TOWARD A GEOMETRIC ANALOGUE OF DIRICHLET’S UNIT THEOREM

ATSUSHI MORIWAKI

ABSTRACT. In this article, we propose a geometric analogue of Dirichlet’s unit theorem on arithmetic varieties [18], that is, if \(X \) is a normal projective variety over a finite field and \(D \) is a pseudo-effective \(\mathbb{Q} \)-Cartier divisor on \(X \), does it follow that \(D \) is \(\mathbb{Q} \)-effective? We also give affirmative answers on an abelian variety and a projective bundle over a curve.

INTRODUCTION

Let \(K \) be a number field and \(O_K \) the ring of integers in \(K \). Let \(K(C) \) be the set of all embeddings \(K \rightarrow C \). For \(\sigma \in K(C) \), the complex conjugation of \(\sigma \) is denoted by \(\overline{\sigma} \), that is, \(\overline{\sigma}(x) = \overline{\sigma(x)} \) \((x \in K) \). Here we define \(\Xi_K \) and \(\Xi^0_K \) to be

\[
\Xi_K := \left\{ \xi \in \mathbb{R}^{K(C)} | \xi(\sigma) = \xi(\overline{\sigma}) \ (\forall \sigma) \right\},
\]

\[
\Xi^0_K := \left\{ \xi \in \Xi_K | \sum_{\sigma \in K(C)} \xi(\sigma) = 0 \right\}.
\]

The Dirichlet unit theorem asserts that the group \(O_K^{\times} \) consisting of units in \(O_K \) is a finitely generated abelian group of rank \(s := \dim_{\mathbb{R}} \Xi^0_K \).

Let us consider the homomorphism \(L : K^{\times} \rightarrow \mathbb{R}^{K(C)} \) given by

\[
L(x)(\sigma) := \log |\sigma(x)| \quad (x \in K^{\times}, \sigma \in K(C)).
\]

It is easy to see the following:

(i) For a compact set \(B \) in \(\mathbb{R}^{K(C)} \), the set \(\{ x \in O_K^{\times} | L(x) \in B \} \) is finite.
(ii) \(L : K^{\times} \rightarrow \mathbb{R}^{K(C)} \) extends to \(L_{\mathbb{R}} : K^{\times} \otimes \mathbb{R} \rightarrow \mathbb{R}^{K(C)} \).
(iii) \(L_{\mathbb{R}} : O_K^{\times} \otimes \mathbb{R} \rightarrow \mathbb{R}^{K(C)} \) is injective.
(iv) \(L_{\mathbb{R}}(O_K^{\times} \otimes \mathbb{R}) \subseteq \Xi^0_K \).

By using (i) and (iii), we can see that \(O_K^{\times} \) is a finitely generated abelian group. The most essential part of the Dirichlet unit theorem is to show that \(O_K^{\times} \) is of rank \(s \), which is equivalent to see that, for any \(\xi \in \Xi^0_K \), there is \(x \in O_K^{\times} \otimes \mathbb{R} \) with \(L_{\mathbb{R}}(x) = \xi \).

In order to understand the equality \(L_{\mathbb{R}}(x) = \xi \) in terms of Arakelov geometry, let us introduce several notations for arithmetic divisors on the arithmetic curve \(\text{Spec}(O_K) \). An arithmetic \(\mathbb{R} \)-divisor on \(\text{Spec}(O_K) \) is a pair \((D, \xi)\) consisting of an \(\mathbb{R} \)-divisor \(D \) on \(\text{Spec}(O_K) \) and \(\xi \in \Xi_K \). We often denote the pair \((D, \xi)\) by \(D_\xi \). The

Date: 11/March/2015, 15:30 (Kyoto), (Version 3.1).

2010 Mathematics Subject Classification. Primary 14G15; Secondary 11G25, 11R04.

Key words and phrases. Dirichlet’s unit theorem; pseudo-effective divisor; finite field.
arithmetic principal \mathcal{R}-divisor $(x)_\mathcal{R}$ of $x \in K^\times \otimes \mathcal{R}$ is the arithmetic \mathcal{R}-divisor given by
\[
(x)_\mathcal{R} := \left(\sum P \text{ord}_P(x)[P], -2L_\mathcal{R}(x) \right),
\]
where P runs over the set of all maximal ideals of O_K and
\[
\text{ord}_P(x) := a_1 \text{ord}_P(x_1) + \cdots + a_r \text{ord}_P(x_r)
\]
for $x = x_1^{a_1} \cdots x_r^{a_r}$ ($x_1, \ldots, x_r \in K^\times$ and $a_1, \ldots, a_r \in \mathcal{R}$). The arithmetic degree $\deg(\overline{D})$ of an arithmetic \mathcal{R}-divisor $\overline{D} = (\sum P a_P[P], \xi)$ is defined to be
\[
\overline{\deg}(\overline{D}) := \sum P a_P \log \#(O_K/P) + \frac{1}{2} \sum_{\sigma \in K(C)} \xi(\sigma).
\]
Note that
\[
\overline{\deg}(x)_\mathcal{R} = 0 \quad (x \in K^\times \otimes \mathcal{R})
\]
by virtue of the product formula. Further, $\overline{D} = (\sum P a_P[P], \xi)$ is said to be effective if $a_P \geq 0$ for all P and $\xi(\sigma) \geq 0$ for all σ.

In [18, SubSection 3.4], we proved the following:

(0.1) “If $\overline{\deg}(\overline{D}) \geq 0$, then $\overline{D} + (x)_\mathcal{R}$ is effective for some $x \in K^\times \otimes \mathcal{R}$.”

This implies the essential part of the Dirichlet unit theorem. Indeed, we set $\overline{D} = (0, \xi)$ for $\xi \in \mathbb{Z}_K^0$. As $\overline{\deg}(\overline{D}) = 0$, by the assertion (0.1), $\overline{D} + (y)_\mathcal{R}$ is effective for some $y \in K^\times \otimes \mathcal{R}$, and hence $\overline{D} + (y)_\mathcal{R} = (0, 0)$ because $\deg(\overline{D} + (y)_\mathcal{R}) = 0$. Here we set $y = u_1^{a_1} \cdots u_r^{a_r}$ such that $u_1, \ldots, u_r \in K^\times$, $a_1, \ldots, a_r \in \mathcal{R}$ and a_1, \ldots, a_r are linearly independent over \mathbb{Q}. By using the linear independency of a_1, \ldots, a_r over \mathbb{Q}, $\text{ord}_P(y) = 0$ implies $\text{ord}_P(u_i) = 0$ for all maximal ideals P of O_K and $i = 1, \ldots, r$, that is, $u_i \in O_K^\times$ for $i = 1, \ldots, r$. Therefore, $\xi = L_\mathcal{R}(y^2)$ and $y \in O_K^\times \otimes \mathcal{R}$, as required. In this sense, the above property (0.1) is an Arakelov theoretic interpretation of the classical Dirichlet unit theorem.

In [18] and [19], we considered a higher dimensional analogue of (0.1). In the higher dimensional case, the condition “$\overline{\deg}(\overline{D}) \geq 0$” should be replaced by the pseudo-effectivity of \overline{D}. Of course, this analogue is not true in general (cf. [5]). It is however a very interesting problem to find a sufficient condition for the existence of an arithmetic small \mathcal{R}-section, that is, an element x such that
\[
x = x_1^{a_1} \cdots x_r^{a_r} \quad (x_1, \ldots, x_r \text{ are rational functions and } a_1, \ldots, a_r \in \mathcal{R})
\]
and $\overline{D} + (x)_\mathcal{R}$ is effective. For example, in [18] and [19], we proved that if D is numerically trivial and \overline{D} is pseudo-effective, then \overline{D} has an arithmetic small \mathcal{R}-section. In this paper, we would like to consider a geometric analogue of the Dirichlet unit theorem in the above sense.

Let X be a normal projective variety over an algebraically closed field k. Let $\text{Div}(X)$ denote the group of Cartier divisors on X. Let \mathbb{K} be either the field \mathbb{Q} of rational numbers or the field \mathbb{R} of real numbers. We define $\text{Div}(X)_{\mathbb{K}}$ to be $\text{Div}(X)_{\mathbb{K}} := \text{Div}(X) \otimes_{\mathbb{Z}} \mathbb{K}$, whose element is called a \mathbb{K}-Cartier divisor on X. For \mathbb{K}-Cartier divisors D_1 and D_2, we say that D_1 is \mathbb{K}-linearly equivalent to D_2, which
is denoted by $D_1 \sim_K D_2$, if there are non-zero rational functions ϕ_1, \ldots, ϕ_r on X and $a_1, \ldots, a_r \in K$ such that
\[D_1 - D_2 = a_1(\phi_1) + \cdots + a_r(\phi_r). \]

Let D be a K-Cartier divisor on X. We say that D is big if there is an ample Q-Cartier divisor A on X such that $D - A$ is K-linearly equivalent to an effective K-Cartier divisor. Further, D is said to be pseudo-effective if $D + B$ is big for any big K-Cartier divisor B on X. Note that if D is K-effective (i.e. D is K-linearly equivalent to an effective K-Cartier divisor), then D is pseudo-effective. The converse of the above statement holds on toric varieties (for example, [4, Proposition 4.9]). However, it is not true in general. In the case where k is uncountable (for example, $k = \mathbb{C}$), several examples are known such as non-torsion numerically trivial invertible sheaves and Mumford’s example on a minimal ruled surface (cf. [8, Chapter 1, Example 10.6] and [14]). Nevertheless, we would like to propose the following question:

Question 0.2 (K-version). We assume that k is an algebraic closure of a finite field. If a K-Cartier divisor D on X is pseudo-effective, does it follow that D is K-effective?

This question is a geometric analogue of the fundamental question introduced in [18]. In this sense, it turns out to be a geometric Dirichlet’s unit theorem if it is true, so that we often say that a K-Cartier divisor D has the Dirichlet property if D is K-effective. Note that the \mathbb{R}-version implies the Q-version (cf. Proposition 1.5). Moreover, the \mathbb{R}-version does not hold in general. In Example 3.2, we give an example, so that, for the \mathbb{R}-version, the question should be

“Under what conditions does it follow that D is K-effective?”.

Further, the Q-version implies the following question due to Keel (cf. [10, Question 0.9] and Remark 2.4). The similar arguments on an algebraic surface are discussed in the recent article by Langer [12, Conjecture 1.7~1.9 and Lemma 1.10].

Question 0.3 (S. Keel). We assume that k is an algebraic closure of a finite field and X is an algebraic surface over k. Let D be a Cartier divisor on X. If $(D \cdot C) > 0$ for all irreducible curves C on X, is D ample?

By virtue of the Zariski decomposition, Question 0.2 on an algebraic surface is equivalent to ask the following:

“If D is nef, then is D K-effective?”.

One might expect that D is semiample (cf. [10, Question 0.8.2]). However, Totaro [24, Theorem 6.1] found a Cartier divisor D on an algebraic surface over a finite field such that D is nef but not semiample. Totaro’s example does not give a counter example of our question because we assert only the Q-effectivity in Question 0.2.

Inspired by the paper [3] due to Biswas and Subramanian, we have the following partial answer to the above question.
Theorem 0.4. We assume that k is an algebraic closure of a finite field. Let C be a smooth projective curve over k and let E be a locally free sheaf of rank r on C. Let $\mathbb{P}(E)$ be the projective bundle of E, that is, $\mathbb{P}(E) := \text{Proj} \left(\bigoplus_{m=0}^{\infty} \text{Sym}^m(E) \right)$. If D is a pseudo-effective K-Cartier divisor on $\mathbb{P}(E)$, then D is K-effective.

In addition to the above result, we can also give an affirmative answer for the Q-version of Question 0.2 on abelian varieties.

Proposition 0.5. We assume that k is an algebraic closure of a finite field. Let A be an abelian variety over k. If D is a pseudo-effective Q-Cartier divisor on A, then D is Q-effective.

Finally, I would like to thank Prof. Biswas, Prof. Keel, Prof. Langer, Prof. Tanaka and Prof. Totaro for their helpful comments. Especially, I would like to express my hearty thanks to Prof. Yuan for his nice example. I also would like to thank the referee for the suggestions.

1. Preliminaries

Let k be an algebraic closed field. Let C be a smooth projective curve over k and let E be a locally free sheaf of rank r on C. The projective bundle $\mathbb{P}(E)$ of E is given by

\[
\mathbb{P}(E) := \text{Proj} \left(\bigoplus_{m=0}^{\infty} \text{Sym}^m(E) \right).
\]

The canonical morphism $\mathbb{P}(E) \to C$ is denoted by f_E. A tautological divisor Θ_E on $\mathbb{P}(E)$ is a Cartier divisor on $\mathbb{P}(E)$ such that $\mathcal{O}_{\mathbb{P}(E)}(\Theta_E)$ is isomorphic to the tautological invertible sheaf $\mathcal{O}_{\mathbb{P}(E)}(1)$ on $\mathbb{P}(E)$. We say that E is **strongly semistable** if, for any surjective morphism $\pi : C' \to C$ of smooth projective curves, $\pi^*(E)$ is semistable. By definition, if E is strongly semistable and $\pi : C' \to C$ is a surjective morphism of smooth projective curves over k, then $\pi^*(E)$ is also strongly semistable. A filtration

\[
0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \cdots \subsetneq E_{s-1} \subsetneq E_s = E
\]

of E is called the **strong Harder-Narasimhan filtration** if

\[
\mu(E_1/E_0) > \mu(E_2/E_1) > \cdots > \mu(E_{s-1}/E_s) > \mu(E_s/E_{s-1})
\]

and E_i/E_{i-1} is a strongly semistable locally free sheaf on C for each $i = 1, \ldots, s$.

Recall the following well-known facts (F1)–(F5) on strong semistability.

(F1) A locally free sheaf E on C is strongly semistable if and only if $\Theta_E - f_E^*(\xi_E/r)$ is nef, where ξ_E is a Cartier divisor on C with $\mathcal{O}_C(\xi_E) \simeq \text{det}(E)$ (for example, see [16, Proposition 7.1, (3)]).

(F2) Let $\pi : C' \to C$ be a surjective morphism of smooth projective curves over k such that the function field of C' is a separable extension field over the function field of C. If E is semistable, then $\pi^*(E)$ is also semistable (for example, see [16, Proposition 7.1, (1)])]. In particular, if $\text{char}(k) = 0$, then E is strongly semistable if and only if E is semistable. Moreover, in the case where $\text{char}(k) > 0$, E is strongly semistable if and only if $(E^m)^*(E)$
is semistable for all \(m \geq 0 \), where \(F : C \to C \) is the absolute Frobenius map and

\[
F^m = \frac{m}{F \circ \cdots \circ F}.
\]

(F3) If \(E \) and \(G \) are strongly semistable locally free sheaves on \(C \), then \(\text{Sym}^m(E) \) and \(E \otimes G \) are also strongly semistable for all \(m \geq 1 \) (for example, see \([16, \text{Theorem 7.2 and Corollary 7.3}]\)).

(F4) There is a surjective morphism \(\pi : C' \to C \) of smooth projective curves over \(k \) such that \(\pi^*(E) \) has the strong Harder-Narasimham filtration (cf. \([11, \text{Theorem 7.2}]\)).

(F5) We assume that \(k \) is an algebraic closure of a finite field. If \(E \) is a strongly semistable locally free sheaf on \(C \) with \(\det(E) \cong \mathcal{O}_C \), then there is a surjective morphism \(\pi : C' \to C \) of smooth projective curves over \(k \) such that \(\pi^*(E) \cong \mathcal{O}_{C'}^{\oplus \text{rk} E} \) (cf. \([1, \text{p. 557}], [23, \text{Theorem 3.2}] \) and \([3]\)).

The purpose of this section is to prove the following characterizations of pseudo-effective \(\mathbb{R} \)-Cartier divisors and nef \(\mathbb{R} \)-Cartier divisors on \(\mathbb{P}(E) \). This is essentially due to Nakayama \([22, \text{Lemma 3.7}]\) in which he works over the complex number field.

Proposition 1.1. We assume that \(E \) has the strong Harder-Narasimham filtration:

\[
0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \cdots \subsetneq E_{s-1} \subsetneq E_s = E.
\]

Then, for an \(\mathbb{R} \)-divisor \(A \) on \(C \), we have the following:

1. \(\Theta_E - f^*(A) \) is pseudo-effective if and only if \(\deg(A) \leq \mu(E_1) \).
2. \(\Theta_E - f^*(A) \) is nef if and only if \(\deg(A) \leq \mu(E/E_{s-1}) \).

Let us begin with the following lemma.

Lemma 1.2. We assume that \(E \) has a filtration

\[
0 = E_0 \subsetneq E_1 \subsetneq \cdots \subsetneq E_{s-1} \subsetneq E_s = E
\]

such that \(E_i/E_{i-1} \) is a strongly semistable locally free sheaf on \(C \) and \(\deg(E_i/E_{i-1}) < 0 \) for all \(i = 1, \ldots, s \). Then, \(H^0(C, \text{Sym}^m(E) \otimes G) = 0 \) for \(m \geq 1 \) and a strongly semistable locally free sheaf \(G \) on \(C \) with \(\deg(G) \leq 0 \).

Proof. We prove it by induction on \(s \). In the case where \(s = 1 \), \(E \) is strongly semistable and \(\deg(E) < 0 \), so that \(\text{Sym}^m(E) \otimes G \) is also strongly semistable by (F3) and

\[
\deg(\text{Sym}^m(E) \otimes G) < 0.
\]

Therefore, \(H^0(C, \text{Sym}^m(E) \otimes G) = 0 \).

Here we assume that \(s > 1 \). Let us consider an exact sequence

\[
0 \to E_{s-1} \to E \to E/E_{s-1} \to 0.
\]

By \([9, \text{Chapter II, Exercise 5.16, (c)}]\), there is a filtration

\[
\text{Sym}^m(E) = F^0 \supsetneq F^1 \supsetneq \cdots \supsetneq F^m \supsetneq F^{m+1} = 0
\]
such that
\[F^j / F^{j+1} \simeq \text{Sym}^j(E_{s-1}) \otimes \text{Sym}^{m-j}(E/E_{s-1}) \]
for each \(j = 0, \ldots, m \). By using the hypothesis of induction,
\[H^0(C, (F^j / F^{j+1}) \otimes G) = 0 \]
for \(j = 1, \ldots, m \) because \(\text{Sym}^{m-j}(E/E_{s-1}) \otimes G \) is strongly semistable by (F3) and
\[\deg(\text{Sym}^{m-j}(E/E_{s-1}) \otimes G) \leq 0. \]
Moreover, since \(\text{Sym}^m(E/E_{s-1}) \otimes G \) is strongly semistable by (F3) and
\[\deg(\text{Sym}^m(E/E_{s-1}) \otimes G) < 0, \]
we have
\[H^0(C, (F^0 / F^1) \otimes G) = H^0(C, \text{Sym}^m(E/E_{s-1}) \otimes G) = 0. \]
Therefore, by using an exact sequence
\[0 \to F^{j+1} \otimes G \to F^j \otimes G \to (F^j / F^{j+1}) \otimes G \to 0, \]
we have
\[H^0(C, F^{j+1} \otimes G) \to H^0(C, F^j \otimes G) \]
for \(j = 0, \ldots, m \), which implies that \(H^0(C, \text{Sym}^m(E) \otimes G) = 0 \), as required. \(\square \)

Proof of Proposition 1.1. It is sufficient to show the following:

(a) If \(A \) is a \(\mathbb{Q} \)-Cartier divisor and \(\deg(A) < \mu(E_1) \), then \(\Theta_E - f^*(A) \) is \(\mathbb{Q} \)-effective.

(b) If \(A \) is a \(\mathbb{Q} \)-Cartier divisor and \(\deg(A) > \mu(E_1) \), then \(\Theta_E - f^*(A) \) is not pseudo-effective.

(c) If \(\Theta_E - f^*(A) \) is nef, then \(\deg(A) \leq \mu(E/E_{s-1}) \).

(d) If \(\Theta_E - f^*(A) \) is not nef, then \(\deg(A) > \mu(E/E_{s-1}) \).

(a) Let \(\theta \) be a divisor on \(C \) with \(\deg(\theta) = 1 \). As \(E_1 \) is strongly semistable, by (F1), \(\Theta_{E_1} - \mu(E_1) f^{*}_{E_1}(\theta) \) is nef, so that we can see that \(\Theta_{E_1} - f^{*}_{E_1}(A) \) is nef and big because
\[\Theta_{E_1} - \deg(A) f^{*}_{E_1}(\theta) = \Theta_{E_1} - \mu(E_1) f^{*}_{E_1}(\theta) + (\mu(E_1) - \deg(A)) f^{*}_{E_1}(\theta). \]
Therefore, there is a positive integer \(m_1 \) such that \(m_1 A \) is a divisor on \(C \) and
\[H^0 \left(\mathbb{P}(E_1), \mathcal{O}_{\mathbb{P}(E_1)}(m_1 \Theta_{E_1} - f^{*}_{E_1}(m_1 A)) \right) \neq 0. \]
In addition,
\[H^0 \left(\mathbb{P}(E_1), \mathcal{O}_{\mathbb{P}(E_1)}(m_1 \Theta_{E_1} - f^{*}_{E_1}(m_1 A)) \right) = H^0(C, \text{Sym}^{m_1}(E_1) \otimes \mathcal{O}_C(-m_1 A)) \]
\[\subseteq H^0(C, \text{Sym}^{m_1}(E) \otimes \mathcal{O}_C(-m_1 A)) \]
\[= H^0 \left(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(m_1 \Theta_E - f^{*}_{E}(m_1 A)) \right), \]
so that \(\Theta_E - f^*_{E}(A) \) is \(\mathbb{Q} \)-effective.
(b) Let B be an ample \mathbb{Q}-divisor on C with $\deg(B) < \deg(A) - \mu(E_1)$. Let $\pi : C' \to C$ be a surjective morphism of smooth projective curves over k such that $\pi^*(-A + B)$ is a Cartier divisor on C'. Note that

$$\mu((\pi^*(E_i/E_{i-1}) \otimes \mathcal{O}_{C'}(\pi^*(-A + B)))) < 0$$

for $i = 1, \ldots, s$, and hence, by Lemma 1.2,

$$H^0(C', \text{Sym}^m(\pi^*(E)) \otimes \mathcal{O}_{C'}(m\pi^*(-A + B)))) = 0$$

for all $m \geq 1$. In particular, if b is a positive integer such that $b(-A + B)$ is a Cartier divisor, then

$$H^0\left(C, \text{Sym}^{mb}(E) \otimes \mathcal{O}_C(mb(-A + B))\right) = 0$$

for $m \geq 1$. Here we assume that $\Theta_E - f^*_E(A)$ is pseudo-effective. Let a be a positive integer such that $\Theta_E - f^*_E(A) + af^*_E(B)$ is ample. Then

$$(a - 1)(\Theta_E - f^*_E(A)) + \Theta_E - f^*_E(A) + af^*_E(B) = a(\Theta_E + f^*_E(-A + B))$$

is big, so that we can find a positive integer m_1 such that

$$H^0\left(C, \text{Sym}^{m_1ab}(E) \otimes \mathcal{O}_C(m_1ab(-A + B))\right) = 0$$

which is a contradiction.

(c) Note that

$$\mathbb{P}(E/E_{s-1}) \subseteq \mathbb{P}(E), \Theta_{E/E_{s-1}} \sim \Theta_E|_{\mathbb{P}(E/E_{s-1})} \quad \text{and} \quad f_{E/E_{s-1}} = f_E|_{\mathbb{P}(E/E_{s-1})},$$

so that $\Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(A)$ is nef on $\mathbb{P}(E/E_{s-1})$. Let $\xi_{E/E_{s-1}}$ be a Cartier divisor on C with $\mathcal{O}_C(\xi_{E/E_{s-1}}) \simeq \det(E/E_{s-1})$. If we set $e = \text{rk}E/E_{s-1}$ and $G = \xi_{E/E_{s-1}}/e - A$, then

$$\Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(A) = \Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(\xi_{E/E_{s-1}}/e) + f^*_E/E_{s-1}(G).$$

Since $\Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(\xi_{E/E_{s-1}}/e)$ is nef by (F1) and

$$\left(\Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(\xi_{E/E_{s-1}}/e)\right)^e = 0,$$

we have

$$0 \leq \left(\Theta_{E/E_{s-1}} - f^*_E/E_{s-1}(A)\right)^e = e \deg(G).$$

Therefore, $\deg(G) \geq 0$, and hence $\deg(A) \leq \mu(E/E_{s-1})$.

(d) We can find an irreducible curve C_0 of X such that $(\Theta_E - f^*_E(A) \cdot C_0) < 0$. Clearly C_0 is flat over C. Let C_1 be the normalization of C_0 and $h : C_1 \to C$ the induced morphism. Let us consider the following commutative diagram:

$$\begin{array}{ccc}
\mathbb{P}(E) & \xrightarrow{\mathbb{P}(h)} & \mathbb{P}(h^*(E)) \\
\downarrow f_E & & \downarrow f_{h^*(E)} \\
C & \leftarrow & C_1
\end{array}$$
Note that \(\mathbb{P}(h^*) (\Theta_E - f_E^*(A)) \sim_\mathbb{R} \Theta_{h^*(E)} - f_{h^*(E)}^*(h^*(A)) \). Further, there is a section \(S \) of \(f_{h^*(E)} \) such that \(\mathbb{P}(h^*) (S) = C_0 \). Let \(Q \) be the quotient line bundle of \(h^*(E) \) corresponding to the section \(S \). As
\[
0 = h^*(E_0) \subset h^*(E_1) \subset h^*(E_2) \subset \cdots \subset h^*(E_{s-1}) \subset h^*(E_s) = h^*(E)
\]
is the Harder-Narasimham filtration of \(h^*(E) \), we can easily see
\[
\deg(Q) \geq \mu(h^*(E/E_{s-1})) = \deg(h) \mu(E/E_{s-1}).
\]
On the other hand,
\[
\deg(Q) - \deg(h) \deg(A) = (\Theta_{h^*(E)} - f_{h^*(E)}^*(h^*(A)) \cdot S) = (\Theta_E - f_E^*(A) \cdot C_0) < 0,
\]
and hence \(\mu(E/E_{s-1}) < \deg(A) \). \(\square \)

Finally let us consider the following three results.

Lemma 1.3. Let \(K \) be either \(Q \) or \(R \). Let \(\mu : X' \to X \) be a generically finite morphism of normal projective varieties over \(k \). For a \(K \)-Cartier divisor \(D \) on \(X \), \(D \) is \(K \)-effective if and only if \(\mu^*(D) \) is \(K \)-effective.

Proof. Clearly, if \(D \) is \(K \)-effective, then \(\mu^*(D) \) is \(K \)-effective. Let \(K \) and \(K' \) be the function fields of \(X \) and \(X' \), respectively. Here we assume that \(\mu^*(D) \) is \(K' \)-effective, that is, there are \(\phi'_1, \ldots, \phi'_r \in K'^* \) and \(a_1, \ldots, a_r \in K \) such that \(\mu^*(D) + a_1(\phi'_1) + \cdots + a_r(\phi'_r) \) is effective, so that
\[
\mu_*(\mu^*(D) + a_1(\phi'_1) + \cdots + a_r(\phi'_r)) = \deg(\mu)D + a_1\mu_*(\phi'_1) + \cdots + a_r\mu_*(\phi'_r)
\]
is effective. Note that \(\mu_*(\phi'_i) = (N_{K'/K}(\phi'_i)) \) (cf. [7, Proposition 1.4]), where \(N_{K'/K} \) is the norm map of \(K' \) over \(K \), and hence
\[
D + (a_1/ \deg(\mu))(N_{K'/K}(\phi'_1)) + \cdots + (a_r/ \deg(\mu))(N_{K'/K}(\phi'_r))
\]
is effective. Therefore, \(D \) is \(K \)-effective. \(\square \)

Lemma 1.4. Let \(K \) be either \(Q \) or \(R \). We assume that \(k \) is an algebraic closure of a finite field. Let \(X \) be a normal projective variety over \(k \) and \(D \) a \(K \)-Cartier divisor on \(X \). If \(D \) is numerically trivial, then \(D \) is \(K \)-linearly equivalent to the zero divisor.

Proof. If \(K = Q \), then the assertion is well-known, so that we assume that \(K = R \). We set \(D = a_1D_1 + \cdots + a_rD_r \), where \(D_1, \ldots, D_r \) are Cartier divisors on \(X \) and \(a_1, \ldots, a_r \in R \). Considering a \(Q \)-basis of \(Qa_1 + \cdots + Qa_r \) in \(R \), we may assume that \(a_1, \ldots, a_r \) are linearly independent over \(Q \). Let \(C \) be an irreducible curve on \(X \). Note that
\[
0 = (D \cdot C) = a_1(D_1 \cdot C) + \cdots + a_r(D_r \cdot C)
\]
and \((D_1 \cdot C), \ldots, (D_r \cdot C) \in \mathbb{Z} \), and hence \((D_1 \cdot C) = \cdots = (D_r \cdot C) = 0 \) because \(a_1, \ldots, a_r \) are linearly independent over \(Q \). Thus \(D_1, \ldots, D_r \) are numerically equivalent to zero, so that \(D_1, \ldots, D_r \) are \(Q \)-linearly equivalent to the zero divisor. Therefore, the assertion follows. \(\square \)

Proposition 1.5. Let \(X \) be a normal projective variety over \(k \) and let \(D \) be a \(Q \)-Cartier divisor on \(X \). If \(D \) is \(R \)-effective, then \(D \) is \(Q \)-effective.
Lemma 2.1. Let D be a Cartier divisor on X, and D is \mathbb{R}-effective. Let $b_1, \ldots, b_l \in \mathbb{R}$ such that $D + b_1\psi_1 + \cdots + b_l\psi_l$ is effective. We set $V = \mathbb{Q}b_1 + \cdots + \mathbb{Q}b_l \subseteq \mathbb{R}$. If $V \subseteq \mathbb{Q}$, then $b_1, \ldots, b_l \in \mathbb{Q}$, so that we may assume that $V \nsubseteq \mathbb{Q}$.

Proof. As D is \mathbb{R}-effective, there are non-zero rational functions ψ_1, \ldots, ψ_l on X and $b_1, \ldots, b_l \in \mathbb{R}$ such that $D + b_1\psi_1 + \cdots + b_l\psi_l$ is effective. We set $V = \mathbb{Q}b_1 + \cdots + \mathbb{Q}b_l \subseteq \mathbb{R}$. If $V \subseteq \mathbb{Q}$, then $b_1, \ldots, b_l \in \mathbb{Q}$, so that we may assume that $V \nsubseteq \mathbb{Q}$.

Claim 1.5.1. There are non-zero rational functions ϕ_1, \ldots, ϕ_r on X, $a_1, \ldots, a_r \in \mathbb{R}$ and a \mathbb{Q}-Cartier divisor D' on X such that $D \sim_{\mathbb{Q}} D'$, $D' + a_1\phi_1 + \cdots + a_r\phi_r$ is effective and $1, a_1, \ldots, a_r$ are linearly independent over \mathbb{Q}.

Proof. We can find a basis a_1, \ldots, a_r of V over \mathbb{Q} with the following properties:

(i) If we set $b_i = \sum_{j=1}^r c_{ij}a_j$, then $c_{ij} \in \mathbb{Z}$ for all i, j.

(ii) If $V \cap \mathbb{Q} \neq \{0\}$, then $a_1 \in \mathbb{Q}^\times$.

We put $\phi_j = \prod_{i=1}^r \psi_i^{c_{ij}}$. Note that $\sum_{i=1}^r b_i(\psi_i) = \sum_{j=1}^r a_j(\phi_j)$. Therefore, in the case where $V \cap \mathbb{Q} = \{0\}$, $1, a_1, \ldots, a_r$ are linearly independent over \mathbb{Q} and $D + \sum_{j=1}^r a_j(\phi_j)$ is effective. Otherwise, $1, a_1, \ldots, a_r$ are linearly independent over \mathbb{Q} and $(D + a_1(\phi_1)) + \sum_{j=2}^r a_j(\phi_j)$ is effective. □

We set $L = D' + a_1(\phi_1) + \cdots + a_r(\phi_r)$. Let Γ be a prime divisor with $\Gamma \nsubseteq \text{Supp}(L)$. Then

$$0 = \text{mult}_\Gamma(L) = \text{mult}_\Gamma(D') + a_1 \text{ord}_\Gamma(\phi_1) + \cdots + a_r \text{ord}_\Gamma(\phi_r),$$

so that $\text{mult}_\Gamma(D') = -a_1 \text{ord}_\Gamma(\phi_1) = \cdots = -a_r \text{ord}_\Gamma(\phi_r) = 0$ because $1, a_1, \ldots, a_r$ are linearly independent over \mathbb{Q}. Thus,

$$\text{Supp}(D'), \text{Supp}((\phi_1)), \ldots, \text{Supp}((\phi_r)) \subseteq \text{Supp}(L).$$

Therefore, we can find $a'_1, \ldots, a'_r \in \mathbb{Q}$ such that $D' + a'_1(\phi_1) + \cdots + a'_r(\phi_r)$ is effective, and hence D is \mathbb{Q}-effective. □

2. Proof of Theorem 0.4

Let k be an algebraic closure of a finite field. Let C be a smooth projective curve over k. Let us begin with the following lemma.

Lemma 2.1. Let K be either \mathbb{Q} or \mathbb{R}. Let A be a K-Cartier divisor on C. If $\text{deg}(A) \geq 0$, then A is K-effective.

Proof. If $K = \mathbb{Q}$, then the assertion is obvious. We assume that $K = \mathbb{R}$. If $\text{deg}(A) = 0$, the assertion follows from Lemma 1.4. Next we consider the case where $\text{deg}(A) > 0$. We can find a \mathbb{Q}-Cartier divisor A' such that $A' \leq A$ and $\text{deg}(A') > 0$. Thus the previous observation implies the assertion. □

As a consequence of (F3), (F4) and (F5), we have the following splitting theorem, which was obtained by Biswas and Parameswaran [2, Proposition 2.1].

Theorem 2.2. For a locally free sheaf E on C, there are a surjective morphism $\pi : C' \to C$ of smooth projective curves over k and invertible sheaves L_1, \ldots, L_r on C' such that $\pi^*(E) \cong L_1 \oplus \cdots \oplus L_r$.
Proof. For reader’s convenience, we give a sketch of the proof. First we assume that E is strongly semistable. Let ξ_E be a Cartier divisor on C with $O_C(\xi_E) \simeq \det(E)$. Let $h : B \to C$ be a surjective morphism of smooth projective curves over k such that $h^*(\xi_E)$ is divisible by $\mathrm{rk}(E)$. We set $E' = h^*(E) \otimes O_B(-h^*(\xi_E)/\mathrm{rk}(E))$. As $\det(E') \simeq O_B$, the assertion follows from (F5).

By the above observation, it is sufficient to find a surjective morphism $\pi : C' \to C$ of smooth projective curves over k and strongly semistable locally free sheaves Q_1, \ldots, Q_n on C' such that

$$\pi^*(E) = Q_1 \oplus \cdots \oplus Q_n.$$

Moreover, by (F4), we may assume that E has the strong Harder-Narasimham filtration

$$0 = E_0 \subsetneq E_1 \subsetneq E_2 \subsetneq \cdots \subsetneq E_{n-1} \subsetneq E_n = E.$$

Clearly we may further assume that $n \geq 2$. For a non-negative integer m, we set

$$C_m := X \times_{\mathrm{Spec}(k)} \mathrm{Spec}(k),$$

where the morphism $\mathrm{Spec}(k) \to \mathrm{Spec}(k)$ is given by $x \mapsto x^{1/p^m}$. Let $F_k^m : C_m \to C$ be the relative m-th Frobenius morphism over k. Put

$$G_{i,j}^m := (F_k^m)^*((E_j/E_i) \otimes (E_i/E_{i-1})^\vee) \otimes \omega_{C_m}$$

for $i = 1, \ldots, n-1$ and $j = i, \ldots, n$. We can find a positive integer m such that

$$\mu(G_{i,j+1}^m) = p^m (\mu(E_{i+1}/E_i) - \mu(E_i/E_{i-1})) + \deg(\omega_C) < 0$$

for all $i = 1, \ldots, n-1$. By using (F3), we can see that

$$0 = G_{i,i}^m \subsetneq G_{i,i+1}^m \subsetneq G_{i,i+2}^m \subsetneq \cdots \subsetneq G_{i,n-1}^m \subsetneq G_{i,n}^m$$

is the strong Harder-Narasimham filtration of $G_{i,n}^m$, so that $H^0\left(C_m, G_{i,n}^m\right) = \{0\}$, which yields

$$\mathrm{Ext}^1((F_k^m)^*(E/E_i), (F_k^m)^*(E_i/E_{i-1})) = 0$$

because of Serre’s duality theorem. Therefore, an exact sequence

$$0 \to (F_k^m)^*(E_i/E_{i-1}) \to (F_k^m)^*(E/E_{i-1}) \to (F_k^m)^*(E/E_i) \to 0$$

splits, that is, $(F_k^m)^*(E_i/E_{i-1}) \simeq (F_k^m)^*(E_i/E_{i-1}) \oplus (F_k^m)^*(E/E_i)$ for $i = 1, \ldots, n - 1$, and hence

$$(F_k^m)^*(E) \simeq \bigoplus_{i=1}^n (F_k^m)^*(E_i/E_{i-1}),$$

as required. \hfill \square

Proof of Theorem 0.4. By virtue of Theorem 2.2 and Lemma 1.3, we may assume that

$$E \simeq L_1 \oplus \cdots \oplus L_r$$

for some invertible sheaves L_1, \ldots, L_r on C. We set

$$d = \max\{\deg(L_1), \ldots, \deg(L_r)\} \quad \text{and} \quad I = \{i \mid \deg(L_i) = d\}.$$
There is a \mathcal{K}-Cartier divisor A on C such that $D \sim_{\mathcal{K}} \lambda \Theta_E - f^*_E(A)$ for some $\lambda \in \mathcal{K}$. Let M be an ample divisor on C such that $T := \Theta_E + f^*_E(M)$ is ample. As D is pseudo-effective, we have

$$0 \leq (D \cdot T^{r-2} \cdot f^*_E(M)) = ((\lambda T - f^*_E(A + \lambda M)) \cdot T^{r-2} \cdot f^*_E(M)) = \lambda \deg(M),$$

and hence $\lambda \geq 0$. If $\lambda = 0$, then $0 \leq (D \cdot T^{r-1}) = \deg(-A)$. Thus, by Lemma 2.1, $-A$ is \mathcal{K}-effective, so that the assertion follows.

We assume that $\lambda > 0$. Replacing D by D/λ, we may assume that $\lambda = 1$. Let ξ be a Cartier divisor on C such that $\mathcal{O}_C(\xi) \simeq L_{i_0}$ for some $i_0 \in I$. Note that the first part E_1 of the strong Harder-Narasimham filtration of E is $\bigoplus_{i \in I} L_i$, so that, by Proposition 1.1, $\deg(A) \leq \deg(\xi)$. If we set $B = \xi - A$, then, by Lemma 2.1, B is \mathcal{K}-effective because $\deg(B) \geq 0$. Moreover, as

$$\Theta_E - f^*_E(A) = \Theta_E - f^*_E(\xi) + f^*_E(B),$$

it is sufficient to consider the case where $D = \Theta_E - f^*_E(\xi)$. In this case, the assertion is obvious because

$$H^0(\mathbb{P}(E), \mathcal{O}_{\mathbb{P}(E)}(D)) = H^0(C, E \otimes \mathcal{O}_C(-\xi)) = H^0\left(C, \bigoplus_{i=1}^r L_i \otimes \mathcal{O}_C(-\xi)\right) \neq \{0\}.$$

As a consequence of Theorem 0.4, we can recover a result due to [3].

Corollary 2.3. Let k, C and E be same as in Theorem 0.4. We assume that $r = 2$. Let D be a Cartier divisor on $\mathbb{P}(E)$ such that $(D \cdot Y) > 0$ for all irreducible curves Y on $\mathbb{P}(E)$. Then D is ample.

Proof. As D is nef, D is pseudo-effective, so that, by Theorem 0.4, there is an effective \mathbb{Q}-Cartier divisor E on X such that $D \sim_{\mathbb{Q}} E$. As $E \neq 0$, we have $(D \cdot D) = (D \cdot E) > 0$. Therefore, D is ample by Nakai-Moishezon criterion.

Remark 2.4. The argument in the proof of Corollary 2.3 actually shows that the \mathbb{Q}-version of Question 0.2 on algebraic surfaces implies Question 0.3.

3. Numerically effectivity on abelian varieties

The purpose of this section is to give an affirmative answer for the \mathbb{Q}-version of Question 0.2 on abelian varieties. Let A be an abelian variety over an algebraically closed field k. A key observation is the following proposition.

Proposition 3.1. If a \mathbb{Q}-Cartier divisor D on A is nef, then D is numerically equivalent to a \mathbb{Q}-effective \mathbb{Q}-Cartier divisor.

Proof. We prove it by induction on $\dim A$. If $\dim A \leq 1$, then the assertion is obvious. Clearly we may assume that D is a Cartier divisor, so that we set $L = \mathcal{O}_A(D)$. As $L \otimes [-1]^*L$ is numerically equivalent to $L^{\otimes 2}$ (cf. [21, p.75, (iv)]), we may assume that L is symmetric, that is, $L \simeq [-1]^*L$. Let $K(L)$ be the closed subgroup of A given by $K(L) = \{x \in A \mid T^*_x(L) \simeq L\}$ (cf. [21, p.60, Definition]). If $K(L)$ is finite, then L is nef and big by virtue of [21, p.150,
The Riemann-Roch theorem], so that D is Q-effective. Otherwise, let B be the connected component of $K(L)$ containing 0.

Claim 3.1.1. \[1\] \(T^*_x(L)|_B \simeq L|_B \) for all \(x \in A \).

\(2 \) \(L^{\otimes 2}|_{B+x} \simeq \mathcal{O}_{B+x} \) for \(x \in A \).

Proof. (1) Let N be an invertible sheaf on $A \times A$ given by

$$N = m^*(L) \otimes p_1^*(L^{-1}) \otimes p_2^*(L^{-1}) ,$$

where $p_i : A \times A \to A$ is the projection to the i-th factor ($i = 1, 2$) and m is the addition morphism. Note that $N|_{B \times A} \simeq \mathcal{O}_{B \times A}$ (cf. [21, p.123, §13]). Fixing $x \in A$, let us consider a morphism $\alpha : B \to B \times A$ given by $\alpha(y) = (y, x)$. Then

\[
\mathcal{O}_B \simeq \alpha^* \left(m^*(L) \otimes p_1^*(L^{-1}) \otimes p_2^*(L^{-1}) \right) \mid_{B \times A} \simeq T^*_x(L)|_B \otimes L^{-1}|_B ,
\]

as required.

(2) First we consider the case where $x = 0$. As $N|_{B \times A} \simeq \mathcal{O}_{B \times A}$, we have $N|_{B \times B} \simeq \mathcal{O}_{B \times B}$. Using a morphism $\beta : B \to B \times B$ given by $\beta(y) = (y, -y)$, we have

\[
\mathcal{O}_B \simeq \beta^* (N|_{B \times B}) = L^{-1}\mid_B \otimes [-1]^*(L^{-1})\mid_B \simeq L^{\otimes -2}|_B ,
\]

as required.

In general, for $x \in A$, by (1) and the previous observation together with the following commutative diagram

\[
\begin{array}{ccc}
B + x & \longrightarrow & A \\
\downarrow T_{-x} & & \downarrow T_{-x} \\
B & \longrightarrow & A,
\end{array}
\]

we can see

\[
\mathcal{O}_{B+x} = T^*_x(\mathcal{O}_B) \simeq T^*_x \left(L^{\otimes 2}\mid_B \right) \simeq T^*_x \left(T^*_x(L)^{\otimes 2}\mid_B \right) = T^*_x \left(T^*_x(L^{\otimes 2})\mid_B \right) = T^*_x \left(T^*_x(L^{\otimes 2})\right)\mid_{B+x} = L^{\otimes 2}|_{B+x} .
\]

\[\square\]

Let $\pi : A \to A/B$ be the canonical homomorphism. By (2) in the above claim,

\[
\dim_{k(y)} H^0 \left(\pi^{-1}(y), L^{\otimes 2} \right) = 1
\]

for all $y \in A/B$, so that, by [21, p.51, Corollary 2], $\pi_* (L^{\otimes 2})$ is an invertible sheaf on A/B and $\pi_* (L^{\otimes 2}) \otimes k(y) \twoheadrightarrow H^0 (\pi^{-1}(y), L^{\otimes 2})$. Therefore, the natural homomorphism $\pi^* (\pi_*(L^{\otimes 2})) \to L^{\otimes 2}$ is an isomorphism, that is, there is a Q-Cartier divisor D' on A/B such that $\pi^* (D') \sim_Q D$. Note that D' is also nef, so that, by the hypothesis of induction, D' is numerically equivalent to a Q-effective Q-Cartier divisor, and hence the assertion follows. \[\square\]

Proof of Proposition 0.5. Proposition 0.5 is a consequence of Lemma 1.4 and Proposition 3.1 because a pseudo-effective Q-Cartier divisor on an abelian variety is nef. \[\square\]
Example 3.2. Here we show that the \(\mathbb{R} \)-version of Question 0.2 does not hold in general. Let \(k \) be an algebraically closed field (\(k \) is not necessarily an algebraic closure of a finite field). Let \(C \) be an elliptic curve over \(k \) and \(A := C \times C \). Let \(\text{NS}(A) \) be the Néron-Severi group of \(A \). Note that \(\rho := \text{rk}\, \text{NS}(A) \geq 3 \). By using the Hodge index theorem, we can find a basis \(e_1, \ldots, e_\rho \) of \(\text{NS}(A)_\mathbb{Q} := \text{NS}(A) \otimes_\mathbb{Z} \mathbb{Q} \) with the following properties:

1. \(e_1 \) is the class of the divisor \(\{0\} \times C + C \times \{0\} \). In particular, \((e_1 \cdot e_1) = 2 \).
2. \((e_i \cdot e_i) < 0 \) for all \(i = 2, \ldots, \rho \).
3. \((e_i \cdot e_j) = 0 \) for all \(1 \leq i \neq j \leq \rho \).

We set \(\lambda_i := -(e_i \cdot e_i) \) for \(i = 2, \ldots, \rho \). Let \(\overline{\text{Amp}}(A) \) be the closed cone in \(\text{NS}(A)_\mathbb{R} := \text{NS}(A) \otimes_\mathbb{Z} \mathbb{R} \) generated by ample \(\mathbb{Q} \)-Cartier divisors on \(A \). It is well known that

\[
\text{Amp}(A) = \left\{ \xi \in \text{NS}(A)_\mathbb{R} \mid (\xi^2) \geq 0, \ (\xi \cdot e_1) \geq 0 \right\}
\]

\[
= \left\{ x_1 e_1 + x_2 e_2 + \cdots + x_\rho e_\rho \mid \lambda_2 x_2^2 + \cdots + \lambda_\rho x_\rho^2 \leq 2x_1^2, \ x_1 \geq 0 \right\}.
\]

We choose \((a_2, \ldots, a_\rho) \in \mathbb{R}^{\rho-1} \) such that

\[
(a_2, \ldots, a_\rho) \notin \mathbb{Q}^{\rho-1} \quad \text{and} \quad \lambda_2 a_2^2 + \cdots + \lambda_\rho a_\rho^2 = 2.
\]

Let \(E_i \) be a \(\mathbb{Q} \)-Cartier divisor on \(A \) such that the class of \(E_i \) in \(\text{NS}(A)_\mathbb{Q} \) is equal to \(e_i \) for \(i = 1, \ldots, \rho \). If we set \(D := E_1 + a_2 E_2 + \cdots + a_\rho E_\rho \), then we have the following claim, which is sufficient for our purpose.

Claim 3.2.1. \(D \) is nef and \(D \) is not numerically equivalent to an effective \(\mathbb{R} \)-Cartier divisor.

Proof. Clearly \(D \) is nef. If we set \(e_i' = e_i/\sqrt{2} \) and \(e_i' = e_i/\sqrt{\lambda_i} \) for \(i = 2, \ldots, \rho \), then

\[
\overline{\text{Amp}}(A) = \left\{ y_1 e_1' + y_2 e_2' + \cdots + y_\rho e_\rho' \mid y_2^2 + \cdots + y_\rho^2 \leq y_1^2, \ y_1 \geq 0 \right\}.
\]

Therefore, as \([D] \in \partial(\overline{\text{Amp}}(A)_\mathbb{R})\), we can choose

\[
H \in \text{Hom}_\mathbb{R}(\text{NS}(A)_\mathbb{R}, \mathbb{R})
\]

such that

\[
H \geq 0 \text{ on } \overline{\text{Amp}}(A) \quad \text{and} \quad \{H = 0\} \cap \overline{\text{Amp}}(A) = \mathbb{R}_{\geq 0}[D],
\]

where \([D]\) is the class of \(D \) in \(\text{NS}(A)_\mathbb{R} \). We assume that \(D \) is numerically equivalent to an effective \(\mathbb{R} \)-Cartier divisor \(c_1 \Gamma_1 + \cdots + c_r \Gamma_r \), where \(c_1, \ldots, c_r \in \mathbb{R}_{>0} \) and \(\Gamma_1, \ldots, \Gamma_r \) are prime divisors on \(A \). As \([D]\) \neq 0, we may assume that \(c_1, \ldots, c_r \in \mathbb{R}_{>0} \). Note that \([\Gamma_1], \ldots, [\Gamma_r] \in \overline{\text{Amp}}(A)\) and

\[
0 = H([D]) = c_1 H([\Gamma_1]) + \cdots + c_r H([\Gamma_r]),
\]

so that \(H([\Gamma_1]) = \cdots = H([\Gamma_r]) = 0 \), and hence \([\Gamma_1], \ldots, [\Gamma_r] \in \mathbb{R}_{\geq 0}[D]\). In particular, there is \(t \in \mathbb{R}_{\geq 0} \) with \([\Gamma_1] = t[D] \). Here we can set

\[
[\Gamma_1] = b_1 e_1 + \cdots + b_\rho e_\rho \quad (b_1, \ldots, b_\rho \in \mathbb{Q}).
\]
Thus $b_1 = t$, $b_2 = ta_2, \ldots, b_\rho = ta_\rho$. As $[\Gamma_1] \neq 0$, $t \in \mathbb{Q}^\times$, and hence $(a_2, \ldots, a_\rho) = t^{-1}(b_2, \ldots, b_\rho) \in \mathbb{Q}^{\rho-1}$. This is a contradiction.

Remark 3.3. Let k be an algebraic closure of a finite field and let X be a normal projective variety over k. Let $\text{NS}(X)$ be the Néron-Severi group of X and $\text{NS}(X)_R := \text{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}$. Let $\overline{\text{Eff}}(X)$ be the closed cone in $\text{NS}(X)_R$ generated by pseudo-effective \mathbb{R}-Cartier divisors on X. We assume that $\overline{\text{Eff}}(X)$ is a rational polyhedral cone, that is, there are pseudo-effective \mathbb{Q}-Cartier divisors D_1, \ldots, D_n on X such that $\overline{\text{Eff}}(X)$ is generated by the classes of D_1, \ldots, D_n. Then the \mathbb{Q}-version of Question 0.2 implies the \mathbb{R}-version of Question 0.2.

Example 3.4. This is an example due to Yuan [25]. Let us fix an algebraically closed field k and an integer $g \geq 2$. Let C be a smooth projective curve over k and $f : X \to C$ an abelian scheme over C of relative dimension g. Let L be an f-ample invertible sheaf on X such that $[-1]^*(L) \simeq L$ and L is trivial along the zero section of $f : X \to C$.

Claim 3.4.1.
2. L is nef.

Proof. (1) As $[2]^*(L)|_{f^{-1}(x)} \simeq L^\otimes 4|_{f^{-1}(x)}$ for all $x \in C$, there is an invertible sheaf M on C such that $[2]^*(L) \simeq L^\otimes 4 \otimes f^*(M)$. Let Z_0 be the zero section of $f : X \to C$. Then
\[
\mathcal{O}_{Z_0} \simeq [2]^*(L|_{Z_0}) = [2]^*(L)|_{Z_0} \simeq L^\otimes 4 \otimes f^*(M)|_{Z_0} \simeq M,
\]
so that we have the assertion.

(2) Let A be an ample invertible sheaf on C such that $L \otimes f^*(A)$ is ample. Let Δ be a horizontal curve on X. As $f \circ [2^n] = f$ and $[2^n]^*(L) \simeq L^\otimes 4^n$ by using (1),
\[
0 \leq (L \otimes f^*(A) \cdot [2^n]^*(\Delta)) = ([2^n]^*(L \otimes f^*(A)) \cdot \Delta) = (L^\otimes 4^n \otimes f^*(A) \cdot \Delta),
\]
so that $(L \cdot \Delta) \geq -4^{-n}(f^*(A) \cdot \Delta)$ for all $n > 0$. Thus $(L \cdot \Delta) \geq 0$.

Claim 3.4.2. If the characteristic of k is zero and f is non-isotrivial, then L does not have the Dirichlet property (i.e. L is not \mathbb{Q}-effective).

Proof. The following proof is due to Yuan [25]. An alternative proof can be found in [6, Theorem 4.3]. We need to see that $H^0(X, L^\otimes n) = 0$ for all $n > 0$. We set $d_n = \text{rk} f_*(L^\otimes n)$. By changing the base C if necessarily, we may assume that all $(d_n)^2$-torsion points on the generic fiber X_η of $f : X \to C$ are defined over the function field of C. By using the algebraic theta theory due to Mumford (especially [20, the last line in page 81]), there is an invertible sheaf M on C such that $f_*(L^\otimes n) = M^\otimes d_n$. On the other hand, by [13],
\[
\deg(\det(f_*(L^\otimes n)) \otimes 2 \otimes f_*(\omega_{X/C})^\otimes d_n) = 0,
\]
that is, $2 \deg(M) + \deg(f_*(\omega_{X/C})) = 0$. As f is non-isotrivial, we can see that $\deg(f_*(\omega_{X/C})) > 0$, so that $\deg(M) < 0$, and hence the assertion follows.

If the characteristic of k is positive, we do not know the \mathbb{Q}-effectivity of L in general. In [15], there is an example with the following properties:
(1) \(g = 2 \) and \(C = \mathbb{P}^1_k \).

(2) There are an abelian surface \(A \) over \(k \) and an isogeny \(h : A \times \mathbb{P}^1_k \to X \) over \(\mathbb{P}^1_k \).

Claim 3.4.3. In the above example, \(L \) has the Dirichlet property.

Proof. Replacing \(L \) by \(L^\otimes n \), we may assume that \(d := \text{rk} \ f_*(L) > 0 \). Let

\[
p_1 : A \times \mathbb{P}^1_k \to A \quad \text{and} \quad p_2 : A \times \mathbb{P}^1_k \to \mathbb{P}^1_k
\]

be the projections to \(A \) and \(\mathbb{P}^1_k \), respectively. Note that \(h^*(L) \) is symmetric and \(h^*(L) \) is trivial along the zero section of \(p_2 \). Since \(\omega_{A \times \mathbb{P}^1_k/\mathbb{P}^1_k} \cong p_1^*(\omega_A) \), we have

\[
(p_2)_*(\omega_{A \times \mathbb{P}^1_k/\mathbb{P}^1_k}) \cong \mathcal{O}_{\mathbb{P}^1_k},
\]

so that, by [13], \(\deg(\det((p_2)_*(h^*(L)))) = 0 \), that is, if we set

\[
(p_2)_*(h^*(L)) = \mathcal{O}_{\mathbb{P}^1_k}(a_1) \oplus \cdots \oplus \mathcal{O}_{\mathbb{P}^1_k}(a_d),
\]

then \(a_1 + \cdots + a_d = 0 \). Thus \(a_i \geq 0 \) for some \(i \), and hence

\[
H^0(A \times \mathbb{P}^1_k, h^*(L)) \neq 0.
\]

Therefore, \(L \) is \(\mathbb{Q} \)-effective by Lemma 1.3. \(\square \)

The above claim suggests that the set of preperiodic points of the map \([2] : X \to X\) is not dense in the analytification \(X_v^{\text{an}} \) at any place \(v \) of \(\mathbb{P}^1_k \) with respect to the analytic topology (cf. [5]).

References

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-8502, Japan

E-mail address: moriwaki@math.kyoto-u.ac.jp