<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>動脈内挿管投与によるMitomycin Cの動態に関する研究</td>
<td>吉栖 (正博)</td>
</tr>
<tr>
<td>日本外科宝函</td>
<td>吉栖 (正博)</td>
</tr>
<tr>
<td>1967年5月1日</td>
<td>1967年5月1日</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/207378</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td></td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
Study on the Antineoplastic Agent “Mitomycin C” by the Intra-arterial Infusion Method to the Extremities

by

MASAHIRO YOSHIZUMI

From the Department of Orthopedic Surgery Kyoto University Medical School
(Director: Prof. Dr. TETSUO IRO)

In the treatment of malignant tumor of the extremities, although single or in combination with surgical treatment, chemotherapy or radiological therapy has been used, and sufficient results have not as yet been obtained. Recently, surgical therapy with chemotherapy by intra-arterial administration has been popularly utilized in order to obtain better local effects of anti-neoplastic agents to lessen the side effects. The high concentration and the activity of this agent on the tissue and its long validity are necessary to demonstrate the effects of the anti-neoplastic agent in vivo, in spite of the mechanisms of the function of the drug. The author has observed how an anti-neoplastic agent brings about a change in vivo by the intra-arterial administration in patients which have been operated on and in normal rats. And, in rats with a WALKER Carcinosarcoma (100%), liver (69-100%) and kidney (43-100%) of rats. The muscle, bone and bone marrow of the extremities of the rat revealed 30% loss of activity half hour after contact with MMC. Internal organs indicated the loss of 10 to 20% of MMC activity in-vitro.

1) The inactivation of MMC is remarkably demonstrated in the value of 0.004 mcg/ml and 0.08 mcg/ml of MMC in the rats’ blood; this seems to have a higher concentration in the red blood corpuscles; however, there seems to be no influence on the serum. MMC, therefore, is probably absorbed or inactivated by the erythrocytes.

2) Remarkable decreasing tendencies of MMC activity have been noted in WALKER Carcinosarcoma (100%), liver (69-100%) and kidney (43-100%) of rats. The muscle, bone and bone marrow of the extremities of the rat revealed 30% loss of activity half hour after contact with MMC. Internal organs indicated the loss of 10 to 20% of MMC activity in-vitro.

3) The content of MMC in rat tissue through various methods of application; such as intra-arterial, intra-venous, subcutaneous, muscular and intra-peritoneal administration was continually estimated and showed the highest degree in the last method, which gave 1mg/kg in several of the rat’s organs. The experiment with MMC activity in rats demonstrated a characteristic alteration with various methods of administration: above all
the concentration in the right muscle of the thigh of the rats produced a beneficial effect resulting from the method of arterial infusion through the left femoral artery. The above was accomplished through the insertion and fixation of a Polyethylen tube at the branch of abdominal artery.

4) The tumor bearing rats, especially with a subcutaneous of back transplanted Walker Carcinosarcoma when infused through intra-venous or intra-arterial femoral vein with as much as 1 mg/kg of MMC did not show any concentration. However, in the transplanted Walker tumor in the tibial bone marrow of the rat a concentration 15 times higher appeared through intra-arterial application. And, on the intermittent intra-arterial infusion method which was continued for 5 days a larger content appeared due to the longer duration of the drug in the tissue, this in marked contrast with the single arterial trials.

5) Clinically in 8 cases of osteogenic sarcoma of the extremities the intra-arterial infusion of MMC was performed under activity of MMC in venous blood or in blood around the sarcoma. Thereafter, the content in the blood around the sarcoma was of a higher degree than in the venous blood in the first trial though it gradually deteriorated over a period of time. When intra-arterial infusion was performed for 8 days, the activities of MMC in blood around the sarcoma was again estimated. After continually administration of MMC for 8 to 14 days by an infusion pump (Chronometric infusor), the prominent elevation of the activity of MMC especially in the blood around the sarcoma increased, but which was continued application over a long period.

6) After the infusion therapy for 8 days with MMC, in 6 cases amputation of the lower extremity was performed in order to estimate the MMC activities. The author obtained results which showed that the values were in the tumor tissue, the bone marrow or the intra-articular fluid 2 to 3 times greater than in the subcutaneous tissues or muscles.

第1章 緒 言
悪性腫瘍に対する化学療法剤は外科療法の補助手段として或いは切除不能例に対して広く用いられるよう

しかし、今日知られている各種製剤の副作用は、その薬理効果が大きく且つ全身性の副作用が極めて強く、しばしば有効量の制剤投与を統行できないことがある。また副作用の強いものに、従って副作用の制剤投与法が大であると考えられている。一方、悪性腫瘍の制剤に対する感受性については未だ明確の点が多く、実験的治療に当つては適応の判定が困難なため、多くの場合、治と選択的に様々な制剤が用いられている状態である。

従って、新しい制剤の開発、研究と同時に、現在用いられている制剤の投与法を改善し、これらをより有効に使用するためには、どのような方法を用うべきかが当面におけるわれわれの課題の一つである。

このような観点から、悪性腫瘍に対する外科的療法の補助手段として、局所主幹動脈内管投与法 (Klopp, 1950年)、次いで癌隔を全身血流循環から遮断して、ここに大量の制剤を作用させる局所灌流療法 (Creech, 1958年) などが開発され、多くの臨床的および実験的研究が行なわれつつあるのは当然の事と考えられる。

しかしながら、化学療法剤の使用目的は転移再発の予防、残存腫瘍の発育抑制、手術不能例の延命効果に

又、遠隔隔離への転移に対しても、また血中の向偏性腫瘍細胞に対しても、それらを追跡しながら転移

の形成を抑制するために、制剤は全身的に使用される方がより合目的と考えられる。この目的からすれば、動脈内管投与法 Intra-arterial infusion、すなわち腫瘍主幹動脈への制剤の直接投与法を用いれば、局所腫瘍に濃度の高い制剤が作用し強い制剤効果が得られる。また同時に、全身的効果も期待され、しかも副作用を軽減させることができるという点で、他の投与法にくらべより合理的と考えられる。
本法は1950年Kloppらによる研究であり、Bierman, Corner, Grady, Sullivan, Herterらの報告がある。本邦でも、中村, 酒井, 白羽, 山田, Sugiuraらは悪性腫瘍の手術不能例、放射線療法治療後の再発例に対し、あるいは外科的手術と併用して用いているが、静脈内あるいは経口投与などに大きくわけて、より優れた局所効果と副作用の軽減を認めている。さらに合併症を少なくし、臨床的効果を高めるために、装置の技術的改良10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48を試みている。これらの成績を含めて検討した結果、若干の誤解も確かめたので、ここに報告する。

第2章 MMC力価測定法

第1節 実験材料

寒天培地、プイヨンを使用し、それぞれ加温溶解後125℃（15kg/cm2）で20分間高圧滅菌を行なった。なお、検定用としては大腸菌B株を用いた。

第2節 実験方法

第1項 薄層寒天平板の作成

薄層寒天平板を使用して、5mlつつ分注した無菌試験管を、沸騰した重曹中で培養を充分溶解した後、室温に放置して徐々に重曹中の和を下げる。これを50℃に保ち、あらかじめ大腸菌B株の1白金耳をプイヨン培養基に加え24時間培養したものを、各々試験管に2滴加え充分に固めた後、滅菌規格ベストリーシャーレーに流し込み、手早く拝けて平板をつくる。薄層寒天は均等な厚さを必要とするため水吸収台の上で拝して固化させる。

冬期には均等な厚さを生むのは難しく、ブリキシェルの加熱を必要とする。この平板はその都度作成し実験に供した。

第2項 標準曲線の作製

薄層寒天平板上に結晶した真菌性カップ（外径8mm±0.1mm, 内径6mm±0.1mm, 高さ10mm）を2〜4個直立して試料を塗いた。直ちに冷蔵庫に入れて4℃で正確に試料を24時間浸漬させたのち、37℃にさらに18時間培養し、翌日出現した阻止円（図1）の直径をノギスを用いて測定した。片対数相関線を用いて、対数目盛にMMCの力価を、普通目盛に阻止円直径をとる。両者の間には図2のように近似直線関係が成立するが、この直線から試料の阻止円直径に対応する力価を求める。すなわち、MMCを0.2, 0.1, 0.08, 0.04, 0.02, 0.01, 0.005, 0.0025mcg/mlの8段階に消毒液を用いて試験して標準曲線を作製した（表1, 図2）。

表1 E. Coli Bを用いた薄層カップ法におけるMMC力価と阻止円直径との関係

<table>
<thead>
<tr>
<th>力価 (mcg/ml)</th>
<th>阻止円直径 (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>35.8 ± 0.24</td>
</tr>
<tr>
<td>0.1</td>
<td>35.1 ± 0.22</td>
</tr>
<tr>
<td>0.08</td>
<td>33.5 ± 0.48</td>
</tr>
<tr>
<td>0.04</td>
<td>30.0 ± 0.32</td>
</tr>
<tr>
<td>0.02</td>
<td>26.2 ± 0.16</td>
</tr>
<tr>
<td>0.01</td>
<td>22.5 ± 0.22</td>
</tr>
<tr>
<td>0.005</td>
<td>18.5 ± 0.28</td>
</tr>
<tr>
<td>0.0025</td>
<td>15.0 ± 0.25</td>
</tr>
</tbody>
</table>

第3項 エーテルドライアイス結晶片による MMCの作用

生体各器側が MMCの作用に影響を及ぼすと言われ、生体各部の薬物の作用は一定の条件を満たすと、無機性薬物で支配される。組織内酵素による薬物の不活化作用を測定する方法としては、抗原性薬又は免疫性薬を試料を用いて、血中力価、組織内分布、組織内吸収の不活化性の問題を検討したが、若干の興味ある見解が得られたので、ここに報告する。

MMCの投与量は通常、他の制癌剤にくるべて著しく低い。
く少量であるため、体液中の力値も低く、これを測定するには一層鋭敏な方法を用いる必要がある。宮村らは大腸菌B株がMMCに対し特に鋭敏であり、その0.00125 mcg/ml で菌の発育完全阻止させると報告している。著者は宮村らの方法に従って、標準曲線を作製した。本法の測定条件は被検菌の考慮を受けて検討し、特に10%程度である。さらに被検菌をエーテル代わりに、1%メタノールで洗浄することによって、その重量を正確に測定し得たのみならず、MMCに対する組織酵素の影響も少なくなった。

第3章 動物実験

第1節 試験管内生体諸臓器のMMC力値に及ぼす影響

第1項 血液および血清内におけるMMC力値の変動

ヒトおよびラットのヘパリン加血液に0.02, 0.04, 0.08 mcg/ml になるようにMMCを混入した後、37℃の解凍器に移し経時的に力値の変動を測定した。

実験成績：図3のように血液においては、0.08, 0.04 mcg/ml の低濃度群では、それぞれ15分後に10~15.1%、9~14%の力値の低下がみられたが、ヒトおよびラット血液の間にはほとんど差異がみられなかった。

ヒトおよびラットの血清について同様の処理を加え、経時的力値の変動を測定したが、MMC濃度および経時的力値の変動はほとんど認められなかった。またヒトとラット両者の間にも特に顕著な差異はなかった。
第2項 赤血球のMMC力価に及ぼす影響

ヒトおよびラット赤血球をそれぞれ生理的食塩水で3回洗浄して得た赤血球沈渣を用い、3段階の赤血球・総量比の液をつくり、これに一定濃度・一定量のMMC溶液を加えて最終濃度を同じくし、37℃の孵卵器に移し、経時的に力価を比較した。同様の実験を0.02，0.08mg/mlの2段階の濃度をもつMMC液について行なった。

実験成績：MMC 各濃度の液は赤血球除加によって図4のようにMMC力価の低下をきたした。しか赤血球濃度の大なるほどその低下が大であった。

第3項 ラット各臓器乳剤内におけるMMC力価の変動

臓器内力価の測定に先だって、ラット各臓器、Walker Carcinosucoma (以下 Walker腫瘍と略す)および四肢組織のMMC力価の変動を測定した。

実験方法：100g 前後の佐和飼育系ラット（以下ラットと略す）をネプタール腹腔内麻酔のもとに脱血死させ。各臓器の血液量をできるだけ除いたのち無菌的にとり出し、直ちにエーテルディアイス中に投入して凍結片とする。各臓器1g をできるだけ細片化し、滅菌滅菌緩衝液2mlを加えて乳剤を作製した。ついでMMCを添加して、最終濃度を0.02mg/mlとしで37℃孵卵器内におき、経時的に力価を測定した。

実験成績：MMC 0.02mg/mlの濃度においては、図5のように15分から30分にかけて筋肉では30%，骨髄および骨組織においては、12〜30%の不活性化がみられた。内臓諸組織およびWalker腫瘍では、同濃度のMMCにおいてもWalker腫瘍、肝、腎に著明な不活性化がみられ、腫、心筋、肺では10〜30%の力価の低下がみられた（図6）。

第4項 小括

試験管内在生体内諸組織のMMC力価に及ぼす影響について検討した。

1）血液の影響については、MMCの低濃度域の添加（0.08，0.04mg/mlをした場合、15分後に1万として15%の力価低下がみえる。赤血球濃度の大なるほど強いMMC不活性化がおこる。その後、血清における影響はほとんど認められなかったことから、MMCは赤血球によりある程度吸着されるかまたは不活性化されるものと思われる。

2）組織乳剤とMMCの接触試験では好気性下にお
動脈内挿管投与によるMitomycin Cの動態に関する研究

339

第2節 MMCの各種投与法における正常ラット
臓器内力価

第1項 実験材料および投与法

本実験に使用したラットの体重は100g前後で、Poly-
ethylene tube（以下PE管と略す）は米国Clay-Adams社製（内径0.11，外径0.024 PE10を用いた.
MMCを一定量の生理的食塩水で稀解した後，1mg/kg
宛，ラットの皮下，左大腿筋，腹腔，左大腿動脈，左
大腿静脈の各群5匹宛，計75匹に投与し，直後，5分
後，10分後，20分後，30分後に動物を脱血死させ，心
血清，肺，肝，脾，腎，右大腿筋等の組織片をエー
テルドライアイスに投入処理し，臓器各1gあたりの
MMC力価を測定した．

さらにラット大腿動脈および大腿静脈内投与をする
ためには，ラットをネック部腹部動脈を開く後，大
腿内側皮膚切開を行ない，大腿神経，動脈および静脈
を分離露出した後，中央側に向いPE管を挿入した．
PE管の挿入先端を腹部大動脈あるいは静脈分岐部に
固定するか，血管挿入部より常通29〜30mmで分岐部に
到達する．さらに大腿動脈の組織内分布領域の確認の
ためには，5％Fluorescinを注入し暗室内で蛍光ラン
プを用いてそのPatternを観察した．

制剤を毎日1回連日投与を行なう場合には，PE
管を皮下組織を通して背部に露出させ，PE管の先端
を焼灼又は線結で結紮して閉鎖し，経創膏を以て固定
した．

第2項 実験成績

各臓器内MMC力価は片対数グラフを用い，各臓器
毎に平均値をもって図示した（図7〜12）．

心血清中，MMC力価（図7）は，大腿動脈および
大腿静脈投与後，時間の経過とともに断次下降する
か，大腿静脈内投与の方が力価は高い．また，皮下，筋
肉内投を与においては，投与5分後に最高となり，皮下
投与の場合は10分後より血中力価は急速に低下する．
腹腔内投与の場合，他の投与法によると同じく、時間の経過とともに力価は次第に低下するが、他の投与法にくるべると比較的高い力価を長時間維持する傾向が認められた。

肺内力価（図8）も血中の場合とはほぼ同じような傾向が認められるが、腹腔、筋肉、皮下投与による方か、大腿動脈あるいは大腿静脈内投与法にくるべて臓器内力価は高く、腹腔内投与では30分後においても平均0.015mcg/mlの力価を保持している。

心筋内力価（図9）は、各投与群ともほぼ等しく、投与直後より力価の減少が認められ、投与後30分を経過すると、腹腔内投与を除き臓器内力価は測定し得ない程に低下した。また、大腿静脈内投与では直後より20分後までは、大腿動脈、腹腔、筋肉、皮下投与法を用いた場合に比べて、高い力価の保持が認められたが、30分後においては力価の著しい低下が認められた。

図9 MMC 1mg/kg 1回 各種投与後のラット心筋内力価（片対数グラフ）

腎内力価（図11）については、腹腔内投与の場合が他の投与法によるよりもより高い力価を維持し、血中力価とほぼ同じ推移を示したが、大腿静脈内投与では5分後最高20分後に消失し、大腿動脈内投与では直後5分後に臓器内MMC力価を測定することができず、10分後に最高力価となり、30分後においても1g中0.0012mcg/mlの力価が認められた。皮下、筋肉投与では大腿筋内力価と同じ傾向がみられた。

大腿動脈および大腿静脈投与法を用いた場合、右大脛筋内力価は図12にみられるように、ほぼ一定の値をもって平行力価関係を維持しながら時間の経過とともに減少するが、動脈内投与法を用いた方が高い力価が認められた。これは左大腿動脈内投与されたPE管が腹部大動脈分岐部まで挿入され、薬液の一部が直接に右大腿動脈内に注入されたためと思われ、左大腿筋内、皮下投与では5分後最高力価となり、30分後に消失する。腹腔内投与では10分後最高となり、他の投与法によるよりも高い値を示した。

さらに肝内においては、如何なる投与法によっても
MMC1 mg/kg の投与量では、MMC 量は測定値に達しなかった。

第3節 小括
1) 腹腔内授与法を用いた場合、他の授与法にくらべ、何れの薬剤も高い MMC 効力を持ち、以下順次に大腿静脈、大腿動脈、筋肉、皮下授与法を用いた場合の力価がこれに続く。
2) 何れの授与法によっても、MMC 1 mg/kg 投与量では肝内に MMC を証明することができなかった。

第3節 MMC の各種授与法における Walker 腹

痛移植ラット模倣の力価

実験材料: 使用した腫瘍は塩野義製薬において累代移植、保存されている Walker 腹瘤で、教室においてラットの皮下に累代移植を続け、実験には移植後7 ～ 9 日目の皮下腫瘍を使用した。

第1項 Walker 背部皮下腫瘍について

実験方法: 体重 100g 前後のラットを用い、Walker 腹部皮下の尾静脈内を 0.5～1 mm²に難細し、自家製硝子ブライトカールあるいは塩野義製移植針で利用し、死皮下にその一定量がラット右背部皮下に移植した。このような箱腫瘍ラット 40匹を 2群に分かッ MMC 1 mg/kg を、第1群には大腿動脈より、第2群には大腿静脈より投与した。

実験成績: 左大腿動脈および大脛静脈授与例の場合は、授与直後、5分後、10分後、20分後、30分後、60分後腫瘍内に MMC が証明されず、腫瘍内 MMC 力価も正常ラットに授与したときの力価の推移が認められた（図7～12）。

第2項 Walker 腹部移植ラットに対する各種授与法による 1回注入後の MMC 力価の変動

実験方法: 体重 100g 前後のラットにネンプタール 3 ～ 4 mg/succ 腹腔内麻酔を行なった後、右後肢脛骨の近位関節面より脛骨々端を穿孔して骨膜まで 1 mm 厚の注射針を孔を穿ち、あらかじめ Walker 腹瘤を自家製硝子ブライトカールに充満した腫瘍片を挿入し、マンドリンを外で腫瘍組織の一定量を骨膜内に移植した。移植操作は常に無菌的に行なった。止血および移植後の

出血を防ぐために刺入部を数分間圧迫した。

以上の操作をしたラットを無処置のまま固定飼料と水で24～14日間飼育し、腫瘍が充分発育した後、MMC 1 mg/kg を左大腿動脈、大腿静脈、腹腔、筋肉、皮下の各群10匹宛、計 150匹にそれぞれ1回注入を行わない、直後より経時的に腫瘍内 MMC 力価を測定し
た。

実験成績: Walker 腫瘍脳骨骨内移植ラットの腫瘍内力価（図13）は、左大腸動脈および大腸静脈1回投与により、投与10分後にそれぞれ最高力価を示すが、左大腸動脈投与は大腸静脈投与にくらべて約15倍の高値を示し、投与30分後においてもなお証明可能の範囲にあつた。静脈内投与では、投与20分後にMMCの証明ができなかった。胸腔内投与では5分後に力価が最高峰となり、しかも大腸静脈内投与の場合比しみそれより高い力価が証明されたが、20分後にはMMCの証明ができなくなった。さらに皮下、筋肉内投与によつては、全く胸腔内MMC力価は測定し得ず、内臓各臓器では正常ラットにおけると同じ時間的推移がみられた。

第3項 低濃度 MMC (0.1mg/kg) 1回注射による
脂肪骨骨骨内Walker腫瘍移植ラット
の腫瘍内の効果

実験方法: 右脳骨骨骨内Walker腫瘍移植ラットを12～14日間創育したものに投与し、MMC 0.1mg/kgを左大腸動脈、大腸静脈、胸腔内の各投与法により、それぞれ1回投与を行わない際時に動物を絶えさせ、ラット生体臓器、Walker腫瘍内力価を測定した。
使用した動物は60匹である。

実験成績：各投与法によって，ラット臟器のMMC
力値の推移は正常ラットにおける MMC 1 mg/kg 1回
投与の場合とほぼ同じである。すなわち，心血清，
肺，心筋，脾の力値（図14，15，16，17）は，大脳静脈
および腹腔内投与法を用いた場合，大脳動脈内投与に
によるよりも各臓器の力値は高く，腎（図18）において
は，大脳動脈および腹腔内投与の方が，大脳静脈内投
与にくらべ高い力値を示した。また，Walker 腫瘍，
筋，肝では上記各投与法を用いた場合，MMC を測定
することができなかった。

第4項 Walker 腫瘍移植ラットのMMC力値について，
1回注入後のMMC臓器内力値と連日5日間投与群のそれとを比較検討した。

血中力値（図19）は時間の経過とともに両群とも漸次下降を示すが、連日5日間投与群の方が各所血時間ともより高い力値を示ししている。肺内力値（図20）は1回投与群では20分後より急速に低下し、30分後には消済したが、連日5日間投与群では高力値を持続し、30分後においても平均0.0015mcg/mlの力値が認められた。心筋内力値（図21）も肺内力値とほぼ同じ傾向がみられ、1回投与の場合は30分後に力値の消済をみたが、連日5日間投与群では、平均0.00128mcg/mlの力値が認められた。肺内力値（図22）は、1回投与群では5分後最高となり、20分後に消失したが、連日5日間投与群では、直後より30分後には同じ値を示した。腎内力値（図23）は、1回投与群では、10分後はゼロとして0.005mcg/mlとなり、5日間連日投与群では5日後までに0.023mcg/mlとなり、10分後両者共に最高値に達し、その後平行して下降した。

肺癌内力値（図24）は、1回投与群においては10分後最高値に達し、30分後には下降して測定値を得なかった。一方、5日間連日投与群では20分後に最高値に達し、30分後においてもなおかつ0.004mcg/mlを示し、一定力値を長時間維持する傾向がみられた。すなわち、動脈内塩管投与に際しては1回注入によるよりも5日間連日塩管内投与による方が、臓器内、臓骨々骨内移植腫瘍とも一定力値を長時間維持する傾向が示された。

第5項 小括
1）背部皮下移植Walker腫瘍について、それぞれ左大腿動脈および大腿静脈にMMC1mg/kgを1回投与した場合、Walker腫瘍内MMC力値は、直後、5分後、10分後、20分後、30分後に全く測定することができない。しかし、臓器内では正常ラットにおけるMMC1mg/kg1回注入の場合と同じ力値が測定された。
図21 MMC 1 mg/kg 連日5日間1回投与後の右脛骨内髄内Walker腫瘍移植ラットの心筋効力値（片対数グラフ）

図22 MMC 1 mg/kg 連日5日間1回投与後の右脛骨内髄内Walker腫瘍移植ラットの腫瘍内効力値（片対数グラフ）

図23 MMC 1 mg/kg 連日5日間1回投与後の右脛骨内髄内Walker腫瘍移植ラットの腫瘍内効力値（片対数グラフ）

図24 MMC 1 mg/kg 連日5日間1回投与後の右脛骨内髄内Walker腫瘍移植ラットの腫瘍内効力値（片対数グラフ）
2）腫瘍を臨床的に進行する場合における各部位の腫瘤内効値を検討したが、腫瘍内動脈投与法においては、腫瘍内動脈投与部位の腫瘍内効値をより高く、かつ長時間持続した。また、腫瘍内 MMC 効価は皮下移植腫瘍の場合と同様、正常ラットにおける MMC 1 mg/kg 投与の効果と同様推移を示した。

3）低濃度（MMC 0.1 mg/kg）投与群においては、高濃度（MMC 1 mg/kg）投与群にくらべ、各部位内効値はより低い値を示し、腫瘍内 MMC 効価は各部位において、著しく低く、測定しきたった。

4）さらに、腫瘍を臨床的に進行する場合における PE 管を留置し、5 日間隔で 1 回観 MMC 驅動時内注入を行なった場合と、1 回動脈内注入による場合の効価を比較検討したが、各部位、腫瘍移植腫瘍クレアチニン法において、高い効価を長時間持続する傾向が明らかに認められた。

第四章 臨床的研究

制癌剤の投与については、全体投与の他に薬剤を腫瘍組織の表面あるいは組織の中へ直接注入したり、腫瘍組織に注射して浸潤させる方法も試みられているが、この中でも最も効果的な投与法として、動脈内腫瘍

投与法あるいは腫瘍しゅう流法27)28) が行われている。

われわれは昭和38年19)、四肢悪性骨腫瘍患者30例について、根治手術と併用して動脈内腫瘍投与による制癌剤の持続投与を試みている。使用薬剤としては MMC、Endoxan、Methotrexate、FUDR などを用いているが、その内 MMC を使用した8例について、動脈内腫瘍投与による投与時の静脈血中 MMC 効価、局所腫瘍血中効価を測定し、さらに切断肢について腫瘍内効価の測定を行ない MMC 効価の変動について検討を加えた。

第1節 研究方法

第1項 動脈内腫瘍投与投与法19)18)30)

a. 分枝動脈腫瘍投与

手術は腰麻又は全麻で行ない動脈露出に先だって、注射ピニ（5％糖液又は生理的食塩水 500ml にベペリ

ン2500U を加えたもの）を適当な量一次性に、輸液管内に気泡を除去しておく。ポリエチレンチューブを予め注射器に接続しておき、動脈内腫瘍投与後注射管の前面注射針に連絡する。目的とする動脈の分枝に動脈を露出し、圧迫より剥離して、腫瘍予定部位の上下にネオトロンカテーブルを挿入し、血流を止める。

b. 腫瘍

1. 動脈内腫瘍投与投与法

主幹動脈の走行状態を確実に触診し得る部位（例え

ば大腿動脈）では、腫瘍予定動脈に対して股頭を 19

20gauge の注射針を刺入し、これを介してポリエチ

レンチューブを血流と逆平行に挿入する。さらにチュ

ーブ先端に適当な位置まで進め、計測方向又は観光法

によってチューブの先端の位置が適当な位置にある

とが確認されれば直ちに注入ポンプを接続して薬液を

注入する。

第2項 制癌剤注入法および注入期間

制癌剤の持続的に注入するには、1 日所要量を 5％

糖液又は生理的食塩水 500cc に溶解して用いる。ときに

ヘパリン 1 日量として 2500 単位を加えて、チューブ

内腫瘍・血腫形成の防止あるいはする場合がある。間歇的

に制癌剤を使用する場合には、インサートリットルの糖液

が 50乃至 100cc に滅菌した時、制癌剤を入れて 2 ～3 時

間で注入し、以後は糖液のみの注入を続ける。又は 1

日 1 回ないし数回、間歇的に制癌剤を内窩からゆっくり

注入する。注入には従来シャープス式（ロータリ

ー式）を用いたが、最近ではインサートリットルを用いないで、制癌剤の高濃度を極めて徐々に注入するガタ

プル型（京大式、シャープ PIP 21）の Chronometric
Infusor を主として用いている。
注注入持続期間を説くことができるが、double time はヒトの癌では、14日～3ヶ月 18) に、悪性腫瘍内では少なくとも30日以上と推定されている 19)。現在の段階では薬剤の中毒作用または合併症のため、長時間持続注入の困難な場合でも少なくないが、拮抗剤を用いてコントロールしながら4～5週の持続投与も可能となった。
第3項 合併症 20) および副作用 21,22)
手技上の合併症としてチューブの先端の位置の不適、転位、滑脱、薬剤の漏洩、チューブ内凝血、血栓の形成、手術部の感染、出血などがある。チューブ内凝血による閉鎖に対しては、注入器を用いて強力に注入液を押込ことでよって、多くは開通され注入を持続することが出来ると、薬剤による全身中毒作用として、発熱、悪心、嘔吐、骨髄障害、肝障害が認められる。注入領域の副作用としては、皮膚炎、浮腫、脱毛などがあり、それぞれの薬剤に応じて適当な拮抗剤を使用する必要がある。
第2節 研究成績
内腔剤として MMC を使用したものは、表2に示されるように骨腫性肉腫6例、上皮瘤の骨腫2例であり、外陰部動脈又は外側大腿動脈動脈より大腿動脈に分枝動脈挿管を行なたものの5例、膝窩動脈より同様の挿管を行なたものの1例、経皮的に大腿動脈に直接挿管を行なたものは2例である。初回投与量、維持量および投与期間は表に示す通りである。術後も全身的に Endoxan, Methotrexate, MMC を使用した。
手技上の合併症は特にみるべきものではなかったが、薬剤による全身作用として発熱、悪心、嘔吐、下痢、血小板減少、全身倦怠感などがみられ、特に Methotrexate 使用例では注人領域の皮膚発赤が強く認められた。
第1項 動脈内挿管投与時の静脈血中および腫瘍血中 MMC 力価
各症例について、動脈内挿管後、表2に示すように一定の MMC を投与し経時に発症し皮膚と内幹性の静脈血および腫瘍内血液を同時的に採取し、MMC 力価を測定した。両者の時間的移動は図25および26にみられる通りである。すなわち、腫瘍血中 MMC は動脈内挿管投与後5～10分で最高力価を示し、30～40分後に消失する。腫瘍局所内血液中 MMC は注入直

<table>
<thead>
<tr>
<th>症例</th>
<th>病名</th>
<th>部位</th>
<th>持続動脈</th>
<th>回数</th>
<th>維持量</th>
<th>ベンソメジ</th>
<th>Infusor</th>
<th>手術</th>
<th>腔転移</th>
<th>併用薬剤</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Y.W.</td>
<td>右</td>
<td>左大腿骨（遠）</td>
<td>外陰部動脈</td>
<td>10</td>
<td>2</td>
<td>8</td>
<td>大脛脛切断</td>
<td>-</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>2. S.M.</td>
<td>右</td>
<td>左大腿骨（遠）</td>
<td>大脛動脈</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>大脛断</td>
<td>-</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>3. T.K.</td>
<td>右</td>
<td>左大腿骨（近）</td>
<td>外陰部動脈</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>股関節切除</td>
<td>3ヶ月</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>4. S.M.</td>
<td>右</td>
<td>左大腿骨（遠）</td>
<td>外陰部動脈</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>大脛切断</td>
<td>-</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>5. T.T.</td>
<td>右</td>
<td>左大腿骨（近）</td>
<td>外陰部動脈</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>大脛切断</td>
<td>-</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>6. H.K.</td>
<td>右</td>
<td>右大腿骨（遠）</td>
<td>大脛動脈</td>
<td>8</td>
<td>2</td>
<td>14</td>
<td>Prolonged Infusion</td>
<td>-</td>
<td>FUDR</td>
<td></td>
</tr>
<tr>
<td>7. K.M.</td>
<td>右</td>
<td>上骨皮</td>
<td>骨盆動脈</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>腸切断</td>
<td>-</td>
<td>Endoxan</td>
<td></td>
</tr>
<tr>
<td>8. H.A.</td>
<td>右</td>
<td>右大腿骨</td>
<td>外頸動脈</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>腹切断</td>
<td>-</td>
<td>6Co</td>
<td></td>
</tr>
</tbody>
</table>
後最高値をしめし、時間の経過とともに漸次減少する
か、30〜40分後ににおいて静脈血より高い力値を示
し、長時間一定値を維持する。Infusion pump を使用
し連日8日間、MMC 2 mg を持続又は間歇的投与を行
なった後の測定では、1回投与にくらべ高い力値をし
めた。

第2項 肘静脈 MMC 投与時の反対側静脈血お
よび局所脛動血中の力値
MMC の全身投与の影響を知るために、巨細胞脛の
1例(20才, 男) に患肢の肘静脈よりMMC を投与し、
反対側の静脈血と局所漬猫内血液を同時に採取し，MMC 力価を経時的に測定した。図27にみられるように静脈血中力価は5分後に最高値をしめすが，局所漬猫内血液中力価は低く，また採取した試験片の腫瘍組織，筋肉，皮下組織各々1g中にはMMCは全く測定し得なかった。

第3章 切断肢組織内 MMC 力価

8日間 MMC を持続的又は間歇的に動脈内投与を行えない，四肢切断，腸管離断術をなした6例の切断肢について，腫瘍組織，腫瘍部骨髄，筋肉，皮下組織，関節液のMMC力価を測定した。各組織は1g，関節液は0.5ccを試料として，図28にみられるように，腫瘍組織，腫瘍部骨髄，関節液においては高力価のMMCが認められ，皮下，筋肉の2～3倍値を示していた。3症例においては筋内MMC力価は著しく低く証明できなかった。

第5章 総括ならびに考按

1. MMC 濃度測定法について

制癌剤の組織内あるいは体液中濃度の測定法には，制癌剤を放射性同位元素で標識し，その放射性同位元素の分布を測定する方法と化学的定量方法がある。制癌剤の濃度を正確に把握するには，ニュートラルな定量法による測定法が望ましいが，一般に広く使用されているNitroin Diemnerの化学的定量方法に於てEndoxanの濃度測定法についても組織内あるいは体液中の濃度の測定法を検出し得る反面，体液中濃度測定法をも測定値に含まれる欠点をも有しており，まだ確実な方法は見出されていないようである。

現在の段階では，抗生剤の測定に古く用いられている特定菌阻止作用を指標として行なう測定法が比較的確実な方法である。そこで著者は抗生剤であるMMCを使用し，大腸菌B株を用いた薬剤殺菌法による宮村氏法に於て検査を行うに至った。本法はMMCの大腸菌発育阻止作用に依る利用がはかで，これを用いて行なつ実験が阻止不円も明確で，微量のMMC力価測定が可能であるのみならずその測定誤差範囲が少ない。また，MMCは検定培地のpHやNaClなどの影響をうけることも少なく，不完全性の問題も容易に検討し得るなどの利点をもつており，この生物的測定法は微量測定法に匹敵するものと考えられる。

MMCの血中力価の測定については，森田，田坂，渡辺，宮村，田坂らの報告がみられ，組織内力価については宮村，田坂，渡辺らの報告がある。すでに田坂，渡辺らが指摘し，著者の実験にも準じたように，血球沈降を赤血球：緑血球を3段階に分け，一定時間一定量のMMCの投薬を加えて最終濃度を同じくし，その力価を対照と比較した場合，血中におけるMMC力価の低下は赤血球が高濃度のもの程その低下は著しいことなどから，田坂も指摘しているように，MMC力価は赤血球にもっと強く影響されるものと考えられる。このような現象は赤血球による単なるMMCの吸着によるものか，ヒトあるいは哺乳動物の無核赤血球のもつ能動輸送能によるものか，他の因子に起因するものか，未だ判然としないがこの点については今後さらに検討を要する。

各組織乳癌のMMC力価に及ぼす影響について，宮村らは，家系の肝，脾，骨，肺などの組織乳癌について，渡辺は犬の肝，脾，骨，骨髄について検索し，これらと各組織乳癌がMMC力価の著しい低下を来たすことを見ている。著者の試験管内での実験では，Walter Walker の肝，脾，骨に著明な力価の低下がみられたが，四肢組織では骨格筋，骨髄および骨綱に30%前後の低下，他の内臓組織では10%程度の低下がみられた。

このようなMMC力価の低下は，諸組織における細胞内電解質によるMMCの吸着，酵素による不活性化，あるいは細胞内DNAによるMMCの分解などに起因するものであろうと推測されている。従って，著者は臓器内力価の測定に当って，組織細胞による不活性化をできるだけさけ，試料の製剤，細胞の分化を容易ならしめるために，前述の如く好気性下にエトドライアイソ体重液体を用いたが，かなり一定した成績を得ることができた。

2. Walter 肝癌におけるMMCの効果

教室の池田は骨盤内移植Walker肝癌に対して，各種制癌剤を静脈内，皮下，腹腔内に全身投与を行なう，一定期間後それらの肺移行率，局所緩解の，組織学的変化，生存率について検討しているが，MMCは移植Walker肝癌にかなり効果に作用し，腫瘍細胞の崩壊と核の崩壊，細胞質の縮小が著しく強くと認められている。また，所謂中期以後の治療によっても多少とも延命効果を期待得たと報告している。Sugiuraによれば，Walker肝癌の結腸型，腹水型ともMMC1mg/kg7日間連日投与によって，腫瘍の増大を阻止しているが，MMC1.5mg/kgをtoxicdosisであるとし，また制癌剤投与を中断することによって，再度肝癌の増大と体重減少を来たし，その結果肝癌死を来たした。
と報告している。寺中らはWistar系ラットの片側大腿部にWalker腫瘍を移植し、2週後に他側大腿から動脈内挿管投与を行ない、MMC 100mg/rat, 200mg/rat, 300mg/rat および400mg/rat の4群に分けて連日10日間、留置したPE管を通じ上記のMMC溶液の注入を行なって、その効果を検討しているが、MMCは移植Walker腫瘍の増大を抑制し、延命効果を有するとして報告している。また、協同研究者の米沢ら、柴田らによれば、骨髄内Walker腫瘍に対する動脈内挿管投与法による組織学的変化、肺転移率、延命効果などについてみてみれば、MMC1mg/kgの大量投与群では、腫瘤重0.1mg/kg投与群よりすくぐれた効果が認められ、平均生存日数においては低濃度投与群でも延命効果が認められるといえると述べている。

すなわち、以上の実験成績からMMCは、Walker腫瘍に対してかなり強い抗腫瘍性をしめし、動脈内挿管投与により一層大きい効果があることが明らかにされた。

3. 動物実験成績
 a) 正常ラットにおいてMMC各種投与法を用いた場合の臓器内力値の変化に関しては、従来その報告を見ないが、著者の実験によれば、腹腔内投与にともない高濃度（1mg/kg）投与法を用いた場合、各臓器内力値は他の投与法を用いた場合に比べ、最大高い値を示したことは興味ある所見である。このことは動脈内挿管投与と、静脈内投与、筋肉、皮下投与法にかんして、腹膜の薬剤吸収性が高いことや注入薬剤が直接臓器に吸収される場をもとるものと推察される。また、肝内にMMC力値が測定された事実は、肝臓がもつ生理的増生によるMMCの不活性化のあるいはMMCが分解されたためと考えられるか、投与量、投与法26(58)の問題とも考え合わせて興味深いものがある。大腿動脈内MMC投与法を用いた場合には、全身投与法を用いたものと比べ、反対側大腿筋内MMC力値が高いのはPE管を腹部大動脈分岐部に挿入・留置したたために薬剤の一部が反対側動脈に流入したためと考えられる。なお、白羽ら28によればNitromin (NMO)の腹腔内挿管投与法を用いた場合、腫瘍を除く他の臓器にNMOが高濃度に出現するのみならず、肝内濃度が著しく高価を示す。すなわち、対象臓器に対する主な腫瘍内挿管による直接的投与法を用いた場合、該薬剤内制癌剤濃度を著しく高くするものと思われる。
 b) 右背部皮下移植Walker腫瘍について

大腿動脈および大腿静脈に高濃度MMC（1mg/kg）を投与したが、腫瘍内MMCは直後より30分後まで著者の測定法をもって検出しないかった。すなわち、腫瘍主栄養動脈を通じてMMCを投与した場合、腫瘍内MMCを測定し得なかった。この事はMMCを使用する場合主栄養動脈を通じないで投与することは余程高濃度かつ長期持続投与を行わない限り、MMCの腫瘍組織に対する効果は期待されない場合もあることを示唆している。

c) 低濃度MMC（0.1mg/kg）投与群におけるラット内臓諸臓器の力値は、高濃度MMC（1mg/kg）投与群にくらべ、各臓器よりも低い力値を示した。特に右腎・胃内外・腫瘍腫瘍については、動脈内挿管投与法によってもMMCを測定し得なかった。前述のよう

に MMCについては、SugiuraらはラットのWalker腫瘍増大阻止を1日1mg/kg、toxic doseとして15mg/kgをあげている。著者は低濃度群に対しては0.1mg/kgを投与したが、これはSugiuraらの見解によれば極めて少量である。Fluorescin投与による蛍光法で腫瘍へMMCが到達したことを確かめた上で、力値測定を行なったのにかかわらず、著者の測定値では腫瘍内力値を測定されなかったのは、MMCが腫瘍内で不活性化、分解され測定可能力値に達し得なかったためと思われる。この事は前述の制癌剤の投与法のみならず、制癌剤の有効投与量、有効濃度の問題についても慎重な考慮を要することを指摘しているように思わわれる。

d) 投与形式についてみると、実験動物が制癌剤の長期大量持続投与に耐えられないことを、もと1個体から継続的に各臓器を探査し、追求し得ないことから連日投与群と1回投与群との間のMMC各臓器内力値の消長について比較検討する方法を探った。すなわち、左大腿動脈に挿入・留置したPE管を通じて一定量のMMCを1日1回、連日5日間投与し、1回投与群におけるMMC力値の推移と比較した。動脈内挿管投与法を用いた場合、前述のように各臓器とも連日投与群の方が一定力値を長時間持続する傾向が認められた。血中力値における差は著しくなく、肺内力値が連日投与群において著しく高くはなかったことは柴田らの実験をうらわすものである。また、連日投与によって腫瘍内濃度が著しく高く、かつ長時間づくば、腫瘍に対するMMCの効果が従来の他の全身の投与法に比べてより強くかつ持続的であることを推進させるものである。
4．臨床成績

悪性腫瘍に対して腫瘍の主栄養を司る動脈内への投
管投与を試みた臨床的検討は数多く行なわれており，
それぞれ原著者の治癒効果の発現と副作用の観点を
認めていっている。その投与形態については Klop201,212,232, Ryan230 らの間歇的投与法があり，間歇的投与と X 線
照射の併用203,212などに対して Sull1an241,241,242, Watkins
503,397 らの長期間持続投与法がある。副作用ocrinのため
には前年と，効果の点では後者の方が優れていると考え
えられるが，現在使用されている制癌剤はその効力
がいかに決定しにくいようにと思われる。また，いずれも
PE 話のばらばらの捕獲法，PE 話前後の位置の確認のた
めの Fluorescin 照光法の応用187,247, Chromotric
Infusor31,205 の開発など，何多の改良がななわれてお
り，活性度の高い制癌剤を不定形的に長期間，動脈内捕
管投与することが出来たようになる。また，歩行患
者でも長期の持続的薬剤療法を行う得る得を得るにな
り，臨床面における本法の実用性は著しく高められた
といえよう。

著者は悪性腫瘍患者 8 例について，根治手術施行
前例に MMC 動脈内捕管投与を行なつて，同時剤に
靜脈血中および腫瘍局所血中力値の測定を行ない，動
脈内捕管投与における MMC 力値の変動について検
査した。従来のような研究報告は見られないが，著
者の成績によれば，腫瘍内力値は静脈血中力値にくら
べ著しく高力値を長時間持続する。すなわち，静脈血
中力値は MMC 1 回動脈内捕管投与により 5 ～ 10 分
後に最高力値に達し，30 ～ 40 分後には消失するが，腫
瘍内力値は投与直後を最高値をしめし，時間の経過と
ともに次第に下降をしめすが，30 ～ 40 分後においても一定
力値を維持していた。さらに Infusion pump による
連日 MMC の持続投与方法においては，1 回投与法を
用いた場合に比べて，局所腫瘍血中力値は著しく高
く，より長時間高い力値の持続が認められた。また，
8 日間 Infusion pump より MMC の一定量を動
脈内捕管持続投与のもの，根治手術を施行した 6 症
例の切断肢における各組織内 MMC 力値は腫瘍組織，
腫瘍部骨髄にもっとも高く，皮下，筋肉組織の 2 ～ 3
倍値を示したが，この事はMMC 投与法として本法
の妥当性を物語るものであると考えられる。

さらに臨床経過について述べれば，白羽28 らは 101
例の悪性腫瘍患者に動脈内捕管投与による MMC の
投与を行なつて，多数の症例に一時的な症状軽快がみ
られると述べている。また，静脈注射群，動脈内捕管
投与群何れも発熱を来す場合もあれば，動脈内投与
は静脈内投与法を用いた場合にくらべて，食欲不振を
訴えるものが少なく，かつ白血球減少症の現れ方も
より少なく比較的大量の MMC を投与することがで
きたと調査している。塚田293 らは 23 例の四肢悪性腫
瘍患者に対し，制癌剤の動脈内捕管投与を行なつて注
入前後の組織像を比較したが，大部分の症例に病理組
織学的に有意な変化をみることが出来たと述べてい
る。

われわれの動脈内捕管投与を行なつた 30 数例の臨床的
経歴からみて，切斷肢の検査で組織学的に明らか
に有効であったと思われるものもあった。副作用につ
いては必ずしも軽減したとは思われないが，これは他の
投与法に比し，より高濃度の制癌剤を使用している
ため，理論的にも MMC を罹患部に集中して注入
する動脈内捕管投与法は他の投与法にくらべ，より
すぐれた方法であろうと考えられる。

以上，動脈内捕管投与法における MMC 力値の変
動について検討を行ない，その優れた点を実験的にも
臨床的にも確認することが出来たが，本法実施に際し
てはなお制癌剤の腫瘍予防性，投与量，適応の問題，
Infusion のための制癌剤の開発，あるいは副作用機能
の問題など今後の研究に俟つところが大きい。

第 6 章 結語

動脈内捕管投与法による制癌剤の体内における変動
について，骨盤内植え Walker 腫瘍ならびに同じ四肢
悪性腫瘍症例に中心に検査を行なつた。制癌剤と
しては Mitomycin C を使用し，その力値測定には宮
村氏法に準じ大腸菌β株による生物学的定量法を用い
た。

1） MMC の血液における力値活性は，全血に対し
て MMC の 0.04, 0.08μg/ml の低濃度添加あるいは
赤血球の高濃度添加によって，赤血球の MMC 不活
性化に及ぶ影響は強くみられるのに反し，血漿の影
響はほとんど認められなかった。このことから MMC
は赤血球に於て程度吸収不活性化されるものと思われる。

2）ラット腫瘍内に MMC の不活性化に関する
試験管内検査では，特に Walker 腫瘍（100%），肝
（69～100%），腎（43～100%）において著明な不活性
化がみられた。四肢組織では 30 分後に骨格筋，骨盤お
よび骨組織に 30% 前後の不活性化がみられる程度で，
内臓諸臓器は 10～20% 程度であった。
3）制癌剤 MMC の動脈内, 静脈内, 腹腔内, 下, 筋肉内など各種投与法による腫瘍内力価の研磨的変化に関しては, 特に MMC 1 ㎎/㎎ 腹腔内投与の場合に, 何れの腫瘍においても最高力価が認められた。また, 各腫瘍の力価は投与形式によりそれぞれ特微ある推移を示しか, 大腫動脈内投与によって反対側下肢の筋肉力価が他の投与法によるよりも高い力価を示した。この事は PE 管を腹部大動脈分岐部まで挿入・留置したために薬剤が反対側にも流入したと思われる。

4）ラットにおける MMC 力価については, 背部皮下 Walker 移植瘍について, 大腫動脈および大腫静脈より MMC 1 ㎎/㎏を投与した場合, 両者とも腫瘍内に MMC を証明することができなかった。腫瘍内移植ラットの Walker 腫瘍内力価は, 大腫動脈内に MMC 1 ㎎/㎏投与した場合には, 腹腔, 大腫静脈投与の約15倍の高力価を示した。さらに PE 管を左大腿動脈に留置し, 近日 1 回宛の動脈内注入を 5 日間行なった場合, 1 回投与によるよりも腫瘍内および腫瘍 MMC 力価は著しく高く, また長時間持続することが認められた。

5）骨腫瘍患者 8 例に対して局所動脈内挿管による MMC 投与を行ない, 静脈内および局所腫瘍内MMC 力価の推移を検討したが, 局所腫瘍窪MMC は投与直後に最高力価をしめし, 続次時間の経過とともに減少するが, 静脈内MMC力価よりも高く長時間, 一定力価を維持した。Infusion pump による8 ～14日間の MMC 持続投与後の静脈血および腫瘍では, 更に著明な力価の上昇がみられ, 特に局所腫瘍窪MMC 力価は高くなり長時間持続する傾向がみられた。

6）8 例間 MMC を連日動脈内挿管投与を行なつた後, 切断を行なつた6 症例の切断肢における MMC は腫瘍組織, 腫瘍部骨皮, 間節液に高力価をしめし, これは皮下筋肉組織の2 ～ 3 倍値をしめた。

稿を終えるに当り, 御懇談なる御指摘, 御指導を賜わたる恩師伊藤鉄教授に深甚なる謝意を表する, また本研究に当て, 終始御指導, 御助言を賜った赤星義彦助教授に衷心より感謝すると共に, 実験に当り種々御協力賜った協同研究者米沢啓博士, 佐々木分感謝を賜った阪大医学部小池秀一博士に厚く感謝する。

なお, 本研究には文部省科学研究費および和風会医

学研究所（所長近藤篤武名誉教授）より研究費を受けたことを追記して謝意を表する。

文献

1）赤星義彦：実験的骨腫瘤に対する MMC 力価, 中部整法誌, 8 (2) : 323, 昭40。

2）赤星義彦：骨頭内移植腫瘤, 特に Walker 腫瘍の骨頭移植瘤について, 中部整法誌, 8 (2) : 329, 昭40。

3）赤星義彦：Chronometric Infusor, 臨床整形外科, 1 (3) : 315, 1966。

12）Hall, T. C. : Chemotherapy of cancer. New
動脈内挿管投与によるMitomycin Cの動態に関する研究

38) 柴田大法: 未発表

40) 白羽稀右衛門: Mitomycin Cの抗腫瘍性に関する研究。サイマイン文献集, No. 102, 22, 昭31.

59) 米沢宏: 未発表