus histiocytosis, whereas prognosis was unfavorable in those showing degenerative picture. MOORE, BERG and others disapproved of this observation and BERG, IMAI and others attributed significance to stromal reaction of the tumor. Our study of regional lymphnodes in stomach cancer revealed that such reaction was markedly observed in non-metastasized lymphnodes adjoining to the nodes filled with tumor cells. Furthermore, among such cases early death was observed. These findings disagree with the opinion of BLACK. On the other hand, prognosis was favorable in cases in which normal structure was maintained in further distant mesenteric nodes, while prognosis was unfavorable in cases in which metastasis or degenerative picture was observed in these nodes. From these findings, it might be said that prognosis is unfavorable when some changes are to be found in slightly distant nodes, suggesting some sort of invasion of the tumor to the nodes since cancer has become a disease of generalized nature. When the lymphnodes maintain their almost normal structure, there are many cases of favorable postoperative prognosis, which is presumably due to the fact that at this stage cancer remains to be a localized disease.

However, prognosis of cancer brought about by surgery is not favorable and chemotherapy or radiotherapy cannot be deemed to be effective. On the other hand, it has been said that removal of precancerous lesion does not always prevent the occurrence of cancer.

KONDO pointed out a possibility of chemotherapy to decrease host resistance and gave a warning as "adverse effect." There are also many researchers who insist that cortisone or irradiation enhances the development of tumor, weakening the host resistance. As has already been shown in the case report, we have experienced some unpleasant cases which showed rapid growth of tumor presumably caused by disturbance of host resistance. From these considerations, it is strongly suggested that it must be ex-
tremely hazardous to treat cancer without the concept of host resistance.

Buinauskas\(^{10}\), Murry\(^{33}\) and others observed effectiveness of immune serum in cancer treatment obtained from animals immunized with human cancer. Graham\(^{21}\) attempted vaccination. Stone\(^{44}\) reported that reimplantation of tumor cells treated in low temperature was effective, Ishibashi\(^{27}\) made studies to establish immunity by implantation of autochthonous tumor at a site distant from original site.

Mizukami\(^{32}\) attributed significance to activation of R. E. S. by ligation of the splenic artery. In short, there have been many attempts to promote host resistance regardless of direct or indirect.

Borrel\(^{6}\), Biach\(^{4}\) and others were, since early days, interested in anti-tumoral character of the spleen, and Braunstein\(^{8}\) made further studies systematically on this problem. From such a concept, we have also made Exp. 8, and ascertained that spleen homogenate prepared from tumor-bearing animal of the utmost hyperactivity of R. E. S. has an effect to hinder the growth of tumor, markedly activating reticuloendothelial function of other tumor-bearing animals. Participation of the spleen is not so large in the adults as in experimental animals\(^{31}\). However, such a marked antitumoral effect of homogenate of the spleen which represents the R. E. S. of animals suggests a new approach to improve the results of cancer surgery at later stadium.

SUMMARY

In recent years, there is a tendency to investigate cancer under the concept of Host-tumor relationship. We have also made a series of experiments from a stand point of reticuloendothelial function of hosts, and have demonstrated that eventual regression can be observed in metastatic lesion in the residual lymphnodes when the primary tumor experimentally produced is removed at a certain stage of the tumor growth.

Moreover, in human cancer, even if the primary tumor is adequately removed, immediate recurrence can be seen, especially when the host resistance is weakened. The importance of host resistance and its activation in the treatment of cancer is emphasized in this paper.

REFERENCES

6) Borrel: und Bridre. Cited from Biach's article (Reference No. 4).
15) Everson, T.
16) Finney, J.
18) Freund, E.: und Kaminer, G. Ueber die B
20) Graham, J. B.: and Graham, R. M. Antibodies Elicited by Cancer in Patient
23) Grosse, H. Schuetz, die Operative Entfernung der Prakanzerose Tats
Fig. 1
Metastasis in Regional Lymphnode (Subcutaneous inoculation of ascites hepatoma AH 130 in the back of the foot). In animals showed regression after removal of primary tumor (1).

Fig. 2
Metastasis in Regional Lymphnode (Subcutaneous inoculation of ascites hepatoma AH 130 in the back of the foot). In animals showed regression after removal of primary tumor (2).
Fig. 3
Metastasis in Regional Lymphnode: Subcutaneous inoculation of ascites hepatoma AH 130 in the back of the front. Non-treated group.

Fig. 4
Case of Active Regional Lymphnode Reaction: 63 year old man, having a symptom in the upper abdomen since 1 month. Operated on as stomach cancer. Although active lymphnode reaction was seen in non-metastasized lymphnodes in excised material, prognosis was unfavorable and died within 5 month after surgery.

Fig. 5
Case Report: 51 year old man, revealing hemorrhagic tendency 1 week after pre- and postoperative administration of Mitomycin-C of 48 mg. for stomach cancer in greater curvature.

47) Vygotschikov, V. Pathogenesis and Immunology of Tumors. 1959, Pergmon Press, London.

和文抄録

主病巢切除後の担癌宿主の抵抗性

金沢大学医学部第2外科学教室
水本龍二・本庄一夫

臨床的に早期手術が施行出来ると思われる症例に、予想外の早期の再発を認めたり、末期症例で姑息的治療に止まった症例にかかわる長期間生存、時には自然治癒を考えさせる症例が経験されて、臨床家に奇異の感を抱かしめることがある。

残る個体に発生した癌の発育や経過に動揺があることとはその癌自体の悪性度が変化したと考えるよりも宿主たる生体側の抵抗性に変動があったためと考えざるを得ない。最近かかる見地からHost-tumor relationshipなる立場で癌を検討しなおす傾向があり、われわれも2～3の実験や臨床成績から検討を加えてみた。

1） 先づ腹水肝癌 AH130及び吉田肉癌を用いて、初期移植の起こったと思われる時期に主腫瘍のみを切除、以降の転移巣の動向を観察した。即ち腹水肝癌 AH130をラットの足背皮下に静脈注入、腫瘍を所定に発育の目安で移植後10日目に、全例、領域リンパ節にも転移を形成して結局腫瘍死する。この抗腫瘍の臨床系機能を新コロキート系数及び131I腫瘍計数にて逐次検査してみると、移植後8～10日目で最も先進し、以後次第に減弱する。かかる初期移植を形成し、しかも臨床系機能の最も先進している時期に領域リンパ節の転移巣を残し、主腫瘍のみを切除すると、30/40では転移巣が発育して結局腫瘍死するが、残りの25％（10/40）では転移巣の自然退縮がみられた。吉田肉腫でのかかる時期は移植後4日目で、この時に主腫瘍を切除すると18.8％（10/53）に転移巣の自然退縮がみられた。腹水肝癌 AH130及び吉田肉腫を用い主腫瘍切除の時期が遅れると効果が少ないが、全く効果がみられたかった。これらの変化を組織学的に逐次追求してみると、転移リンパ節の退縮に、細胞細胞が主作となっているのが観察され、

2） 上記の実験例にむか、血清の腫瘍細胞に対するCytotoxic effectを示されると、腫瘍死するもののでは正常範囲内の変動であったが至近除離を示した群ではCytotoxic effectの上昇が認められ、且つその上昇は血清中のγ-グロブリンの変動に従って変動している如く思われた。

3） 臨床的な癌が実験に与えたような早期のものであれば、例え最近述べられている如く流血中癌細胞の存在や手術野における癌細胞の遺残が存在しても手術に対する予後に期待が持てよう。しかし例えば胃癌手術の臨床系機能を新コロキート系数で示してみるとも必ずしも一定の傾向が見られないことが多く、臨床的の時には予測することは困難である。そこで胃癌に至る腸間膜リンパ節の変化態度を検査した。術後2年間の予後にとの関係をみると、腸間膜リンパ節の変化がrichであったものに予後不良のものが多く、このことは、領域外と考えられる腸間膜リンパ節に変化の及んでいる場合には癌が既に全身的であったものと考えられる。

4） 臨床的胃癌除去後に血清中サルファム酸処理血球凝集反応の抗体価を変動として求めると症例によっては1000倍以上の抗体価のものあり、かかる例では予後も良好であった様に思われた。

反対に術後抗腫瘍剤の投与によって、かえって全身抵抗性的減弱を来たし、癌の発育を促進せしめた症例がしばしば見られ、更に生存の抵抗性を考慮せずに癌の治療に当たることは根本的であると考えられる。

5） 上記癌群の抵抗性を刺激して癌治療に利用されとする試みが行なわれて来たが、われわれも臨床系機能の先進している時期の癌腫瘍の動物的該生剤が、他の同様な癌腫瘍の臨床系を著明に刺激し、癌の発育に抑制的能作用することを明らかにした。