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Abstract 

Cancer cells harboring oncogenic BRaf mutants, but not oncogenic KRas mutants, are 

sensitive to MEK inhibitors (MEKi). The mechanism underlying the intrinsic resistance to 

MEKi in KRas-mutant cells is under intensive investigation. Here, we pursued this 

mechanism by live imaging of ERK and mTORC1 activities in oncogenic KRas or BRaf 

mutant cancer cells. We established eight cancer cell lines expressing FRET biosensors for 

ERK activity and S6K activity, which was used as a surrogate marker for mTORC1 activity. 

Under increasing concentrations of MEKi, ERK activity correlated linearly with the cell 

growth rate in BRaf-mutant cancer cells, but not KRas-mutant cancer cells. Administration of 

PI3K inhibitors resulted in a linear correlation between ERK activity and cell growth rate in 

KRas-mutant cancer cells. Intriguingly, mTORC1 activity was correlated linearly with the cell 

growth rate in both BRaf-mutant cancer cells and KRas-mutant cancer cells. These 

observations suggested that mTORC1 activity played a pivotal role in cell growth and that the 

mTORC1 activity was maintained primarily by the ERK pathway in BRaf-mutant cancer cells 

and by both the ERK and PI3K pathways in KRas-mutant cancer cells. FRET imaging 

revealed that MEKi inhibited mTORC1 activity with slow kinetics, implying transcriptional 

control of mTORC1 activity by ERK. In agreement with this observation, MEKi induced the 

expression of negative regulators of mTORC1, including TSC1, TSC2, and Deptor, which 

occurred more significantly in BRaf-mutant cells than in KRas-mutant cells. These findings 

suggested that the suppression of mTORC1 activity and induction of negative regulators of 

mTORC1 in cancer cells treated for at least one day could be used as surrogate markers for 

the MEKi sensitivity of cancer cells. 
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Introduction 

The Ras-Raf-MEK-ERK signalling pathway plays a central role in cell proliferation, 

differentiation and survival.1 Gain-of-function mutations in the Ras-Raf-MEK-ERK pathway 

have frequently been observed in various cancers, including melanoma, pancreatic cancer, 

lung cancer, colorectal cancer, and breast cancer.2 These mutations induce hyper-activation of 

the pathway, culminating in the induction of cancers.  

 The growth of many cancer cells depends on a specific driving oncogene, a 

phenomenon known as “oncogene addiction.”3, 4 This idea has been well-established in BCR-

ABL-induced chronic myelogenous leukemias and EGFR mutant non-small lung cancer.5 

Therefore, targeting molecules in the Ras-Raf-MEK-ERK pathway could be a promising 

therapeutic strategy. MEK inhibitors (MEKi) have been tested in early-phase clinical trials as 

BRaf inhibitors (BRafi).6 Cancer cells harboring BRaf mutation undergo G1 cell cycle arrest 

and apoptosis by BRafi and MEKi treatment,7 clearly indicating that BRaf-mutant cancer cells 

are “addicted” to the ERK pathway. Several cancer cell lines harboring active KRas mutations 

also exhibit oncogene addiction, which is manifested by induction of cell cycle arrest and 

apoptosis by silencing of KRas expression.8 Unlike BRaf-mutant cancer cells, Ras-mutant 

cancer cells are less sensitive to MEKi.7 In Ras-mutant cells, MEKi demonstrates a cytostatic 

effect rather than cytotoxic activity.6  

 Resistance to targeted drugs has emerged as a critical issue in the clinical outcome of 

anticancer therapy. There exist two mechanisms by which cancer cells demonstrate resistance 

to targeted drugs: an intrinsic and an acquired mechanism.9 Intrinsic resistance is caused by 

genetic and/or epigenetic alterations existing before treatment. On the other hand, acquired 

resistance is induced by drug treatment over a long period, and it can be due to gene mutation, 

overexpression or silencing acquired after treatment. The low sensitivity to MEKi in the Ras-

mutant cancer cells is an example of intrinsic resistance. One of the possible mechanisms by 

which oncogenic Ras mutants, but not oncogenic BRaf mutants, render cancer cells resistant 

to MEKi is the presence of feedback loops and cross-talk between Ras and other pathways, 

such as the EGFR pathway and the PI3K-Akt-mTOR pathway.6, 10 For example, it has been 

reported that inhibition of ERK by MEKi releases negative feedback from ERK to CRaf, 
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thereby increasing phosphorylated MEK and decreasing drug efficacy.11-13 Intriguingly, the 

BRaf V600E mutant disrupts the negative feedback from ERK to CRaf.12, 14 In addition, 

cross-talk between the Ras-ERK and PI3K-Akt-mTOR pathways is involved in the intrinsic 

resistance. Indeed, MEKi treatment causes Akt phosphorylation, which determines the 

susceptibility of cancer cells to MEK inhibition.10, 15  

 To overcome MEKi resistance in KRas-mutant cancer cells, the logical approach 

would be a combination of strategies using MEKi to induce cytotoxicity. One of the 

promising combinations is MEKi plus PI3K/mTOR or Akt inhibitors,16, 17 and these clinical 

trials are ongoing,6 although toxicity of both inhibitors limits the maximally tolerated doses 

that can be used in combination.18, 19 However, it is unclear to what extent KRas-mutant 

cancer cells are addicted to either the Ras-ERK pathway or the PI3K-Akt-mTOR pathway, or 

what roles feedback and cross-talk play in the process of intrinsic resistance in these cells.  

 Here, we have addressed this issue by monitoring the effects of MEKi on ERK and 

mTORC1 activities and cell growth with live-cell imaging in BRaf- or KRas-mutant cancer 

cells. We found that MEKi-induced suppression of ERK activity was linearly correlated with 

the reduction of mTORC1 activity and cell growth rate in BRaf-mutant cancer cells, but not in 

KRas-mutant cells. The MEKi-induced suppression of mTORC1 activity was markedly 

slower than the ERK suppression. In agreement with this finding, we found that several genes 

involved in the regulation of mTORC1 activity were transcriptionally regulated.   

 

Results 

Linear correlation between ERK activity and cell growth rate upon MEKi treatment in BRaf-

mutant cells, but not in KRas-mutant cells.  

To address the mechanisms of MEKi resistance in cancer cells, we designed a live-cell 

imaging platform by which the molecular activity and cell growth rate in cancer cells could be 

simultaneously monitored in the presence of various inhibitors (Figure 1a and 1b). For the 

analysis, we chose 6 cell lines that harbor oncogenic mutations of BRaf or KRas, and 2 cell 

lines that are not known to have any oncogenic mutations of BRaf and KRas (Supplementary 

Table 1). The cell lines were stably expressed with a FRET biosensor for ERK activity, 
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EKAREV-nls, or for S6K activity, Eevee-S6K.20 After the addition of inhibitor, cells were 

monitored for the kinase activity and cell number every day (Figure 1b). 

 First, we examined the dose effect of AZD6244, a potent MEKi, on the ERK activity 

and growth rate of HT-29 cells bearing the V600E BRaf mutation and HCT116 cells bearing 

the G13D KRas. HT-29 cells exhibited almost identical IC50 values for both ERK activity 

(0.030 ± 0.0045 µΜ) and cell growth rate (0.064 ± 0.024 µΜ) (Figure 1c), resulting in a 

linear correlation between ERK activity and cell growth rate (Figure 1d). On the other hand, 

in HCT116 cells the IC50 of 1.2 ± 0.32 µM for the cell growth rate was approximately 50-

fold higher than the IC50 of 0.023 ± 0.0034 µΜ for ERK activity, resulting in a non-linear 

correlation between ERK activity and growth rate (Figure 1e and 1f). The resistance of 

HCT116 to MEKi was as reported by Friday et al.12 Importantly, a linear correlation between 

ERK activity and cell growth rate was observed in all three BRaf-mutant cell lines, but not in 

the KRas-mutant cell lines (Figure 1g). ERK activity in KRas-mutant cells was slightly 

restored one day after MEKi treatment (Supplementary Figure S1). In cell lines without 

known mutation of BRaf or KRas, no clear tendency could be identified (Figure 1g). Taken 

together, these results showed that the cell growth rate was entirely dependent on ERK 

activity in BRaf-mutant cells, but not in KRas-mutant cells. There are several possible 

explanations for the inhibition of the cell growth of KRas-mutant cells by a high dose of 

MEKi—e.g., very low ERK activity may have been sufficient to maintain the cell growth of 

KRas-mutant cells, or alternatively, the ERK activity may have been dispensable, but other 

kinases that are indispensable for cell growth could have been inhibited at high concentrations 

of MEKi. In any event, the use of high-dose MEKi as a therapeutic is clinically impractical if 

we take the adverse effects of MEKi into account.21  

 

Dependence of cell growth on the PI3K-Akt-mTOR pathway 

If ERK is dispensable for the cell growth of KRas-mutant cells, does the PI3K-Akt-mTOR 

pathway support the proliferation of these cells? To answer this question, we examined the 

effect of inhibitors against EGFR, BRaf, MEK, RSK, PI3K, and mTOR on cell growth 

(Figure 2a). To compare the sensitivity among 8 cell lines, we used a relative resistance index, 
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which we calculated by dividing the IC50 value for a given inhibitor in each cell line by the 

lowest IC50 value for that inhibitor among all 8 cell lines (Figure 2b). The sensitivity of the 

cell lines was analysed by clustering (Figure 2c). As expected, the cell lines were clustered 

into two groups, the BRaf-mutant cell lines and the others. The BRaf-mutant cell lines were 

more sensitive to BRafi/MEKi than the KRas-mutant cell lines or KRas and BRaf WT cell 

lines (Figure 2c). On the other hand, the BRaf-mutant cell lines were more resistant to the 

PI3K inhibitor and mTOR inhibitor than the KRas-mutant cell lines and KRas and BRaf WT 

cell lines, suggesting that the MEKi-resistant cell lines were more dependent on PI3K-Akt-

mTOR signalling for cell growth than were the BRaf-mutant cell lines. Therefore, if the 

PI3K-Akt-mTOR pathway was abrogated, would the KRas-mutant cell lines exhibit linear 

correlation of ERK activity with cell growth rate, as was the case in BRaf-mutant cell lines? 

To answer this question, we examined the correlation between the ERK activity and cell 

growth rate of BRaf-mutant HT-29 cells and KRas-mutant HCT116 cells in the presence of 

increasing concentrations of MEKi and PI3K inhibitor (PI3Ki)(Figure 2d-g). HT-29 cells 

demonstrated the linear correlation between ERK activity and cell proliferation rate regardless 

of the treatment of PI-103, a PI3Ki (Figure 2e). On the contrary, PI-103 treatment sensitized 

HCT116 cells to MEKi; the cell growth rate was linearly correlated with ERK activity in the 

presence of 1 µM PI-103 (Figure 2g, light green dots). We further analyzed ERK activity 

distribution at the single cell level in HT-29 cells and HCT116 cells (Supplementary Figure 

S2). ERK activity followed normal bell-shape distribution, and gradually decreased by MEK 

inhibition with the bell-shape distribution keeping in both HT-29 cells and HCT116 cells. 

These results strongly suggested that the signals from the Raf-MEK-ERK pathway and PI3K-

Akt-mTOR pathway converged on a molecule that controls the cell growth of HCT116 cells, 

and probably also the other KRas-mutant or BRaf-mutant cancer cells.  

 

Linear correlation between S6K activity and cell growth rate in both BRaf- and KRas-mutant 

cells.  

We assumed that mTORC1 was a key cell growth controller functioning downstream of ERK 

and PI3K. To examine the correlation of mTORC1 activity with the cell growth rate, we 
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established cell lines expressing the S6K FRET biosensor, Eevee-S6K, which was used as a 

surrogate marker for mTORC1 activity. The S6K activity was decreased in a manner 

dependent on cell density in both HT-29 and HCT116 cells (Figure 3a-c). In HT-29 cells, 

MEKi slowly suppressed S6K activity in a dose-dependent manner from one day after 

treatment (Figure 3a). In contrast, PI-103 treatment decreased S6K activity within 20 min, but 

the effect was cancelled in 1-2 days (Figure 3b). These observations suggested that ERK 

regulates mTORC1 in a transcription-dependent manner, and that the same mechanism may 

operate to cancel the PI3Ki-induced decrease of S6K activity in HT-29 cells. HCT116 cells 

showed higher basal S6K activity than HT-29 cells, and also slow inhibition of S6K activity 

by MEKi from one day after treatment as observed in HT-29 cells (Figure 3c). The effect of 

PI3Ki on S6K was rapid and sustained in HCT116 cells (Figure 3d). Interestingly, in clear 

contrast to ERK activity (Figure 2e and 2g), cell growth rate was linearly correlated with S6K 

activity in both HT-29 cells and HCT116 cells in the combined application of MEKi and 

PI3Ki (Figure 3e and 3f, Supplementary Figure S3). S6K activity at the single cell level in 

HCT116 cells showed broader and more biased distribution than that in HT-29 cells 

(Supplementary Figure S4). MEK inhibition suppressed S6K activity in the approximately 

half of HCT116 cells (Supplementary Figure S4b, upper left), and additional PI3K inhibition 

lead to the reduction of S6K activity in the remaining half of cells. These results implied that 

mTORC1/S6K activity regulated the cell growth rate, and that the MEKi resistance of KRas-

mutant cell lines was due to the mTORC1/S6K activity remaining in the presence of MEKi. 

To confirm this observation, we quantified the phosphorylation of Rictor Thr1135, an S6K 

substrate. The basal phosphorylation level was lower in HT-29 cells than HCT116 cells 

(Figure 3g and 3h). . MEKi decreased pRictor/Rictor, but the remaining pRictor/Rictor value 

was markedly larger in HCT116 cells than in HT-29 cells (Figure 3h, arrows), which was 

consistent with the imaging data (Figure 3a and 3c, arrows). We also examined these results 

in other cell lines and found that MEKi treatment could not induce a sufficient reduction of 

Rictor Thr1135 phosphorylation in MEKi-resistant cells (Supplementary Figure S5). Taken 

together, the mTORC1/S6K activity correlated with cell growth, and the reduction of 

mTORC1/S6K activity induced by MEKi represented the sensitivity to the MEKi.  
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Requirement of rapamycin-insensitive mTORC1 activity for cell growth in MEKi-resistant 

and MEKi-sensitive cells.  

To identify which molecules regulated cell growth most directly, we systematically perturbed 

components of the PI3K/mTOR pathway by chemical inhibitors, gene depletion by siRNAs or 

CRISPR/Cas9 system, and dominant negative mutants, and examined the effects on S6K 

activity and cell growth. PI-103 and Torin1, an mTORC1/2 inhibitor, reduced the S6K 

activity and growth rate in a dose-dependent manner in both HT-29 cells and HCT116 cells 

(Figure 4a, 4b, 4d and 4e). Rapamycin did not suppress cell growth even though rapamycin 

treatment robustly decreased S6K activity (Figure 4c and 4f). The depletion of Raptor, a 

critical component of mTORC1, by RNAi or CRISPR/Cas9 inhibited both S6K activity and 

the cell growth rate (Figure 4g-4l). Therefore, a rapamycin-insensitive target of mTORC1, but 

not S6K, played a critical role in cell growth.22 A candidate molecule would be 4E-BP1.23 To 

examine whether this molecule was in fact the target of mTORC1, we employed a 

tetracycline-inducible expression of dominant negative mutant of 4E-BP1, 4E-BP1 4A, for 

the inhibition of 4E-BP1 function. The expression of the dominant negative mutant of 4E-BP1 

clearly suppressed the proliferation of A375, HT-29, and HCT116 cells (Figure 4m). These 

results indicated that mTORC1-activated 4E-BP1 was required for cell growth in both MEKi-

sensitive and -resistant cells. Therefore, the different sensitivity to MEKi between BRaf-

mutant and KRas-mutant cells was attributed to the mechanisms by which ERK activity 

regulated mTORC1 activity.  

 

MEKi treatment-induced global change in gene expression in mTORC1 pathway components. 

How does the Raf-MEK-ERK pathway regulate mTORC1? Although the post-translational 

mechanisms could be considered such as negative feedbacks and cross-talk between ERK and 

mTORC1 pathway (see Discussion), the slow inhibition of mTORC1/S6K activity by MEKi 

(Figure 3a and 3c) prompted us to examine the transcriptional/translational regulation of 

mTORC1 by ERK. To test this hypothesis, the gene expression profile was compared 

between cells cultured in the presence and absence of a MEKi, PD0325901 (Figure 5a). We 
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identified 8428 and 7786 genes in HT-29 cells and HCT116 cells, respectively, as 

differentially expressed genes (DEGs) (Figure 5b and 5c). Among them, we focused on genes 

that are related to mTORC1 signalling. Upon MEKi treatment, 3 out of 9 positive regulators 

for the mTORC1 signalling pathway were down-regulated, i.e., Akt1, Rheb, and Raptor 

whereas 4 out of 5 negative regulators were up-regulated, i.e., TSC1, TSC2, DEPTOR, and 

REDD1 (Figure 5d). Of note, these down- and up-regulated mTORC1-related genes were 

more evident in HT-29 cells than in HCT116 cells. To check whether the change in gene 

expression pattern was also observed in other cell lines, the expression levels of these genes 

were quantified by qPCR. We found that the up-regulation of TSC2 and DEPTOR genes was 

more significant in BRaf-mutant cells than in KRas-mutant cells (Figure 5e). We speculated 

that up-regulation of TSC2 and DEPTOR would be a mechanism for mTORC1 inactivation by 

MEKi. However, depletion of TSC2 or DEPTOR by RNAi did not affect S6K activity or cell 

growth in the presence of MEKi in BRaf-mutant cells (Supplementary Figure S6 and S7). The 

knockdown of either TSC2 or DEPTOR might be insufficient to rescue MEKi-induced 

mTORC1 inactivation. Taken together, these results lead us to suggest that ERK inactivation 

upon MEKi treatment induces the global change in gene expressions related to mTORC1 

signalling, and the alteration of these genes cooperatively results in the mTORC1 inactivation 

and cell growth inhibition.  
 

Discussion 

Based on the results of the present experiments, we propose that the following mechanism 

underlies the difference of MEKi sensitivity between BRaf- and KRas-mutant cancer cells 

(Figure 6). In both BRaf- and KRas-mutant cancer cells, mTORC1 activity is a bottleneck for 

cell proliferation and survival. In BRaf-mutant cancer cells, mTORC1 activity is regulated 

primarily by ERK activity, which is inferred from the linear correlation of ERK activity with 

mTORC1 activity in the presence of various concentrations of MEKi (Figure 6a). By contrast, 

KRas-mutant cancer cells employ both ERK and PI3K-Akt pathways to maintain mTORC1 

activity, and therefore MEKi monotherapy cannot significantly reduce the mTORC1 activity 

and cell growth (Figure 6b). This could be due to KRas activation of the PI3K-Akt-mTORC1 
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pathway through the direct binding of KRas to p110 catalytic subunits of PI3K.26 In the cell 

lines used in the present research, neither the presence of PI3K mutation nor the presence of 

PTEN mutation was correlated with the sensitivity to PI3Ki and mTORC1/2 inhibitor (Figure 

2c and Supplementary Table S1). Intriguingly, the drug sensitivities of Ras WT and BRaf WT 

cancer cells were found to be equivalent to those of KRas-mutant cancer cells by clustering 

(Figure 2c). The data implicate that oncogenic BRaf mutation reduces PI3K-Akt dependency 

and subsequently increases ERK dependency on mTORC1 activity.  

 Our data suggest that mTORC1 activity is transcriptionally regulated by ERK. The 

Ras-ERK pathway activates the PI3K-Akt-mTORC1 pathway by multiple mechanisms.27 It 

has been shown that ERK and RSK, a downstream molecule of ERK, phosphorylate and 

inactivate TSC2, a component of Rheb GAP, leading to the activation of Rheb and 

mTORC1.24 A similar mechanism has been proposed for Raptor; ERK and RSK 

phosphorylate Raptor and promote tumorigenesis through 4E-BP phosphorylation.25 However, 

the ERK and/or RSK-mediated phosphorylation of the regulators of mTORC1 does not seem 

to play a major role in maintaining the mTORC1 activity of the cell lines used in the present 

study, because we found that MEKi decreased mTORC1 activity with slow kinetics requiring 

nearly one day of treatment for full suppression (Figure 3a and 3c). It should be noted that the 

observed slow kinetics was not due to the kinetics of the FRET biosensor, which could 

capture the fast mTORC1 inactivation by PI3Ki or rapamycin (Figure 3b and 3d).20 In support 

of our proposal, we observed increases in the negative regulators of mTORC1, including 

TSC1, TSC2, Deptor, and REDD1, upon MEKi treatment (Figure 5d). Related to this issue, 

we failed to observe any significant effect of knockdown of TSC2 or Deptor on the sensitivity 

of BRaf mutant cells to MEKi (Supplementary Figure S6 and S7). However, this observation 

does not necessarily negate the role of the negative regulators of mTORC1 on the ERK-

mediated mTORC1 activation. Even though the effect of ERK activity on the expression of 

each gene is modest, it is possible that global suppression of the genes of negative regulators 

may have a profound effect. Thus, we suggest that the different sensitivity to MEKi between 

BRaf- and KRas-mutant cells is caused by the level of dependency on the ERK-mediated 

mTORC1 activation.  
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 Other possible mechanisms that could have contributed to the difference of MEKi 

sensitivity between BRaf- and Ras-mutant cells are: (1) the negative feedback from ERK to 

Raf, which is abrogated in BRaf-mutant cells,12-14 and (2) the negative feedback from ERK to 

EGFR28, 29. As for the negative feedback from ERK to Raf, we observed a slight restoration of 

ERK activity in KRas-mutant cells one day after MEKi treatment (Supplementary Figure S1). 

However, the increase in IC50 values of ERK activity was ~ 2 fold, which was unlikely to 

explain the ~ 50-fold difference in the IC50 values for cell growth (Figure 1e). These data 

were essentially consistent with the previous study.12 As for the negative feedback from ERK 

to EGFR, unlike in the previous reports28, 29, we could not reproduce MEKi-induced 

activation of Akt in our experimental condition, namely in the presence of 10% serum 

condition (Supplementary Figure S8). Consistent with this result, no decrease of cell growth 

rate and S6K activity was observed by the additional treatment of an EGFR inhibitor, 

Gefitinib (Supplementary Figure S9). We confirmed that the concentration of Gefitinib used 

in the analyses was sufficient to suppress EGFR activation (Supplementary Figure S10). 

These results supported our claim that ERK regulates mTORC1 activity through 

transcriptional mechanisms, though we have not yet obtained direct experimental evidences. 

 An important message from this study is that the sensitivity of mTORC1 to MEKi 

could be used as a promising surrogate marker of cancer cells for MEKi sensitivity. In this 

study, as an indicator of mTORC1 activity we employed S6K-mediated phosphorylation of 

Rictor at Thr1135, which was detected either by the FRET biosensor Eevee-S6K or anti-

phospho-Rictor (Thr1135) antibody. In line with this view, phospho-S6 (Ser240/S244) and 

phospho-S6 (Ser235/S236) have been used as markers of resistance to MEKi in melanoma 

cells.30 Importantly, the suppression of mTORC1 activity was observed only at one day after 

MEKi treatment, when the mRNAs of TSC2 and DEPTOR were increased. Therefore, by 

measuring the S6K activity or expression levels of TSC2 and DEPTOR in patient samples 

pretreated with MEKi for one day, we may be able to predict the sensitivity of cancer cells to 

MEKi.  
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Materials and Methods 

Cell culture.  

The cell lines HCT116, A549, NCI-H460 and MCF10A were obtained from ATCC 

(American Type Culture Collection). The cell lines HT-29, A375 and LIM1215 were obtained 

from ECACC (European Collection of Cell Cultures). HEK-293T cells were purchased from 

Clontech (Mountain View, CA). Colo205 cells were the kind gift of Dr. Won Do Heo 

(KAIST, Korea). A549, A375 and HEK-293T cells were maintained in DMEM (Sigma-

Aldrich, St. Louis, MO). HCT116 and HT-29 cells were grown in McCoy’s 5A medium 

(Sigma-Aldrich). NCI-H460 and Colo205 cells were cultured in RPMI1640 (Sigma-Aldrich). 

LIM1215 cells were maintained in DMEM/F12 (Sigma-Aldrich). The growth media 

described above were supplemented with 10% fetal bovine serum (FBS) and 

penicillin/streptomycin. MCF10A cells were grown in mammary epithelial basal medium 

(Cell Applications, CA) supplemented with the growth supplements (Cell Applications) and 

100 ng/ml cholera toxin (BioAcademia, Tokyo, Japan). All cells were incubated in a 

humidified atmosphere of 5% CO2 at 37˚C.  

 

Plasmids and establishment of stable cell lines.  

FRET biosensors for ERK activity with a nuclear localization signal, EKAREV-nls, and for 

S6K activity with a nuclear exporting signal, Eevee-S6K, were described previously.20 

cDNAs of EKAREV-nls or Eevee-S6K were subcloned into pPBbrs vector, a PiggyBac 

transposon vector31 with IRES-bsr (blasticidin S resistant gene), pT2Apuro vector, a Tol2 

transposon vector32 with IRES-pac (puromycin resistant gene), or pCSIIbsr-EF, a lenti-virus 

vector33 with IRES-bsr. mCherry tagged with tandem repeats of NLS, mCherry-NLSx2, was 

introduced into the pCX4neo retrovirus vector.34 pCW57.1-4E-BP1 4xAla and lentiCRISPR 

v2 were obtained from Addgene (plasmid 38240 and plasmid 52961, respectively).  

 To establish stable cell lines expressing FRET biosensors by a transposon system, 

cells were cotransfected with pPB vector and pCMV-mPBase, which was obtained from the 

Wellcome Trust Sanger Institute, or with pT2A vector and pCAGGS-T2TP, which was a kind 

gift from Dr. Kawakami (National Institute for Genetics, Japan). One day after transfection, 
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the transfected cells were selected with 20 µg/ml of blasticidin S or 2 µg/ml puromycin, and 

then left for at least one week. For lentivirus-mediated introduction of the FRET biosensor 

gene, a cDNA encoding YPet, an YFP variant, was codon-diversified to prevent 

recombination between the YFP and CFP genes of the biosensor (Aoki, unpublished). For 

lentiviral production, HEK-293T cells were cotransfected with the pCSII-EF vector, psPAX2 

from Addgene plasmid 12260, and pCMV-VSV-G-RSV-Rev, which was a kind gift from Dr. 

Miyoshi (RIKEN) by using Polyethyleneimine “Max” MW 40,000  (Polyscience Inc., 

Warrington, PA). As a retrovirus, pGP was used instead of psPAX2. Virus-containing media 

were collected at 48 hours after transfection, filtered, and used to infect target cells. Two days 

after infection, the infected cells were selected with 20 µg/ml blasticidin S. Cell lines 

expressing Eevee-S6K were additionally infected with retrovirus encoding mCherry-NLSx2 

protein and selected with 1 mg/ml G418. Bulk of infected cells was used for imaging. 

 

Reagents.  

Gefitinib, SB-590885, AZD6244 and BI-D1870 were purchased from Symansis (Shanghai, 

China). PI-103 was purchased from Calbiochem (La Jolla, CA). Torin1 was purchased from 

Tocris Bioscience (Ellisville, MO). Rapamycin was purchased from LC Laboratories 

(Woburn, MA). PD0325901 was purchased from Wako (Osaka, Japan). Doxycyclin was 

obtained from LKT Laboratories (St. Paul, MN). 

 

Gene silencing using siRNAs.  

For the siRNA knockdowns, cells were transfected with 20 nM ON-TARGETplus siRNA 

pools (ThermoScientific) or 10 nM Silencer Select siRNAs (Life Technologies) using 

RNAiMAX Lipofectamine (Life Technologies) according to the manufacturer’s instructions. 

Cells were analysed 24 hours post-transfection. 

 

Raptor knockout using CRISPR/Cas9.  



14 

For CRISPR/Cas9-mediated knockout of RPTOR gene, sgRNAs targeting RPTOR were 

designed using CRISPR Design Tools (http://crispr.mit.edu/). Targeting sequences are just 

after the start codon (#1) or region encoding 1191RVYDRR1196 (#2 and #3) of RPTOR, which 

is required for the interaction with mTOR35. Oligo DNAs for the sgRNAs were annealed and 

inserted into lentiCRISPR v2 vector digested with BsmBI restriction enzyme. sgRNA-Cas9 

cassettes were introduced to HT-29 cells by lentivirus-mediated gene transfer. Infected cells 

were selected by 2 µg/ml Puromycin for at least two weeks and obtained bulk cell lines were 

analysed. 

 

Multiwell FRET imaging.  

FRET images were obtained and processed using essentially the same conditions and 

procedures as previously reported.36 In brief, the bottoms of 96-well glass-based plates (Asahi 

Techno Glass, Tokyo, Japan) were coated with collagen type I (Nitta Gelatin Inc., Osaka, 

Japan) before plating cells. Cells expressing EKAREV-nls or Eevee-S6K/mCherry-NLSx2 

were plated on the collagen-coated 96-well plate at a cell density of 3,000-4,000 cells/well. 

After cells attached to the glass base, the media was exchanged for 300 µl of imaging medium 

comprised of Medium 199 (Sigma-Aldrich) with 20 mM HEPES, 10% FBS and 

penicillin/streptomycin. Blasticidin S or/and puromycin were added to the imaging medium if 

necessary. Cells in the 96-well plates were cultured in CO2 incubators, and applied to a 

fluorescence microscope at the time point of image acquisition. All images were acquired 

with an inverted microscope (IX81; Olympus, Tokyo, Japan) equipped with a cooled CCD 

camera (Cool SNAP-K4; Roper Scientific), illumination systems (Spectra-X light engine; 

Lumencore, OR or CoolLED precisExcite; Molecular Devices, Sunnyvale, CA), an IX2-

ZDC2 laser-based autofocusing system (Olympus), a MAC5000 controller for filter wheels 

and XY stage (Ludl Electronic Products, Hawthorne, NY), a chamlide WP stage incubator 

system (Live Cell Instrument, Seoul, Korea) and a GM-4000 CO2 supplier (Tokai-Hit, 

Fujinomiya, Japan). The following filters used for the dual emission imaging studies were 

obtained from Omega Optical (Brattleboro, VT): an XF1071 (440AF21) excitation filter, an 

XF2034 (455DRLP) dichroic mirror, and two emission filters (XF3075 (480AF30) for CFP 

http://crispr.mit.edu/
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and XF3079 (535AF26) for YFP). Cells were imaged with an UPlanSApo x20 dry objective 

lens (Olympus). The same four positions were acquired in each well in the time course 

experiments. The microscope was controlled by Metamorph software (Universal Imaging, 

West Chester, PA). 

 

Image analysis.  

For background subtraction, all images were processed by the Flatten Background function 

included in the Metamorph software package. The background value was determined by 

Otsu’s method and subtracted from the images.37 After background subtraction, FRET/CFP 

ratio images were created to represent the FRET efficiency. Custom-made MATLAB 

program was used for subsequent image analyses as previously described38. Briefly, for the 

ERK FRET biosensor, EKAREV-nls, a fluorescence signal from the nucleus was used for the 

segmentation of each cell. For Eevee-S6K, red fluorescence from the nucleus in mCherry-

NLSx2 was employed for the segmentation of each cell. The intensities of both the FRET and 

CFP channels from each single cell were measured to calculate the FRET/CFP ratio. Finally, 

the number of segmented areas was counted as the number of cells in each well. Metamorph 

software and MATLAB (version R2012a; Mathworks Inc., Natick, MA) were used for all 

these imaging procedures.  

 

Western blotting and antibodies.  

Cells were plated on collagen-coated 12-well plates, and one day after plating the cells were 

treated with inhibitors for 20 min or one day. Cells were then washed twice with cold PBS 

and lysed with lysis buffer containing 1% NP-40.39 After centrifugation, the supernatants 

were analysed by SDS-polyacrylamide gel electrophoresis, followed by western blotting. The 

primary antibodies were as follows: p-ERK1/2(T202/Y204), ERK1/2, p-Akt(S473), pan-Akt, 

p-Rictor(T1135), TSC2, p-4E-BP1(T37/46), p-S6(S235/236) and S6 (Cell Signaling 

Technology, Beverly, MA). Raptor clone 1H6.2 was from MERCK/Millipore (Bedford, MA). 

Rictor (mAb, 1G11) was from Enzo Life Sciences (Farmingdale, NY). p-EGFR (Y1068) was 

from GenWay Biotech Inc. (Dan Diego, CA). EGFR from BD Biosciences (San Jose, CA). 
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The secondary antibodies were as follows: IRDye680LT- and IRDye800-conjugated anti-

rabbit and anti-mouse IgG secondary antibodies, respectively (LI-COR Bioscience, Lincoln, 

NE). LI-COR blocking buffer (LI-COR Bioscience) was used to block the membranes and to 

dilute antibodies. Fluorescent signals were detected by an Odyssey Infrared Imager (LI-COR 

Bioscience).  

 

RNA isolation and qPCR. 

Cells were seeded onto collagen-coated 6-well culture plates at a density of 1 x 105 cells/well 

and cultured overnight. The cells were treated with 0.1% DMSO or 0.1 µM PD0325901 for 

one day, and were washed with ice-cold PBS. Total RNAs were extracted using an RNeasy 

mini kit (Qiagen, Valencia, CA) according to the manufacturer’s instructions. cDNA was 

prepared using a High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, 

Foster City, CA) with random hexamer primers according to the manufacturer’s instructions. 

The relative abundance of transcripts was measured by quantitative PCR using SYBR Green 

PCR mix (Applied Biosystems). The mRNA levels for each gene were normalized to that of 

GAPDH. The primers used were as follows. hRheb: forward 5’ -ggaatcttctgctaaagaaaatcag-3’, 

reverse 5’ -gcatgaagacttgccttgtg-3’; hTSC2: forward 5’ - cggatgcctacagcaggt-3’, reverse 5’ - 

agacgactcgctcgatgg-3’; hDEPTOR: forward 5’ - tgagaggacagaggctatatgaaa-3’, reverse 5’ - 

tgaaggtgcgctcatacttg-3’; hGAPDH: forward 5’ - gagtccactggcgtcttcac-3’, reverse 5’ - 

gttcacacccatgacgaaca-3’. 

 

RNA sequencing and sequence analysis.  

Total RNAs from cells treated with DMSO or PD0325901 were isolated by the method shown 

above. The library preparation and RNA sequencing were performed as previously 

described.40 The CLC Genomics Workbench (www.clcbio.com) was used to map the reads, 

calculate the expression levels and determine the statistical significance of the results. 

Sequence reads of each data set were aligned to the human genome (Ensembl GRCh37.p13, 

Sep. 2013, version 75.37). The reads per kilobase (kb) of exon model per million mapped 

reads (RPKM) method was employed to calculate the gene expression.41 Differentially 

http://www.clcbio.com/
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expressed genes (DEGs) were identified by the RNA-Seq Analysis function included in the 

CLC GWB platform. The False Discovery Rate (FDR) controlling approach was adopted to 

examine the significance of the differences in gene expression. The cut-off value for DEGs 

was FDR < 0.01.  

 

Numerical analysis.  

For non-linear regression, we utilized solver functions in Microsoft Excel or the lsqcurvefit 

function in MATLAB. Data visualization was performed by Excel or MATLAB. The R 

statistical computing environment was used for the cluster analysis. In Figures 1d, 1f, 2e, 2g, 

3e and 3f, theoretical function described as shown below were used as a model function to fit 

the experimental data. The equation represents the relationship between the ERK or S6K 

activity and cell growth rate. 

growth rate =  𝑚𝑚𝑚𝑚𝑚𝑚𝑔𝑔 +  𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔
𝐼𝐼𝐼𝐼50𝑔𝑔

𝑛𝑛𝑛𝑛𝑔𝑔

�
𝑎𝑎𝑎𝑎𝑎𝑎𝐴𝐴 ∗ 𝐼𝐼𝐼𝐼50𝐴𝐴

𝑛𝑛𝑛𝑛𝐴𝐴

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑚𝑚𝑚𝑚𝑚𝑚𝐴𝐴
− 𝐼𝐼𝐼𝐼50𝐴𝐴

𝑛𝑛𝑛𝑛𝐴𝐴�

𝑛𝑛𝑛𝑛𝑔𝑔
𝑛𝑛𝑛𝑛𝐴𝐴

+ 𝐼𝐼𝐼𝐼50𝑔𝑔
𝑛𝑛𝑛𝑛𝑔𝑔

 

where min is the minimum, amp is the amplitude, IC50 is the half maximum inhibitory 

concentration and nH is the Hill coefficient of the growth rate (g) or activity (A) of ERK or 

S6K. Activity is the FRET/CFP ratio of EKAREV-nls or Eevee-S6K. For data fitting, the 

difference between experimental value and theoretical value were calculated. Next residual 

sum of squares were minimized in order to obtain the best fitted curve. Because minA, ming 

and ampA were determined unambiguously from experimental data, we fitted ampg, IC50A, 

IC50g, nHA, and nHg as parameters. 
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Figure legends 
 

Figure 1. Relation between ERK activity and cell growth rate. (a) FRET-based biosensor for 

ERK or S6K activity. (b) Experimental procedure for monitoring molecular activity and cell 

growth by multi-well plate time-lapse imaging. The montage image shows representative time 

courses of HT-29 cells treated with 0.1 µM AZD6244, a MEK1/2 inhibitor. (c and e) Dose 

dependencies of the cell growth rate (black) and ERK activity (magenta) on AZD6244 in HT-

29 cells (c) and HCT116 cells (e). The growth rate and ERK activity on Day 1 are plotted 

with the s.d. (n = 3) and fitted curves. (d and f) Growth rates are plotted as a function of ERK 

activity in HT-29 cells (d) and HCT116 cells (f) with the s.d. (n = 3). Colors indicate the 

concentration of AZD6244. Dashed lines indicate the theoretical curves calculated by the 

fitted Hill-equation in panels c and e. See Materials and Methods for more details. (g) IC50 

values of the cell growth rates in the indicated cell lines are plotted as a function of the IC50 

values of ERK activity upon AZD6244 treatment with the s.d. (n = 3).    

 

Figure 2. Involvement of the PI3K pathway on intrinsic resistance to MEKi in KRas-mutant 

cells. (a) Schematic view of the signaling pathway with inhibitors. (b) Procedure for 

calculating the relative resistance to inhibitors. The relative resistance to a particular inhibitor 

in a particular cell line was obtained by dividing the IC50 value in that cell line by the 

minimum IC50 value among all 8 cell lines. (c) The relative resistance to the 6 inhibitors 

among 8 cell lines was applied to complete linkage clustering analysis, and the resulting table 

is shown as a heat map. Black dashed lines indicate the borders of each cluster. White 

asterisks indicate the smallest relative resistance among the 8 cell lines against each inhibitor. 

The colors assigned to the different relative resistance values are shown on the right. (d and f) 

The effects of combinatorial treatment of MEKi and PI3Ki on the cell growth in HT-29 cells 

(d) and HCT116 cells (f) are shown as heat maps. The color hue on the bottom indicates the 

fold increase in cell number on day 3 relative to the number on day 0. The white dotted line 

on the heat map corresponds to the IC50 values of AZD6244 to ERK activity. (e and g) The 

cell growth rates are plotted as a function of ERK activity one day after treatment in HT-29 

cells (e) and HCT116 cells (g) treated with MEKi and PI3Ki. Symbol shape and color 

represents concentration of AZD6244 and PI-103, respectively, as shown on the bottom. 
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Dashed lines indicate fitted curves by the the theoretical curve derived from Hill equation 

about growth rate and ERK activity.. For more details, see Materials and Methods. 

 

Figure 3. Relation between S6K activity and cell growth rate. (a-d) Dose response of S6K 

activity in HT-29 cells (a and b) and HCT116 cells (c and d) upon treatment with AZD6244 (a 

and c) and PI-103 (b and d) for 3 days. Colored line represents time after drug treatment. 

Dotted horizontal line shows lower limit of S6K activity. (e and f) The cell growth rates are 

plotted as a function of S6K activity in HT-29 cells (e) and HCT116 cells (f) on Day 1. 

Symbol shape and color represents concentration of AZD6244 and PI-103 as shown on the 

right, respectively. Dashed lines indicate fitted curves. For more details, see Materials and 

Methods. (g) HT-29 cells (left) and HCT116 cells (right) were treated with serially diluted 

AZD6244 or 1 µM Torin1 for one day. Cell lysates were analyzed by immunoblotting for the 

levels of the indicated proteins. (h) pRictor/Rictor were plotted as a function of the AZD 

concentration with fitted curves in HT-29 cells (left) and HCT116 cells (right). pRictor/Rictor 

values at 1 µM Torin1 are also shown as a lower limit value. 

 

Figure 4. Requirement of rapamycin-insensitive mTORC1 activity for cell growth. (a-f) The 

effects of PI-103 (a and d), Torin1 (b and e) and rapamycin (c and f) on the cell growth rate 

(black) and S6K activity (magenta) were measured in HT-29 cells (a-c) and HCT116 cells (d-

f). The growth rate and S6K activity on Day 1 are plotted with the s.d. (n = 3). (g-i) Raptor 

depletion in A375 cells (g and j, left), A549 cells (h and j, middle) and HCT116 cells (i and j, 

right) by siRNA reduced the cell growth rates (g-i, left) and S6K activity measured by FRET 

imaging (g-i, right). Depletion of Raptor was confirmed by immunoblotting in A375 cells (j 

left), A549 cells ( j, middle) and HCT116 cells (j, right). ERK1/2 was utilized as a loading 

control. The numbers below the blots indicate the amounts of Raptor relative to negative 

control (NC) siRNA treatment. (k and l) Raptor knockout in HT-29 cells by CRISPR/Cas9 

reduced the cell growth rates (k, left) and S6K activity measured by FRET imaging (k, right). 

Error bars represent the s.d. (n ≥ 6). Depletion of Raptor was confirmed by immunoblotting 

(l). (m) The 4E-BP1 dominant negative mutant, 4E-BP1-4A, was induced by adding 1 µg/ml 

doxycycline (Dox.), and the cell numbers were analyzed to calculate the growth rate. Error 

bars represent the s.d. (n = 3). 
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Figure 5. Global changes in gene expression associated with the mTOR pathway. (a) 

Schemes for gene expression analysis. (b and c) M-A plot (the difference of average log 

intensities and the average of log intensities) of 0.1 µM PD0325901, a MEKi, in comparison 

to DMSO treatment in HT-29 cells (b) or HCT116 cells (c) (n = 2). Red and blue dots 

represent differentially up-regulated and down-regulated genes, respectively. (d) The 

expression levels of mTOR-related genes were altered by MEKi treatment. Differentially 

expressed genes that were identified in (b) or (c) were picked up and compared between HT-

29 cells (blue) and HCT116 cells (red). (e) The cells indicated on the right were treated with 

0.1 µM PD0325901 or DMSO for one day. These mRNA levels were subjected to qPCR 

analysis. The mean gene expression levels are shown with the s.d. (n = 3). Significant 

differences between BRaf-mutant cells and KRas-mutant cells (p < 1x10-5, ANOVA) are 

indicated with a single asterisk. N.S. indicates no significance. 

 

Figure 6. Model explaining the differential sensitivity to MEKi between oncogenic BRaf-

mutant cancer cells (a) and KRas-mutant cancer cells (b). In this model, ERK upregulates 

mTORC1 via transcriptional regulation of the gene expressions related to mTORC1 signalling. 

Cell growth is mainly determined by mTORC1 activity. 
 

 

Supplementary figure legends 
 

Figure S1. Reactivation of ERK in HCT116 cells treated with a MEK inhibitor. ERK 

activities before (blue dots) and after AZD6244 treatment (20 min, cyan dots; one day, green 

dots) are plotted as a function of the AZD6244 concentration with the s.d. (n = 3). Lines 

demonstrate fitted curves with the Hill-equation. Note that the IC50 values on Day 1 are 

higher than that at 20 min after MEKi treatment, indicating reactivation of ERK activity.  

 

Figure S2. ERK activity distribution under combinatorial inhibition of MEK and PI3K. HT-

29 cells (a) and HCT116 cells (b) were treated with combination of AZD6244 and PI-103 for 

1 day. Distributions of the ERK activity from each single cell were shown as histograms. 
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Colored lines represent concentration of AZD6244 as shown on the below box. 

Concentrations of PI-103 were shown on the top of the each plot. 

 

Figure S3. Effects of combinatorial MEK and PI3K inhibition on S6K activity and cell 

growth. (a-d) HT-29 cells (a and b) and HCT116 cells (c and d) were treated with AZD6244 

and PI-103. The S6K activity (a and c) and growth rate on Day 1 (b and d) are represented as 

heatmaps. White dotted lines and black dotted lines indicate the IC50 value of AZD6244 for 

ERK activity and the IC50 value of PI-103 for S6K activity in each cell line.  

 

Figure S4. S6K activity distribution under combinatorial inhibition of MEK and PI3K. HT-29 

cells (a) and HCT116 cells (b) were treated with combination of AZD6244 and PI-103 for 1 

day. Distributions of the S6K activity from each single cell were shown as histograms. 

Colored lines represent concentration of AZD6244 as shown on the below box. 

Concentrations of PI-103 were shown on the upper of the each plot. Of note, untreated 

HCT116 cells showed broader and biased S6K activity distribution compared to untreated 

HT-29 cells. 

 

Figure S5. Rictor phosphorylation upon MEK inhibitor treatment. (a and b) Colo205 cells (a) 

and LIM1215 cells (b) were treated with 0.1% DMSO, 1 µM AZD6244, 1 µM PI-103, 1 µM 

Torin1, or 250 nM rapamycin for 20 min or one day. The cell lysates were subjected to 

immunoblotting with the antibodies indicated at left. (c and d) Quantification of Rictor 

phosphorylation in Colo205 (c) and LIM1215 (d). Colo205 cells, which were sensitive to 

MEKi, showed a clear reduction of the pRictor level upon MEKi treatment as well as that 

obtained in Torin1 treatment, whereas LIM1215 cells, which showed strong resistance to 

MEKi, did not. 

 

Figure S6. Effect of DEPTOR depletion on S6K activity and cell growth. (a-d) HT-29 cells 

expressing S6K FRET biosensor were treated with scrambled siRNA (a and b) or siDEPTOR 

(c and d) for one day, followed by MEKi treatment. S6K activity (a and c) and cell growth 

rate (b and d) are plotted as a function of AZD6244 concentration, showing that DEPTOR is 

dispensable for MEKi-induced S6K suppression and cell growth arrest. (e) Expression levels 

of DEPTOR in control or siDEPTOR-treated HT-29 cells were quantified by qPCR.  
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Figure S7. Effect of TSC2 depletion on S6K activity and cell growth. (a-d) A375 cells 

expressing the S6K FRET biosensor were treated with scrambled siRNA (a and b) or siTSC2 

(c and d) for one day, followed by MEKi treatment. The S6K activity (a and c) and cell 

growth rate (b and d) are plotted as a function of AZD6244 concentration, showing that TSC2 

is dispensable for MEKi-induced S6K suppression and cell growth arrest. (e) Immunoblotting 

analysis confirmed the TSC2 expression in control or siTSC2-treated A375 cells. The 

numbers on the bottom are the values of TSC2 expression relative to scrambled siRNA 

treatment.  

 

Figure S8. Effects of MEK inhibitor treatment on Akt phosphorylation. HT-29 cells and 

HCT116 cells cultured in the presence of 10% serum were treated with the indicted 

concentration of AZD6244 or 1 μM Torin1 for 1 day. The cell lysates were subjected to 

immunoblotting with the antibodies indicated on the left. MEK inhibitor treatment did not 

increase pAkt level in both HT-29 and HCT116 cells. 

 

Figure S9. Effects of combinatorial inhibiton of MEK and EGFR on S6K activity and cell 

growth. (a-d) HT-29 cells (a and b) and HCT116 cells (c and d) were treated with AZD6244 

and Gefitinib. The S6K activity (a and c) and growth rate on Day 1 (b and d) are represented 

as heatmaps. White dotted lines indicate the IC50 value of AZD6244 for ERK activity in each 

cell line. 

 

Figure S10. Inhibition of EGF-induced phosphorylation of EGFR, Akt and ERK by Gefitinib. 

Serum-starved HT-29 cells and HCT116 cells were treated with 10 ng/ml EGF and 1 μM 

PD153035, an EGFR inhibitor, 10 μM or 1 μM Gefitinib for 5 minutes. The cell lysates were 

subjected to immunoblotting with the antibodies indicated on the left. 

 

Table S1. Mutation statuses of KRas, BRaf, PIK3CA and PTEN in cell lines used in this study. 
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mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic 

resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. 
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Supplementary Figure S1: Reactivation of ERK in HCT116 cells treated with a MEK 

inhibitor. 

Supplementary Figure S2: ERK activity distribution under combinatorial inhibition of MEK 

and PI3K. 

Supplementary Figure S3: Effects of combinatorial MEK and PI3K inhibition on S6K 

activity and cell growth. 

Supplementary Figure S4: S6K activity distribution under combinatorial inhibition of MEK 

and PI3K. 

Supplementary Figure S5: Rictor phosphorylation upon MEK inhibitor treatment. 

Supplementary Figure S6: Effect of DEPTOR depletion on S6K activity and cell growth. 

Supplementary Figure S7: Effect of TSC2 depletion on S6K activity and cell growth. 

Supplementary Figure S8: Effects of MEK inhibitor treatment on Akt phosphorylation. 

Supplementary Figure S9: Effects of combinatorial inhibiton of MEK and EGFR on S6K 

activity and cell growth. 

Supplementary Figure S10: Inhibition of EGF-induced phosphorylation of EGFR, Akt and 

ERK by Gefitinib. 

Supplementary Table 1: Mutation statuses of KRas, BRaf, PIK3CA and PTEN in cell lines 

used in this study. 
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Supplementary Figure S1. Reactivation of ERK in HCT116 cells treated with a MEK inhibitor. ERK activities before (blue 

dots) and after AZD6244 treatment (20 min, cyan dots; one day, green dots) are plotted as a function of the AZD6244 

concentration with the s.d. (n = 3). Lines demonstrate fitted curves with the Hill-equation. Note that the IC50 values on Day 1 

are higher than that at 20 min after MEKi treatment, indicating reactivation of ERK activity.
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Supplementary Figure S2

Supplementary Figure S2. ERK activity distribution under combinatorial inhibition of MEK and PI3K. 

HT-29 cells (a) and HCT116 cells (b) were treated with combination of AZD6244 and PI-103 for 1day. Distributions of the ERK 

activity from each single cell were shown as histograms. Colored lines represent concentration of AZD6244 as shown on the 

below box. Concentrations of PI-103 were shown on the upper of the each plot.
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Supplementary Figure S3

Supplementary Figure S3. Effects of combinatorial MEK and PI3K inhibition on S6K activity and cell growth. 

(a-d) HT-29 cells (a and b) and HCT116 cells (c and d) were treated with AZD6244 and PI-103. The S6K activity (a and c) and 

growth rate on Day 1 (b and d) are represented as heatmaps. White dotted lines and black dotted lines indicate the IC50 value 

of AZD6244 for ERK activity and the IC50 value of PI-103 for S6K activity in each cell line.



Supplementary Figure S4

Supplementary Figure S4. S6K activity distribution under combinatorial inhibition of MEK and PI3K. HT-29 cells 

(a) and HCT116 cells (b) were treated with combination of AZD6244 and PI-103 for 1day. Distributions of the S6K activity from 

each single cell were shown as histograms. Colored lines represent concentration of AZD6244 as shown on the below box. 

Concentrations of PI-103 were shown on the upper of the each plot. Of note, untreated HCT116 cells showed broader and 

biased S6K activity distribution compared to untreated HT-29 cells.
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Supplementary Figure S5

Supplementary Figure S5. Rictor phosphorylation upon MEK inhibitor treatment. (a and b) Colo205 cells (a) and 

LIM1215 cells (b) were treated with 0.1% DMSO, 1 µM AZD6244, 1 µM PI-103, 1 µM Torin1, or 250 nM Rapamycin for 20 min 

or one day. The cell lysates were subjected to immunoblotting with the antibodies indicated at left. (c and d) Quantification of 

Rictor phosphorylation in Colo205 (c) and LIM1215 (d). Colo205 cells, which were sensitive to MEKi, showed a clear reduction 

of the pRictor level upon MEKi treatment as well as that obtained in Torin1 treatment, whereas LIM1215 cells, which showed 

strong resistance to MEKi, did not.
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Supplementary Figure S6

Supplementary Figure S6. Effect of DEPTOR depletion on S6K activity and cell growth. (a-d) HT-29 cells expressing S6K 

FRET biosensor were treated with scrambled siRNA (a and b) or siDEPTOR (c and d) for one day, followed by MEKi 

treatment. S6K activity (a and c) and cell growth rate (b and d) are plotted as a function of AZD6244 concentration, showing 

that DEPTOR is dispensable for MEKi-induced S6K suppression and cell growth arrest. (e) Expression levels of DEPTOR in 

control or siDEPTOR-treated HT-29 cells were quantified by qPCR.



Supplementary Figure S7. Effect of TSC2 depletion on S6K activity and cell growth. (a-d) A375 cells expressing the S6K 

FRET biosensor were treated with scrambled siRNA (a and b) or siTSC2 (c and d) for one day, followed by MEKi treatment. 

The S6K activity (a and c) and cell growth rate (b and d) are plotted as a function of AZD6244 concentration, showing that 

TSC2 is dispensable for MEKi-induced S6K suppression and cell growth arrest. (e) Immunoblotting analysis confirmed the 

TSC2 expression in control or siTSC2-treated A375 cells. The numbers on the bottom are the values of TSC2 expression 

relative to scrambled siRNA treatment.
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Supplementary Figure S8

Supplementary Figure S8. Effects of MEK inhibitor treatment on Akt phosphorylation. 

HT-29 cells and HCT116 cells cultured in the presence of 10% serum were treated with the indicted concentration of AZD6244 

or 1 μM Torin1 for 1 day. The cell lysates were subjected to immunoblotting with the antibodies indicated on the left. MEK 

inhibitor treatment did not increase pAkt level in both HT-29 and HCT116 cells.
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Supplementary Figure S9

Supplementary Figure S9. Effects of combinatorial inhibiton of MEK and EGFR on S6K activity and cell growth. 

(a-d) HT-29 cells (a and b) and HCT116 cells (c and d) were treated with AZD6244 and Gefitinib. The S6K activity (a and c) 

and growth rate on Day 1 (b and d) are represented as heatmaps. White dotted lines indicate the IC50 value of AZD6244 for 

ERK activity in each cell line.



Supplementary Figure S10

Supplementary Figure S10. Inhibition of EGF-induced phosphorylation of EGFR, Akt and ERK by Gefitinib. 

Serum-starved HT-29 cells and HCT116 cells were treated with 10 ng/ml EGF and 1 μM PD153035, an EGFR inhibitor, 10 μM 

or 1 μM Gefitinib for 5 minutes. The cell lysates were subjected to immunoblotting with the antibodies indicated on the left. 
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Cell line * Origin KRas BRaf PIK3CA
NCI-H460 Lung Q61H WT E545K 

A549 Lung G12S WT WT
HCT116 Colon G13D WT H1047R 
HT-29 Colon WT V600E P449T

Colo205 Colon WT V600E WT
A375 Skin WT V600E WT

LIM1215 † Colon WT WT WT
MCF10A ‡

* Mutations are referenced from COSMIC database, http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/
† Jhawer M et al., 2008
‡ Kadota M et al., 2010 

Breast WT WT WT

PTEN

WT
WT

WT
WT
WT
WT
WT
WT

Supplementary Table 1. Mutation statuses of KRas, BRaf, PIK3CA and PTEN in cell lines used in this study.

Supplementary Table 1
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