<table>
<thead>
<tr>
<th>Title</th>
<th>A Fiber-optic Endoscope for Spinal Cord: Spinaloscope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>MOHRI, KIKUO; IKEDA, MASANAO; OHGUSHI, NAHOIRO; OHSUMI, KIYOSHI; SATO, MASUGI; TSUNEKAWA, KENGO</td>
</tr>
<tr>
<td>Citation</td>
<td>日本外科宝函 (1968), 37(6): 789-791</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1968-11-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/207503</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
A Fiber-optic Endoscope for Spinal Cord

—Spinaloscope—

by

KIKUO MOHRI, MASANAO IKEDA, NAOHIRO OHGUSHI, KIYOSHI OHSUMI, MASUGI SATO and KENGO TSUNEKAWA

From the 2nd Department of Surgery, Faculty of Medicine Kyoto University

(Director: Prof. Dr. CHUJI KIMURA)

Received for Publication Sep. 10, 1968

Many investigations have been made on the brain, while little has reported on the same subjects of the spinal cord.

Less analytical attention has been paid to the spinal cord, partly because there are many difficulties of the direct visualization on the spinal cord from the clinical standpoint and there is less opportunity of autopsy-study on the spinal cord.

Although fiber optic endoscopes are already applied to stomach, esophagus, bronchus and so on, nobody has developed the fiber optic endoscope on the spinal cord.

We constructed so much excellent fiber-optic endoscope on the spinal cord, as Spinaloscope (KTM-10).

The instrument (Fig. 1) has a grassfiber optic image guide and a same light guide, both of which have been coated with nonmetal coating. The image guide is round and 20 mm in diameter, and it provides a range of focus from 5 mm to 20 mm.

The light guide is round and 20 mm in diameter and it provides a spot of intense, cold, white light. Both fiber-optic instruments are packed in a compact bundle and cemented with non-metal coating and cured by a process that allows the fiber optics to be disinfected without collecting water between fiber bundles.

A fiber-optic light carrying cord (light guide) is 200 cm long and is connected to a variable high-intensity light source, and it allows the light source to be well out of the sterile operating field.

These image conducting and light conducting cords can be formalingas-sterilized or gas autoclaved, and it has been our practice to gas-sterilize the entire spinaloscope-optical-assembly as a unit. The light source is a Matsushita 150 watt reflecting-type projector bulb mounted in a fan-cooled housing.

Fig. 1 Spinaloscope
When working in a particularly bloody field, the tip of the fiberoptics must be periodically cleared by rinsing with irrigation or by wiping with moist cotton.

This instrument has been used to show the surface of spinal cord, to identify pathological changes of spinal cord surface or blood vessels on spinal cord. And it can be utilized to illuminate and observe the needle electrode of cordotomy in percutaneous procedure or operative procedure.

The level of the tips of endoscope can be possibly determined under rentogenological visualisation (Fig. 2).

Now only in animal experiments, which were performed under laminectomy procedure, good results are obtained by spinaloscope. In Fig. 3 were observed some features of spinal cord surface and blood vessels to spinal cord. And also in Fig. 4 was showed illustration of Fig. 3.

Preliminary studies and experimental trial indicate that spinaloscope offers many advantage over observation of behavior on spinal cord surface, and also that side effects of spinaloscope can be avoided with careful handling.

As the results of animal studies, the spinaloscope is proposed as a useful method in spinal cord surgery and also at clinical and experimental laboratory examination. The technique is simple and photograph can be easily obtained. Clinical trial of spinaloscope is also possible. Results of clinical finding with spinaloscope is under study and would also soon be reported.

ACKNOWLEDGEMENT

We wish to express our deepest gratitude to Prof. Dr. CHUJI KIMURA for his helpful advice and kind guidance throughout this study.

Fig. 2 Scheme of spinaloscope procedure

Fig. 3 Photograph of spinal cord surface

- B : Blood vessels of the spinal cord
- D : Dura mater
- R : Dorsal root of spinal cord
- S : Spinal cord
Note: This work was presented at the Ninth Annual Meeting of Japanese Society of Neurology (Nihon Shinkei Gakkai), April 4, 1968 at Niigata, and also supported by grant of Monbusho-kagaku-kenkyuhi No. 72075.

This instrument is not commercially manufactured, but is available on order from Machida Endoscope Mfg. Co., Tokyo.

REFERENCE